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ABSTRACT

Methods are proposed for calculating the distribution
of aerodynamic loads due to mutual interference effects be-
tween wings and bodies. The methodsfall into two ranges of
applicability: linear, and nonlinear, with angle of attack,

Applicability of the linear loads methods to aero-
elastic calculations is discussed. A computer program is
presented which may be used to calculate interference loads
at subsonic Mach numbers on a configuration consisting of
{1) 2 body of any varying elliptic cross section and camber
distribution, and (2) a wing with straightleading andtrailing
edges of any sweepangle, twistdistribution, and camber dis-
tribution, located above or below the body centerline. Ex-
tension to the supersonic case is indicated. Generally good
agreement with experimental data is found.

Nonlinear wing -body interference loadsare alsoc con-
sidered. Several possible methodsof representing the sep-
aratedflow abouta wing-body combinationare proposed, and
analyzed by the slender body theory. Numerical procedures
are outlined, and some comparisons with experimental data
are made. Agreement is somewhat less than satisfactory.

Recommendations are made for further analytic ex-
tensions and improvements, and for additional experimental

studies.
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SECTION

INTRODUCTION

A recent evaluation of procedures for calculating aerodynamic
load distributions for structural design (Ref. 1) has revealed significant
inadeguacies in available methods of predicting loads due to wing-body
interference effects. The methods of former years, useful for low-
speed aircraft with high aspect-ratio wings, are not readily applicable
to today’s high-speed low aspect-ratio aircraft and missiles. The var-
ious methods developed in recent years to handle such configurations
(Refs. 2,3,4) may predict total loads successfully, but not load distribu-
tions, which are of primary interest to the structural designer. Other
methods are not ible to handle sufficiently general configurations {(Ref. 5},
or are not readily adaptable to aeroelastic calculations. Treatment of
nonlinear interferences effects is similarly inadequate.

The prescnt report seeks to make extensions and refinements to
some of these methods, and develop new ones where needed, with 1 view
toward presenting a unified procedure for calculating complete load distri-
butions for combinations of general body shape and wing geometry.






SECTION II

BACKGROUND AND PRESENT CONTRIBUTION

This report will not attempt to present a complete history of wing-
body interference calculations. The two surveys of Refs. 6 and 7 give
summaries of many of the important theories. The method by Ferrars,
for supersonic calculations, is essentially complete in Ref. 7. What
will be presented here is an outline of the theories that have seemed
niost promising for extension and refinement.

The load on ¢ wing-body combination due to interfercnce eifects
mavy be defined as the total load on the combination, minus the sum of
the load that would exist on the wing alone and on the body alone under
the same [light conditions. This interference load may he divided into
1wo parts: the additional load on the wing due 1o the presence of the
body, and the additional load on the body due to the presence of the wing.
The most promising method for calculating the distribution of interfer-
ence load on the wing due to the presence of the hody is the method o
Gray and Schenk (Ref. 5), which is based upon the eariier work of
ILennertz (Ref.8 )., In this method, the load distribution on the wing is
found by any convenient method, and replaced by a set of Hitting horse -

shoe vortices. The body is then replaced by the images of these vort:oos
30 placed as to satisty the boundary condition of ne flow through the bodys
surface. The interference Joad un the wing is then caloulated by assanang

an additional angle of attack distribution oo the wing, which is just the
upwash due to the image vortices, plus the upwash due to the flow abont
the body itself. This method gives fairly acourate results for the contig-
arations to which it may be applied. The basic assumptions made «re

that 1) the body is infinitely long and straight, and 2) the body is of unifornmn
circular cross-sectiun,

The interterence load on the body due to the presence of the wing
15 also known as the "body carry-over' lift because of the tendency of
the wing to block the fiow around the body and thus "carry' the 1ift bauk
on to the body. It has, in the past, been calculated by siender body
theory. A more promising approach is the "slender configuration™ theory
proposed in Ref. 6. This theory is, in fact, o modification ot the metliod
of Lawrence for calculating the distribution of 1ift on low aspect-ratio
subsonic wings (Ref. 9}, In Lawrence’s method, an elliptic lift distribution
is assumedn the spanwise direction, and the resulting one-dimensiona,
integral equation is solved for the lift distribution in the chordw se
direction. The axial lift distribution on the body is then (ound by cvaioating
the chordwise distribution at the wing centerline. ' N

The portion of the hody Lehind the wing i 0ocn cd nat by the
blocking of flow by the wing, but by the trailing shoot of vortiony, waion

i
was generated by the wing Lift. Multhapp's method (Bo7 7 a5 boused Lo the

[



influence of this vortex sheet, but is limited to 1) infinitely long bodies
of uniform cross section, 2} high aspect ratio unswept wings, and 3}
very small angles of attack. Furthermore, it does not take account

of the tendency of the vortex sheet to roll up into a pair of vortices
located near the wing tips. Thus a method which overcomes these re-
strictions must be found.

The methods considered in this section have all been derived for
use in subsonic flow calculations, and in the remainder of this report will
be considered as limited to such work., However, many of the procedures
are easily adaptable for use in supersonic calculations, and where this is
feasible, the possible adaptations will be discussed.

The contributions of this report to wing-body interference theory
may be summarized as follows: 1) specification of the general aeroelastic
problem for a wing-body combination; 2} extension of the method of Gray
and Schenk to bodies of elliptical cross section; 3) adaptation of the method
of Lawrence and Flax (Ref. 6 ) for use in the general aeroelastic problem;
4) development of a method for calculating the effect of the vortex wake on
the body, 5) development of numerical procedures for the above theories.
In addition, the nonlinear effects of vortex separation on wing-body inter-
ference have been examined, and numerical procedures developed for
their calculation.

The final sections of this report contain some comparisons of the
theories with experimental data, and some suggestions for further study.



SECTION III

LINEAR WING-BODY INTERFERENCE LOADS

A. SPECIFICATION OF THE AEROELASTIC PROBLEM

In many of the earlier analyses of flight vehicles, the structure was
assumed rigid, and thus had no effect on the determination of aerodynamic
loads other than through the exterior shape of the vehicle. In modern
structural design, however, aerodynamic analyses are usually only useful
if they are applicable to the total aeroelastic problem. This may be stated as
the determination of the final loads on and deflections of a deformable struc-
ture, which is subject to loads which change its aerodynamic shape, which
in turn changes the loads, etc. Gray and Schenk (Ref.5 ) present a matrix
solution to the static aerocelastic problem for an airplane-type vehicle.
Section II of Ref. | outlines how various aerodynamic theories may be used
as input to such a solution. Since the aerodynamic methods of this report
are concerned basically with this type of configuration, the methods will
be specified with the aerocelastic solution in mind.

It is possible to specify the treatment of the aeroelastic problem
of a wing-body combination in several ways. For example, the wing and
the body may be handled separately or together in the calculation of loads
and deflections. The aerodynamic input may be generated by considering
the structure to be detlected in its natural mode shapes and finding the
resulting loads, or by dividing the structure into "boxes' or grid elements,
considering the lecad on one box due to the deflection of another, and super-
posing solutions. Each of these possible choices has inherent advantages
and disadvantages. Using mode shape methods, good accuracy may be
obtained with small numerical storage requirements, whereas box methods,
which may include inversion of large aerodynamic influence coefficient
matrices, require large amounts of numerical storage to obtain accurate
results. On the other hand, some knowledge of the structure to be treated
is necessary in the use of mode shape methods, while box methods may
treat any configuration independent of any structural infosmation, Investi-
gation has shown that the current trend in the aircraft industry is toward
the use of box methods, rather than mode shapes, especially for static
aeroelastic calculations. Thus the methods under consideration here will
be based on a box-type representation of the vehicle.

The choice of whether to treat the wing and body separately or
together is less clearly defined. There seems to be no obvious trend
either way in current industrial practice. Furthermore, box methods are
less readily adaptable to a simultaneous treatment of the wing and the body,
as the deflection of a single '"box on the body' has relatively little physical
significance. Methods will be chosen, therefore, which treat the wing and
body separately, but which may be used for an aercelastic treatment of the
entire configuration,



Another inherent advantage of the box representation of the vehicle
is that once the method is established for use in the aeroelastic problem,
it may easily be adapted for analyses of generally cambered and twisted
wings and cambered bodies, for the configuration used for generating
aerodynamic input to the aeroelastic problem is just a special case of
the general camber distribution, The only limit on the generality of twist
or camber that may be treated is the number of boxes used, as the angle
of attack is treated as constant over the area of each box.

B. EFFECT OF THE BODY ON THE WING

1. Method of Gray and Schenk

The method of Gray and Schenk (Ref, 5) is used to calculate
the effect of the presence of an infinitely long circular body on the load
distributions over a wing. It assumes that the spanwise loading on the wing
alone is known along with the corresponding center of pressure distribution.

The wing alone is defined to be the "exposed" wing as shown in the sketch
below:

Body ¢

¢ ot "Exposea” Wing

—Center of Pressure
Distributian

The following sketch shows typical plots of a wing spanwise loading and
center of pressure,



Lift per Unit Span .

X

The calculation of wing load due to fuselage interference is carried
out in six Steps.

a,

b.
c.

Subdivide the spanwise load distribution on the wing alone into
a number of load increments.

Replace these step increases in ioad by lifting horseshoe vortices,
lLocate the image vortices within the bady.

Calculate the upwash distribution due to these image vortices
at control points on the wing.

Add the upwash due to fuselage angle of attack (if any}.
Compute the wing load due to the total distribution of upwash at
certain control points on the wing. The location of the control
points is a consequence of the theory used to calculate the lift
distribution on the wing alone.

The extension of this thecry to elliptic bodies includes the circular
body as a special case.

2.

Extension to Bodies of Elliptical Cross-Section
a, Description of the Method

In order to adapt the method for use with bodies of

elliptical cross-section, it is necessary to find the equivalent vorticity _
distribution which will satisfy the boundary condition on the surface of the



elliptical body. As an approximation to the problem, the vorticity
distribution will be replaced by a pair of image vortices within the inte-
rior of the ellipse. This approximation gives correct results for the
limiting cases of the ellipse reducing to a vertical straight line and to a
circle. Itis felt, therefore, that for ellipses with the major axis oriented
parallel to the cross-flow direction, this approximation should be a rea-
sonable one. For ellipses oriented normal to the cross-flow, the con-
dition of Eq. (6) below insures approximately correct results.

Some calculations of the size of the errors involved in neglecting
the additional vorticity distribution {which may be considered as distributed
over the body) have been made. The procedure is outlined and the results
are given below.

When the complete system of image vortices is found, the well-
known sclution for the two-dimensional cross-~flow about an elliptical
body is added to account for the upwash induced by the body angle of attack

b. Calculation of the Image Vortex Positions

The positions of the image vortices within the eilipse may
be found by considering the image vortices within a circle, and by a trans-
formation which maps the circle onto the appropriate ellipse, finding the
transformed position of the vortices (see sketch below).

X Plane L Plane

hin

.

O
~

Aumsina *uwsina

Consider a circle of radius # in the A -plane with a pair of _
external vortices symmetrically located at Xpoand - X,, where X=¥rc&,
and bars denote the complex conjugate of quantities. This circle may be
transformed to an ellipse in the  plane by applying the Joukowsky trans-
formation

I= X *k/X (1)



where 3‘_;*‘7 and k is the parameter defining the shape and orientation
of the ellipse. The horizontal axis becomesa@ =+ 7 &%, and the vertical
axis becomes &=+~ £+ va

The external vortices a.t/Y and- e in the ,\’pmne transform to
‘ vortices at J, and- .‘f in theY plane, where

L=X, r kX, (2)

The image vortices in the X plane are located at X, and -~ X , where

SN IV

andd’f(x:/ krp_ (x,)
That is, ,‘*’/J(

Since the inverse transformation is

o (X /P sfz(""), (3)

The positions of the image vortices become J:, and = x , where

,1_ 2 -1)?
X+———:_"+’é°
X

/ X e

and S5 is given in terms of X, by Eq. (3}. Hence

— - -5
g yr 4 k2 (F, ST k™)
S N C AR CAR I

(4}

The positive radical has been chosen as this gives the correct position for
the image vortex for the case when £® @ (circle}. Note that care must be
used when taking the square root of the quantities including the complex
conjugate Je

The image vortex position in the -plane may be found in the
above manner only when the image vortex in the X -plane would appear in
the region between a circle of radius & about the origin and the circle of
radius # , Otherwise, the transformed position of the image vortex, while
it may appear within the interior of the ellipse, will be on the wrong Riemann
sheet, and cannot therefore be used in calculating the downwash. Since the
image vortices closer to the center of the circle have a much smaller con-
tributicn than those closer to the surface, they will simply be ignored.



'his condition on the position of the image vortices in the X-plane may
he stated as

/k/</X/<F
Since /X,/" f"://)(a/

r -

I % = 7
{5}

L3
The external vortices, then, must appear inside a circle of radius r//k/
in the X-plane, This circle may be transformed to an ellipse in the
J=Xr&% X . The horizontal axis
(kYN &/ .

Y -plane by the transfurmati()}x
ot this ellipse is a‘*‘%‘/*&*f‘/‘/and the vertical axis is &=+ YIk/-

§al + 70 ™ <&/
r= P 2. p2 ) & -
i) (=) ©)

since e E, "¢, is the position of the external vortex. If this condition
is ot satisficd by the coordinates E,, # of the external vortex in the
Y . plane, the image vortex does not exist.

Calculation of Evror Due to Image Vortex Approximation

G,
If the flow akout a two-dimensional circular cylinder

¢oto o pair of symumetrically placed external vortices of strength 7 is

dered, the comples poiential oay be written:

Bix)=~ S5 tn (- X )75 tn K+ K, )+ L tn (X X, )= ££ 29 (X-x)
(7)

Piie ciroular ovlinder has been replaced by a pair of image vortices as
disncussed above.,  The notation is defined in the sketch on page 8.
If the circle is transformed into an ellipse by the transformation

A faa a
XA (IrVri- vx ) the complex potential will contain terms due to the

trovsformmed external vortices, the transformed image vortices, and

atonal distribated vorticity.  If only the flow due to the image vortices
cud the disrributed vorticity is considered, the complex potential inay be
worirtten, atter some algebra, as

10
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4[' ( N e /R du )
n [/ + o
/

VP> -gk™ ¢ of F-g&* )

L r

£ 4, (1 AT AT )

,ln(:)’,bjj)— 31‘5‘7

(8)

The complex potential due to the image vortices alone may be written

N (J’)—'"'-I»(tf s) - ‘f /n(f#-_j’,) (9)

In order to estimate the size of the errors involved in neglec_hng the dis-
tributed vorticity, the downwash in the?? = € plane due to the images of
external vortices located in the ?7+= & plane will be calculated from the

exact potential 2, ¢Y) and the approximate potential (.77 Since
Zﬁ - U - (.&"f’/ 77 ~Z [ )
;S (10)

For the transformed images alone:

Wimage = 37 /; ;:f)"" (?*E) since
.7:-'3..7_';,=§'°) 3‘;:55/ .-_-'"5’, when 7:0

(11)

11



For the transformed images plus the distributed vorticity:

=-

w =L J_¢__ _ / X

x/ (EFo)(Eve?) g */Jé“—Vz*—JE'Z ~4%%) /
(5 -E,)*

ErE NE™ Vt"? 2z - /\/§ y.c-’-«-iyz-‘)
sy

(=

T-E,

ya .‘[5‘ ¥#L "[ ~¢L
ETE,

j [CErENE=ye ;_/;jé’ Z¢e +-¢§,4-4!A")
/ (E7&)*

"ér—’;—/j -

The magnitude of the difference between the exact and approximate down-
wash expressions will be normalized with respect to the magnitude of the
crossflow, {{& for an ellipse which has been formed by transforming a

cylinder of unit radius. The vortex strength, will be approximated by
the strength of a single equivalent lifting vortex, /7 = L/ ¢ (/_'o . Thus
s
AN - TRy - 13
F =z de T A (1)

where the total span has been chosen as 1.25 times the vortex span b .
For the medium-to-high aspect ratio wings at subsonic speeds, the ratio
of the lift curve slope to the aspect ratio is on the order of one. Thus

/ b/

\Wexact ~Wappro ~ _w_’e,rac't _ Wapprex
Uee = \Lrar p/anr

(14}
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Calculations have been made for a vortex span-to-body radius ratio of 10
{(which is reasonable for high aspect ratio subsonic configurations)

for ellipses with various values of £ , and various external vortex loca-
tions. Figure | shows the variation in normalized downwash for an ellipse
with a major axis of 1.5, a semi-minor axis of .5, and an external vortex
located a distance of .5 from the body. This approximates the maxi-

mum possible error, since, if the vortex lies at a distance greater than
.50606, the image vortex does not exist. Figure 2 shows the same infor-
mation for an ellipse which is nearly a circle, i.e., semi-major axis of
1.05, semi-minor axis of .95, and external vortex locations of .50, 1.0
and 3.5 from the body (¥ = 1.45, 1.95 and 4.45). It may be seen, in general,
that the errors are much less severe for a body which is nearly a circle,
and, for a given body, for external vortex locations which are inboard.

d. Calculation of the Downwash

The load distribution over the wing due to the presence
of the body is found by the following steps:
l. Replace the true spanwise loading L) by an arbitrarily
divided stepwise approximation (see sketch below).

~Stepwise Approximation
| .
7 ,/6 .

—_—]— - Actual Loagdin

o —‘ 3 4 Curve ’
[~ 3 Y
e B OdYy» ™ 2

| i

S Ly

2. Replace each increment in spanwise loading by a horseshoe

vortex of strength
o= L .....a/i
L2 = 25 /a’y : (15)

(See sketch on the following page)
where A =free stream density
U = free stream velocity,
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3. Find the positions \Ya‘_' of the external trailing vortices, (see
sketch below).

hin
Lo
~ AN
v -~

4. See if the positions Sl satisfy Eq, (6) and ignore those which
do not,

5. Find the positionsJ; of the image vortices by Eq. (4).

6. Connect the starting points of each pair of image vortices with
a straight vortex segment approximating the image of the bound portion of
the horseshoe vortex. The image vortex is assumed to begin at the same
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axial station as the external wing vortex. The bound portion of the external
horseshoe vortex is located at the local center of pressure.

7. Calculate the downwash at specified control points on the wing
due to each pair of image vortices on both sides of the body.

8. Calculate the downwash induced by the angle of attack of the
body.

The equations for the upwash at an arbitrary point on the wing due
to the elements of the image of a horseshoe vortex and the body may be
seen in Eqs. (IV-123) of Ref. 1. Note that if downwash is to be calculated
the signs must be reversed.

The control points at which the downwash is calculated are chosen
along a line which is one-half the local chord behind the center of pressure
at each spanwise station. (The justification and consequences of this
choice are discussed in the next section). The local flow angles are then
determined by adding the contributions of all image vortices plus the body
downwash., The spanwash angle distribution, resulting from the downwash
divided by the free stream velocity, is assumed to be uniform in the chord-
wise direction, Hence, the additional distribution of wing load due to wing
body interference is obtained by applying one of the procedures of Ref. 1
{or other suitable methods for calculating lift distributions on wings) to
this effectively twisted wing.

3. Use in Various Mach Number Regimes

For high aspect ratio subsonic wings, the method for calculating
lift distributions which has proven to be the simplest to use, consistent with
obtaining sufficient accuracy, is that due to Weissinger, with compressi-
bility effects accounted for by the Prandtl-Glauert rule, For low aspect
ratio subsonic wings, the LLawrence method, with the Prandtl - Glauert correction,
may be used. Transonic wings may be treated by Jones? theory. Super-
sonic wings may be analyzed by application of the linear supersonic theory.
Summaries of these theories, along with the numerical procedures to be
used in their application, are given in Ref. 1.

Compressibility effects are thus incorperated into the wing-alone
loading before it is subdivided to initiate the computation of wing-body
interference, if the Weissinger, L.awrence, or linear supersonic theories
are used. The Jones theory is independent of Mach number.

It should be noted that the incompressible vortex solution has been
used to determine the angle of attack distribution due to body interference.
Thus, placing the control points at one-half chord length behind the center
of pressure line is justifiable only for subsonic wings, and is strictly
applicable only if the wing is flat. On subsonic wings, the center of pres-
sure is assumed to lie at the guarter-chord, and applying the boundary
condition of no flow through the wing at the three-quarter chord gives the
correct two-dimensional value of lift in the limit of a wing of infinite span.
In the supersonic case, the point at which a bound lifting vortex induces a
downwash angle matching the local wing slope will depend on Mach number
and wing geometry. Since the effects of the image of the lifting vortex will
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not be large, the extension of the subsonic rule to the supersonic case
should not introduce a significant error.

One modification to the method should be made for supersonic cal-
culations, however. For configurations with short forebodies and high
aspect ratio wings at high Mach numbers, the Mach cone from the body
nose will intersect the wing leading edge, as shown in the sketch below.

/
/7
Moch F 4
och Forecone/
y, /
Y4 N\

\Mach Line

Center of Pressure
Distribution

e

In such a case, the downwash due to the images within the body of vor-
tices located outboard of the Mach line from the nose should be ignored.
The body can have no effect on this portion of the wing, as the entire
body lies outside the Mach forecone of every point on the wing located
outboard of the Mach line. Similarly, the downwash at control points
outboard of the Mach line is just that for the wing alone.

C. EFFECT OF THE WING ON THE BODY

1. Description of the Method

In Ref. 1, a method is described for calculating the body carry-
over lift, or interference lift due to the presence of a midplane wing on a
slender, circular body configuration. Slender body theory is used. This
section describes a method which includes not only a better representation
of the wing, but also the effect of the wake of the wing on the body. This
method is applicable to configurations with bodies of varying elliptical
cross-section and small general camber, with wings which may be located
out of the mid-plane.

The body carry-over lift arises from two sources. The first is
the blocking effect of the wing on the flow around the body. The second is
the flow over the body due to the trailing vortex system in the flow field
behind the wing.
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The distribution of body carry-over lift is calculated in two parts.
First, the segment of the body from the root of the leading edge of the
wing to the root of the trailing edge is treated by an extension of the method
of Lawrence (Ref. 9) for low aspect ratio subsonic wings. Compressibility
effects are accounted for by a Prandtl-Glauert correction. Then the seg-
ment from the trailing edge of the wing to the aft end of the body is treated
by considering the flow field due to the vortex wake of the wing. The body
carry-over lift ahead of the wing is assumed negligible in the subsonic
case, and zero in the supersonic case.

It should be noted that subsonic and supersonic problems will be
treated by the same method. This is permitted for configurations and
flight conditions where the slender body assumptions are approximately
valid, since supersonic flow over a slender configuration well inside
the Mach lines resembles subsonic flow. If necessary, the modified
Lawrence method could be adapted to configurations r.ot meeting these
conditions by making different assumptions and transformations.

Lawrence has given a method for calculating the lift distribution on
low aspect ratio subsonic wings by considering the spanwise distribution to
be elliptical, and solving the resulting one-dimensional integral equation
for the chordwise distribution by a numerical method. Details of the pro-
cedure of Ref. 6 for extending this method to wing-body combinations will
be given below. Tt may be outlined as follows:

1. At each chordwise station between the leading and trailing edge
of the root of the wing, transform the two-dimensional wing -body configu-
ration to an equivalent wing plus vertical line body by a conformal mapping.

2. Calculate the chordwise lift distribution on the equivalent wing
by solving Lawrence’s modified integral equation.

3. Calculate the chordwide lift distribution on the original wing, and
substract from the transformed wing lift to get the body carry-over lift,

The lift distribution on the aft portion of the body is calculated by
assuming that the entire trailing vorticity is rolled up into a pair of con-
centrated vortices placed at the centroids of the vorticity distribution and
beginning at the wing trailing edge. Expressions for the strength and loca-
tion of this vortex pair are given below.

This approximation is, in fact, close to physical reality aft of a
point approximately one or two chord lengths behind the trailing edge of the
wing. It is felt, however, that allowing the single rolled-up vortex to begin
at the trailing edge is a sufficiently accurate approximation. Reference 10
gives the lift distribution on a body in the presence of such a vortex. The
procedure rmay be outlined as follows:

l, Calculate the spanwise lift distribution on the wing by any con-
venient means.

2. Represent this lift distribution by a single trailing vortex pair
whose strength is proportional to the maximum spanwise loading and whose
span produces the proper total lift.

3. Calculate the streamwise lift distribution on the body due to the
presence of the vortex.

In both of the above procedures, the body carry-over lift alone is
the final result. In this way, the total lift on the body may include, if desired,
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a more accurate determination of the body-alone lift than that given by
slender body theory, e.g.. that given by the shock expansion method of
Syvertson and Dennis, which is described in Ref. 1.

2. Body Carry-Over Lift by Lawrence?s Method

The governing partial differential equation for steady irrotational
incompressible flow may be solved by a superposition of elementary solu-
tions, such as the vortex or the pressure perturbation, which satisfy the
prescribed boundary conditions. For thin lifting wing problems, one
approach is to replace the wing by a sheet of vorticity whose strength 2 at
all points § , 7 is determined such that the upwash @ at a point X , & just
matches the local slope of the wing, so that the boundary condition of no
flow through the wing is satisfied. That is:

Wl )=~ (5 ) 6,

where d/‘, ff} is the local siope in the streamwise direction. The upwash
at a point X, ¥ is given, in our notation, by:

s (¥) |

s 377

{17}
assuming spanwise symmetry about the centerline.
The vortex sheet produces a discontinuity in the streamwise com-

ponent of velocity over the region of the X , & plane occupied by the wing
planform. The total perturbation is given by

A4 =7 (8 n)=« - (18)

7y ¥ Lower

The lifting pressure on the wing is found, by linear theory, as

Ae= Lomrer - 22005 V) (19)
U~ U‘.
Thus when the integral equation for the vorticity (Eq., {(17)} is solved, the
distribution of lift on the wing is known. An alternate approach is to con-~
sider the pressure perturbation solution directly and write the integral

equation for local upwash velocity in terms of the streamwise velocity
perturbation. Thus:

()
w (¥ g)=—_1 j f" ; //f{/x £/ */3‘7) /
=27 < /}

{20)
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Solutions to the two-dimensional integral equation are exceedingly
complex, and have only been accomplished recently with the help of the
digital computer (see for example, Retf. !0). In former years, the
practice has been to reduce Eq. {17) or Eq. (20) to a one-dimensional in-
tegral equation, by an approximation consistent with the configuration
being analyzed. Weissinger, in Ref. 11, proposed a high aspect ratio
approximation {discussed in Sectlon III D) which is also correct for the
limit'of AR = &. Jones, in Ref. 12, uses an approximation which re-
duces the integral equation to one apphcable only to very low aspect
ratio wings, or wings at near-transonic speeds. This is the well-known
slender wing theory. Lawrence, on the other hand, uses an approximation
which is correct at the limits of both high and low aspect ratios (AR = oo
and & ), but gives best results for low to medium aspect ratio wings.
This is the method which has been adapted for use in calculating body
carry-over lift.

The integral equation for local upwash velocity in terms of the
streamwise velocity perturbation for a wing is given by Lawrence as:

. s&) a(f,w[ 'J(f-sl‘#?-w*} (21)
wix,4)= g;ayfﬁg(gw I+ yrr I (d€

which is just Eq. (20) after an integration by parts.

When the low-aspect ratio approximation

NU=3P +lg-)% ~ Jx-§)*+( s w)* (22)

is introduced, the equation may be rewritten, after evaluating some integrals,
as;

2 L
(=g @ L[ g | PAEELLEODT | ey

where
Sy g (x) 7 oL
and
¢ L 5 (x) p /5, (X))J:— 2 4
e f_'s,mww} 9% dy (25)

It is shown in Ref. 6 that this same integral equation (Eq. (23)) may be
applied to a wing-body combination, provided £¢X} is re-defined as:
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J S
k(%) ~‘—/_';,,:,)[d0,7}41675(9)].,/-3(12 -g% dy (26)

where & (}g y) is an arbitrary angle of attack distribution of the wing with
respect to the wing root chord, & g is the angle of attack of the body, and
1‘: (;)is a function relating the flow about the body in question to the flow
about a vertical flat plate, defined as

oF
-ﬁ, (y) = PP Je -/ (27)

The variables are defined in the following sketch, illustrating the
untransformed wing-body combination and the transformed equivalent wing
and vertical line body.

iz+ t-Plane

wing |'" S (x) _-'i

4
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The numerical procedure used for solving Eq, {23) is outlined in
Section IMI-D below. A FORTRAN program including this procedure was
given in Appendix B of Ref. 1. In this program, £(X/is input in the form

£(8) = -gt(a)/(if‘))" (28)

where the transformation

X =L (1-0056) (29)

has been applied, The function #@)gives the distribution of effective angle
of attack in the chordwige direction.

For solutions of Eq. (23} and f(x}deﬁned as in Eq. {26), it has been
necessary to modify the existing program to correctly calculate #¢&/ for use
as input. It will be noted that as a value of £¢%/is to be calculated at each
chordwise station, there is nothing to prevent replacement of c(B in Eq, {23}
byde (%) to account for body camber, or of #,[y/by-/’, (X, 4)to account for
variations in the elliptical cross-section. These variations should be
small to prevent serious violation of the boundary conditions of no flow
through the body.
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The following procedure is to be followed in calculating /'/9) :
!1. Divide the root chord of the wing into /7 spanwise strips

whose centers lie at the stations ‘9,’= g_"‘(/"' ¢os %// )7=}/’2/3 .

2. At each station, calculate
S(8n)

2 5” = y(gmfﬁ) [d /5;71'51) *“g@n)’ﬂ/ (9)7, —5_)}

’\/(‘i%ﬁ):-'/—g_)l oy (30)

where

& _ a/t(k}
;l@n; _g") = &P e X -/ (31)
and

g =R~ (Ex) (32)

It will be noted from the sketch above that if the wing is located above
or below the mid-plane, the transformed wing segment may be one of varying
dihedral. The approximation is made here that the lift on the transformed
wing segment is the same as the lift on a horizontal wing segment with a
span equal to the projected span of the transformed wing segment. It has
been shown in Ref. & that the lift on a wing-body combination is the same as
the lift on the isclated wing which is obtained by applying the appropriate
conformal transformation to the wing body combination, i.e. that which
collapses the body into a vertical straight line in the plane of symmetry.

It is felt that this additional approximation is sufficiently accurate to pre-
dict the body carry-over lift.

It will also be noted that the transformation

€ = &) (33)

may be different at each of the # chordwise stations, The general form of
this transformation is:

/
z = (r2pa%) (22— gp2) P (paop?) ¢ (34)
- 2t
where /'™ '.'/-.-'_ (‘2 *é) and ,()= L@_:_éq)(d_—é) and @ and dare defined in the

sketch on page 20.

The foregoing procedure will be used to calculate the chordwise
(axial} distribution of body carry-over lift only as far as the root of the
trailing edge of the wing. This restriction has been prescribed so as to
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include the inherent limitation in the Lawrence method that the trailing
edges may not be swept more than a few degrees. Beyond the root of the
trailing edge, the method given in the following section should be used.
The following sketch compares the physical situation and the model for
the present procedure.
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The approximation of removing the portion of the wing aft of the
root of the trailing edge is not so drastic as it may seein, as the lift on
this portion of the wing will be included in the strength of the trailing vortex
pair.

3. Body Carry-Over Lift Due to Vortex Wake

The true spanwise lift distribution G/'f-/ﬂ/ﬁf on the wing may be
calculated by any appropriate method. It is recommended that the effect
of the body on the wing lift distribution be included. Section IT-B of this
report gives a method for including this effect when the wing-alone 1ift
distribution is known.

This lift distribution should then be replaced by a single pair of
trailing vortices (actually the tails of a single horseshoe vortex) of strength

/ oL )
Plleo Y ' yap (35)
and span such that the correct total lift is produced, i.e.
_ L
(o’C/a@/y_ P (36)
The following sketch illustrates the calculation of the vortex position. The
top curve shows the actual spanwise loading, &4/9% . The second curve

shows the derivative of this loading,la"‘ﬁ ol "", which is proportional to
the vorticity distribution £7%¢%/. The single trailing vortex is then located

_[;-_-'

é/ = vorfey sparn
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at the centroid of this curve on the half wing. That is,

b
24 =f-3 .?. o
o s dy+
= //0’5’ g =0 (37)

-4
o/y 2

dL
dy
£l )
2
Cy)~ [<h®
dy2 A
-

Falh
Ny

The distribution of lift on the aft portion of the body is given by

Ref. 11 as:
:I {(38)

(d l/ﬂffex p“ cos dd "a’! [!P{(
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where €/is the position of the vortex, and & is the average angle of attack
of the body. The vortex is assumed to trail back from the trailing edge of the
wing in the streamwise direction. A slight nonlinearity with angle of attack
is thus introduced into the method. The forces due to changes in vortex
position are so small, however, that it is still felt justified that the theory

be used as a linear one for computing lift-curve slopes.

D. DESCRIPTION OF NUMERICAL METHODS

1. Formulation for Aeroelastic Calculations

As discussed in Section III-A, it is desirable that the methods
developed for calculating interference loads be readily adaptable for aero-
elastic calculations, It was further decided that '"box' methods were more
desirable than "mode shape' methods for treating general configurations,
and that methods should be chosen which allowed for aeroelastic treatment
of the wing and body separately, as well as for treatment of the complete
configuration. The numerical methods described here, then, are based on
such a box-type representation of the vehicle.

The sketch below shows the scheme of grid divisions which has
proven the most easily adaptable to the methods described above.
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The wing is divided into chordwise and spanwise strips, forming a grid of
rectangular boxes. The ¥ -coordinates of the edges of the boxes are given

by
Y = b Cos/(c=1) ). c=ra - /mr/
o V. X ¥4 4 u =<
(39)

where 7 is the number of stations on the full span of the exposed wing.
This division is identical to that used in Weissinger’s procedure, discussed
below. The centers of these boxes lie at distances

A‘LA = ..%""'5":'-»'//- ¢'=,:_z_ e s
2 - (40)

from the root chord.
The chordwise divisions are made such that the centers of the boxes
lie at distances aft of the root of the leading edge

&= 1 e | /-cos J'a*/ EEERY”.
Y2 r[ ey oS0 (40.1)

for boxes ahead of the root of the trailing edge. This division is the same
as that used in the Lawrence procedure, discussed below.

The edges of these boxes then lie at distances

X =X, 72 /é' X, - XJ'../) {40.2)

aft of the nose of the body, where X, is the location of the leading edge.

The body is divided, from the leading edge to trailing edge, into
segments, where the centers of the segments are located at distances
aft of the leading edge given by Eq. {40.1).

The portions of the body aft of the root of the trailing edge is divided
evenly into A4 segments, whose centers lie at a distance:

= C)(:'*X'_ A
6. = J /) -'Xo_; ; = ”1"6 ”*-L/ A7 (40.3)
where

_ S X g
>_(/-- >{”+J/—W’;J-”*4 A/*"-?../ I

(40.4)

and where A’; *X -coordinate of the leading edge root, measured from the
body nose

A£= body length
Xy = Xy-coordinate of the trailing edge root.

The area of the wing aft of the trailing edge root is divided into the
same segments in the X -direction as the aft portion of the body, and in
the ¢ -direction into the same segments as the area forward of the trailing
edge root.
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In the sketch, which shows a sample division of a typical configu-
ration into wing boxes and body segments, #/f 4, ¥, and =/6. In
practice the number chosen would be much larger, but such choice would
make the illustration difficult to interpret.

In the calculation of wing or wing-body interference load distri-
butions, using an arbitrary angle of attack distribution, the "true' wing
is replaced by an "effective' wing. The effective wing is made up of the
rectangular boxes defined above. A box is included in the effective wing
if its center would lie on the planform of the true wing, for those boxes
ahead of the root of the trailing edge. Behind the root of trailing edge,
only that portion of each box which equals the true wing area within the
box is used. The following sketch illustrates the effective wing geometry
for the sample divisions given above.

/

2
I

It has been necessary to represent the wing leading edge in such
a manner so that the Lawrence procedure, which divided the wing into
spanwise strips, could be used conveniently. Since this method is not used
past the trailing edge of the root, a more accurate representation of a
swept trailing edge could be used, as is seen in the above sketch,

2. Effect of the Body on the Wing

This section describes the numerical procedures to be followed
in using the modified Gray and Schenk method described above to calcu-
late the lift distribution over a wing in the presence of an elliptical
body. This procedure has been included in a computer program for calcu-
lating interference loads on wing-body combinations, which is described
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in Appendix I of this report. The program is restricted to subsonic
wings because a method which is limited to the subsonic Mach number
range is used to calculate the original load on the wing alone. If super-
sonic interference loads are desired, linear wing theory should be used
along with the modified Gray and Schenk method.

a. Modified Gray and Schenk Method

The numerical procedure may be outlined as follows:
1} Calculate the spanwise lift distribution €€, (%/ for the exposed
wing by Weissinger's procedure. Details of this method are given below.
Values of C (¥}, €,(Y/) and Xgp(Y)should be found at 77/ & spanwise
stations located at A where:

=_&é CosfAe~tlr ). L=r 2 / % 41
y‘.zcs"m»/ SO (L @

as shown in the following sketch.

2} At each station 9., replace the lift distribution by a horseshoe
vortex of strength £7¢%./, composed of a bound vortex segment normal to
the free stream direction, and two trailing vortices, located at & and_%‘,, .
The vortex strength is found by

‘ 1
-_[’_0/,_9'4_) = _;{L [ccl(ylj +cc1(9‘-ﬂ)J (42)

This is equivalent to the stepwise approximation shown in the sketch on
page 13. Note that there are horseshoe vortices on both halves of the wing
due to the symmetric loading condition.
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3} From the value of the semi-major and semi-minor axes of the

elliptical cross section of the body, calculate the elliptical parameter &t
and the radius / of the equivalent circle:

= (aré) (a-6)
7

/
r o= :{'éﬁ*é}

(43)

(44)

where @ is one-half the horizontal axis of the ellipse, and & is one-half the
vertical axis of the ellipse. Either may be the semi-major axis.

4} Using the center of the ellipse as the point =& , see if the
positions Je of the trailing vortices located on the wing at ¥, satisfy Eq. (6).

Those trailing vortices which do not should be ignored, along with the bound
vortex segments which connect them (see sketch below).

f=€+in
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5) Find the positions of the image vortices J by Eq. (4).

6) At each spanwise station on the wing (control point}, calculate
the upwash due to all the elements of each symmetrically located pair of
horseshoe vortices. The relations for calculating upwash are:

wae _ /U x’ "_ qp .
0= goan (1 gimeqe) (4o cos 7)

(45)
We _ /U X’ v

{46)
wab _ _ LV [ x! )//3‘-#* _ [

v Wa*/ rx /(Y8R ek s O3
(47)
wo! _ _ LNy /,* x’ )(”"‘ . /
g s —__ [ [y” p A cos)
v YA Vx4, ¢ (48)
/
we . N g X PAJDYS /
v [

(49)
woe . BN [ x! 4> /a"-.f" /
72N S G S e el - T Cos %

(50)

The symbols are defined in the two sketches on the following page.

7} The upwash due to the image vortices which are coincident
with the wing root must be ignored, as these vortices are cancelled
directly by the wing trailing vortices of equal and opposite strength at
the same location,

8) After the upwash contributions from all the vortex elements are
summed, add the upwash at each point due to body angle of attack. This
is given by

/ u// - LR gr*
v /ooy A X ved/*

(51)

where -7: is the location of the control point.
9) Add the induced angle of attack, “/f/n'm/ to the original angle
of attack at each spanwise station, and recalculate the spanwise lift distri-

bution by Weissinger'!s procedure.
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b. Weissinger's Method

Equation (17), relating the upwash velocity on a wing
surface to a distribution of vorticity, forms the basis of most linear sub-
sonic lifting theories. As has been previously mentioned, solutions of the
two-dimensional integral equation are exceedingly complex. Weissinger,
in Ref. 11, reduces the equation to a one-dimensional one by prescribing
the chordwise variation of vorticity, and solves the resulting integral
equation for the spanwise variation, The numerical procedures for its
solution, given below in condensed form and in Ref. 14 in full detail, are
included in the computer program described in Appendix .
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Weissinger!s "L" method assumes that the vorticity distributed
across the chord at each spanwise station is all collected into a concentra-
ted vortex at the quarter-chord. Then when the boundary condition of no
flow through the wing

aC/,\:9J=*WSQ.ﬂ (52)

is applied at the three-quarter-chord the two-dimensional (infinite aspect
ratio) boundary condition is satisfied if the wing is flat. Thus Weissinger's
method may be expectedto give best results for high aspect ratio wings.
The limit of zero aspect ratio gives the correct result of zero lift, however.

If the wing is not flat, but has an arbitrary variation of slope in the
chordwise direction, the two-dimensional boundary condition is no longer
satisfied. It is necessary, therefore, to define an ""effective angle of attack"
which is then treated as before. The process of finding this effective angle
is treated below in Section c.

The geometry of the problem is shown in the following sketch, where
a concentrated vortex is placed on the quarter-chord line which has a sweep-

pack angle /lesy.
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The strength of the bound vortex L7(¥/ varies in an unknown manner
along its length starting at zero at the right wing tip. Then at every point
it is joined by an infinitesimal trailing vortex which increases the strength
of the bound vortex by L7 , to a maximum of £% at the center, after which
departing vortices reduce the strength to zero at the left wing tip. Since
the general distribution of vorticity 20X, 4/ is now to be replaced by a
systermn of vortex elements, the total upwash must be calculated by con-
sidering separately all the elements of the system, Thus the integral equation
for the vorticity distribution, Eq. (17), becomes, after some manipulations,

4
_— o
- 1 2 ~
wy )=+ L7, 4 n//;fr,tanAe/«)+/_sw-v)“ _
47 P -7 $mr p (xXry vran e, ) 7-7)
T2 =2

2
/ - .z:‘unAqry#X‘f-y‘ ﬂ:/?-ﬂ-__(_ %’x‘ﬁ'ﬁ‘lndw):‘-(f‘”:__/_ 17,/7)0/7
917 Xy tan i i X-yband/Cq-7) 77

(53)

Evaluating at the three-quarter-chord line, where

X=_f'_ 1"'/_‘{/ 7‘4” A¢/¢

(54)
the nondimensional equation for the upwash distribution becomes
/ ’
¢ £
v T L, T amr 7

-7
where

v-1 =Y @=L

éra’ &/a, bty

On the right wing
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é
rra Lt dua/l%,
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<
- b /t-v)ta 6 )kt >0
- 5t ‘/[N?/ vend, | u(2) e
{56)

ﬂﬁé”on the left wing may be found by symmetry with the right wing.

Weissinger solves the integral equation for @(2’}, Eq. (55), by
replacing @¢ZJby a Fourier series, using Multhopp's integration formula
to express the unknown coefficients, and performing the integrals in Eq. {55}
by trapezoidal integration. Thus the integral equation is transformed to the
following set of simultaneous linear equations:

=g
/ = > &, Gn, YV=,23 zan
ey z) L B R R
/U-u 7 a
1=/ (57)
where é 4 _ A
dvn = 2 2, 66 .77/ y P D
=28 *_é& 14»' )7}{7/
% Zn
(58)
and
M-/
- _’ﬂ A*
> _ _/
-ZM (A1) Z Tk
A= 0 {59)
where
4 = pr/
g g
8,-/»= év”‘f'éd_”’*/_” Aor 77;‘!2?‘%/
m—— t —§ /
=4, Hr 7 222! (61)
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where
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(62)
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where
7

= -2 7
7%/( ) § /(55/”/(,2;605/1(/ 4(
/‘/“9""1"4#
’ (67)
and
- .

P = 2T (68)
%= ey (69

The parameters 2 and A1 are the number of spanwise stations on
the wing and the number of intervals in the trapezoidal integration. They
must be different and odd.

Although the above relations may appear to be quite complicated,
they may easily be programmed for machine computation. Solution of the
set of simultaneous equations for G is accomplished by a simple matrix
inversion procedure, when the effective spanwise angle of attack distribu-
tion, —&~(4)/¢ , is known. The section lift coefficient, €4 (), is then
given by

C,(ql=2 _b_ &

¢ 7 Y i
Values of C¢ (ff)may then be used in the procedure of Gray and 3chenk to
find a new effective spanwise angle of attack distribution which expresses
the presence of the body, as outlined above.

(70)

It should be noted that the actual distribution of vorticity used in the
Weissinger procedure is different from that used in the modified Gray and
Schenk method. In the former, the bound vortex was assumed to lie in a
straight line along the quarter-chord of the wing, while in the latter, por-
tions of a bound vortex were assumed to be normal to the free stream
direction in order to simplify the process of finding the image vortices
within the body.

Although the Weissinger procedure was derived from the equations
of incompressible flow, compressibility effects may be accounted for by
a Prandtl-Glauert transformation. This subject is treated in Section d below.

c. Effective Angle of Attack

For a flat wing, or one which has an arbitrary angle of
attack variation only in the spanwise direction, Eq. (57) may be solved
directly. If the wing has a chordwise angle of attack distribution (camber)
the houndary condition is not satisfied at the three-quarter~chord by the
assumption that all the vorticity is collected into a concentrated vortex at
the quarter-chord. If Weissinger's procedure is to be used, it will be
necessary to find an effective angle of attack to be used for - & ¢%}/¢ at
each spanwise station.
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Since the three-quarter-chord position for applying the boundary
conditions arises from the two-dimensional or infinite aspect ratio approx-
imation to the three-dimensional problem, the effective angle of attack will
be determined by solving the two-dimensional thin lifting airfoil problem,
The following sketch illustrates the situation when a vortex sheet of strength
#(x) = 3 /pxis assumed to lie in the plane of the wing.

z\
—ian-) 42 /-Wlnq meon camber line

dx
Ug P e A~~~ N

r‘
- X

Y (x) = strength of vortex sheet

= c

The flow angles induced by this vorticity are then equated to the
local slope of the wing mean camber line. The vertical velocity induced
by the distributed vorticity a =X, =0 will be

[ 4
arex)= r 3"/:)0’:
a7 ) X (71)

The boundary condition, applied in the  # € plane, then requires
that for a local wing slope o®/e'x

a
o _w) - __¢ | X(E)r

The singularity in the integrand at ¥ = X is to be evaluated by using
the Cauchy principal value,

The general solution for this equation (Ref. 1} is:

<
X(r)s 2t , [e-x f Sefof [ B SETL _C
" X o x-¥

e a—¥

(73)
The constant of integration A must vanish since the vorticity is

required by the Kutta condition to be zero at the wing trailing edge. The
vorticity is equal to the streamwise velocity perturbation

A=« -« =2

vPper lower (74)
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and by linear theory
G = - K2
A e (75)

The two-dimensional lifting pressure may then be written as

e
ac =X 4 [e-x | L2l0% L[ F Sk
%.‘d{"f 0’:, 7 x o x_g e—-s (?6)

The spanwise loading is determined by integrating this expression
across the wing

7 &
ac, = ac, ok =_¢ g
2-0m 2-alm ? oy
L E (77)
="
where is the dynamic pressure /a/zu- . From two-dimensional airfoil
theory, the lift on a unit span of the wing is proportional to the circulation,
and produces a section lift coefficient of 279 | Thus the angle of attack
is related to the spanwise lift distribution by
[ o e, T 27T
j’c oy 2~ oim (78)

The effective angle of attack may be found from the two-dimensional
solution as

7E.
X(y) ,, =___7 ac ¥
4L .E

(79}
where “aqaz_‘&‘-"is given by Eq. (76).

It 1s possible to evaluate the above integrals numerically when the
wing geometry and the chordwise slope distribution @8/@X are known,
Since the integral in Eq. (76) must be evaluated by the Cauchy principal
value technique, the numerical integration should contain as many intervals
as possible, since the step when X=5is omitted from the calculation.
Results of this approximation are discussed in Appendix .

In calculating the effective angle of attack, the chordwise slope dis-
tribution o/o/¥ is taken as constant over the area of each box on the wing.
Thus the chord used is the local chord of the effective wing discussed above.

d. Compressibility Effects

Compressibility may be accounted for by application of
the Prandtl-Glauert rule, as indicated in Ref. 14. The approximations and
limitations of this rule are well-known and will not be discussed here.

37



The rule states that the flow over a wing at some subsonic Mach
number is similar to the incompressible flow over a wing whose chord-
wise dimensions are stretched by an amount equal to //1//.-#‘: , where
Mmis the free-stream Mach number. The following procedure
should be applied to calculate the lift distribution on subsonic wings:

1} Replace the wing by a transformed wing, with

7€ = BAL (80)

A /:_— 7‘4” -f/ﬁgd
-4 (81)

where &= 4/7-* | and primes denote the parameters describing the
transformed wing, Thus the coordinates of any point on the transformed
wing, (X, .‘f'/’ , may be found as /48, 5/

2) Calculate the spanwise load distribution on the transformed wing
by Weissinger's procedure.

3) Increase the values of @ and €%/ found for the transformed
wing by multiplying by ## to get the values for the untransformed wing.
This is necessary because the angle of attack distribution was reduced by
a factor of A& due to the stretching of the X -coordinate. The true lift on
the untransformed wing may thus be recovered, because lift varies linearly
with angle of attack.

and

3. Effect of the Wing on the Body
a. Modified Lawrence Method

The modified Lawrence method described in Section III-C
above is used to calculate the effect of the presence of a wing on the axial
distribution of lift on an elliptic body. The body may have small variations
in cross-section and camber. The procedure may be outlined as follows:

1) Solve the integral Eq. (23) for 97X/, with &£¢x/ defined by
Eq. (26). The axial distribution of lift on the wing-body combination is given
by

dt _ 23 (aos & (x)
x (82)

where

A

F
2 (x)zAan"" [ Zreer -2 pee
.9;-,-,, = Trour (83)

and the other quantities are defined by the sketch on page 20.
2) Solve Eq. (23) for 9¢X) with &¢x] defined by Eq. (25). Then
the axial distribution of lift on the wing alone is given by

L . 29°k)

j’ oK (84)
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3) Find the axial distribution of body carry-over lift by subtracting
the result of 2) from that of 1),

b. Solution of the Integral Equation

The integral equation relating streamwise velocity per-
turbation to upwash velocity was reduced by Lawrence to the following

A/X){L 5()()-,»_" fcjf/f) /+ ‘//X'EJJ*/VJ/X/)JL P4
2 4

X-&
o
{23)
This equation may be rewritten, after the transformations
X=_& /- cos 5)
oL
and
E=_¢ (/-cos?)
= (85)
a s 7 ”
4t (9] 29(0)7 g (r)+b06) IR, | TN TS
a o Cos T - (05 O A
{86)
where 2 2 s
oy o O 4
Cos T~ Cos Sy
8,=_nr
A/
(87)

If 5(‘} is expanded in a Fourier series, and the coefficients for each har-
monic are matched, the following set of simultaneous equations is obtained

-2
_‘_/_t,,=/ﬁ,,—fa,,)4, * § /F;+¢»-/-:-4w)/€,-wc—?--‘/“/
7 (88)
Y
where

[,,‘t/_‘%_ﬂ_’_/a»/ Fr 2 ‘5/1}’)



and Fg/a"), 28y ” A.’o /5,,“ b /5,,))".3
/e

£ (8,)sasinré , 4(n)sinrd , y /6, 4 /a)/ raga

wr Sin &
(89)
where
-/
K (B & /a,,)):_z_ #(80)+ (1) H (8, 7) 4 ) @os mEr /,/Ka,,‘ ‘mg’/
A~} 2 ~ M
i (90)

with //(0,,/ t.) defined by Eq. (87}). The parameters A/ and M are the
number of stations on the root chord and the number of intervals in the
trapezoidal integration, Eq. (90). The values of the semi-span, é (9»)
are taken at the centers of A/ spanwise strips which lie at a distance

Xp= @ //cos T Y. =/ 25.-- ¥
" ;z./ wag /7 7 (91)
from the leading edge of the root chord.

The set of simultaneous Egs. (88) is solved by a matrix inversion

procedure. Once the coefficient §7%)are obtained, the values of #? are
found by

A~ A
_y’/x)=/2, Zon ﬂ’/z)*az A, s ro
ru/ (92)
where

¥ = (7~ cos &)

£
2

It should be noted that compressibility effects are handled by a
Prandtl-Glauert transformation in the same manner as described above.
If the chordwise distribution of lift is found on a transformed wing-body
combination, it must be increased by a factor of #4 to get the correct
result.

c. Effect of Vortex Wake

The body carry-over lift may only be found by the modified
Lawrence method up to the trailing edge of the root chord, as discussed in
Section IIT-C above. On the aft portion of the body, the lift is given by

4;/
Lo D, o] n [l )
¥ ¥ T Ua ¥ K4

Py e
_/.___‘a / £ (93)
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The strength and position of the vortex are found by considering the lift
distribution on the wing in the presence of the body, as discussed in
Section III-C-3 above. The change in vortex position and/or body cross-
section with X is found by dividing the portion of the body aft of the trailing
edge into equal segments, calculating the vortex position at each segment,
and differentiating linearly. This process is included in the computer pro-
gram of Appendix I,
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SECTION IV

NONILINEAR WING BODY INTERFERENCE

A. NONLINEAR FILOW PHENOMENA

The methods described in the preceding section are limited in the
range of angle of attack over which they may be usefully applied. Above
certain angles of attack various flow phenomena appear which cause non-
linearities in the forces on wings, bodies, or wing-body combinations.
The most common of these phenomena are stall and vortex separation.

Stall occurs most often on wings of moderate to high aspect ratio
with slightly or moderately swept leading edges, at fairly high angles of
attack. It is characterized by a separation of the flow from the trailing
or leading edges or both, and is usually accompanied by a severe decrease
‘n lift. The problem has, in the past, not proved amendable to analytic
solution, and has been treated primarily by correlation of experimental
data. Much work remains to be done in this area.

Vortex separation, on the other hand, may appear at very low angles
of attack, and thus put severe limitations on the linear thecories. This is
especially true of highly swept slender wings and bodies. Since the effect
is primarily one of an increase in lift, which may he desirable, the design
operating condition of certain configurations mavy include vortex separation,
whereas it is unlikely that a vehicle will be flown in a stalled condition for
very long. Even at low flight angles of attack, vortex separation may be
present due to the effective angle of attack as, for example, on a missile
launched vertically in & cross wind.

Vortex separation on wing-body configurations will, theretore, be
the principal nonlinear effect considered in this report. Further dis-
cussion on ronlinear lecads may be seen in Ref. 15,

B. FLOW MODELS

1. Description ot the Models

Starting at moderate angles of attack, the tflow separates from
the lee side of lifting bodies, due to the inability of the cross-flow boundary
layer to negotiate an adverse pressure gradient, and rolls up into a pair of
trailing vortices. [n a similar manner, the flow separates from the leading
edges of slender wings. Both of these separated flow phenomena will be
present for a wing-body combination, if the body extends far enough forward
of the leading edge of the wing to allow the separated flow on the body to
develop. This sectiun describes a method to be used for taking account of
these phenomena in calculating the forces on a wing-body combination.

Three models of the flow are examined. In the first, or "approximate"
model, the strength and position of the vortices separating from the body are
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calculated by the method of Ref. 13up to the position of the wing leading
edge. These are then held constant to the trailing edge of the wing, where
changes in their strength and position are allowed to resume. The wing
vortex strength and position are found by applying the method of Ref. 16

to the exposed wing alone.

Aft of the trailing edge of the wing, the separated wing vortices are
included in the trailing vortices due to wing lift. The body vortices are
considered to have no influence on the strength and position of the wing
vortices, and vice versa.

In the second, or "exact' model of the flow, the two-dimensional
cross flow about the wing-body combination with four separated vortices
is considered at each station aft of the leading edge of the wing. The
strengths and positions of the vortices are the unknowns. They may be
found by slender body theory applying the appropriate boundary con-
ditions and force equations; i.e., that the points where the feeding sheets
leave the body and the wing are stagnation points, and that the total force
on each vortex and its feeding sheet is zero.

In the third, or 'quasi-exact! model, the assumption is made that,
because of the blocking effect of the wing, there can be no separation on
the body over the area of the wing body juncture. Thus the strength of the
body vortex remains constant over this area, and both the vortex and its
feeding sheet (which will be of zero strength) are force free. Interactions
between wing and body vortices are permitted as in the "exact' model.

Once the strengths and positions of the vortices are known, from
one of the above flow models, the forces on the wing-body combination
are calculated. Reference 16 gives the nonlinear wing lift due to the
wing vortices for uncambered delta wings. This method will be adapted
to include the effect of the body vortices. The forces on the body may be
found by the method of Ref. 13,

It will be noted that slender body theory is used throughout for calcu-
lating the vortex strengths and positions and the nonlinear forces which they
induce. While it is anticipated that better methods would be used for calcu-
lating linear wing-body interference effects, it is felt that inclusion of the
nonlinear results is a significant enough improvement to warrant use of the
simplifying assumptions of slender body theory.

This method for calculating nonlinear forces is restricted to
bodies with mid-plane wings only, but could be adapted to nonmid plane
wings by the inclusion of the necessary conformal transformations. Ex-
tension to cambered wing-body combination could be accomplished by
a method similar to that of Ref. 13.

2. Approximate Model

In the approximate model, the wing vortex system and the body
vortex system are assumed to be independent. Both have an effect on the
flow field, and thus on the forces on the wing-body combination, but neither
vortex system has an effect on the strength and position of the other.
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The following procedure will be applied:

1} Calculate the strength and position of the body vortex system
up to the position of the wing leading edge, by the method of Ref. 13
{outlined below}.

2) Calculate the strength and position of the vortex system on the
wing alone, from the leading to trailing edges, by the method of Ref. 16,

3) Resume calculation of the body vortex strength and position,
using the final values obtained at the leading edge as initial conditions,
up to the end of the body. (If the end of the body occurs at the same axial
station as the trailing edge of the wing, this step will be omitted).

4) Assuming that the strength and position of the body vortices
remains constant over the wing-body juncture, and that the strengths and
positions of the wing and body vortices vary as found in Steps 1) thru 3)
above, calculate the loads on the wing-body combination. Part C of this
section outlines methods for doing this.

a. Body Vortex Theory

Of various possible methods for taking account of the
vortex separation on slender bodies {Refs. 17,18,19,20), that proposed by
Bryson (Ref.20) seems to incorporate the main features of the flow in the
simplest mathematical form. In this model, illustrated in the following
sketch, the separated vortices are joined to the body by straight feeding
sheets.

- Vortices

Feeding Sheet

Bryson gives solutions for the vortex strength and position as a
function of time (or distance along the body) and calculates the resulting
body normal force for circular cones and cylinders. These solutions have
been extended in Ref.13 to bodies of elliptic cross section having arbitrary
contour and camber distribution.

Bryson's treatment of a circular body may be summarized as
foliows:

1} According to slender body theory, the flow in a plane perpen-
dicular to the body, at a distance X from the nose is analogous to the cross
flow at €= X/, @95 A pout a cylinder whose dimensions may be changing.

2) The force on each vortex is assumed to be balanced by an opposite
force on its feeding sheet. Since each feeding sheet carries vorticity to its
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main vortex at a rate prrall it must support a force in the cross flow plane
equal to

F= ,aom (%) (94)

’ .
where & is the position of the vortex, andJ, is the base of the feeding sheet.
The force on the main vortex is

F= ﬁ[’/a/— % .s) (95)

where W(g is the velocity at the vortex due to all elements of the flow except
the vortex itself; §,is the velocity due to a source flow needed to account
for the rate of growth of the body cross section; -5:‘ is the relative velocity
of the vortex. Equating the force makes

L /- )= L SW-L /PPy (96)
e / 1} /“:f; v e /)

The velocity L&{-{atxfz 1s easily calculated by adding the velocity potential for
a cylinder in a cross flow to the potentials for a vortex at =, and corres-
ponding image vortices inside the circle which preserve the boundary condition
on the surface.

3) This equation is then integrated numerically by a finite-difference
approximation to give the vortex strength and position,

In Bryson's treatment of the development of a time-varying vortex
wake behind a circular cylinder, two parameters appear which must be
empirically prescribed. One such parameter is the point around the cylinder
(determined by the angle &, ) at which the feeding sheets depart from the
surface of the body. The other parameter is the distance from either vortex
to the body at the instant when the calculation begins. Bryson's potential flow
theory predicts an exponential initial development of the vortex; that is, the
rate of increase is proportional to the strength, hence it would never grow
if it started with zero strength on the surface of the body. Analogous para-
meters appear in the three-dimensional theory. The assurmption is made,
however, that the potential flow analysis is not valid until the vortex has
emerged from the boundary layer; while Bryson, on the other hand, imposed
the additional restriction that the vortex must approach the body surface at
a long time before the start of the problem.

Theoretical predictions of the location of separation of the feeding
sheet and the initial strength of the emerging vortex would in principle, re-
quire an analysis of the viscous separation process. However, a preliminary
investigation, reported in Ref. 21 indicated that the separation process would
probably be more sensitive to the pressure gradients created by a viscous
flow than to the viscous forces themselves. Consequently, 'infinite
Reynolds number' theories have been applied to the two-dimensional and
three-dimensional separation problems, These theories, described in
Ref. 13, were not successful, partly because the two-vortex model of

the separated flow gives a distorted prediction of local suriace pressure
distribution.
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Since analytic determination of the parameters was unsuccessful,
they have been established empirically on the basis of experiments re-
ported in Refs.22 and 23. Comparisons of theoretical and experimental
normal force and pitching moment in Ref.13 show good agreement, which
could have been improved by a better selection of the separation parameters.
Selection of the separation points is discussed in Section D below,

b. Wing Vortex Theory

The wing vortex theory of Ref. 16 may be thought of as
a special case of the general theory of Ref.13, when the elliptic cross-section
collapses to a flat plate. A conical body would thus approach a delta wing.

The separation points, however, are determined by applying a Kutta
condition at the wing leading edge. In order that this be satisfied, the flow
must leave the wing tangentially at this point,

3, "Exact" Flow Model

The "exact! flow model is one in which the strength and positions
of the four separated vortices are calculated simultaneously, i.e., the
approximation that the body vortices are constant in strength and position
over the area of the wing is not made.

a. Velocity Potential

Consider, in the two-dimensional cross flow plane, the
flow about two pairs of symmetrically placed vortex-feeding sheet systems,
as shown in the following sketch.
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The complex potential function may be written

ffé’)?"-ﬂ ,é’n/é 6.) <Ll 4(»/‘9 ”) e 5/»«9{97)

After applying the conformal transformation & *”V‘C‘ s’ , the potential

function !f"") will represent the cross flow about a flat plate of half-
width £‘and the vortex systems, as shown below
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The complex potential function is:
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By applying a further transformation to the J -plane,

4
o= (l"-k‘)b’#(taz:‘)/ya- %t")‘/' (99)
o

where £% /a*é)él '5)/4( and #= é."‘)/a‘l , the potential function can be

made to represent the flow about an elliptical two-dimensional body with
a mid-plane wing and the four vortex systems

, as shown in the following
sketch,
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The potential function may then be written as:
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This function represents the two-dimensional cross-flow about a wing-
body combination. In order to take account of the growth of the body in
the X -direction, the complex velocity potential of a source within the
body must be added. The strength of the source must be such that the
outflow at the surface of the body just matches the growth rate of the body.
In this way, the boundary condition of no flow through the body is satisfied
in the X -direction. The assumption that a two~dimensional source in

the cross flow plane may be applied is just the slender body approxima-
tion,

The complex velocity potential of a source satisfying the boundary
conditions on an elliptic body may be found by transforming the complex
potential which satisfies the boundary conditions on a circular body. This

function may be written
L=t ¥ (101)

The following sketch shows the circular body in the X—plane

£
A X =y +iz

The circle in the X—plane may be transformed to an ellipse in the J° -plane

by the transformation
2 >
X= /.5’+1/3—Vt ) (102)
A

The potential due to the source in the & -plane is

//f)’.(’/n A /b’+1/b"— ¢£7 (103)
s 2
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and the complex conjugate of the velocity is given by

S=89) . __K_

{104)
d7 IE- vk

The boundary condition of no flow through the surface requires that

— 8 = o= (105)

UagCoS o L2 dx

f”""u—;—-
Thus
2
£=U, dos x oo [r- A (106)
L

or finally

f_’:/ﬂd/_'.eos-( j:— /r- /j»[_ VL Vt/

(107)

The complex potential for treating the three-dimensional wing-body com-
bination by slender body techniques is thus

f (Y}=f(f)*€/:f) (108)

3-0
where [(f)is given by Eq.{100).
b. Boundary Conditions

The four unknowns in the problem are the strengths of
the vortices, £ and 4 , and their positions J and J, . The four speci-
fied conditions are: p

1} The flow leaves tangentially at the edge of the wing, AR A

2) There is a stagnation point at the separation point of the body
vortex feeding sheet, J'

3) There is no net force on each wing vortex-feeding sheet system.

4) There is no net force on each body vortex-feeding sheet system.
These conditions may be arrived at as follows:

1) The boundary condition of tangential flow at the leading edge may
be satisfied by requiring a stagnation point at the origin of the # -plane, as
the wing tip location maps to the origin when the transformations are applied.
The flow in the & -plane is represented by

f(€)=- !n/ ‘/— f-ﬂ..t’n /-c(/ Sink &
6*9

{109)
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Taking the derivative with respect to &':

a’i—(")__ z.'ﬁ 6"63)/9."‘5 / )/9*’4 _et smAx
e  ar ;o-Z)* -urﬁa, w-8)5 7

(110)

Requiring a stagnation point at the origin dictates that

I8 3) _0 {(111)
®
Thus: a/ 6.0
g // / L S //.____c/ Sipe 112
T 'Zf."*?.,_)*.??r/o, i/ - el

2) In a similar manner, the boundary condition of the existence of
a stagnation point at the base of the body vortex feeding sheet (.b"’) may be

satisfied by requiring a stagnation point at 8" . Thus
AEE) =0 (113)
o
&8

which becomes

.fi-/ 8, * %, # £ =-t, Sm&  (114)
FE e /a’-a,)(g’f-q) >t g (8- 5}/9-#;)

3) The condition of no net force on the wing vortex-feeding sheet
structure may be satisfied by letting the force on an element of the vortex
be just balanced by the force on an element of the feeding sheet.

The force on an element of the feeding sheet between X and X * /X
is;

=, ogi -
Ay, = P Y aosa a’XOK): s)ox  (115)

The force on an element of the concentrated vortex is

. »
o, = 4/’Vb: L o (116)

¥
where V¥, is the complex flow velocity at the position of the vortex, relative
to the vortex itself. The force equation for the wing vortex system is thus

o2 -s)-eV ¥ 7 =
P @osx dx. /% s) el{z L7 =0 (i17)

oy - =0 (118)
ax (/d-’sd KA s 4
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The complex velocity at the position of the vortex relative to the
vortex, J-: , is made up of the velocity due to the complex,velocity
potential at the position of the vortex minus the complex velocity potential
of the vortex itself, minus the velocity of the vortex in the cross flow plane.

The complex velocity potential at the position of the vortex minus
the complex velocity potential of the vortex itself may be written

B&)d ()¢l o (r-2) (119)

-2) 27

where

s /BN A4 *f;/f) (120)

3-0)

and _é‘.- (5') is the complex velocity potential of the source. It is given by
,4,_ / I/ / VI vt
F =l cosx & oo b (121)
g

The complex potential g/ﬂ contributes a velocity

(v v w—-) /aff ‘oL, () (122

r,
The velocity of the vortex in the cross flow plane is
oYy U eosa Ve (123)

ot © X

Since the velocity relative to the vortex is desired, this term must be sub-
tracted.

, ¥
The velocity Vf. may then be written

»
vy ___./a’!:/ -t gosx dYe (124)
s PEd -~ o
s
It is possible to obtain an expression for (d'[/d/f)y.f by differen-
tiating £q.(119) and evaluating at ¥, . This procedure is rather tedious,

however, and a different approach is more desirable.
Equation (119) may be written in the & ~plane as:

Fo)=- <y 60/ 0-0)- c'ﬂ,e,,/a-af/_c‘u Sima O+
ar B8] aw -8 -

P AR -4) (125
s 27
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Differentiating with respect to & and evaluating at L)

o8 8,7 a ,277* (8, 0)(0 rq) w7
& (126) ‘@8,

The final term, dfi/d@may be easily seen as

oFs _ dE I (127)
4 JSr o8

= _cosx é a{a //V:f“ 75 0’-” (ic8)

=8,

J= ﬂ‘hl*)%‘*‘smﬁ”“)-/fa-f”')/‘lf &*rs*) (i29)

ar?

where

which may be found irom the inverse of the transformations e < c="'/"‘fya.nd
&= 8(c)given above.

Taking the derivative of Eq.(129):

a/f t#r ~-r
—% //vmr/ / }/W} (130)

By substituting the expressions for J (from Eg., 129) and o9& (from Eg. 130),
an expression in terms of @ only maybe derived for o/f; /8.

4} The condition of no force on the body vortex-feeding sheet
structure may be found in a completely analogous manner as

oL Vy, / / )[’-o (131)
X feosx ( L -F

where the complex velocity V is now to be evaluated at the position of the
body vortex F, , and where J‘ is the prescribed separation point of the
feeding sheet.

c. Solution of Eguations

The system of four simultaneous equations to be solved
for the four unknown.[: , I,’ s :j: . Y, may now be written as:
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V.
o %o / 4 /[,,”0 (132a)
o Uy, Cose L -
*n
V
40 Y, / / )[;,o (132b)
o X g eoes« L 4-
L0 /¢ / -‘5/__/_ f o U S (132¢)
27 ( ©e > 3‘, /-/- a7 L & +Tﬂ:_/ o~
2z & -8, by -4

E—— v =—t Sm {132d)
ar (8-8,)(e+8,) " (&-8)(87+8)

— 4
when the appropriate substitutions for 8, & , 8 and 9, are made in

°
termsof_x,z,x,xandj:’.

It is obvious that solution of the above set of equations should be
accomplished numerically, in order to obtain meaningful solutions with
a reasonable amount of effort. Such a solution would be in the form of
a simultaneous numerical integration in the X -direction of the force
equations, (132a) and (132b), subject to the boundary conditions (132c) and
(132d). The solution may then be started at any axial station X, provided
the initial values of 22 , £7 , J; and J are known. The separation point

X', the body cross section, given by a and b, and the total span § must
all be prescribed explicitly as functions of X .

The numerical solution may be carried out'by starting the integra-
tions a short distance back from the nose of the body. A discussion of
the starting problem will be found in Section D below and in Ref. 13
Since at these forward stations the exposed wing span is zero, only the
body vortex systerm would be present. The wing vortex system would
begin when the leading edge of the wing was reached. It would thus be
possible to compare solutions by this method with those for the body vor-
tex strength and position by the method of Ref. 13. This would be desirable
in order to assure that the inclusion of the wing vortex terms introduces
no unforeseen numerical difficulties.

A direct check on the approximate model would alsoc be provided.
The assumptions that the body vortex is constant over the wing, and that
there is no mutual interaction between the wing and body vortex systems
would also be tested.

4. "Juasi-Exact" Model

Although a solution to the above "exact' model would give

(within the limitations of the original vortex feeding sheet model of the
separated flow) the correct nonlinear load on wing-body combinations,
the numerical procedures involved are quite lengthy. If certain physical
assumptions are made {not quite so restrictive as those of the "approxi-
mate' model}, the solution may be greatly simplified, without losing any
of the essential features of the exact model. This section describes the
resulting ''quasi-exact' model of the flow.
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a. Physical Considerations

In Section 3, the existence of two separate vortex feeding
sheet systems, one on the wing and one on the body, is assumed. In order
to solve the resulting equations, the separation points of both feeding sheets
must be specified. By applying a Kutta condition to the wing, it is deter-
mined that the flow must leave the wing tangentially at the leading edge. The
separation point on the body is not so easily determined. For the portion of
the body ahead of and behind the wing, the methods of Ref.13 may be applied.
Between the leading and trailing edges, however, it is likely that the
blocking etfect of the wing prohibits any further separation of the flow from
the lee side of the body, except secondary separation which will not be con-
sidered here. Thus the strength of the body vortex would remain constant
over the wing. In light of this physical consideration, then, it seems more
plausible to specify the strength of the body vortex as constant over the
wing, rather than specifying the position of the separation point and allowing
the strength to vary as in the exact model. Thus the feeding sheet disappears
and the vortex becomes force-free. In general, at low angles of attack a
stagnation point will appear on the top surface of the wing and another behind
the lee side of the body as shown below on the left. At higher angles, the
two reverse flow regions may merge as shown on the right.

‘ BODY VORTEX
ZERQ STREAMLINE

WING VORTE X
ZERO STREAMLINE

COMBINED ZERO
STREAMLINE

3
TUm sina 1Uoo sing
1
I

* - STAGNATION POINTS

The situation depicted on the left is especially likely to be encoun-
tered on not-so-slender configurations at low angles of attack (%/€ < = /),
Brown and Michael (Ref. 16 } show that for a conical wing alone the stagnation
point occurs just at the wing centerline when «/& 2/,

In the case illustrated on the left, the assumption of the nonexistence
of a feeding sheet for the body vortex may not be valid. In such cases,
therefore, the "exact' model might give better results if the appropriate
separation point location can be specified.
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In the present simplified model the boundary conditions tend to make
the mathematical description of the physical situation more tractable than
tor the Yexact” model., It is felt that the assumptions made are logical ones,
basced on the phvsical nature of the problem, and that no essential features
of the exact model are destroyed by them, within the above mentioned
lHimitations on anpgle of attack and slenderness,

. Mathematical Description

T'he derivation of the two-dimensional complex poten-
ital for a wing-body combination given in Section 3 is still valid, since
only the presence of the vortices 1s assumed, and not any changes in their
strengths.  The sketches should be modified so that the body vortex feeding
sheet 15 replaced by a "branch cut'. The set of boundary conditions listed
in Section 3-b as uniform over the entire length of the body, should be re-
placed by the following sets over the appropriate portions of the body:

a) For 2% X & "(‘_5 {(body nose to wing leading edge)
i) The body separation point ¥ is a stagnation point.
2) There is no net force on each body vortex-feeding sheet
system.

h) For X € X £ er(leading edge to trailing edge) ,
1} The flow leaves tangentially at the edge of the wing J3 .
2) There is no net force on the wing vortex-feeding sheet
sy stem.
3) There is no force on the body vortex.

c) For Xyg < X 2 dirailing edge to aft end of body)
1} The body separation point is a stagnation point.
2) There is no net force on the bady vortex-feeding sheet
system.
3) There is no force on the wing vortex.

One other phvsical feature of the flow must be considered in setting
up the mathematical model. Free vortices rotating in the same direction
in close proximity will tend to reoll up together. This may be seen in the
rolling up of the trailing vortex sheet behind a wing into two strong tip
vortices. It is possible, with the proposed exact model, that the interaction
between the wing and body vortices might be such as to cause the rolling-up
of these two vortices. in which case the body vortex would pass through the
wing vortex feeding sheet. It is felt, however, that this tendency would not
be serious enovugh to invalidate the proposed model because: 1) a complete
rolling-up in the manner described would probably occur, except in rare
circumstances, only at locations far downstream of the leading edge, due
to the weakness of the vortex at forward stations; and 2) the concept of a
gtraight feeding sheet is merely an idealization of the complicated nature
of flow separation at the leading edge, and the crossing of the supposed loca-
tion of the ferding sheet by the body vortex would in reality have no physical
significance.
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¢. Boundary Conditions

The boundary conditions stated above may be expressed
over the three portions of the wing-body combination as follows:
a) <X % X,

1) The boundary condition of a stagnation point at the hase of
the body vortex feeding sheet (% may be satisfied by re-
quiring a stagnation point at &’ in the & -plane, which is
the location of the prescribed body separation point under
the transformations given above.

The flow in the & -plane, due to the body vortex and the free stream is
given by

f/5)=',££Jh/“i:j‘i el s & {133)
27 &+ 5 i

Requiring a stagnation point at the body separation point dictates

that:
_a’_ff‘_) =0 (134)
Vd-4
&= 8’
Thus:
VY / 89, - 5
- - 13
27 (a=-e)igws)) = = 132)

2} The condition of no net force on the body vortex-feeding
sheet structure may be satisfied by letting the force on
an element of the vortex just be balanced by the force on

an element of the feeding sheet.

The force on an element of the feeding sheet between & and X+oXis

.
a/a.g:—tlol/_;: L% (136)

The force on an element of the concentrated vortex is

. *
a"f;,:(.ﬁl/:c[}a’x (137)

*
where V_y’ is the complex flow velocity at the position of the vortex, relative
to the vortex itself. The force equation for the body vortex system is thus

o S L) Yo
Pmeasocyx_f// ,/ /916: § (138)
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or?

V '
J‘ﬂ/ — / /7 f/ = {139}
e q_cos« x-.;f’

as before.
£ &L
b) Xe < X = KXo
1} The boundary condition that the flow leaves tangentially at
the edge of the wing (¥ ) may be satisfied by requiring a

stagnation point at the origin of the & -plane, since the wing
tip location maps to the origin when the transformations are

applied.
The flow in the &€ -plane now includes the wing vortex, and is given
by
f(’&)=-¢'ff,(n/5'5f - é'fo’jn B-Gp|_ L S O (140)
ar r’EN-} 27 &r 8, il

Requiring a stagnation point at the origin:

_dEL) o (141)
a6
&=0
Thus:
Lo /Y / L ( / / W,
—_ 2t = $107 & (142)
am (&, 2./ ar (4, 8, =
2) The boundary condition that there is no net force on the
wing vortex-feeding sheet system is satisfied by letting
the forces on the vortex and the feeding sheet cancel as
shown in a-2) above for the body vortex.
Thus:
*
vy,
24 . / )[,’ -0 (143)
o Y, Cosx b AR
3) The condition that the body vortex is force free is satisfied
by letting the flow velocity at the position of the vortex rela-
tive to the vortex be zero.
That is:
L ]
C A (144)
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Or, from Eq. (124}):

U aosx 9% _ (_a./_!_;_ (145)

where _@:/f) is the complex potential of the flow without the inclusion of
the vortex in question, located at % , but includes the flow due to a source,
as discussed in Section IV-B-3 above.
c) Xpg X4
1} The condition of a stagnation point at the body separation
point is identical to that given in Eq. (134} above except
that f(ﬁ) must now include the wing vortices.

Thus:

./1/ 4,76, ~ L / 4 ‘9'_____ =l s (146)
a7 L8~ 8)(a'+é)) 7 L (8™-8)(88)

2} The force-free condition on the body vortex-feeding sheet
system is the same as that of Eq.(139) above, except that
now V;j: includes the velocity due to the wing vortices.

»
AL Vs, / / }[’30 (147)
o/x yees (£-x/ '

3) The force-free condition of the wing vortex is similar to that
of Eq. (145) above, but the velocity is calculated relative to
the wing vortex.

U cos x _dYa =/‘/1f-’) (148)
*“ o Lol Jpep

where now E(-Y) does not include the vortex at .ff‘ .

Here the physical nature of the situation must be again considered.
The developed mathematical model must be used with caution, due to possi-
ble interactions between the body vortex, the wing vortex, and the trailing
vortex sheet behind the wing which was generated by the linear component
of lift on the wing. Since the determination of this component, and the
strength of the resulting trailing vortex sheet or rolled-up vortex, was
described in Section III above, no attempt will be made here to include
it in the nonlinear model. It should suffice to say, rather, that the
model must be used with caution behind the trailing edge of the wing, es-
pecially for configurations with long afterbodies at lower angles of attack,
and that further investigations in this area might be desirable.

Thus:
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d. Sclution of Equations

The method outlined in Section 3 for finding the strength
and position of the separated vortices remains essentially unchanged, ex-
cept that now there is only one complex differential equation to be integrated
numerically at any particular axial station, subject to one or two boundary
conditions. The resulting numerical procedures, discussed below, are
much less cumbersome. than for the exact model,

C. NONLINEAR FORCES ON WING-BODY COMBINATIONS

Once the unknown strengths and positions of the separated vortices
are found, the resulting lift distributions on the wing and body may be de-
termined. The spanwise lift distribution on the wing is found by chord-
wise integration of the pressure distribution. The axial distribution of
lift on the body is found by momentum considerations.

An expression for the pressure coefficient is given in Ref. 1% as:

X 2
Aﬁ:/_-z_w,:diwj (149)
¥ ¢ v* /z=0
where ¢= velocity potential = £R (!(J')), since f(f) may be written
as
ET)=Pre¥ (150)
The derivatives of the velocity potential are then:
g, =38 . 2 er (fcy) (151}
2X ax

and

& =LA /a’,ét’lf’)/ (152)
oF
The complex potential may be written

)¢ +~ & +f (153}

voRTICES Free -STRGam Source

and is given as .43..0) x) in Eq.{108). The derivative of the real part of
the complex potential with respect to X will be evaluated numerically at
several points in the spanwise direction for each chordwise station on

the wing, to give Px (X 8) . Similarly, o/8(F)//y is found as before.

The real part will also be evaluated numerically at several points in the
spanwise direction for each chordwise station on the wing, to give é/)’,*) )
The complete pressure distribution on the wing may then be found by
Eq.(l149) above. The pressure distribution may then be integrated to give
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the total lift and/or center of pressure of the wing and the spanwise lift
distribution. Predicted spanwise pressure distributions are not very
good, however, due to the negative pressure peaks that will generally
appear under the vortices. Further discussion of the limitations of the
two-vortex model for predicting loads and pressure distributions on
wings will be found in Ref. 15,

The axial distribution of force on the body may be found by momen-
tum considerations. The total force on the wing-body combination, up to
station X, may be computed by calculating the change in downward momen-
tum imparted to a cylinder of air enclosing the wing-body combination up
to the station X , 48 shown in the sketch below,

WING VORTE X —

— Alx}

The total normal force up to station X is equal to the rate of down-
ward momentum emerging from the Y -plane:

KiX)= ~PL, eas«jj [M/y- l{osmcx} a/§o/7 (154)

Acy)

where AX) is the entire area of the ¥ -plane outside the wing-body com-
bination. That is,
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& (x)= -A’{,cas-(/f [Wy*bj..s'mac] a/gJy-jf[%'Zslhd I Sy

ax) ‘
(155}
Integration with respect to 7 produces contour integrals of the
velocity potential:

W/ (x)= —Fu-eou/f[p'-q,sm«p] ok + [pfagas/n «7:’ SE (156)
© a)

The first integral vanishes, because there is no vertical momen-
tum change at the cylindrical surface as the radius becomes infinite. Also
since there is no net force on the vortex-feeding sheet system, the vortices
may be inciuded in the integration around B¢X) without affecting the nor-
mal force. Thus

l/(X):-PU“cosd} [ﬁ-a‘eszn«?]a’f {157)
a6

The contour of integration is shown in the following sketch.

' (\ BODY VORTEX

Since @'(f)‘*‘ﬂﬁ*c';/j and JSYP:SETC Y

glE=~8P | FIF*}p ¢y (158)
2% YY) ad

The last term is zero, since #% 9 on the body and is single valued
on the vortices and feeding sheets. The source term, which is axisyrmmet -
ric and thus produces no downward momentum, need not be included herc.
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Thus

(x)= - pPU, cosx aé.f?; [/f}c/f‘f U smeay dE

&) a&)

where F¢¥F)is given by Eq. (108).

The free stream term (last integral) may be evaluated directly,
giving

}u sma pdE ==L/ sm«/-__s://»-,‘ L2 )T (160)
it ae » r
awn)

The integral of the complex velocity potential is most easily evaluated
in the & -plane. The transformed potential function f(ohs given by
Eq.{109}), Since

(159}

o= _JY S8 (161)
%
the integral may be written
FE)SY - fj/a) o 5 (162)

where df/g’ﬂ is given by Eq.(130). Thus:

B) &Y Jf # L] j» 8-6,) (L 88 ) U s &
f ¢ o f/ 6'*5 27 av-ﬂ,) -~
alx ai)
4
-1"’//1' a‘fs”vﬂw): / //1/ L *5"%

(163)

Details of evaluation of the contour integral in Eq.(162) may be
seen in Appendix C. The result will be stated here

L WS- (8,%8)-11(8 *é)—eo.smar/ £ *f//s ,-;z»/r
B3

2 /2
s’ 7 (164)
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where

H= 2 s k2 vz éﬁ/f‘w-‘)l/ff ye?)  osa

#t*
(165)
and
a Ja
Se (k2 r s+ (k5% r s 42t (166)
287

The load on the wing-body combination up to a station X is then given by

wix)=PY eos x /e.;?[ﬁo/a; *8) s L (8 *é)]
a 2 a
- AL, sxndCas«/r-_}{_)/r,‘-_i_}?f

b4
o PU sl gos « —3-'6:*’7(5/: vr3) 7 :-3,75-/7,
2 22 67
1

The axial distribution of force may be found by numerically differentiating
the above expression with respect to X

Once the axial distribution of force on the wing'body combination is
found by the above method, it is possible to find the body alone load, if
desired, by subtracting the load on the wing calculated by integration of
the pressure distribution. It is also possible to determine the nonlinear
load due to the vortices alone by considering only the terms containing
vortex strength, Then the linear lift, computed by more accurate methods,
can be added,

D. DESCRIPTION OF NUMERICAL METHODS

1. Selection of Separation Points

The point of flow separation on a highly swept wing is defined
by a Kutta condition to he at the leading edge. No such condition exists,
however, for the separation points on bodies or on wing-body combinations.
The exact position of separation is the result of a complicated interaction
between the viscous flow around the body and the flow in the separated
region. Short of a complete solution of the viscous flow problem, which
has proven exceedingly difficult, the most practical method of predicting
separation points seems to be a semi-empirical one. Certain simplified
analytic attempts at a solution, reported in Ref. 13, have been unsuccessful.

The separation point on a wing-body combination {over the wing-
body juncture) is defined in both the "approximate' and "exact'' models des-
cribed above to be just that which would occur on the body alone at angle
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of attack. For the "quasi-exact" model, there is no separation on the
body inthis region. Ahead of the wing leading edge and aft of the trailing
edge the separation point is just that for the body alone in all three flow
models.

Two-dimensjonal time-varying flow studies on elliptic cylinders
(Ref. 22 ) have indicated that the points at which the major part of the
vorticity seems to leave the cylinder starts near the rear stagnation point
(& = 92)and moves rapidly around to some steady position (6= &,) where it
remains throughout the development of the two-vortex flow pattern. For
a three-dimensional body, this "equilibrium separation angle', &€, , has
been seen to be a function of the local body slope, angle of attack, axis
ratio, and the state of the axial boundary layer (laminar or turbulent).
This equilibrium angle is assumed to be that for the appropriate tangent
cone for a body with changing slope, such as one with an ogival nose or
a cone-cvlinder. On such a body, however, the true separation angle
lags the equilibrium angle, as the separation angle cannot immediately
adjust to a change in slope.

The experimentally determined equilibrium separation angle for
a circular cone in laminar flow is given in Ref. 23 as

8, =(r3.sa “ENE 18-S e x-178) Wt 40
e O'< § < 2o’
& =3/303./24F) o< x % JO°
e O'< 52 20°
(168)

where 7 #is the slope of the body.

The separation on elliptic cones may be found by assuming that
the separation angle is a function of the angle through which the flow
turns as it separates from the body. Then

8 =" én—/[_@fv‘an (70~ & {] (169)
&% P

where 5“‘5,)_ is obtained from Eq.(168) by defining an average slope of an

elliptic body to be
Harn & =y £ % (170)

This conclusion is verified by comparison with experimental data,
For a body with varying slope, the rate of change of separation angle is
assumed to be of the form

A (K Sank 8 -G
X 26 (% ) 7

where in Ref. 22 a good value for the constant is found to be kl:.? with the
angles in degrees.

No such experimental correlation is available for turbulent flow.
From comparison of incremental force data on turbulent cones with the
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results of predicted loads a value of 9“‘6/)—= 53° is prescribed for the
tiurbulent case in Ref. 13, The separation angle & on elliptic bodies is
found as before (from Eq. 169),

2. Discussion of the Starting Problem

For bodies at low angles of attack, the growth of the body may
be sufficient to prevent the departure of vortices from the surface. This
is reflected by the lack of a solution to the equations for vortex strength
and position for the appropriate tangent cone. On a nonconical body, however,
the decreasing slope may permit departure of the vortices at some point
aft of the nose. If separation is assumed just at the point where a
solution is first obtained, an incorrect result will be found for the vor-
tex strength and position. It is necessary, on such a body, to continue
the “tangent cone' solutions back along the body until the nondimensional
vortex strength A is greater than an experimentally determined value
of 4 parameter, Asep , which measures the strength of the vortices as
they break out of the boundary layer and separate from the body. A fuil
discussion of this process will be found in Ref. 13.

Provisions have been made for this case in the numerical pro-
cedure described below. Unfortunately, values of 4pee have been mea-
sured only for a circular body. They are:

,(se’;—, 223" - laminar boundary layer (172)
’#5,;:"2?‘{ — turbulent boundary layer

Since it is expected that measurements of this parameter will be made in
the future for bodies of elliptic cross-section, the numerical methods
have been developed for use with elliptical or circular bodies. Actual
calcuiations have been made only for circular bodies, however.

3. Procedure for Approximate Model

In the "approximate' model, there is no interaction between
wing and body vortices, and the strength and position of the body vortices
remains constant over the wing-body juncture. Calculation of vortex
trajectories may therefore be made in two separate steps:

l. Calculate the strength and position of the vortices on a body
consisting of only the sections fore and aft of the wing-body juncture.

2. Calculate the strength and position of the vortices on the wing
alone.

Once the vortex trajectories and strengths are known (the wing
vortices are assumed constant aft of the trailing edge), the resultant
distribution of nonlinear normal force on the wing body combination is
tust given by

SHK) - PU cos a_ [13(%*61)*/,’/&; "5)] (173)
X X ’
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A complete numerical procedure for calculating nonlinear loads on
elliptic cones and circular tangent ogive bodies is presented in Ref. 13,
and this has been adapted for calculating loads on wings in Ref. 15 Com-
parisons of this method with experimental data are given in Section V.
Agreement is not considered adequate, primarily due to the failure of

the two-vortex theory to correctly estimate loads on the wing alone.
(Comparisons of the wing alone theory with experiment may be seen in
Ref. 15),

4. Procedure for Quasi-Exact Model

The ''quasi-exact' model, which permits interactions between
the wing and body vortices, but not separation on the body, over the
wing-body juncture, is solved in three steps:

1. Calculate the strength and positions of the vortices on the
portion of the body ahead of the wing leading edge using Eqgs.(135 and
{139).

2. Calculate, simultaneously, the strength and trajectories of
the wing and body vortices over the wing-body juncture using Eqgs. (142),
(143) and (145).

3. Calculate the strength and trajectories of the wing and body
vortices over the aft portion of the body, using Eqs. (146),(147),and (148).

The initial conditions for integrating the appropriate differential
equations are found by considering the solutions for a)a tangent cone at ornear
the body nose, to start Step !, and b} a delta wing at the wing leading edge,
to start Step 2. No starting procedure is needed for Step 3, as both wing
and body vortices have finite strength and position at the wing trailing
edge.

A complete numerical procedure for the quasi-exact model has
not been developed. It is felt that, due to the apparent failure of the
wing-alone theory, the necessary expenditure of effort would result in
only slight improvement in the agreement with experiment, and would
not be justified in the present program. If a better theory for the wing
alone could be devised (see Section VI), an empirical correction of the
form

48, =4y ~4e, 48, (174)
roniinee s - exact wing alone Coing alone
Haro = b OF PEX s prored

might considerably improve the chances for agreement with experiment.
In light of this possibility, the proposed numerical procedure for the
quasi exact model is outlined as follows:

a) For 04}’5,{:‘_‘-
Eq. (139) may be written as:

& = FEY) (175)
oy
where
FlXxgys_ Wi _ _ od@d) £-g (176)
7 Yo @05 X o cad)
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and
.-“ _.____a"”?‘c?_nd > Yy X > éafa«%/ / ) Ox'bf
wi @~8) V) o (177)
L, cosx ——
%
o6
where bars denote the complex conjugates of quantities. Also:
(@d)=___ 27
27, S
.| (8-8)8~4) ,
= = {178)
53
from Eq. (135). Equation (175) is integrated numerically by a four point
Runge-Kutta scheme up to €< %& . That is:
A% <L hrk c2 by 4,0 (179)
P4

where

£ = FOE $)AY
L= FX4k,  L*4))Ax
4-F XY, Ged )ax

L= FCx=aY, 5 +Ly) dx

The initial values of ¥ , &£, and @4,, for starting the integration are found
from sclutions to the equations for an elliptic cone:
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-3 f/ a a ? a ’
//rfé‘) [f.r: WAL ARL) 'ﬂ e a;)/} (81)
FRENL L) CF ) [c’ﬁ,"— y¢ ’)f’sz’-—ﬂ“)fa]

These equations may be solved simultaneously for the strength and position
of the vortex by a logarithmic search procedure, At low anczles of attack,
or for cones with wide semi-vertex angles '8/ these equations may not
have a solution. (The semi -vertex angle is related to the position of the
separation point, for laminar flow, by Eqs. (168)-(170)). Physically,

this indicates that the expansion of the body prevents the separation of
vortices. For a body with varying slope o/¥=¥w» $ , such as a
tangent-ogive cylinder, separation may take place at some position aft

of the nose. A similar situation may exist for cone-cylinder bodies where
separation may begin at the shoulder of the body. This axial separation
peint is found by attempting to solve the cone equations for cones of de-
creasing semi-vertex angle. An additional restriction on the axial
separation point is that the vortex strength A, which may be found from
Eq. {151}, must be greater than A as discussed above.

-7y i
<
b) Ke ©FE Ae
The governing equations, (143) and (145), may be written

A% X,y (152)
X
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and

LA FE AN, (183)
%3
where
QL) we _ oak)| _4-F (184)
U, o5 oK @d,)
where

¢ Gy Tana @d Mana (4*4) o /%
o /[@*é) " araes T | S T

L ¥- 4 -
o -
o'®
' {185)

and

| @A @d)rnx(§48) A, 5_43/ /)Y
ot f)- 8+8)  (4-4)(47%) A Yo% ypa) %

A
7

(186)

Alsao
aky=__ 4]
27t S a
| rel@d) s, l ot 1
[ //4 +9_/):’ ["’arT‘J (187)
and
oA, = ad, at )‘;5 = gonsan? (188)
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FEquations {182) and (183} are integrated simmultaneously up to i"
using the Runge-Kutta technique. That is:

42 =_¢ & » 2k, *ad, 74, ) (189)
I4
d_jf=:/_ (grae, 724 ~.e,) {190}
where
¢ =g %, 5)ax
=@ XL F)ax

)

¢ CKrAks, L rdpa, L 7L a)AX
L =@ (xrdya, K Lja L4k 1) IX
t’; R GAT I Z WAL PIIAP Y Jdx
4= G X rAY :f/.z F e /.?)471’
4LEGlrear, Lrds, 24 )ax

[‘/:éf’ /XH‘JX/' 'jg 7"(':J‘/ ')/’7"63'}42’

The initial values of Jf andawﬂ, are found from the solutions to
the cone equations ((180) and (181}) for a flat wing. Since for this
case the equations will always have a solution, no starting procedure
such as that described above is necessary. The values of & and ad,
are those found at the leading edge as the last step of a) above.

c) K X = £

Eqguations (147) and (148) may be written as

& L %) (19:)
oK
and
ELAN AT, (192)
X
where
/z{/.) ‘j:u J’f‘):.- W - a/é!/{:) -‘f‘«"f' (193)
LA, QOS5 X T (42)
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where

@wma/wa:),@z,»sm,ﬂgnﬁ# P VAVERYY.

wr (8-4)8+8) “4+8) X o2 ypif o8
U COS & 79
=
{194}
and
(| @o)tana , @A )fena(87E) At éaét / )
PSR PE ALY, (8,-8)(8+8) | a’! sz 8
f / (195}
Also ad = — /,‘-(ﬂr{,) 8 * 5,
’ B-8)(8+3)
8+ J
L 8)/8 8
(5, é)//"* /) (196)
and
a/g =a/p a? 2_;_5_ = Gonslant (197}

The equations are solved simuitaneously by the Runge-Kutta
technique as in Egs. (189) and (190). The initial values of & andad, |
are those found at the trailing =dge as the last step of b) above As
all the quantities have finite values, the integration may be begun
immediately after the trailing edge.

Once the strengths and positions of the four vortices are found,
the axial load distribution is found from Eq. (173) as before.
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5. Discussion of Exact Model

The limitations mentioned above for the quasi-exact model .
apply also to the "exact' model. Furthermore, the simultaneous
solution of the two complex algebraic and two complex differential
equations is exceedingly difficult, requiring a double logarithmic search
procedure more complicated than that mentioned for solutions to the
cone equations. The resultant machine programs would be exceedingly
expensive in terms of computation time. Also, due to the physical con-
siderations discussed above, it is not felt that, for most configurations
of interest, the exact model represents a significant practical improve-
ment over the quasi-exact model, although the arbitrarily imposed
condition that there is no flow separation on the body need not be im-
posed.
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SECTION V

COMPARISON OF THEORY AND EXPERIMENT

A. LINEAR INTERFERENCE LOADS

Comparisons with experimental data of wing body interference
effects calculated by the methods discussed in this report are severely
limited by the rarity of systematic experiments on wing-body combi-
nations at subsonic speeds. Although a wealth of data exists on various
airplane-type configurations, this is relatively useless when trying to
determine the range of validity of the theories or the effect on load
distributions of systematic variations in some geometric or flight para-
meter. Furthermore, in model force tests, it is not usually possible
to separate the interference load on the body due to the presence of the
wing, from that on the wing due to the presence of the body. Some in-
formation of this nature may be obtained from pressure measurements,
however.

Figure 3 shows one member of a family of wing-body combina-
tions, tested at several high subsonic Mach numbers. The data, from
force measurements, are reported in Ref. 24. Three high aspect ratio
swept wings, with quarter-chord sweep angles of 40°,45°, and 50°,
were used. Figures 4,6, and 8 show the theoretical and experimental
reduced lift curve slopes at zero angle of attack (FG . , where &« ¢7=A73 )
plotted against reduced aspect ratio (¥##€) for the three swept wing-
straight body configurations. A contoured body was also tested, but
provided negligible difference in the data.

Use of these reduced coordinates provides correlation of data
taken at different Mach numbers. The various dashed lines show the
contributions of the wing and body without the interference loads. The
body-alone lift was determined by the slender body theory method given
in Ref. 2. The solid lines show the theoretically determined total lift.
Violations of the slender body approximations used to determine the lift
on the aft portion of the body due to wing-lift gives rise to a larger load
in this region than actually exists for these high aspect ratio configura-
tions. That the disagreement between theory and experiment is due to
this effect may be seen by considering the sum of the load on the wing
in the presence of the body and the load on the body alone, also shown in
Figs. 4,6, and 8. Other portions of the interference theory developed
here may be seen to compare favorably with experiment. Further in-
vestigation of this difficulty, including systematic experiments, might
be desirable. In lieu of this, however, it is recommended that the lift
due to the trailing vortex system on the aft portion of the body not be in-
cluded for high reduced aspect ratio configurations (&#€ > ~ ¢ ).
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Figures 5,7, and 9 show the theoretical and experimental
centers of pressure (Z, <, , measured from the leading edge root)
plotted against reduced aspect ratio for these configurations. The
effect of the trailing vortex system is again not included. Agreement
is generally satisfactory. The discrepancies may be due to the in-
accuracies of the slender body theory.

Figure 10 shows a configuration with a medium aspect ratio
swept wing, tested at high subsonic Mach numbers with a basic and
indented body. The data, in the form of integrated pressure distribu-
tions, are from Ref. 25. Figures 11 and 12 give the experimental and
calculated reduced lift curve slopes on the wing-basic body combination,
and on the wing in the presence of the basic body. Figures 13 and 14
give the same information for the indented body. The lifts on the body
alone are experimental values from pressure distributions, with the
theoretically determined body carry-over lift subtracted out. Agree-
ment of the lift with experimental values is good, both for the wing in
the presence of the body, and for the total configuration. Here the lift
due to the trailing vortex system has been included.

Figures 15 and 17 give centers of pressure on the wing-basic
body combination and wing-indented body combinations. The centers
of pressure for the wing in the presence of these two bodies are given
in Figs. 16 and 18. It may be seen that the discrepancy between theory
and experiment for both combinations is essentially due entirely to the
wing. This disagreement is a consequence of the assumption that the
wing lift is concentrated along the quarter-chord line. For high aspect
ratio wings, such as that shown in Fig. 3, this assumption gives good
agreement with experiment (see Figs. 4,7,9). For medium-to-low
aspect ratio wings, however, the center of pressure appears further
back on the wing. (The Lawrence method cannot be used to predict
centers of pressure on wings which have a fore or aft swept trailing
edge, and has only been used for calculating the body carry over lift}.
A lifting surface theory would give considerably better agreement.

A similar configuration, from Ref. 26, is shown in Fig. 19. The
basic body is identical to that of Fig. 10, but the wing is less severly
swept. This wing was also tested with two bodies, basic and elliptical,
at high subsonic Mach numbers. The major axis of the elliptic cross
section was oriented normal to the plane of the wing. Figures 20 through
27 give comparison of wing, body, and total lifts, and center of pressure
locations for both the basic and elliptic configurations. The lift on the
wing in the presence of the body is slightly underestimated in both cases,
probably due to the inaccuracy of Weissinger's procedure for such a
low aspect ratio. Center of pressure agreement is better. Agreement
is about the same for both basic and elliptic configurations.
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B. NONLINEAR INTERFERENCE LOADS

The method of Section IV, using the approximate model, for
calculating nonlinear loads on wing-body combinations has been
compared with experimental data only in a limited manner. A con-
figuration was chosen which should minimize the effects of the limita-
tions of the theory. Agreement was found to be less than satisfactory.

Tests were made (Ref. 27) on a tangent ogive cylinder in com-
bination with several delta wings. For comparison with theory, a
wing was chosen which would be wide enough to contribute substantially
to the lift, but not violate the assumptions of the slender body approxi-
mations. The model is shown in Fig. 28. Data was taken at a Mach
number of 1.50. The experimental lift coefficient is plotted against
angle of attack in Fig.29, and the experimental pitching moment 1is
plotted in Fig. 30. The theoretical curves were determined by adding
the calculated nonlinear incremental lift and pitching moment to a linear
value which was empirically determined by considering the experimental
1ift and pitching moment slopes at zero angle of attack, In this way, any
effects due to the inaccuracy of the linear slender body theory are elimi-
nated. It may be seen that both the lift and pitching moment are both
seriously overestimated by the theory, even at very low angles of attack.
This is due primarily to the failure of the two-vortex model to correctly
predict the loads on the wing alone. Agreement is good with predicted
loads on the body alone. Suggestions for further improvement of the
analysis are made in Section VI. It is also possible than an effect due
to compressibility is present. The theory, being based on the slender
body approximation, is independent of Mach number.
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SECTION VI

RECOMMENDATIONS FOR FURTHER STUDY

A. LINEAR WING-BODY INTERFERENCE EFFECTS

This report has presented some possible improvements to current
wing-body interference theory. Much work remains to be done in this
field, however. The studies contained herein suggest certain areas for
further investigation. One straightforward, but very complicated, im-
provement to the calculation of the effect of an elliptic body on a wing
would be to include the terms in Eq. (8) representing distributed vorticity
in the calculation of downwash. This would be especially worthwhile for
elliptical bodies of high eccentricity. A more difficult, but potentially
more fruitful,approach to the problem would be the derivation and solution
of an integral equation representing the distribution of vorticity on a body
of generally-shaped cross section.

Another difficult but possibly worthwhile approach would be the
development of an "image vortex'' theory which would use a lifting-sur-
face representation of the wing lift distribution (such as that found in
Ref. 10} rather than the horse-shoe vortex representation of Ref. 5. Such
a theory, in combination with the "exact'' distribution of vorticity on the
body mentioned above, would seem to represent the maximum possible
improvement in this method of calculating interference effects.

One further area should be mentioned in connection with complete
calculations on wing-body combinations. That is the need for an improved
subsonic theory for load distributions on bodies alone. The slender body
theory gives adequate results for smooth bodies of medium fineness ratio
at low angles of attack. Effects of nose bluntness, boundary layer growth,
vortex separation, and not-so-slender body shapes can cause serious
errors in calculation of body load, which canminimize the usefulness of
improvements to wing-body interference theory unless they are accounted
for, or unless data becomes available with which the accuracy of inter-
ference theories can be systematically determined.

B. NONLINEAR WING-BODY INTERFERENCE EFFECTS

The theory for determining nonlinear interference loads is in con-
siderably more of a primitive state than that for linear loads. Investiga-
tion should be made to determine what improvements to the theory would
be worthwhile, Among possible topics for examination are:

a) Improverments to the vortex model, The work of Maskell and
Smith on a delta wing (Refs. 28 and 29) has shown that representation of the
vorticity in the flow as a rolled-up vortex sheet rather than as a concentrated
vortex can greatly improve the prediction of the vortex core location.
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Presumably, improvements in predicted force and pressure distribution
would follow. Furthermore, the question of whether the wing and body
vortices mutually affect each other's boundary conditions, whether there
is separation on the body, and whether the vortices tend to roll up, over
the wing-body juncture, is still open. These questions cannot be ex-
amined with the present flow models,

b) Better specification of separation points. Current specification
is dependent on experimental data. A viscous flow analysis of the wing-
body combination, although difficult, would settle this question, and
possibly that of corrections to the flow model. Other approaches, such
as that discussed in Ref. 21, might be possible.

c) Better potential flow theory. The current theory contains all
of the drawbacks of the slender body theory discussed above. Some
improvement might possibly be gained by use of a three-dimensional
potential flow theory {Ref.30 ), or a three-dimensional method of charac-
teristics procedure for the supersonic range (Ref.31 ).

d) Effect of secondary separation, Separation of the reverse flow

region has been observed on elliptic cones at high angles of attack by
Friberg (Ref. 23). Pershing (Ref. 32) has shown that when the vortex is
placed in its observed position, the force is determined more accurately
than by the Brown and Michael model (Ref. 16), and the separation points
are similar to those that would exist if secondary separation occurred.
A solution of the secondary separation problem was not attempted, and
the work of Maskell and Smith places the vortex in its correct location
without such simulation of boundary conditions, Secondary separation
has not been ruled out as a possible factor, however.

e} Treatment of more general configurations. The present theory
is limited to wing-body combinations with circular or elliptic bodies,
and flat, mid-plane wings. With other conformal transformations, more
general configurations {such as non-mid-plane wings or nonelliptical
bodies) might be treated. More promising, perhaps, would be the treat-
ment of a wing-body combination with a generally twisted and cambered
wing, even though separation on such a wing is a difficult problem in itself.

Finally, more experimental data is needed on the nonlinear effects
on wings, bodies, and wing-body combinations. Of primary interest would
be flow visualization studies by, for example, the vapor screen technique,
in conjunction with model force tests. This would not only improve or
extend to more general shapes the present analysis, by better determina-
tion of the experimental parameters, but would eliminate a great deal of
uncertainty present in the specification of the flow maodel to be used.
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APPENDIX 1

DESCRIPTION OF LINEAR L.OADS COMPUTER PROGRAM

The methods for calculating linear wing-body interference loads
discussed in Section III above have been included in a computer program,
This program consists of a MAIN program and 27 subroutines written in
FORTRAN II, plus a general purpose subroutine for doing complex arith-
metic written in the FAP language. It has been compiled and run on the
IBM 7094 at the M.I.T. Computation Center, which is equipped with a
32K memory; a library tape containing the trigonometric functions sin,
cos, tan, and arctan, and a modified version of the IBM Fortran Monitor
System (FMS). A schematic diagram of the execution of the program is
given in Fig.31 . Descriptions of the required input and the resultant
output are given below. Listings of the input and output of one sample
case follows the listings of the program, which will be found- at the end
of this Appendix.

The computer program may be used to find the interference loads
at subsonic Mach numbers on a configuration consisting of {1)a body of
any varying elliptic cross section and camber distribution, and {2} a wing
with straight leading and trailing edges of any sweep angle, aspect ratio,
taper ratio, dihedral angle, incidence angle, twist distribution, and
camber distribution. The restriction is made that the angles defining the
twist and camber distributions be small. With some modifications, the
program could be used to treat more general planforms {(such as ogee
wings) or configurations at supersonic Mach numbers. Treatment of a
body with elliptic cross sections is an inherent part of the method. More
general bodies may be treated by considering the cross section to be
approximately defined by an equivalent ellipse. The generality of the
twist and camber distribution of the wing is limited only by the number
of boxes used, as the wing is treated as a flat wing at angle of attack over
the area of each box. The generality of the cross section or camber dis-
tribution of the body is similarly limited, as the body is treated as an
elliptic cylinder at angle of attack, which is assumed constant within the
length of each body segment,

2. Description of Subroutines

The following is a description of the functions of the
main program and the various subroutines.
(a) (MAIN)
This executive program calls, in turn, INPUT, SETUP, LABEL,
COMPRS, PARTI, and PART2.

(b) INPUT

This subroutine receives as input data parameters” , 7 , 7%, »7%,
and ’?973 , (defined below) and parameters describing wing and body geometry.

(c) SETUP

This subroutine establishes the coordinates of the edges and centers
of the boxes into which the wing and body are divided. The rectangular
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area bounded by (1) the chordwise locations of the leading and trailing
edges of the wing root, and {Z) the spanwise locations of the root and

tip of the leading edge, is divided into ™ hoxes in the spanwise (%) direction
and 77 boxes in the chordwise ¢X) direction,

The coordinates of the edges and ceiziers of these boxes are given
by Eqgs. (39) and (40) in Section IIT above.

In the subroutine INPUT, a separate constant angle of attack is
read in for each box {unless the wing is flat), whether the box is partially
or entirely located on the wing or not, (the angle of attack of boxes not
on the wing is ignored in later calculations!), In this way, a general dis-
tribution of twist and camber may be speciiiad. The angle of attack of
each body segment, with respect to the average wing angle of attack, is
similarly received.

(d) LABEL

[his subroutine produces that portion of the output shown on
pages 136 to 151, giving the numerical, geometrical, and flight conditions
received as input, and listing the angle of attack distributions of the wing
and the body together with the coordinates of the centers of the apprriate
wing boxes or body segments, with respect to the leading edge ruot.

{e) COMPRS

This subroutine performs a Prandtl-Glauert transformation :n the
configuration by replacing all chordwise positions X by their transformed

equivalents X/ /=M% . The remainder of the calculations are then per-
formed on the transformed configuration. The inverse transformation is
performed upon output.

{{} PARTI

This subroutine performs the calculation of the chordwise distri-
bution of bedy carry-over lift by the modified L.awrence method described
above, over the portion of the body between the leading and trailing edges.

{g) FUNC
This subroutine calculates #%/for the wing-body combination (see
Eq. (30)).

(h}) TRANS, DTBR DT _ -

These subroutines, used by FUNC, calculate ¢ and 0%/ (sce
Eq. (34)).

{i}) FUNC2

This subroutine calculates#(®/for the wing alone (see Appendix B
of Ref. 1}.

(j) PART2

This subroutine calls ALPEFF, WEISS, ELIPWB, BCOLFT, and
output routines.

(k) ALPEFF

This subroutine calculates an effective spanwise angle of attack dis-
tribution from the complete distribution of twist and camber, for use in
the Weissinger procedure. At any spanwisc station A, the effective angle
of attack is given by:

TE.

a(d)=__ ¢ a<, oK (I-1)

2rmeld) 2 - iy
£.&
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where edd)

cld)-x 2/ ¥ E JE  (I-2)
X X~k CCAI- X

where &40 = “&, ;is constant over the area of a box on the wing. The
effective chord @ #4)is found by considering an effective wing made up of
chordwise strips of rectangular boxes. The geometry of the e¢ffective
wing is discussed in Section IT]- D

In order to test the acvcuracy of the approximation to the Cauchy
Principle Value integral of treating the slope oZ/&Eas constant over
the area of each box, and ignoring the box where X« & when performing
the required summation, calculations of effective angle of attack have
been made for a flat rectangular wing with the number of boxes un the
chord varving from 4 te 24. The results are shown in Fig. 32. Tt may
be seen that a large number of boxes is required in order to accurately
vepresent the true angle of attack. Therefore, the computer program
will use this procedure only when necessary, i.e., for a wing which is
not flat. For a flat wing, the angle of attack used is that given as input
data.

(1) WEISS

This subroutine, which uses AMAT, B, GBAR, FBAR. ELSTAR,
and MATINV, is used to calculate the spanwise load distributions {(with
and without hody effect) un the actual wing.

{m) AMAT

This subroutine generates the quantities ¢, of Eq. (58], which may
be treated as the elements of a square matrix.

n) B

This FORTRAN function generates the value of Suy for use in
AMAT, from Eq. {62}

(o) GBAR

This FORTRAN function generates the value of ;v,? for use in
AMAT, from Eq. (59).

{(p} FBAR -

This FORTRAN function generates the value of /-;7/,- for use in
GBAR, from Eg. (66).

{¢) ELSTAR x

This FORTRAN function generates the value of £p4for use in
GBAR, from Eq. (53).

(r) MATINV

This subroutine selves the matrix equation set up by WEISS, It
i5 a modified version of IBM Share routine No. 664, and is also used by
PARTI.

vs) ELIPWS

This subroutine calculates the effect of an elliptic body on a wing,
by finding an etfective spanwise angle of attack distribution due to the
image vortices and the body upwash, as discussed in Section III.
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(t) IMAGE

This subroutine is called by ELIPWB to calculate the positions of
the image vortices by Eq. (4).

{u) UPWASH

This subroutine is called by ELIPWB to calculate the upwash due
to body angle of attack given by Eq. (51).

(w) BCOLFT

This subroutine calculates the body carry-over lift on that portion
of the body aft of the root of the trailing edge, by considering the change
with X of the total force on the body up to X due to the presence of the
two free vortices. The strength and position of the vortices are deter-
mined from the load distributions on the wing. The vortices are considered
to extend backwards from the trailing edge of the wing in the streamwise
direction.

(x) OPl, OP2, QP3, OP4, OP5

These subroutines perform the necessary inverse Prandtl-Glauert
transformations and generate the output shown on pages 152 to 158.

(q) COMPLX

This general purpose subroutine is actually a collection of FAP
routines, and is used for doing complex arithmetic in FORTRAN TII.
Available operations are addition, subtraction, multiplication, divisiocn,
square, cube, and sguare root.

As an illustration of the use of COMPLX, the FORTRAN coding for
the following complex equation will be generated:

2= cars)ec-o7] e (1-3)

where & , 6 ,¢C, o, -2, and 2are all complex numbers.

The FORTRAN statements may be written
R1 = RCP (AR, Al BR, BI)
El = EICP (AR, AlI, BR, BI)

R2 = RCS (R1, EI)
E2 = EICS (R], E1)

R3 = RCM (CR, CI, DR, DI
E3 = EICM (CR, CI, DR, DI)
R4 = RCD (R2, E2, R3, E3)
E4 = EICD (R2, E2, R3, E3)

ZR = RCMT (R4, E4, ER, EI)

Z1 = EICMT (R4, E4, ER, EI}
The real parts of 2, 4, ¢, o, -2, and Zmay be found in AR, BR, CR, DR,
Er, and ZR, respectively. The imaginary parts are similarly stored.
The following table of entry points to the subroutine COMPLX lists the
operational elements of the above statements.

RCP Real part of Complex "plus"

EICP Imaginary part of Complex ''plus"
RCM Real part of Complex "minus™
EICM Imaginary part of Complex "minus'
RCS Eeal part of Complex ''square’
EICS Imaginary part of _C_omp_lex "square"
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RCMT Real part of Complex "multiply"

EICMT Imagmary part of Complex "multiply"
RCD Real part of Complex Udivide™

EICD Imagmary part of Complex 'divide"
RCSR Real part of Complex "square root"
EICSR Imaglnary part of Complex “square root"
RCC Real part of Complex "cube!

EICC Imagmary part of Complex ""cube!

Nate that both the real and imaginary parts of a variable must be referred
to explictly, and must be calculated separately, but that they are in-

cluded together in the complex arithmetic operations. Also, it is possible
to nest the above operations to any depth desired, by referring to a function
instead of a variable name. However, this demands a large amout of
repetitive coding. For example, the equation

2=a(bre) (I-4)

may be coded in two statements as
ZR = RCMT (AR, AI, RCP (BR, BI, CR, CI), EICP (BR, BI, CR, CI})
Z1 = EICMT (AR, Al, RCP (BR, BI, CR, CI), EICP (BR, BI, CR, CI})

It should be noted that care must be taken in the use of the sguare
root portions of this subroutine, lest the wrong square root be taken of a
complex quantity which has an argument of greater than 2%, If the quantity
has an argument of between 27and 47, or between &¥and #7, etc., the
correct results will be obtained by applying the square root subroutines
to the negative of the quantity,

b, Description of Input

The following table defines the necessary input para-
meters in terms of their usual symbol, program variable name, and
meaning.

Symbol Variable Meaning
A ALAM Leading edge sweep angle, in degrees
AR AR Aspect Ratio
A TR Taper Ratio
s S Exposed wing semi-span
X ALPHA Average wing angle of attack, in degrees
& THETA Dihedral angle, in degrees
M MACH Mach number
el M Number of chordwise boxes at the wing
root
m/ M Number of segments on aft portion of the
body
P72 M2 Parameter used in the numerical integration
in the Lawrence method
mi3 M3 Parameter used in the numerical integration
in the Weissinger method
7 N Number of spanwise boxes on the wing
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Symbol_ Variable Meaning

- KEY Parameter defining a flat wing if KEY = 0,
or a twisted and/or cambered wing if
KEY £0
"‘ff;J- ALPH(I,J) Angle of attack, in degrees, of an individual
wing box
Xw XwW Location of the wing leading edge root aft
of the nose
Zy ZW Height of the midpoint of the root chord
above the body center line
4 L Body length
a, A(J) Semi-major axis of body segment
a, C(J) Semi-minor axis of body sepgment
Xy, ALPHBI(T) Angle of attack, in degrees, of an individual

body segment, with respect to the body
centerline at the midpoint of the wing root
chord

Values of these parameters must be given as input, for each con-
fig «ration to be analyzed, in the following order (expressions in paren-
thesis refer to appropriate {ormat):

Card I ALAM, AR, TR, S, ALPHA, THETA, MACH (TE10.4)
Card 2: M, MIl, M2, M3, N, KEY (615)

I KEY #£0
Card 3 thru card (Nx (M; M) b3

ALPH (I, J) {3{F 5.3, 5X)}
{Continue as below for KEY = 0}

If KEY =0
Card 3: XW, ZW, L {3F10.4)
tCard 4 thru card (4 + M+ M1):

A(T), C{J})., ALPHB{J) (3Fi0.4)

For another case, repeat entire data deck with new parameters.

The following values of the required numerical parameters have
been used for comparisun of theory and experiment:

T = 24
m! =12
m2 =13
ml =13
n = 20

The solutions have proven relatively insensitive to changes in the
nurmerical parameters above these values, except for the effective angle
of attack calculation for a cambered wing, as noted above. Note that »t
must be different from 73as must 7 from 73, and that 7, and 75 must
be odd numbers. Within these restrictions the maximum values of all
these parameters is 50,
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With the above values, the program requires approximately 3.25
minutes of computation time on the 7094 to perform the entire calcula-
tion for one case.

c. Use of Output

The total lift on a given wing-tody configuration may
be found by using the values obtained from the computer program as
follows:

C?é = C’C +C2 (I-%)
Fota s w3 Bl)
where
. = lift coefficient of the wing in the presence
wW(B) " 4f the body (p. 157 ).
and
g = lift coefficient of the body in the presence
3dw) of the wing.
- C »e
= ¢ < (I-6)
where 8 aco
C’cg = lift coefficient of the body alone
<, = coefficient of total body carry-over lift
&o {p. 158 ).

All coefficients are based on wing area. The lift on the body
alone may be found by use of any suitable method, such as the slender
body theory. More accurate results will be obtained, however, if ex-
perimental data is used for the body lift due to the inadequacy of the
theory for most configurations,

The total pitching moment about the root of the leading edge may
be found similarly:

Pk =@ * 2 - 2 (I-7
T tas  wB) i " aco )
= X < > G),; * X, < I-
A Wwieag) Ck//g) s e%da &@eo (1-8)
where
<
# = “poa? P L S -
“ca) g "'_yj:’_f’wze) Y -9
where
Lo = spanwise center of pressure of the wing in
Ts_w(é) the presence of the body (p. 157 ).
and
%p = center of pressure of body carry over lift
&0 (p. 158).
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The above remarks on the body-alone lift also apply to the body
alone moment coefficient,t.’?me. If experimental data is used, care
should be taken to see that the coefficients are properly defined.

If the center of pressure of the complete configuration is desired:

Z, -0 e, (1-10)
bty hates] Aotat

The total bending moment about the wing root is simply:

d”’a * Tap e, 5 (I-11)
since the body carry-over lift makes no contribution. The strength and
position of the rolled-up wing vortex is included in order that effects
such as wing-tail interference may be calculated by suitable methods,

such as those in Ref, 33,
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PROGRAM LISTING
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LINEAR AERO LOADS-WING BODY INTERFERENCE
MATN CONTROL PROGRAM~- SURBSONIC
COMMON CFy A ELAMBsALPHaX»Y Ol 1EVALPHLVALPHB s Co THETBY»TAU S TAUBAR,
1 THETBR+BOCsBCOWTHETLsTHET pXBeCEFV ALPHWBsOUTPUTs BETASPIAR»TR,
2 SHMaMLaMZ2Z MI NS ALPHASCLTOT o MML o XW o ZWsELB» THETA+XWBEMACHIALAM
3 ALAMQC »ALAMB  sBAR
DIMENSTION CFIS04S50)ELAMBISO)sALPHIL100s50 )X {01y Y101 sCLIEVIS0)
1 »ALPHEVISOYeALPHBIIOD ) sAL100)+CHULIN0) s THETBLI01) » TAUISD)Y+BOCIED),
2 TAUBAR(BRO )+ THETBRIB0)Y»BCO(BO0) s THET 11991+ THET{101 1aXBI101}
3 CEFVIBO) s ALPHWB (501 yOUTPUTI{50)
caLl INPUT (ELWKEY)
CALL SETUP (ELsCRFF)
caLL LARFL (FLY
CALL COMPRS (EL)
CALL PART1 (CREF)
CALL PART2 ({KEY)
GO 101
END
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SUBROUTINF INPUT (EL «KEY)
C ITNPUT DATA
COMMON CF s A3 ELAMU sALPH X s Y yCLIEV o ALPHEVsALPHO s Lo THLTOS TAU s TAUBAR Y
1 THETHBRsBUCWBCOWTHETLsTHel s X s CLFVsALPHWB sOUTR U » BEIAsPLeAKPIRY
2 SIMaMLI M2y MAsNJALPHASCLIUT sMMLo AW s Zwsb L3 s THE TA XivtisbMACH s ALAM
3 ALAMOC sALAMAB
DIMENSTON CF (505U s ELAMBLH0) $ALPHIIUUs9U ) o XT1UL s Y 1O CLLEVISG)
1 sALPHEVIHAU) sALPHBLUU Y s ATTO0)Y 2 CLIUUY s THETB(IUL s TALL W) »BOUCTLDU)
2 TAUBAR(BO) o THETHRISU N 0 COUB0) s THET1I(Y9 ) oy THETIL 1) eXastlUll s
A CEFVISUY s ALPHWB{SUL )Y »QUTPUT{H0}
READ 1000 ALAMIARSTR»S+ALPHASTHETASEMACH
1000 FORMAT (T7F10,.4)
READ 1001 4M4M1 M2 M3 WNJKEY
1001 FORMAT (&15)

MMI =M4+M]
TF (KEY)Y 2412
1 MO 10 T=1.MMI,1
PO 10 J=14N
160 ALPHEUT s JY=ALPHA
GO TO 3
7 N 20 I=1,MM1
READ 1002+ (ALPH(TsJY1sJ=1N)
20 CONTINUE
1no: FORMAT ({5F10.T)
3 READ 1003 +XWsZWHEL

READ 10034 {A(Jys T »ALPHS(JysJ=14MM])
1003 FORMAT (3F10.4)

RETURN

END
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SURROUT INE SETUP (EL+CREF)
S5ET UP BODY AND WING COORDINATES

COMMON CFo A ELAMBsALPH X s Y+ CLIEVIALPHEVsALPHB »Cy THETB2TAUSTAUBAR,

1 THETBRsBOC+BCO s THETY W THET 4 XEByCEFV3ALPHWBsOUTPUT

BETA+PLl AR TRy

2 SeMsMIeM2 yM3 s NsALPHASCLTOT aMMI s XW o ZWoELBs THETA XWB+EMACH s ALAM,

3 ALAMQC s ALAMB

DIMENSTION CF{B050)sELAMBIS0 ) yALPH{100+501 X101 sY{101)+CLIEVISNY
1 #ALPHEVIBC)sALPHBI L1001 sAL100)»CIL00) s THETB({101)+TAUIB0}B0Ct501),
2 TAUBARI(SO0}s THETBRISD1sBCOIS0) o THET1199) s THET(101)sXB1101)

3 CEFVIBO) 2 ALPHWBISO)Y sQUTPUT (%0}
P1=1,1415926%
FN=N
MM? zMaM] 41
FMs=h
FM] =M
X{11=XW/S
CR=(4e /{AR¥{14+TR} )}
Y{li=1,
MP =M
TNLAM=TANF({ALAM/57,2957795)
IF [TNLAM=CR*(14-TR}) 44545
CREF=CR
GO T 6
CRFEF=TNLAM4+CR*TR
N0 1 J=2+MP
FJe -1
THET{J-11=(CREF/24)#(1e~COSFIEJ¥PT/(EM+14)1)
XU =X {J=1 142 #(THETIJ=1)+X{1)=XtJ=1))
MP] =MP4]
DO 2 J=MB 1 ,MM2
FJ=zJ=1
X(JyaX{MPY+{EJ=-EM)® [EL/5-X{MP) ) /EM]
THETI)=1)=(XtJ)+X{J=131/24=%11}
NP=N+1
DO 3 J=2 NP
EJ=J=-1
YOIV=COSFIEJ¥P I/ (2.%ENY )
ELAMB(J=-1)=(Y{J)+Y(J-11)/2.
RETURN
END
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SUBROUTINE LAGFL,  (EL)Y
I[NPUT DATA - LABELS AND LISTINGS
COMMON CFaMsELAMBYALPH» X sY s CLLIEVIALPHEV »ALPHE + Co THETB» TAU» TAUGBAR »
1 THETBRsBOCsBCOTHET L THET s XBsCEFVIALPHWEBsOUTPUTY  HBETASPI ARy TR
2 SaMeMlaM2ZyMAZNSALPHASCLTOT yMML o XWa ZWaELBe THETA s XWdyEMACHyALAM
3 ALAMQC o ALAMB
OIMENSION CF(50+50)sELAMD(50) sALPHI L0050 s X (101 Y 101)sCLIEVISO)

1 +ALPHEV (50 ] sALPHBE( L0 sA(100) «CLI00) o THL THLLOL e TAL 201 BOCI50) s
? TAUBAR(SO)I s THETBRI50) 9BCO(50 T o THETL(97) s 1 TT (IO 3o XB(101 ) s
3 CEFVISOLsALPHWB(50) »OUTPUT{50)

1001 FORMAT {1H1/777/1H 25X%32HLIMNEAR AERQDYNAMIC “.TADS PRUGRAN/IHQ///
1 2OX50HLINEAR AERODYNAMIC LOAD DISTRIBUTIONSs INCLUDING /10020X
2 H50HTHE EFFECTS OF WING-00DY INTERFERENCE HAVE &lLeN FIHO20
3 GTHCALCULATED ON THE FOLLOWING CUNFIGURATION AT JLHOZ0XLEHALEOU
GNIC SPEEDS«/////71HO20X13HWING GECMETRY!

1027  FORMAT (1HOZSX1SHASPECT RATIO = FGea//1H 29X1GHTAPER wATIO = the
19//71H 25X27THLEADING EDGE SWEEP ANGLE = Fée3+8H DEGRELGY 7 iH 25X
2 17HDIHEDRAL ANGLE = F64340H DEGREES//LH £5XZ5HEXPOSED wliv: seMl-o
3PAN = Féad)

1003 FORMAT (1A025X33HWING ANGLE OF ATTACK DISTRIDUTION//LH 20X
1 35(QRIGIN 1% AT ROGT OF LEEDING EOQGEN//F/1W 28X3HX/512X3HY/HL0A "
JALPHAZ 7Y

1004 FORMAT [(20X3F15.5)

1005 FORMAT (1H1//77/7/71H 10X13HBODY GEOMETRY //1H 25X14HBODY LENGTH =
1 F71e3/7/1H 20X25HELLIPTICAL CROSS SECTIONS///1H 12X11HX (DISTANCE
7 9X10HHORIZONTALGXSHVERTICALYLX8HANGLE OF/1H 12X10HFROM ROSE)1QXah
IAXTSI2XNGHAXTIS19X6HATTACK /)

1005 FOIMAT (1H F22454F19453F16453F18B45)

1007 FURMAT (1H12/77//71H 10X30HWING=0C20Y COMBINATION GEUMETRY//1H 20X
1 21HWING LOCATION ON BODY//Z1H 25X34HLEAGING EOGL DISTANCE FROM NOS
2E = FFP.3/71H 25X45HHEIGHT OF ROOT CHORD ABOVE BODY CLNTERLINI =
3 FGe3/1H210XITHFLIGAT CONGITIONS//1H 25X1BHANGLE OF ATTACK = Fleb:
4 BH DEGREES//1H 25X14HMACH MUMBER = F6,2)

1008 FORMAT (1H1///77/711 10X69HTHE FOLLOWING NUMERICAL PARAMETERS HAVE
1BEEN USED IN THE CALCULATIONS///1H 1SXGHPARAMETERLI2XsHUSE L+ XKoHVALY
2E//1HOTITXIHM7X30HNUMBER OF S1ATICNS ON BODY 5XKI12/26X30HBETWEEN
AIWING LEADING AND /20X14HTRAILING EDGESZ/1H 17XKZHMY y6X3QHNUMBE
4R OF STATIONS QN BODY BXT2/726X30MBETWEEN WING TRAILING EDGL
5 /28X19HAND AFT END OF 8CDY//)

1009 FORMAT {(1H 1T7X2HM26X30HNUMBER OF INTERVALS USED IN “X12/26X
1 30HTHE NUMERICAL INTZGRATIUMS JeoX34HEMPLOYED IN THE LAWHoNCLE
ZPROCEDURE/ /1H 1TX2ZHMI6XIOHNUMBER OF INTERVALS USED IN DXIZ/20K
3 30HTHE NUMERICAL INTFGRATIONS /26X30HEMPLOYED IN THE WELSSINGE
4R F26X9HAPROCEDURE/ /1H 1 7XLHNTX30HNUMBER OF STATIONS ON THE Wik
B 5X12/26X9HSEMI~SPAN/ /)

PRINT 1001
PRINT 1002+ARsTRIALAMSTHETALS
PRINT 1003
PRIMT lOD‘b'((THET(I)nELAHB(JJgALpHiIQJ);J-‘-'1|N)vI:l’MMl‘
PRINT 1005.5L
NO 1 J=1+MM1
XS=X{ J+]1y+5S
PRINT 1G06sXSsA U1 »ClJ) sALPHB{D)
CUOINT 10078 X0 ZW e ALPHA»EMALH
PRINT 1008+t sML
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PFINT 1009sM2 434N
Rt TURN
END
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SUBROUTINE COMPRS  (EL)

COMPRESSIBILTY CORRECTIONS = SUBSONIC

COMMON CFoAsELAMBsALPHs X oY s CLIEVYALPHEVALPHB+Co THETR,TAUJ s TAUBAR,
1 THETBRyBOCsBCO»THET L2 THET «XB+CEFV+ALPHWBsOUTPUTs BETAsPI AR TR,
2 SeMaMIeM2 M3 G NG ALPHA L 10 s MM o KW ZW el Re THETA W XWBYEMACH JALLAM,

3 ALAMOC s ALAMR 4 RA.,

DIMENSION CF(50+50}sCLAMBISOY sALPHII00950) oXt 101 Y {1011 CLIEV(SN)
1 +sALPHEVISO) s ALPHBI 100 s AL 1001+ CL100)« THETB{101Y»TAUISU)sBOCI501)
2 TAUBAR (501 THETBRI(S50) ¢BCO(S50)sTHETYI(99 s THET{101)+XB7 1010
3 CEFVISD)Is ALPHWBIS50)sQUTPUTIS0)

BETA = SQRTF(1,-EMACH*®EMACH)
ALAMI =ALAM/57,295779
ALAMB=ATANF{TAMT {ALAMI1 )} /BETA)
XWB=XW/RETA

FLR=FL/BFTA

RAR=RFTA#AR

RO 1 Jel MM

XBiJy=X{J)/BETA
THETR(JY=THFT(J}/RFTA

XBIMM]1+1)=2X{MM1+1)/BETA

RETURN

FND
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SURROUTINE PART] {CR)
PART1 - X LESS THAN XTE
COMMON CF o AyELAMBALPHsX s YsCLIEVsALPHEV4ALPHB s C» THETB s TAUS TAUBAR,
1 THETBR+BOCsBCO s THET 19 THET s XBsCEFVsALPHWB »QUTPUT & BETASPIsAR» TR,
2 SeMaMLI M2 yMIgNGALPHASCLTOT oMMY 3 XW o ZWaELBs THETA s XWB s EMACHALAM,
3 ALAMQC»ALAMBBARSCL »CLWB XCP
DIMENSION CF(50450)3ELAMBIBO ) +ALPHII0D S0 X110 4¥ 11011 CLIEVISO)
1 ALPHEVISNY yALPHBI100)sAL100)sClLO0 s THETBI 1011+ TAUISD)Y+BOCI50Y,
2 TAUBARISC)I+THETBR(5C)sBCOIS0)+THETLI(991 s THET(101)eXBt1011
3 CEFVISO) s ALPHWE 50y ,0QUT! ' 150}
DIMENSION F{50)yB(501»FB{50) 2HO(BN}4FO(501sBLIB0s1)YsPHI{S0)»WB(50)
TyALI511yDGDXIB0) o DGDXX(50)
GARBF (X)) = ((SQRTFUICOSFUX)=COSFAEJHPLI/IFEM+]1 ) ) ) ¥ %2+ (BINSH¥2) ) -
1 BINSYZUCOSFIX)-COSFIEJ#*PI/tEM+14 )Y )
ALPHA=ALPHA/S5T7,4,2957709
KEY=1
PT=3,1415024%
IF (KEY=21 14241
CALL FUNCIF RsPHI)
a0 O 4
CALL FUNCZ2{F4R}
L TM=MP -
FM=M
FM2=M2
N0 4D 1=1+50
NC 40 J=145%0
CFl{1+1)=0,
NO 50 J=1M
MJl=M—J+}
RINS=B(MJ])*BFTA*2, /CR
Fll=
SUM=O.
A 51 K=14L 1M
FiK =¥
TERM=GARRF( {EK%PT) /EM2)
SUM=SUM+TERM
HO(JY={ 1o /EM2I X { ({ {GARBF (D4 }+GARBF(PTI}) /24 1+5UM)
FOUJI=( 2% EJ/{EM+1 ) 1 +HOTJ Y =3,
BI{Je11=R{MITIXRIMITY*F(MIL
N B2 2T 4M
FiL=L
CM=n,
O AT K=140LIM
FE=Y
TERM=COSF{ (CK*PI*EL ) /EMZ2 1 ¥ GARBF ((EK*PI)/EM2)
SUM=SUM+TERM
Hel 1o /EMZY L {{GARBF (D )+ (-1 ) ** L } *CARBF{PT} )1 /2 )+SUM)
FEILI=(Z2e*®SINF{EL¥EJ¥PI/IEM+1a )/ (EL*PI))+(BINS*SINF(EI,%EJ*P]/(EM+
1 140V /(SINFIEJRPI/IEM+1a) ¥ I+H
CFiJelY=FBI{1}¥=FQOQ{J)
CF{J2W2)=FBI2)1=-FO(J}Y
RO A& T=T 40
Ry IY=FRITY=-FR(I=2)
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CONTINUE

CALL MATINV(M»B1914+DET)
RO 8 TelsM
AllTy=R1(T+1}
AltM+1y=0,

N 9 Jasl M

Fl=J

SUM=0,

DO 10 L=24M

FL=L

TERMeA Y (L)}*SINFI{EL=)a ) %EJ¥PI/{EM+]1 4}
SUM=SUM+TERM

MJ1=Med+]
DGDX(MI1)I=(ALL1)*TANF(EJ¥P I/ [{EM+1 41 %2,))+24%5UM)/DFTA
cL =(Z+¥PI*BAR®(AL(1}+A1(2)11/BETA

XCP=og5={ 4 25%{{ATT1Y=-AT{))/CALTIL)+ALIZ2Y )

11

60

12
61l

Nno 11 J=14M

OQUTRUT{ ) =4 %¥DGDX(JY#COSFIPHI(JY) )

IF {KEY=1) 61260461
CALL OP11 (B)
CMWB=XCP*CL

CLWR=CL

NO 12 Jal4M

WR{JY=0UTPUT (J)

KEY=KEY+1
CMW=XCP*CL

GO TO 70

DO 13 J=14M

BCO(JY=WBI ) =0UTPUT ()
CALL OP2
CMACO=CMWRA=CMW
CLBCO=CLWB-CL
XCP=CMBCO/CLBCO

RETURN

F N
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30
21

7

4an

a2

SUBROUTINE FUNC i F+BsPHT)

CALCULATE F{THETAY «~ WING AND BODY

COMMON CFoAsELAMBsALPHs X o Y yCLIEVsALPHEVALPHByCs THETBsTAUSTAUBAR
1 THETBRsBOCYBCOs THET 1+ THET 4 XBeCEFVIALPHWB+OUTPUTs BETAsPIsAR» TR,
DB aMeMT aM2 e MA RN JALPHASCLTOT s MM1 o X W ZWeELB s THETA« XWBsEMACH s ALAM,
3 ALAMGC s AL AMA v AAR

CIMENSTION CF{50,50),ELAMB(R0)} sALPH{100s50)sX(1013,Y{1C1) s CLIEVIBO)
1 CALPHEVISD ) o ALPHBI100) s AT I00) s CLID0)Y« THETEBI101)} s TAULSO)Y+BOCIBO) o
2 TAUBARI(SIYTHETAR{501+BCOISO) s THET1(99)« THET(101)+XB1101 )
3 CEFVISD) s ALPHWB{B0) »QUTPUT(BD)

DIMENSION RISO)+EK2(5014BI50)sF2(50)sPHELIS0)sF{50)
THFTA=THFTA/87,295779

AO 1 T=1¢MM]

N2 J=14N

ALPHIT ¢ JI=ALPHITJ)Y /574295779

ALPHBIT)=ALPHRIT)/5T7.295779

PO 10 J=1.M

RUJI=5%[{ALN)/SY+ICHLIY/S))

EK2{0J =29 (LA IV/5Y+{CIV/SNV R (LALNNV/S)=-1CTIY/5)

TF(THETBIJY-TANF{ALAMBY)Y 20411911

[F (THETB{ ) =4,/ (BAR*¥{144TRYII) 12+13+13

RtJY=1.0

LTM=n

O TN 40

RtJi=0,

650 TO 40

YUE=(THETB{J))/TANF{ALAMB)

| =M+

l.=t-1

TF (YLE-YIL+11) 30,430,221

IF (YLE-ELAMBIL+1})Y 31,432,432

Al dy=2yIL42)

LIM=L 1

GO TO 40

R{Jy=Y{L+1)

LIM:L

RT=R(.)}

Ex2T=FK2( )

BRUSBIJI+A[JI*SQRTIF({ 1a={ZW/ClIY)RR2y /5
BSRL=1«0+A(MI*®SQORTF {14~ ZW/CIM))*R2) /5

ATM=N,

BSIM=0,

QUM:O.

CALL TRNSI(BRLsBIMsBBRRLsBBRIMsRT+EK2T)

CALL TRNSIBSRLiBSIMyBSBRRLsBSBRIMWRTEKZT)

LIMP=L TM+1

PO 4l 1=LT1MP N

TRL=ELAMBIIV+A{JI*SQRTF{1.={ZW/ClLJY)#%2) /5

TIM=ZW/S+ELAMBI T )Y *TANFITHETA)

CALL TRNSITRLsTIMsTBRRLsTHBRIMIRTHEK2T)
TERM1=SORTF((BBRRL/BSBRRL)*#2~{TBRRL/BSBRRL) *#2)

IF (1~=LIM) 45384245

TAR=TRPRL

TAI=TRRTM

AN TH 43
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45
44

473

41

46
10

IF (1=N) 43,4441
TIR=TRARRL
T11=TBRIM
CALL DTARDTITRL s TIMsDTHBRRLDTRIMIRTZEKZT)
F1=DTHRRL=-1,

TERM2=o 5% { ALPH{ Js 1)+ ALPHEL J)+ALPHA#F 1)
F2Z(1VY=TERM1*TERM?2
PHI{J)=ATANFUITII=TOI}/(TOR=T1R})

DO 46 I=LIMPaN

TERM=(Y(I)=-Y(T+1))%F2{])
SUM=SUM+TERM
FiJIz(8e/PTI#{1,/{BRL/BSRL ) *%#2)*5UM
RFTURN
N
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SUBRDUTINE TRNS(ZETARWZETAIZSIGMARSIGMAT JRsEK 2
ELLIPTICAL TRANSFORMATION
IF (FK2Y 1741
R1=RCS (7FTARWZETAL)
C1=FICS (ZFTARLZETAI)
RZ=RCM (R14C1laba®EK?2 404
C2=ETCM (R14C1 st a¥EK2sD4)
RA=RCSR (R2+C2)
CI=FICSR (R2,C2)
R4=RCMT (R#RHEK2+0e3R3I9C3)Y
Cu=FETCMT (R¥R+EKZ 043RI+ (3}
R5 = RCMT (R*R-EK2+04s2ETARNZETAIL)
C5 =FE1CMT (R*R-FEK2+C e+ 2ETARWZETAILY
R6zR4~R5
Cha=Cu=CH
SIOGMAR=RA/ [ 2 J*FK 7Y
STIGMAT=CE/ (2. %FK2)
RETHRN
R1 = RCDIR*R ;04 +ZETARLZETALY
Cl =EICDIR*RsCos2ETARWZETALY
SIGMAR=ZETAR~R1
STGMAT=ZETATI =]
RETURN
END
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SUBROUTINE DTBRDTITRLsTIMsDTBRRLsDTBRIMSRTSEKZT)
NTRAREX)/NTX)

TF (FK2TY 14201

R1 = RCS {(TRLTIM)

C1 =EICS (TRL+TIM)

R2 = RCM (R14C1sbe*EKZTHC,)
C2 =ETCM (R)sCleto*EKZ2T 4D
23 = RCSR (R2sC2)

C1 =F1C8R (R2.C2)

R4 = RCD (TRLWTIMsT 3,03

C4 =5T1CD (TRL#TTH4R3A,C3)

CCl = {(RT*%24FRZ2TI/{2.%EK7T)
CC2 = (RT*#%7-EX2T)I/(2*7 2T}

DTBRRL = ~C1*#R4-CC2
DTARIM = (CC1%*Ca
RETURM

R1 = RCS {TRLTI*}

C1 =ET1CS (TRLs7IMI

R2 = RCD (RT*ITsCssR1»C1Y
€2 =F1CD (RT*#RT+044R1,C1)
NTRRRL =1 ,+R2

NTRRIM= -C2

PETIIRN

EHMD

i03




(

1 THETBR+BOCyBLO s THET 1o THET s XBoCEFVsALPHWB yOUTPUT

2
3

]

2

SUBROUTINE FUNCZ  (FsDB)
CALCULATE FITHETA) WING ALONE

COMMON CFyAsELAMBYALPHaX s Y93 CLLIEVIALPHEV2ALPHB»Co THETB T AUy TAUBAL -

BETAsPI+ARSTR,

SyMeMT gM2 yM3 g N g ALPHAZCLTOT yMML s XW o ZWH+ELBy THETA XWEBsEMACH s ALAM,

ALAMGCC 2 ALAMA

DIMENSTON CF{50950} s FLAMBISO)»ALPHI100»50)1sXi101)sY {10 )+ CLIEVIBQ}
sALPHEVISQ) yALPHB(LI00) s A1100)sCI100)« THETBCI01) s TAULS5N) +BOCI50)
2 TAUBARISQ),THETBR(S0)+BCOtS0) s THETI(99 )+ THETI101}+XBL1101 )

CEFVISC )Y s ALPHWB {50 ,QUTRPUT (50)
MIMENSTON BESQ)+F2(80)sF(50)
NC 10 Jd=1eM
IF (THETB(J)~TANFIALAMBY) 143,43
RESY=1,0
LIM=0
GO TO 11
YLE=THETR{ J) /TANF{ALAMA}
L =N+
L=L=-1
IF {(YLE=Y{L+1)) 61604
1F (YLE=ELAMBI(L+1Y) 7+R+8
P[_?}:Y[L«L?]
LIM=L4+1
an To 11
REJY=YIL+1)
L IM=L
SuUM=0,
LIMP = TM+1
RO 11 T=LTMP4+N
TERM1=SQRTFI(B{J)**2-(ELAMB{ 1)) ®#%*2)
TERM2=,5%ALPH{Js I}
F2UT1=TFRMIRTFRM?
PO 14 1= TMPyN
TERM=(Y(I)=Y{I+1})%F2(1
SUMz=SUM+TFRM
FiJI=(8e/P11%2{14/BlJY¥%21%5M
RETURN
FAD

104



SUBROQUTINE PART 2 {KEY)
PART2 = X GREATFR THAN XTF
COMMON CF o Ay ELAMBOALPHsX s Y s CLIEVSALPH Vs ALPHB s Cs THETRsTAUYTAUBAR,
1 THETBRBOCsBRCO s THET LsTHET o XBaCEFVALPHL W OUTPUTs BETASPI AR TR,
2 S5iMeMIeM2ZIMISNYPALPHAWCLTOT +MML s XW s ZWsELH THETA+XWBWEMACH»ALAM,
3 ALAMGC  +ALAMR sBAR
DIMENSION CF{50s50)14ELAMBISO ) sALPHIIO0B0 9% 101)sY1101)sCLIEVISND)
1 sALPHEVISO) yALPIBIL100)I sATIDO T CUI00)» THETBI101 )+ TAUISO) »BOC(50Y
2 TAUBAR(BO )y THETHRISO) +BCO(SO) s THETI(I9 1« THET(ICL)»XB(101 )
3 CEFVIB50) s ALPHWRI{S5C) +OQUTPUTILI50)
DIMENSION CLiI50)+DLDX(S0)sRTIIS0ISEITIIS0)Y«CPXI5Q)
CALL AL PEFV (KEY)
CALL WETSS {(CLsCPXeYCP}
KEYOP4=1
CALL OP4& (CL»YCPsKEYOPG4}Y
CALL FLIPWR (CPX)
CALL WEISS (CLsCPXYCP)
KFYODL =D
CALL OP& (CLsYCPWKEYOP4)
CALL RCOLFTUINLNX3sGAMsRTIsFIT1»ALPHOsCLT19CL24yCLAWXCPY 40P 24X CP2)
CALL OCP5 {DLDXsGAMIRTISEITIvALPHO»CLT1+CL2+CL A9 XCPL14XCP2,,xCP2)
RETURN
Ny
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SUBRRQUTINE ALPEFY (KEY Y

EFFECTIVE ALPHA

COMMON CFa Ay ELAMBsALPHsX s Yy CLIEVIALPHEVSALPHB s CoTHETRTAUSTAUBAR
1 THETBR»BOC+BCO»THET 1o THET o XB+ CEFVsALPHWB OUTIPUTy BETAsPIsARS TR,
2 SeMaMTIeM2 e MAWNSALPHAWCLTOT sMML s XWaZWeELBaTHETAWXWB9EMACH s ALAM,
AL AMOC » AL AMA +BAR

DIMENSTON CF(50+50) s ELAMBISO ) yALPHI 10050 e X (101 oY {130 s CLLIENVINN)
1 ALPHEVIS0) s ALPHBIIOO ) »AT100) «CII00Y s THETBIID1 )2 TAULISIY»ROCIEG)

14

15
20
16

17
19

)

21

2 TAUBAR(B50)y THETBRISO ) sBCOIS0) o THETI{99 1o THET (101 1aXBI121),
3 CFFVIS50) s ALPHWRBI{BO0) »QUTRPUT IR0
DIMENSTON XTEEFVIS0) o XLE(SD ) s XLEEFVIS0) 2DXEFVII00 o XEFVI100}
TANLTE=TANFIALAME )= {4e¥{1a=-TRI/(BAR®{1.+TR) )
no 1 J=1 4N
XTEEFV(J) =4 /{BAR¥( 1+ TRIVHELAMB{JI*TANLTE
XLE(Iy=TANFIALAMBYH#ELAMBYL )Y
=1
IF {THETB(IY=XLE(J)Y) 104s10,11
HEBED!
ol Su T
XLEEFVIJ1=XBI(1y=XB{1)
IMIN=T
1=1
IF (UXBOI+1)=XBI11)=XTEEFVI(J))Y 124124173
=1+1
[cIa R Nl
TMAX =1
CEFVI Y =XTEEFV{J)Y=XLEEFVIJ)
TFIKEYY 22423422
ALPHFVI{JY=ALPHIT1s1)
~aTn
PO 6 T=TMIMy IMAX
TF (T—TMAX) 14416418
DXEFVITI=XB(T+11=-XBt 1)
GO TO 20
DXEFVITI=XTEEFVIDY=(XB[ T} “XB{1})
1F (1-M) 16s16s17
XEFVIT1=THETB(T)=XLEFFV{ S}y
a0 TN A
IF (XTEEFVIJ)I=(XB(I+11=XB(1)1) 18319419
XEFV(TYy=THETR([y=XLEEFV{J}
o0 TN A
XEFVITY=XTEEFVIJ =~ (XTEEFVIJI={XBIIY~XB(1) Y1 /2e—XLEEFVIJ)
COMTIHUF
SuM=n,
N7 T=TMIM, TMAY
TERMI=z{ 4. /PIVHSORTF((CEFVIJY=XEFVIIYY/XEFVIT Y
SUMZ=n,
NO A K=TMTMIMAX
TE (K=T) 214821
TERM2=(-ALPH<K:J)/!XEFV{I)—XEFV[K))}*SQRTF(XEFV(K]/!CEFV€J)—
1 XEFVIKIYIY#ENXFFY K}
SUM2=SUM2+TERM?
COANTTNUF

106



TERM=TERMI#S5UM2#DXEFVIT)
SUM=SUM+TERM

ALPHEVI J)=SUM/ (2. *PI*CEFVIJ))
CONTINUE

CALL OP3IXLEEFVXTEEFWV)
RETURN

END
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SURRQUTINF WEISS {CLsCPX»YCP)
WETSS
COMMON Ay O3ELAMBsALPHsXsYsCLIEVSALPHEVsALPHB,Ca THETRyT AU« TAUBAR
1 THETBR B0 +BCOsTHET 1 s THET o XBs CEFV S ALPHWB »OUTPUT » BETAsPIsARSTR,
2 S5sMaM) aM2 3 MIGNSALPHASCLTOT yMML s XW o 7WsELBy THETA XWB s FMACH ALAM,
3 ALAMOCSALAMB sBAR «DUMCLWB yXCT s CLPNSCR
DIMENSTON ALS50s50) s ELAMBISO Y +ALPHI 1009501 X 1101 «Y 1101 CLIEVIRNY
1 SALPHEVISD) g ALPHB 10U »Q 0 100)sCL100)Y s THETRIL101) 2 TAUISDY +sBOT SN
2 TAUBARISD) s THETBRIBD) +BCOIBO s THETI{GG 9 THET (10134 XBI1011Y
A CFFVIAN I« ALPHWBR SN JOUTPUT(50)
DIMINSION GIS0YsCLPLSIYsALPHAL(50+1) s CPXI50)sCL(50)
Clh=b o /{BART (] 4+TR})
Tl=M3y
Frm
MY =pg D
PO A J=19N2
o=
THETI(J)Y=(EJHP I}/ (2 .%EN)
ITATER B 0 I
TAJJY=COSFITHET1(JY})
ALPHAT{ Je TY=ALPHFVI Jy
ROC{ I =22 /LCR¥ (1e=Y(J)¥{1a~TR)))
ROCIN+1)=24/CR
NE 2 J=1+M3
F=
THETBRIJI=(EJRP T}/ {2s*EM3)
TAUBAR (I =COSF{THETBRI(J)
ALAMQC=ATANF{ TANF(ALAMB)-{1«~TR}I/IBAR*{]1 . +TR) 1)
AR T T=145N0
R T J=1450
Al Tedy=n,
CALL AMAT
l.=1
CHLL MATINVINSALPHALZLSDET)
ME =N+
NO 3 =2 NP
GUEIY=ALPHATI L U=1,1)
CLPI )Y =2.#¥G(J)#BOC{ J)
CLPN=CLP (NP}
Ctrily=0,
NO 4 J=14M
CLIN={ZLPLDI+CLPLI+1YY /2.
BOCAV=(BOCIII+BOCIJ+1)Y /2.
CLIEVIJY=rL{ JY#BRAR/BQCAV
CPX(J)2e234CR+ELAMB( J)*TANF {ALAMQC)H
SuM=0,
SUM1 =0,
PO 8§ J=1 M
TERM=CLIEVI N *(Y( ) =-Y(J+1))
TERMI=TERM¥F|_AMR{ J)Y
SUMA=SUM+TERM
SUMT=SUMIETERM
CLTOT=5UM
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YCP=SUM1/5UM
RETURN
FND

109



SURROUTINF AMAT
AMAT
COMMON Ay OsELAMBrALPH» X s Y s CLIEV A THEV W ALPHB+Cy THETB»TAUs TAUBAR,
1 THETBR+BOC+BCOsTHETI s THET W XBoCF' Vo ALPHWB+QUTPUT BETAWPTsARNTR,
2 SeMyMI M2 o M3y NS ALPHAYCLTOT o o XWeZWrE LBy THLTASXWHEyFMACH s ALAM,
1 ALAMNC 4 ALAMA
DIMENSION  A(30+50) s ELAI (50 s ALPHI100s20 X101 oY {100y CLIEVIBO)
1 s ALPHEVISO WALPHBIIN a0 100Y o CO1I00 s THETHIIOLY s TAULHN ) +BOCTI50 )
2 TAUGAR(SD )1 THETRBRIGD ) 4BCOIS0) s THET (99 )Y o THET{ 101 Yo XH{101 )
I CUFVISDY o ALPHWR IS ) 4 SUTPUT {50
mrl =1 eM
rO 2 1=1sN
TF (J=T) 34443
IF (T=MN} By4he5
TARG? =2 %¥N~T
RYSA=A(Je 1Y +R{JrIARGZ2Y
o TO 7
RIGB=R({Jy ]}
ne oTo Y
AlJs11=2%¥B(JyJ)+ROCIJ+1I%GBARI Iy )
-~ T0 2
Ay [1=~-2.%BIGB+BOC{J+1y*GBAR(Js 1)
COMTIMUF
FONTTNUF
RETIIDN
N
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FUNCTION Al Jsl )

R

COMMON As QsELAMBsALPHsX s Y s CLI1EVIALPHEVsALPHE sC»THETB»TAUSTAUBAR
1 THETEBR«BOC»BCO s THET 1 s THET v X3 2 CEFV s ALPHWB2OUTPUT s BETASPI»ARS TR,
2 SiMyMYIaM2 s M3 4N JALPHAWCLTOT o MML o XWa ZWsELBs THETAWXWB s EMACH sALAM,
3 ALAMOC s ALAMB

DIMENSION A(SO+50)2yELAMBISOYsALPHI{100s50) e X{1013sY1101)sCLIEVISDY
1 »ALPHEVIS5O0) +ALPHBII00 Q{100+ CIIQ0YsTHETRBI101)»TAUIEN Y s BOCI50)
2 TAUBARI(S50)sTHETRBRI{50) »BCO(SO0}» THETIIGG)y THETI1D01) s XBI 1011}
3 CEFVIBO ) s ALPHWBI(S0 ) +sQUTPUT (50

FN=N

IF (1=J) 1y2»]

B = ({124%ENI/Z{L4o*SINFITHETI( IV )

RETURN

B =z {SINFITHETI(IY/I{COSF{THETI(T))=COSFITHET1(J)Y))#%2)

1 (la={ =1 )®*%{I=U)) /{4 *EN)

RETURN

END



FUNCTION GBAR (Js1}

GRAR
COMMON As OyELAMBsALPHsXsY »CLIEVALPHEVALPHB»C» THETRBs TAUWTAUBAR,

1 THETBRsBOCsBCO s THET 1 THF T 4 XBsCEFVsALPHWB»OUTPUTs BETAIPLI1ARLTR,
2 SsMsM1 M2 sMI s NS ALPHASCLLTOT s MML o XWsZWsELB o THETA» XWEyFMACH AL AM,
T ALAMAQC yALAMR

DIMENSTON  A(50+50) s ELAMBIGSO Y yALPHI 10050 X 11011 aY {101 »CLTIEVION)
1 +ALPHEVI(S50)sALPHBI1001 4001004 CU1001+THRETBI10O1) s TAUIS )1 4BOCIB0),
2 TAUBAR(50 1y THETHBRIS0)+BCO(SO) o THETLII99) s THET (10119 X3010L )

3 CEFVIR0) s ALPHWR(B50VY+DUTPUT (50}

TH3z24M3

SUM=0,

PO 1 L=1sM3

LM=[ =1

TERM=FBAR (TasLM) *ELSTAR (JsLM)

SN =SIIMLTFERM

CBAR=( (=14 )/(24%TM3) Y #5UM

RETURN

FANM
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FUNCTION FRAR [ TsLMy

FRAR

COMMON Ay OsELAMBSALPH X sYsCLIEVIALPHEV I ALPHBsCHTHETBsTAUSTAURAR,
1 THETBR+BOC»BCOWTHET Lo THET 4 XBsCEFV ALPHWB+QUTPUT s BETAWPILARLTR,
2 SIMyMI M2 M3 s No ALPHASCLTOT sMML s XWaZWoELB s THETA W XWBEMACHSALAM,
3 ALAMQC s ALAMR

DIMENSTION  A{B50+s50),FLAMBISOD ) +ALPHIION S0 X101, Y{1IN1Y o ZLIFVISNY
1 sALPHEVISO) 2 ALPHB( 10O 01100 sCl100I+ THETBI1OY1) » TAUISO) sBOCTSHO,
2 TAUBARI(50 )4 THETBRIS50)1y8CO(50) s THETLII99) s THETI101)sXB{101)»
3 CEFVIS0)sALPHWBI 50 +QUTPUT(50)

EN=N

SUM=0,

MU2=2#4=1

PO 1T MUL=] yMUZ, 2

FMU=MU1

IF (LMY 23342

TERM=FMU®*SINFIEMU*THFTIL{IY)

GO TO 1

TERM=EMU*SINF{EMUXTHETI( I )y #COSFIEMUSTHETBRILM) )

SUM=5UM + TERM

F = SUM/EN

IF (1=-NY 54695

IF (LMY 748+7

IF (LM) B84+10,48

FRAR=2 (*F

RETURN

FRAR=F

RETURN

FBAR=F /2.

RETURN

FND

113



C
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FUNCTION FLSTAR {JsLMy

FLETAR

COMMON Ay OWELAMBsALPHyX s YoCLIEVsALPHEV+ALPHB+CsTHETBs T AU TAUBAR,
1 THETBR»BOC+BCOsTHETL s THET 4 XBsCEFVyALPHWEsOUTPUTs BFETASPIsARS TR,
2 SoMeMLeM2iM3sNYALPHASCLTOT sMMI o XW s ZWsELBYy THET Ay XWBsEMACHALAM,y
I ALAMOC s ALAMB

DIMENSION  A(30+50)yELAMB{50)sALPHI 100250 +X1101s¥{1011sCLLIEVISN])
1 sALPHEVI(BC )¢ ALPHBI100) 011001+ Cl100)sTHETB{101)+TALU{5N)+»BOCIS50)
2 TAURARI(50)»THETBRI50)4BCOIS0)«THET1(99 s THET(101)eXB(L101)
3 CEFVIS0)Y+sALPHWBI50}QUTPUTI(SD)

TR (LMY 14241

FTaty=1,

noTo &

FTAMU=TAURAR { LM)

FTANU=TAUL J)

DIF=ETANU-ETAMU

SUM=FTANU+FTAMU

ROCN=ROC({J+1)
TERM1={1./(BOCN*DIF) I *{SQRTF{{{1e+BOCNXDIF*TANF{ALAMQC) ) #%2) 4+
1 ((BOCN*¥DIFY#%#2))~1,)

TERMZ = (1./1BOCN*SUM)Y®{ISARTFII(]1,+BOCN*¥DIF*TANF{ALAMQC) ) %*2 1+
1 ([BOCN®#SUMI*%#2 131/ {1++2.%¥BOCN*ETANU®TANF (ALAMQC)Y )Y 14

TERM3=( 2+ #*TANFIALAMQC)I*SGRTF(((1e+BOCN®ETANUTANF {ALAMQC ) 1%%2)+

1 {(BOCN®ETANUI*#%2 ) 1)/ (142 ¥BOCN*ETANU¥ TANF{ALAMRC))
ELSTAR=TERMI-TERMZ-TERM?3

RETURN

FMn
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SUBROUTINE ELIPWR 1)

FLIPTICAL BODY - WINA

COMMON CFaAsELAMBYALPHs X oYy CLIEVSALPHEV ALIHByCoaTHE TR TAUS TAUBAR
1 THETBRBOC+BCOWTHET 1o THET o XBsCEFV«ALPHWBsOUTPIUTy BETAWPIsARs TR
2 SsMaMIoMZeMISNAALPHASCLTOT o MMYL o X Wy ZW s ELBs THETA» XWH s FMACH s ALAM,
I OALAMNOC s ALA'R +RAR

DIMENSION CF(50450)ELAMB(50) sALPHI 100501 sX(101)aY {101 sCLIEV{®NY
1 wALPHEVISN 1 ALPHBIICO e AT1IM ) s CLI00)«THETBLIQL1) s TAUIBA) sBOTIHNY
2 TAUBARI(SO0 ) THETHBR(50)+BCO(50)»THET1(99) s THETI1011sXB(101 )

3 CEFVISO)Y+ALPHWBIBD)Y»OUTPUTLIS0)

DIMENSION Z(501+XI{50)1+ETAISN ) s XI1{B0sETALIS0)sH{B0} s XI[0(50)»
1 ETAO(30)+GAMI{501s5AMIP IS0 ) sBIGGAMIS0) +WIMISCYsWBUPISO s WTIM(50)} s
2 CPXt50)

XIW= ATL)®SQRTFLL1e—={ZW/C{1))%%2)/5

FTaW=ZW/5

THFTA2=THETA

ADS=A(1Y /S

ROS=C(1Y/5

NP =N+

RO 1 I=14NP

ZIDY=Y{I)Y*TANFITHETAZ)

AT{1)y=XTIW+YL(T)

FTAITY=FTAW+Z (1)

NG 2 1=19N

RIGGAM(T)Y=CLI1FVI(T])/RBAR

R={AOS+B0OS ) /2.

EK2={A0S+BOS)*( AOS5-BROS51 /4.

EX=SQRTFISQRTF(IEK2#EKZ2)}

1F (FKY 10411410

TERM1=(R*R)/EK

TERM2=EK2#EK/(R¥R)

ALITM=TERM1+TERM?2

BLIM=TERM!-TERM2

NO 3 1=1NP

IF (XTI TY/ALTMI®E24(ETAITI/BLIMY*%22)~1,) 1241243

TMIN=T

G0 TO 20

CONTINUF

TMIN=

PO 4 T=TMINsNP

7OR=X1({T})

IOT=FTA(T)Y

CALL IMAGE(RZEKZsZORYZOIZ1Rs211)

XTr01y=21R

FTaliry=211

DO S T=TMINWN

HiT ) =g S¥SQRTFIIXIL{T+1)-XII (T ) *¥*24+(ETAY(TI+1)-ETA(]))*%2)

GAM=ATANF{(FTAY{I+1Y—ETAL(T I/ 4XTRLT+1Y=XICT Y)Y

XIO(Ty=(XTI(TIY+XT1C1+1))/2

ETAO(I)={ETAYI(I)+ETAT(T+1Y) /2

GAMI(T)=0AM~THFTAZ

GAMIP (I Yy =AM+ THFTAZ

N 14 J=14N
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NO & T=TMIN+N

YPM=ELAMBI Y +XTW-XTO(T1}

ZPM=ELAMBI J)*TANF(THETAZ)+ETAW-ETAQIT)

X1=2PM-YPM#SINF (THETAZ2)

YDRPM=(YPM/COSFITHETAZ2)I+X1I*SINF{THETAZ)

Z20PM=X1®*COSF(THETA2)

Q=SQRTFILIYDPM=H({ I I*COSFI(GAMI{T) )1 ®% 2+ 1 ZDPM=H{ | Y *5INFIGAMI{T)))**7)
N=SORTFLIYDPMAH{ TI*¥COSFIGAMI (1) ) Y ¥ ¥ 24 (ZDPM+HI [ Y *STNFIGAMLI{T )Y ) *%2)
F=yYPM¥STNF{GAML ()Y —-ZPMECOSFIGAMLI (T}
YOPAT=YDPM+ 2. #XTO( T *COSF(THETAZY
JOPET=70PM=-2 , #X T0{ T ®SINF{THETAZ)
AP=SORTFUIZOPST=HITY*SINFIGAMIP L))y # %2+ {YDPST+H{ 1) *COSF ¢
1 GAMIDITYY)I*®2)
FCAQRTFI(ZDPST+R{TIESINFIGAMIP (L) 11 %% 24 YDPST=-HIT)*COSF (
1 GAMIP{TY)iux2)

FP=YDPST®*({SINFIGAMIP (I} }+ZDPST*{COSF(GAMIP({111)

XPMzCPX () +4. 7/ (BOCL 1 +BOCL U+ ) -CPXI LY

STA=SQRTFIXPM#XPM+Q2})

SNR=SARTFIXPM#XPM+B#B)

COAP=SORTF(XPMEXPMEADRAP

SORP=SARTF{XPMEXPM+RP*RP §

COFFT=BIGOAMITII/(4a%P])

WA = (COEFT/LQ¥QI)I#(1e+XPM/SQAYX{YDPM-H([T)*¥COSFIGAML1 (1))

WO =={COEFT/(B*BI1 ) *(1.+XPM/SQB)*(YDPM+H{ ) *¥COSF(GAML (T}
WAR=={COEFTH{XPM/(F*F+XPM*XPM) } ) ® ({ { SGRTFIB¥B-F*F )} /508~

1 (SARTFIQ¥Q~F#F)/5QA) Y *COSFIGAMITTY)
WAP==(COEFT/LAPHAP)YY®[ ) o+ XPM/SQAP Y ¥ (YDPST+HI T} ®#COSFIGAMIP{TI))
WBPR= (CQEFT/IBPH*BP)Y* [ 1e+XPM/SGEP I *{YDPST-H{T)I*COSFIGAMIPIT))
WEBP=={(JCEFT#{XPM/(FPAXFP+XPM2XPMI JI1®({ {SQRTF{AP*¥AP-FP*FpP)/50AP
1 (SQRTF(BP#BP-FP*¥FP)/5QBP Y Y#¥COSFIGAMIPIT))

IF (1-N) 692216

Wa=0,

WAD =0,

WIMIT)Y=WA+WR+WAR+WAP+WORP+WABP

7OR=FLAMB(JY+XIW

ZO0I=ELAMBIUY#TANF(THETAZ2 )+ET AW

CALL UPWASHIZORZO0I1 4R +EK2 s WUP)

ALDT=ALPHA4+ALPHA L]

WRUF(JY=-WUP*ALPT

SUM=0,

RO 7 T=TMIMsN

SUM=SUMEWIMI D)

ALPHFV I JY=ALPHFYV{ JY+SUM+WRUP{ U

RETLIPN

FAD

n

)
)
) ~
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SURROUTINF [MAGF(RsFK2+Z0R+201+21R+Z1T)

IMAGE

701=-201

1F (FK2) 19291

R1 = RCM (RCS (ZORsZDI)EICS
C1 =EICM {RCS (ZOR+ZOIV+EICS
R2 = RCSR (R1»C1)

€2 =F1CSR (R1sC1)

RTERMI = RCM (ZORs20[4R24C2)
ETERM1 =EICM (ZOR»Z01sR2+C2)
RTERM2= RCMT (423%EK2+0+3sRCS
ETERM22ETCMT (425%EK2404RCS

{ZORY201) 144 *EKZ2 90
{ZOR»ZOI) +4 4 *EK2404)

{RTERMIETERML}EICS (RTERMISETERM1))
(RTERM1+ETERMI)+EICS (RTERMIZETERML))

RNUM = RCP (R¥%4,404sRTERMZyETERMZ)
ENUM =0 ICP (R¥%4,4304sRTERM2sFTERM2}
RDEN = RCMT (+45*R¥R,04sRTERM1+ETERM])
EDEN =ETCMT ([ +5#R*¥Ry0+ RTERM1+ETERMI)
Z1R = RCD (RNUMyENUMRDENSEDEN)

211 =EICD (RNUMJENUMRDENSEDEN)

201=-201

RETURN

Z1R = RCD {(R*R+04+Z0R»201
211 =EICD (R¥Ry»0.+Z0R+Z0I)

Z0t=-201
RFTURN
cND
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SUBROUTINE UPWASHIZORWZOIsRyEKZsWUP)

UPWASH

IF (EK2) 14291

1 = RCS (ZORs201)
C1 =EICS (Z0Rs201

R2 = RCM [(R1yCla4e*EK240,)
C2 =EICH {R1sC1944%EK290,]
R32 = RCSR {RZ.C2

C3 =FICSR (R2+C2)

R = RCP {Z20R+2013R3,4(3)
C4 =EICP {ZOR+20!1sR3+C3)
RS = RCS (R4yCay

C5 =EICS (R4sCoY

Ré = RCD [(44%R*¥Ry049R5+C5)
WPz —R§

RFTLRN

R1=RCS{ZOR+Z0CI}
C1=FTCSIZORLZOT)
R2=RCDIR¥R1044R1+C1)
WPe=R2

RFTURN

FND
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SUBROUTINE BCULFTHDLUXsGAMeRTLsLIT1aALPHUSCLLIwCLZsCL3sXUP Lo XALP Ly
1 XCpay
RONY CARRY-OVER AFT
COMMON CFa Ay ELAMD sALFHeX oY o CLLIEV ALPHEV s ALPHO s Lo THETE s TAU S TAUBAILY
1 THETBR$SQCeBCOs THE T o THIL T s XL e CF VaALPHWE»OUTPU Ty B!l AsPIsARs TR
2 HeMeMl M2 aMIaNsALPHASCLTUT oMMIsXWsZWarlL e IHETA» X WD s . MACHy AL AM
3 ALAMQCALAMBYBARSCLyCLWB s XCP s CLPNSCR
DIMENSION CF{50 50 sELAME DU s ALPHIIUYsSR o X LUl tsY(lULpelblEvibu)
1 sALPHEVIS0) yALPHEB(ICU Y s AL TU0) s CLLUUY o THE T LI s TAULLDU Y spUC S0 ) s
2 TAUBARTHU)Y o THETHHRIS2 ) sbCU (501 o THETL1{93) o IHETHL 1) eXBELUL)
3 CEFVISO)Y s ALPHWB (B ) »QUTPJT{S50u Y}
DIMENSTON DLDX(5U)sRTL{5UNsETITLISuY s TERM3(LI0U)Y
GAM=CLPNHCR /2,
BP=2*CLTOT/CLLIEVINY
XW=A(1)%¥50QRTFU ] = LW/CLY )y Hu2)y
SUM=n,
SUM2=0,
MPpl=Mil
N 1 J=MP1 ¢MM1
RTI{J)Y=BP /2, #COSFITHETA)Y+XW/S
TERM=(ALPHA+ALPHO{JI T ¥ (XU (J+1)~XB(J) IHBETA
SUM=SIUM+TERM
EITICJY=SUMLZW/S+{bP /2 1 #SINF(THETA)
TERMZ=[XB{J+1)1-XB{J)Y)*BETA
SUM2=SUMZ+ TERM?
ALPHO=5UM/ SUM2
nn 2 J=MPl ¢MMY
EK2=({{ATJY/S)18%2=(C(J)/51%%2)/ 4,
R2Z=10(ATIY/81+{CLUY/S) yu2 )/ h,
IF {EK2) 64746
CC1={RZ2+EK21/EK?2
CC2={R2-EK21/EX2
RT1P=RT1{Uy
FT1P=FTITIt )
R1=RCS (RTIPLET1P)
Cl=ETCSIRTLIPLETIP)
R2Z1=R1=4 #FK2Z
C21=C1
RA=RCER_(RZ21.C21)
Ra=r_C1%R3
R5=CC2#*RT1P
RE=R4-R5H
O TO 2
R1=RCD (R2+s04sRTI{JT+EIT1I{ U
RE=RTI({J)-R]
R6=2 4 #R5
TERM3({J)=R6
MMM] =M4M1 =]
DO 3 J=MP1 4MMM]
DTOX=(TERMI{J+1)~TERMI{IV ) /U THETB{J+1)=THETB(J))
CLDX{J)=0AMHCOSF{ALPHOYV DT DX
DLDX (MMI ) =QLDXAMMMIY+(DLDX{MMML )y =DLOX { MMM1-11)
CLI=CLWR-CL
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XCPl=XCP

sUM=n,

CtMT =0,

no 85 =M1 MM

NX=(XBlJ+1)1=-XB{J)I#BETA*S

TFRM=NLNX{ J) *NX
TERM1=DLDX{JY*THETB(J)*DX*BETA

SUM=SUM+TFRM

SUMI=SUMI+TERM]

CONTITNUE

CL2=SUM*BAR /4,

XCP2=51IM1/S5UM

CL3=CL1+CL2
XCP3=(CL1*#XCP1+CL2#*XCP2)/1CLI+CL2)

RETURN

FANM
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c

1010

1011
1012

SUBROUTINE 0OP1(B)

OUTPUT-WING=-RONY
COMMON CFa AyELAMBALPH X s Y 9 CLIEVIALPHEV»ALPHB yCHy THETB» TAU» TAUBAR
1 THETBRsBOCyBCOs THET1 s THET ¢ XBsCEFVALPHWRB»OUTPUTs BETAsPI+ARTR
2 SeMeM1I M2 s M3 s NeALPHA+CLTOT oMM s XWa ZWsELBs THETA« XWBsEMACH s ALAM,

3 ALAMQC sALAMB s ARSCLsCLWBsXCP

DIMENSTION CF{30s50)oELAMBISOIsALPHITI0Os50) e X 110135 {101)sCLIEVISO!}
1 2ALPHEVISN Y4 ALPHB( 1001+ AL100)sCHLIQO Yo THNILIIO1) s TAULSO ) sBOCI50) »
2 TAUBAR{SO)sTHETBRI(SO)sBCOIS0)Y» THETT1¢JI)sTHETI1O1 s XBI101 )

32 CEFVISO )+ ALPHWBISO0)Y sOUTPUT(BD)

DIMENSION B{50)})

FORMAT (1H1425X+29HLIFT ON WING-BODY COMBINATION///1H 420X +50HCHOR
IDWISE LIFT DISTRIBUTION ON THE BODYs INCLUDING//1H 220Xs55HTHE LIF
2T OF THE WINGs THLE FOLLOWING DEFIMITIONS APPLYW//7/71H 20X 1HX 99Xy
334HDISTANCE FROM ROOT OF LEADING EDGE/1H +30Xs27HTC CENTER OF SPAN
4WISE STRIP//1H 220X s 1HBs9X 4 28HEFFECTIVE SEMI-SPAN OF STRIP//1H +20
EX ¢ ZHDX ¢ BX» 2IHWIDTH OF SPANWISE STRIP//1H +20Xe1HQ,,9X s 16HDYNAMIC PR
SESSURE/Z//771H s 1BXelHX 14X 1HB» 14X+ 2HDX»9%» 100 1/7QYDL/DX/ /)

FORMAT (1H 48X e4F1544)

FORMAT [1HO//IH +20Xs43HLIFT COEFFICIENT (WING—-BODY CCMBINATICN) =
1 oF10.4//7/1H 420X +31HCHORDWISE CENTER OF PRESSURE = »Fl0e4/1H 420%
223HIPERCENT OF ROOT CHORD))

PRINT 1010

XW=XWR*BETA

RO 4 J=1M

THEA2THETB{JY*BETA*S

XJ =XB{J+1)*BETA#S

XIMeXR ([ J)*RFTARXS

DX=XJ=XJIM

B1=B{ 1 *5

PRINT 1011y THEAs Bls DX» QUTPUTIL L)

PRINT 1012 CL+ XCP

RETURN

END
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SURROUTINE 0P
C OUTPUT = WING ALONE AND RODY CARRY-QVER
COIMMON CFy AsELAMBIALPH X3 Y4 CLIEVIALPHEV s ALPHB 3 Chr THE TR o TAUS TAUBAR
THETBRPOCBCOyTHET 1o THET o XB e CEFVsALPHWBsOUTPUT s BETAWPI AR, TR,
SaMaM1oMZ yMI s NP ALPHAsCLTOT oMMl aXW o ZW s FLBs THETASXWEBsFMACH»ALAM
1 ALAMOCYALAMBBARWCL »CLWByXCH
DIMENSTON CFI50s50) s DLAMBI S Y 9 ALPHE 1009501 2X{102YsY (101 CLIEVIESDY
1 sALPHEVISO)wALPHBUICOY 2 ACI00 1+ CLICONsTHETBIIO1Y s TAUCHOYsB0CIHOT)
2 TAUBAREZD) o THETBRISC)I 2 3COI50) o THLTII 9 s THET{LI0L )9 X31101 )
3 CEFVI30 12 ALPHWBIS0) »QUTPUT IR0
1013 FORMAT (1H1e20X»45HCHORDWISE LIFT DISTRIBUTION ON THE WING ALONE//
1//71H o29%» 1HX 420X 1CHI1/GYDL DX/ /)
1014 FORMAT (1H 319X s715,44F25.4)
101h FORMAT (1HO/ /1% 220X »32HLIFT COQEFFICIENT (WING ALONFE)Y = sF10Ds4//1H
1 20X 32HCHORDWISE CFEMNMTER OF PRESSURE = Fl0aet)
1016  FORMAT (1HZ220X o H&MHCHIRDWISE DISTRIBUTION OF BODY CARRY-OVER LIFT/
171H #2989 % s THX 9 20X« 10H{L /DL /DX /Y
1217 FORMAT (LHO//Z1H 20X« 37HLIFT COEFFICIENT (B0DY CARRY-OVERY = +M1lnN.
14y
PRINT 1013
PO E =1 M
THEA=THETR(JIXAFTAXS
6 FRINT 104 THEAs QUTPUT L)Y
PRINT 1715, CLs XCP
PRIMT 1716
no 7 J=14M
THEA=STHETR I J)#PETA%S
7 PRIMNT 10714y THFAs RCO(J)
CLBCO=CLWR-CL
PRINT 1017+ CLRCO
RETIINM
[ Nia}

1
2
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1018

173414

1020

SUBROUTINE 0P 3 {XLEEFVXTEEFV)

COMMON CFrAsFLAMBsALPHIX oY s CLIEVsALPHEVsALPHR s Cs THETB»TAU»TAUDAR
1 THETBR»BOCsBCO»THETI»THET W XB2CEFVSALPHWESQUIPUTs BETAsPIsARsTR,
S SaMyMI M2 MI o NeALPHARCLTOT oMML s XWaZWeELR s THET o XWH s FMACH s ALAM,

3 ALAMAC s ALAMB  sHAR » DUMY s PDUM?2

DIMENSIOM CFIS50sBU )y ELAMB{SO)Y »ALPHII00 501X (101 3,,Y 020V CLIEVIHO)
1 #ALPHEV{ISO) s ALPHBILI0N T o AT100)+C U100~ THETBIIDL) »TAUISN) s BOCISN) o
2 TAUBARI(S5I) e THETHBRISN ) 4BCO(SCY s THET1(G3) s THET (101 )+ XBIL1011
3 CEFVIBOYs ALPHWRIBDY ,QUTPUTISN)

QUTPUT = EFFECTIVE WING GEOMETRY

DIMENSION XLEEFVISO) o XTEEFVI®R0)

PRINT 101R

PRINT 10%9

no 1 J=14N

YT=FL AMR(.J} %5

XLEV=XLECFVIJI®SRBFTA

XTE=XTEFFVIJy®RS%P  TA

CT=CEEJ{JY#5%RET A

ALDPHY =ALPHFYL )

PRINT 1020 YT o XLFVaXTEsCTsALPHT

RETURN

FCIMAT (1H1925X+23HEFFECTIVE WING GEOMETRY/Z/1H 220X »50HGEOMETRY OF
1 THE EFTFECTIVE WINGy WHICH APPROXIMATES//1H s20X+49HTHE REAL WING
2BY RECTANGULAR BOXES.s AN EFFECTIVE//ZIH s20X+S1HSPANWEISE ANGLFE OF
3ATTACK DISTRIBUTION 1S CALCULATEDR//ZIH »20X»49HFROM THE GIVEN ANGLE
4 OF ATTACK DISTRIBUTIONe THE //1H 20X 4B8HFOLLOWING DEFINITIONS A
SFEPLYs ALL DIMENSIONS ARE//LH +20X443HMEASURED FROM THE ROOT OF TH
HF LLFADING FRGFE G2/ 7)Y ‘

FORMAT (1H +20Xs 1HY 49X+ 46HSPANWISE DISTANCE TQO CENTER OF CHORDWISE
1 STRIP//ZIH 420X 2 3HXLE » 77X 44HCHORDWISE DISTANCE TO EFFECTIVE LEADIN
26 EDGE/Z/1H 220X AHXTES7X s 65HCHORDWISE DISTANCE TO EFFECTIVE TR
FJAILING EDRGE//1IH 920Xy 1HC 49X o 15HEFFECTIVE CHORD////7/71H 25X 1HY 10X
Gy IHXLE 2 10X s AHXTE 10X 4 IHC o X s SHALPHA/ /)

FORMAT (20X 5{F11e4s1X})

END
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10

11
12

B}

1123
1024
102%

SUBROUT INF OP4 {(CLWYCPKEY)

WINA OUTPUTY

COMMON CFoAsELAMBIALPH X oY 4 CLIEVIALPHEV ALPHB, CHo THETB»TAU+TAUBAR,
1 THETBRsBOC«BCOWTHET 1o THET XNy CEFY 4 ALPHWROUTPUT, BETAWP1,ARTR,
2 SeMaMLIaM2 M3 s NJALPHASCLTOT s MML s XW s ZWaELB o THETA XWBaTMATH » ALAM,
1 ALAMNC s ALAMR

DIMENSION CF{50450)sELAMB(S0 )+ ALPHIIOOBD )+ XT101)+Y({1013»CLIEVIENY)
1 +ALPHEVISD) s ALPHBI100)sA( 100 »CI100YsTHETB(1Q1 )+ TAUIS01+B30CI50)
2 TAUBAR(SO)+THETOR(50)sBCOIS0YsTHETL(99 Yo THET L1011 XBI10 )
3 CEFVIS0)+ALPHWB (501 +0UTPUT IS0

RIMENSTON LGN

1F (KFY=1) 1041011

PRINT 1021

GO T 12

PRINT 1022

PRINT 10273

NO2 )= eN

CL3=CL{J)/BETA

CLIFER=CLYFVIJY/RETA

PRINT 102449 ELAMBtJ)y CLB,CLI1EFBs ALPHEV{J)

CLTOTR=CLTOT/BETA

PRINT 1025, CLTOTBs YCP

RETIIRN

FORMAT (1H1 225X 22HLIFT ON PHYSICAL WING //1H +20X+55HSPANWISE LIF
1T DISTRIBUTION ON THE PHYSICAL WING ALONFe /1H +20Xs28HCCL 1S THE
2SPANWT SE LOADING S/ /777

FORMAT {1HL 225X +32HLIFT ON PHYSICAL WING WITH BODY //1H »20Xs55HSP
ZANWISE LIFT DISTRIBUTION ON THE PHYSICAL WING IN THE /1H +20X+21HP
INESENCE OF THE RODY W/ /7/7/7)

FORMAT (1H +25Xs1HY 211X 2HCL X o 3HCCL +»OX»5HALPHA/ /)

FORMAT {(20Xs4{F1letselX})

FORMAT (1HO//1H »20Xs16HLIFT COEFFICIENTs12Xs2H= »F1044/1H 220X+30
1IHSPANWISE CENTER OF PRESSURE = 1F10.4)

FND
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10726

1027
1028
1029

SUBROUTINE OPOINLNXsGAMMRTISEIT1IsALPHOSCL1sCL24CL - XCPLaXCP 24 XCP3)
QUTPUT = BODY CARRY QVER AFT
COMMON CFE2a Ay ELAMBsALPH X s Y o CLIEV A ALPHFV ALPHRGCa THETR, TA)» TAURBAR,
1 THETRR+BOCsBCOMTHET 1o THET o XBs CEFVALPHWEB»QUIFUT » BFETAPsARs TR
2 SeMyMIaMZ I MIGNJALPHASCI TOT sMML s XWoZWoELBs THRETA XU B o1 T s ALAM,

3 ALAMOC 2 ALAMA

DIMENSION CFIS0 O g ELAMBISO Y s ALPH{I00s501e X107 1Y 11N s CLIEVESO
bosALPHEYIS D 4 ALCIBRT 100 s A{100)1,CH10ON) s THETBI LAY s TAULS0O ) s BOCI5N 1,
2 TAUBARISO )L THETBRIS0)»BCO{SN )« THETI{I9)« THET (101 o X3 (1IN 1}

I CEFVIS50) s ALPHWRIS0O) »QOUTPUT{S0)

DIMENSTION RTI(S0)I»EITI(BD1+DLOX{50)

PRINT 1026

MR- My ]

NG 2 J=MD ] 4MM1

T2THFETR{ JYRRETAHS

XT=RT1(J)#5

FTA=FTTI( )y®5

OPT=DLOX{JY/BETA

PRINT 1027y Ty XI+ETA, OPT
PRINT 1028

PRINT 1029, CLY#XCP1sCL2sXCP24CL3XCPISALPHOGAM

FFTURPN

FORMAT (1H1425X24HLIFT ON BODY DUE TO WING//IH 2 XeS5O0HCHORDWISTE
IDISTRIBUTION OF BODY CARRY-OVER LIFT AFT/YH »20X+%5HOF THE TRATILIN
20 EDGT OF THE ROOT CHQORD. {(DISTRIBUTION /1H +20Xs50OHFORWARD OF TR
JAILING EDGE GIVEN ABQVE), TOTAL LIFT/1H 220K +GTHCOEI'FICIENTS (DANS
4ED ON WING AREA) AND CHORDWISE/LIH +20Xs539HCENTERS OF PRESSURE ARE
SGIVEN FOR ZACH SEGMENT OF THE BODY« /21X« STHAND FOR THE ENTIRE BODY
Ge XTI AND ETA GIVE POSITION OF THE/IH +20Xs1THROLLED=-UP VORTEX./ 7/
T/ZZIH 325X IHX a1 1N 2ZHX T w2X 0 3HETAS TX s 10HT 1/7QIDL/DX/ /)

FORMAT {1H »19Xs4{F1lletslX))

FORMAT {1HC//1H »36X%s2HCL»3X s 3HXCP Y/ /)

FORMAT {1lH 420X 17THFORWARD PORTION +2F12e44/71H 22 X+ 17HAFT PORTIO
1IN $2F1244771H 420X 91 THCOMPLETE BODY 9y 2F 126t/ /71H 220X e 31HAY
FERAGE BODY ANGLF OF ATTACK = »F10.4y8H RADIANS// 21X 3IHSTRENGTH
3 0F ROLLED-UP VORTEX = sif10a4}

FHM
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NS Natala

MY

™y

10
15
20
a0
4n
4k
P
&0
70
AG
RS
a0
aR
100
115
110
130
140
150
159
170
2090
205
210
220
230
250
260
270
319
120
130
340
150
356
360
170
1PN
39Q0
400
420

SUBROUTINE MATINVIN«BsMsDETERM)
COMMNDN A

SUBROUTINE TO SOLVE THE MATRIX EQUATION AX=Bs WHERE A I0
AN N X N SQUARE MATRIX, B I5 A KNOWN M X N MATRIXs AND X I5
AN UNKNOWMN M X N MATRIX, UPON RETURN THE INVERSE OF A IS PLACED
IN Ay AND X IS PLACED IN B. BY SETTING M=0 THF SUBROUTIMNE MAY
BE USED FOR MATRIX INVERSION ALONE, FOR FURTHER DLETATLS <CE
IBM SHARF NOs 664,

DIMENSION IPIVOT(50)s A(B0450)s B{50s1)s INDEXIB5042)s TVOT{50)
EQUIVALENCE (TROWs JROW) y { 1COLUMJCOLUM) g {AMAX s ToSWAPY
NETERM=1,0
PO 20 J=T14M
IPIVOT(J)Y=0
N 85RO [ =14N
AMAX =N ,0
mAING J=1eN
TF (TPIVOTIJI=1Y 604105440
NN 100 K=1aN
TF {IPIVOT(K)~1} 8041004740
IF [ABSF{AMAX)Y=ABSF(A({JsK)I1185,100,100
1RQW=J
TCOLUM=X
AMAN =8 ( Jak)

CONT tNUF

CONT I NUF
IPIVOT(ICOLUMYY=TPIVOT(ICOL UMY +1
IF [TROW-ICOLUMY 14042604140
NFTEFRM==RETERM

DO Zn0 L=1sN

SWAP=A(IROWs1}
A{IROWeL)=ATTCOLUMs LY
ATTCOLUMsLY=5WAP

IF (M) 26042604210

PO 280 L=14M

SWAP=B(IROW,sL)
BI{IROWsL)1=B{ICOLUM,L }
BIICOLUMyL y=5SWAP
INDEX(T»1¥=TROW
TNDEX({1422)=1COLUM

PIVOT (I =A{TCOLUM I COLUM)
DETERM=DETERM#P IVOT (11
ACICOLUMSICOLUMY=T,0

NO 350 L=14N
ALTCOLUMSLY=A(TCOLUMSL Y /PIVOTI(T
TF (MY 3RN,380,3460

PO 370 L=14M
BITCOLUMa LY =B TICOLUMSL Y /PIVOTILT)
NO 550 Ll1=14¢M

IF (L1=-1COLUMY 40C.5504400
T=AIL1s 1CNLUM)

AfLT1C0LUMY=N 0

126



430
450
455
460
500
550
600
610
620
630
640
650
660
670
700
705
710
740

DO 450 L=1.N

ATLYaL)=ATLL oL} =ACTCOLUML ) *T

TF (M) 55045509460
n() ‘nﬂ L=].M

BIL1oL)=BIL1sL1=BIICOLUMSL)*T

CONTINUE
DO 710 1=14N
L=N+1-1
IF [INDEX(Ls1)~INDEX{Ls2})
JROW=INDEX(Ls1)
JCOLUM=INDEX{Ls2)
DO 705 K=1sN
SWAP=A(Ky JROW)
ALKy JROWY=A (K JCOLUM)
A(Ks JCOLUM)=SWAP
CONTINUE
CONTINUE
RETURN
END

530s7104630
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RCP

crep

nCMT

CICMT

TFRM]
RCM

EICH

RCO

FAP
ENTRY
rMTRY
FNTRY
FNTRY
FNTR
FMTY
Frirey
CNTRY
FNTIRY
FNTRY
FNTRY
ENTRY
ENTRY
FNTRY
fLA¥
EADE
TR A
CLA®
CADS
TRA
LD
FMP*
570
LhO*
FMP %
F5B
TRA
LDO*
E*P %
570
LD+
FMEP*
FANR
TRA
D7F
CLA
FoR®
TRA
CLA*®
FSR*
TRA
LNO*
FMP»
5TO
LDO*
FMP#
FAD
sTH
LDOw
EMP
STO
[Malel

Rep
| o
TOMT
TIOMT
f20°M
FICM
RCN
Fich
RCS
FI1Cs
RCC
rire
RCSR
1SR
1s8
34t
544
2ed
bt
5eds
Y
Gy 4
TrRW]
144
94
TERM]
544
24
EEY
TERM]
Oty
1ot
TERMIY
546

lss
LY
S5e4
24
LXY)
Bt
1ad
Je4
TFRIM]
244
LYY
TFRM]
[SIBLY
ERY )
ERL
TERM]
ey
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nnnln
alalatraal
nnnan
nNnNan
0004l
nnnaz
0nna3
nonaa
nooas
NNNLA
nona7
annan
ANnLD
nan&an
nnney
oonan
oneTn
acnan
nnngn
nnlon
on110
nnl20
nntan
ooLan
nn1se
no1en
ne1Tn
00180
on1on
alel-dale]
0on21n
00220
nOz0
00240
nnzsn
00260
00270
0NzZBon
30290
00n3nn
00310
001320
00330
onN3an
NO35A
00360
0¢37o
O3RN
00392
00400
nna1n
on4z20



NUM
DEN
FICD

RCS

FICs

RCC

FMP*
FAD
5TO
CLA
FDP
XCA
TRA
PZE
RZF
LDO*
FMP %
570
LDG*
FMP*
FsSR
sTO
LDQ#*
FMP#
STO
LDQO*
FMP %
Faf
s5T0
cLA
FDP
XCA
TRA
LDO*
FMP#
5TO
LDG»
FMP »*
FsB
TRA
LDO*
FMP»
sTo0
FAD
TRA
LDO*
FMP#
XCA
FMP*
XCA
FMp
sTO
FAD
FAD
5TO
LDG#*
FMP *
XCA
FMP #

Gty
TFRM]
DEN
NUM
DFN

1e4
4l
TERM1
ke
2e6
TFRM1
NUM
04
LN
TERM]
hed
LRy
TFRM1
DEN
NUM
DEN

LRY
24
24
TERM1
144
INE:
TFERM1
344
lsa
2+h
TERM1
TERM1
XY
Zrhs
2vd

ray

14
TFRM]
TERM1
TERM1
TERM1
14
1ra

129

004130
nNa4n
nnasn
Q04s0
00470
NN4Rrn
NNaan
00500
0ns1n
0ons2o
00%30
00540
0ossn
005480
nnsTon
00580
nnseQ
posene
nne1n
ona2n
NNeI0
81a].X-Ya]
NN&so
0nNes0
00670
onean
DCe90
00700
00710
00720
00730
an7an
00759
0076&0
00770
00780
064790
Q0800
Q0810
Q0s20
00B30
00840
ONASN
NOREN
00870
O0RBARN
0nBgn
0gsan
00910
00920
o0e130
00940
00850



mycec

TERMZ
RCSR

PR

XR42

X247

F&B
TRA
Ralel
FMP #
XCA
FMP«
STO
LD+
FMP #
870
EAD
FAD
FSR
R4
PZE
LDGH
CMD %
570
LoQw
Frp
FAD
ey A
TSX
STO
AXT
AN
FRDx
XCA
5% A
T5X
STO
AXT
cLa
TeL
CLA¥
TRL
TLA
FAD
TRA
cLa
FAD
TRA
CLA*
TRt
CLA
AN
TRA
LA
Fpp
XA
XA
T5X
AXT

TERM1
44
FEY
2434

2ok
TERM?2
24
14
TFRM]
TrRM]
TERM1
TERMZ2
LY

146
lets
TERM]
FEY
Y
TFRM1
XC44ls
$SORT s &
R

* 4 g4
2
1494

XRG2sa
TATAN &
THET

LA TR
THET

#4Q

14d

*al
=3,141849
THET
#4710
=hs2R31A
THET

*47

1yt

Fal
=3,14159
THET

%42

TeoT

=2

XR4adg 4
$COSe 4
PN

130

D040
nngTn
nnsAn
nne9n
a1nnn
ninin
ninza
ninin
N1040
nLnso
nLngn
n107n
n10RN
0l1a8en
01100
01149
f112n
01120
01140
nyien
N1160
AN
D1180
01190
01200
n12in
01220
01230
01240
01250
01260
01270
01280
n1281

n1282

012R3
n1z2e4
n12as
cl128e6
01287
012R48
01289
n12s0
n1z2el
n1z2ae?z
n1zaz
N1294
A1295
N1294%
a1rann
01310
01320
01330



THFT
COSTH
EICSR

XR44

XR45

XR&7?

5T0
CLA
SXA
TSX
&TN
AYT
Lnn
F+p
TRA
PZE
PZE
P2F
P7E
LDO*
FMP*
STO
[Haler;
FMP #
FAD
SXA
TSX
8TO
AXT
CLA»
FOP*
XCA
SXA
TEX
STO
AXT
CLA
TRL
CLA*
TPL
CLA
FAD
TRA
CLA
FAD
TRA
CLA*
TeL
CLA
Fan
TRA
CLA
FOP
XA
SXA
TS5X
AXT
STO
CLA

COSTH

R
XRb&bLy b
$5QR Tt
R?2

ey

R2
COSTH
34

144
14
TERM1
244
Zeh
TERM1
XR450 4
$50RT 4
R

LE EY"
22s
144

XR4be e
SATAN G
THET
LAET)
THET

* 49

144

®4g
=3,141%9
THET
*+10
n6,28318
THET

*47

) Y

*4
=3,141509
THFT

* 4

THFET

=2

XR4T o &
SSINy 4
#¥ 4
SINTH
R

131

01240
n1350
01360
n1370
N13RN
N129n
n14ann
N1410
01420
n1an
D1449
D1450
01460
n1470
N1a8n
0laan
n1sn0nN
N151N
1520
01530
01540
n1s55n
N15R4N
n1s70
01580
158N
01600
n1s1c
nigzn
01630
01640
0l641
N1642
01643
N1e44
01645
0laab
N1h4&7T
N1648
01649
N1650
015851
016%2
01653
01654
N1&655
01656
N1&&6N
01670
O1480
01690
01700
01710



STNTH

SXA
T5Y
£TO
ANT
(RN
Fap
TRA
[l

FMD

XP4BAwk
FAART 4
R?

LI B

R?
SINTH
et

132

nyysn
017730
N1 140
nyreEn
NnivTAN
n17In
n17an
Ny 70n0
B1ann



SAMPLE INPUT
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24

1
le4r61
1e468
1.’*?7
1o'llgﬁ
1502
14517
la5H23
15410
150673
1978
1.078%9
le29%
1602
le306
lebD4
1.601
la596
1589
1.580
le572
le5672
140057
149351
14549
lefilQ
l+2.85
lewdl
14393
le338
1le275
le210
l1e1138
le0153
De61
Deatl
D« ThHQ

4%9.83 3.893%

12 13
3,137
latitl
lats668
1477
l.488
1.502
1517
1,533
1,549
TeB63
1.578
1.589
1599
1a602
14606
1,604
le601
1596
1589
l1.580
lan72
1.563
14557
14551
la549
1s4519
1.485
led&l
14395
1.338
1,275
le210
1.138
1.053
J«680
04750

13
Cs0

20

16314
0
36415

12488 574295779

134

040

«30



SAMPLE OUTPUT
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LINEAR AEAIDYNAMIC LNADS PROGRAM

LIMEAR AERNDYNAMIC LOAD DISTRIBUTIDONS,

T & EFFECTS
CALCULATED ON THE

SUBSONIC SPEEDS.

WING GENMETRY
ASPECT RATIO
TAPER RATID

LEADING EDJGE

DIHEDRAL ANGLE =

EXPOSED WING

FOLLOWING

]

3.893

+ 163

SWEEP ANGLE
0.

SEMI-S5PAN =

49.8

DESRFEES

12. 080

JF WING-BODY INTERFERENCE HAVE BEEN

CONFIGURATION AT

30 DEGREES

WING ANGLE JF ATTACK DISTRIBUTION

(ZI41IN IS AT ROOT OF LEADING EDGE)

X/S

«00348
« 00348
«02348
«00348
» 00348
«00348
00348
«0N0347
00348
00348
« 33348
«00348
203348
«NJ348
«0J2348
« 00348
« 03348
«»N0348
«717348

Y/S

«79846
« 93230
«93003
95171
«93747
+ 90744
+»87182
«83083
«T3376
«67828
«61862
«55514
+48824%
+41834
«34585
227123
« 19494
«11745

ALPHA

57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578

136

INCLUDING



«00348
01387
«01387
«21387
.01387
01387
«0L387
.01387
.013437
01387
«01387
.01387
01387
01387
l')l i87
»01387
01387
.01387
«013R87
«21387
«013R7
.03101
«03101
.03101
NUERRI] ]
«03101
. 03101
.03101
«03101
«13101
33101
«03101
«03101
.03101
«93101
«.03101
«13101
« 03101
-0310])
03101
«03101
«05463
«05463
«05463
« 15463
05463
+05463
+ 05463
«N5463
+ 05463
05463
+ 05463
«05463
« 05463
«15463
«05463
« 05463
«35463
235463
05463
«05453

«03923
« 39046
« 33230
98003
«G36171
+ 93747
«90744
«87182
.83083
nTB’t?l
« 73376
«&6TR28
61862
+55514
«48824
41834
« 34585
«27123
17494
L1745
+03923
«99846
«39230
« 28003
«96171
293747
« 30744
«87182
«B3083
78471
« 73374
«67828
«H1862
+55514
«4BR24
«%183%
«34585
« 27123
« 19494
11745
.03923
+99846
«99230
«98003
95171
«33747
«90T44
«87182
«83083
« T84T
« 73376
«67828
«61862
«55514
« 48824
«41834
«34585
»27123
» 17494
«11745
.03923

57.295748
57.29578
57.29574
57.235748
57.295178
51.29578
57.29578
57.29578
57.29578
57.29578
57.,23578
57.29578
57.2957A
57.29578
57.29578
57.29578
57.29578
57.295748
57.29578
571.29578
57.29578
57.29578
57.23573
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
51.235718
57.23578
57.29578
57.29578
57.23578
57.29578
57.23578
57.29578
57.23578
57.29578
5T7.295178
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.2%578
57.29578
57.29578
57.29578
57.295178
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
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«JIB&34
«OB41G
«0B4YG
08434
0R434
«0B434
08434
08434
00434
«D8436
<B4
<8434
« JB434
« 30434
+ 08434
«08634
084634
+ 08434
008""3“
008["310
« 11970
«11970
11970
« 117370
« 117D
+11972
» 11370
« 11970
«11973
« 119270
» 11970
<1197
«11970
« 11370
+ 11970
«11972
«11973
«11975
«11970
« 11970
« 1602172
16012
16012
« 15012
« 160172
16012
16012
« 16012
«16012
« 16312
« 16012
«16012
«16012
16012
«16012
156012
16012
16012
« 16012
« 156012
« 20497

+949046
« 33230
« 98003
+96171
293747
« 90744
87182
«83083
«TR4TL
« 73376
67828
61862
«+ 55514
«48824
41834
+ 34585
+27123
«19694
«11745
03923
+99846
«99230
+ 38003
96171
« 93747
» 90744
«R7182
«B3083
78471
« 73376
67828
651862
«55514
+485824
41834
«34585
«27123
«19494
« 11745
«03923
« 99846
+99230
«98003
96171
« 93747
90744
87182
.B30B3
« 78671
«73376
«67828
«61862
«55514
48824
«41B34
« 34585
27123
« 13494
«11745
.03923
« 99846

57.29578
57.275748
57.29518
57.29578
57.29578
51.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57T.29578
57.23578
57.23578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.23578
57.29578
57.23578
57.29578
57.23578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.23578
57.29578
57.23578
57.29578
57.23578
57.29578
57.29578
57.295743
51.23578
57.29578
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« 20499
e 204973
« 270433
« 234139
« 20439
«20499
«20433
«23499
«20499
« 20437
« 20433
.720409
«20499
« 2047973
« 20497
« 20499
« 20439
023!'099
« 204973
« 295359
« 25359
« 221352
25359
«253593
25359
« 25359
. 25359
273357
«25359
« D393
. 25357
» 25359
«+ 729359
« 12353
+2535%9
.753593
«25359
.7253593
« 253593
« 30516
.3051%
.30515%
30516
«32516
« 30514
«30518
30516
30514
«30515
«30516
« 30516
30516
« 310516
e 305156
. 33516
«30516
« 33516
«30515
« 30515
« 35888
». 35888

«33003)
96171
«FATSLT
«90T44
+87182
.830433
«TH4T1
« 13376
«567828
«61962
«55514%
+4AR24
«41334
o3“585
«27123
« 19454
«11745
«03921
« 39846
« 99230
« 93003
«96171
«93747
«90744
.87182
.830813
«T3471
+ 73376
«57428
«618562
«5551¢4
«48824
«41834
« 34585
«27123
« 19494
vl 1745
.03923
« 99846
« 992390
.980013
«96171
«933747
« 90744
87182
.83083
«TRGTL
« 13375
67328
61862
+55514
+4R8824
41834
« 34585
«27123
19494
«11745
«03323
« 33846
+93230

57.23578
57.295748
57.23578
57.29578
57.235178
57.23578
57.29578
57.292578
57.29578
57.29578
57.23578
5T7T.29578
57.29578
57.27578
57.23578
57.23578
57.235178
57.23578
57.23578
5T7T.23578
57.29578
57.23578
57.239578
51.29578
57.29578
57.29578
57.23578
57.23578
57.23578
57.23578
57.235178
57.23578
57.23578
57.23578
57.29578
57.23578
57.23578
57.23578
57.23578
57.29578
57.29578
57.29578
57.23578
57.29578
57.293578
57.29578
57.23578
57.23578
57.29578
51.235178
57.23578
57.23578
57.29578
57.23578
57.23578
57.29578
57.295178
57.29578
57.,23578
57.23578
57.29578
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+35ARR
«35A88
«35A819
« 35088
« 35088
«35988
« 315884
« 365880
«15A88
«35088
.35888
«35088
«I5A8A
«35888
« 15088
« 35188
«35088
+35988
«41390
«41330
061333
+4139)
«41390
+411390
41330
+4139)
«4133D
41390
+41390
«41390
0[01 390
«41390
+41399
«+41393
«41390
«413930
«4133)
«+4113932
«46936
+ 26935
« 46936
«%5936
46936
46936
«45936
46935
46935
46938
4636
+%5935
« 46735
« 46736
+ 46336
«46935
«46935%
«456935
« 46935
45936
«524138
«52438
«52438

« 98003
96171
«G3747
« 90744
87182
.83083
18471
e 13376
67828
61862
55514
48824
«41834
«34585
27123
«19494%
11745
«03921
« 998464
«39230
« 98003
« 96171
337417
«90T44
«87182
«-83083
«T8471
« 73376
«67828
261862
+55514
«48R24
«41834
«34585
«27123
« 19494
211745
«03923
«99846
«99230
«98003
«96171
«93747
«90744
«87182
«83083
«T8471
«T3376
«67828
61862
+55514
«4H824%
«41834
« 34585
227123
19494
«11745
«03923
« 39846
39230
« 38003

57.27578
57.295748
57.29578
57.29578
57.23578
57.29578
57.29578
57.29518
57.23518
57.29578
57.29578
57.29578
57.29578
57.29578
57.29518
57.29578
57.29578
57.295178
57,29578
57.29578
57.23578
5t.23578
57.29578
57.23578
57.23578
57.29578
57.29578
57.293578
57.295178
57.29578
57.29578
57.29578
5T.235748
57.29578
57.29578
57.295748
57.29578
57.29578
57.295178
57.29578
57.29578
57.29578
57.295178
57.23578
57.23578
57.23578
57.29578
57.29578
57.29578
57.,23578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
51.,29578
57.29578
57.29578B
57.29578
57.29578
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«524319 L6171 57T.295TH

«52438 « 931747 57.29578
«52438 «FUT44G 57.295178
52438 «BT1R2 57.23578
52434 83083 57T.29578
« 52438 78471 57.29578
252438 «73378 57,29578
«52438 +67823 57.29578
«524348 61862 57.29578
52438 55514 57.23578
«52438 +480824 57.29578
924319 +4i834 57.23578
«52438 +« 34585 57.29578
«52438 «27123 57.29578
«52438 + 19494 57.29578
«52438 «11745 57.29578
«52438 +03323 57.29578
«57810 L Y. 57.29578
«57810 « 39230 57.29578
+5781) +98003 57,29578
«+57810 «96171 57.29578
«57810 « 93747 57.295748
«57810 «90T44 57.29518
« 57812 .87182 57.235178
«57810 83083 57.29578
«H7810 78471 57.29578
«57810 « 73376 57.29578
«HTRLY 67828 57.23578
+5TBLD +61862 57.29578
«57R10 «95514 57.29578
«57R12 2483324 57.23578
«9781) «41834 57.23578
«57813 «34585 57.23578
»STR1O 27123 57.29578
57913 19494 5T7.29578
«57810D 11745 57.23578B
«5781) « 03923 57.29578
62967 « 29846 57.23578
$62967 «93230 57.29578
Hb2967 «98003 57.29578
«H2967 «95171 51.295748
62967 «93747 57.29578
«62367 « 90744 57.29578
«H529617 .87182 57.29578
«452967 83083 57.29578
52767 « 78471 57.29578
52967 73376 57.729A578
« 52967 «67828 5T7T.23578
62767 «61862 57.23578
562967 +55514 57.23578
«H296T «4B8824 57.29578
«H2967 «41834 57.29578
+ 62967 +34585 57.29518
$H29567 «27123 57.29578
62987 13464 57.29578
2967 «11745 57.23578
62967 03923 57.29578
+6TR2T «99846 57.23578
HIN2T 23230 5T.23578
67827 98003 57.29578
h1827 96171 57.29578
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HTINR2T
HTR2T
SHIRT
LTBR2T
SHTIT
JHIN2T
oATR2T
BTR2T
HTR2T
fHTN2T
T27
hTRDT
fHTNR2T
JAHTR2T
L7027
HIN2T
PP
712313
<7243
« 72313
72713
« 72313
L7233
72313
72313
« 77113
727113
« 723113
12313
72313
72313
T2
77113
772313
» 721313
723113
+» 75354
« 715354
+ 76355
163548
« THIRH
« TH355
« 15355
+ 16355
« TH3G4
« TH3IRS
s 75154
« 75304
« THALS
-« 75355
L TAETS4
16355
« 15355
« TEVHA
TEIBD
. THABY
79171
« T2
. 7A59])
0271
. 7503

«33T747
«901744
.871R2
+RY0B1A
- 78471
« 13376
«57828
«61842
«55014
+40824
«H1834
« 34585
«27123
e 17494
11745
331923
« 29846
« 93230
« 98003
26171
«93747
« 33744
+87182
+B3083
« TR4T1
«T3376
«HTRZ28
«5610862
«95514
«40824
41834
« 34585
27123
« 17494
«11745
«03923
«33346
+« 33230
«94003
« 96171
« 93747
« 30744
87182
«» 33083
-73"?7].
«T3376
«A7828
«61862
+55514
«41834
«34585
.27123
« 19494
11745
«03923
« 398454
«337230
«93023
+ 36171
93747

h71.23578
57.23578
57.23578
5T.23578
57T.23578
5T.29%78
57.23578
57.29578
57.29578
57.23578
57.27578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.23578
57.23578
57.293578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.23578
57.29578
57T.239578
57.23578
57.23578
57.23578
57.23578
57.29578
57.29578
57.29578
57.23578
57.23578
57.29578
57.235178
57.23578
57.23578
57.29578
57.29578
57.23578
57.23578
57.29578
57.29578
57.29578
57.23578
57.23578
57.2357A
57.23518
57.23578
57.23578
57.235783
57.23578
57.23578
57.29578
57.23578

142



« 73891 «F0ThL G 57.29518

« 73891 87182 57.23578
« 73091 .83083 597.2951R
« 79091 .73376 51.23578
« 79891 «6TR28 57.279578
« 79091 61862 57T.29578
«7989]) «55514 57.29578
« T9R91 «4AR24% 57,23578
» 79891 1 A34 51.23578
« 19891 «34585 57.29578
« 79891 «27123 57.29578
« 79891 « 13494 57.23578
« 79891 «11745 57.2957A8
« 79891 «037223 57.29578
82863 « 39846 57.29578
«A2863 «99230 57.29578
«N2863 +98003 57.295178
«A2863 « 96171 57.23578
«82863 « 93747 57.29578
+A2R63 «30744% 57.23578
«82863 LA7182 57.238578
«R2863 83083 57.295178
. 32863 « T84T 57.29518
+R2063 « 73376 57.23518
.B2863 «57828 57.23578
+B2R63 +561062 57.29578
«B2B63 «95514 5T7T.29578
«B82063 «48324 57.235718
«R2863 41834 57.29578
.N12863 « 34585 57,29578
«82363 «27123 57.29578
«B2863 + 19494 57.29578
«A2863 «11745 57.29578
.32863 «03923 57.23578
« 85225 «99345 57.29578
35225 «93230 57.23578
. 85225 «93003 57.29578
«85225 «96171 57.23578
«85225 « 93747 57.29578
.A5225 290744 57.23578
«A5225 -R7182 57.29578
AB225 «83083 57.29578
«05225 « 78471 57.29578
«H5225 » 13376 57.23578
«95225 «67828 57.23578
«R5225 «61862 57.29578
«85225 «35514 57.29578
«A5225 «48824 57.23578
«85225 41834 57.29578
.85225 «» 34585 57.29%578
« 085225 27123 57T.29578
« 15225 «19494 57.23578
«A5225 » 11745 57.29578
.A5225 «039213 57.23578
<6938 « 933846 57.29578
+R569138 «39230 57.29518
.B5938 »980023 57.23578
- 14933 36171 57.29578
«R6ET38 «93747 57.295748
295338 90744 57.235718
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R6238
<A567318
L6938
+86738
+ 836938
LB8633%8
«BA938
«+ 156938
- R6933
+B6938
. 86238
«3693R
«B86238
« 86938
LHTOT8
+B7978
.AT9T8
+AT278
Laroera
+A7978
8737A
+8BT9TH
+879718
+8797RH
57978
BT378
+ATQTH
.847379
A7T978
.87978
27979
LAT7T37AH
«37973
+RT973
«3203)
«I203)
«7209)
« 932692
«AZ03D
«32092)
« 32090
«32032
«921092
«92032
« 92097
92092
«32092
« 32092
« 92090
«72093
«220930
«2209)
22090
« 32090
39519
« 39613
« 39619
« 79619
+39619
+ 995613
« 39619

287182
.R3083
«TR4T1
73376
«+67828
«61862
«595514%
«A8824
41834
« 34585
27123
« 19494
«11745
«03923
« 93846
+99230
38003
96171
« 33747
« 90744
«BT7182
«813083
- T84T1
« 13376
«+67828
« 61862
55514
«4A4B24
«41834
+ 34585
227123
+ 19494
«1174%
«03923
« 99846
«99230
«98003
«96171
« 93747
« 90744
.87182
«83083
«+ 73471
. 73376
«67828
«618562
«55514
«483824
41834
« 34585
«27123
« 13494
«11745
«03923
« 39846
+99230
« 98003
96171
« 93747
«G0T44
«.87182

57.29578
57.29578
57.29578
57.. 78
57.29.174
57.2957H
57.29578
57.23578
57.29578
57.29578
5T.23578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.23578
57.29578
57.29578
57.29578
57.29578
57.23578
57.23578
57.29578
57.29578
57.23578
57.23578
57.23578
57.23578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.25578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.29578
57.29578
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« 196179

« 19619
«136173

L9619
« 93619
«396173
«39613
«19619
<1619

0946173
«N3613
«?3619
« 17617
1.7714R
1.07148
1.07148
1.071408
1.07143
1.2714%
1.97149
1.07148
1.77148
1.07148
1.77148
1.77148
1.207148
1.07148
l.a27148
l1.07148
1.J71489
177149
1.27143
1.271483
1.14677
1.14677
1.14677
1.14677
114677
1.14677
1 4077
1.14677
].n 1""?677
1a14677
1.14577
1a14K/77
lel146TTY
1. 14677
1. 144677
1l.14677
l.14677
lal&a6T?
1.14477
1.14A77
1422205
1422276
1.22206
1.22225
1.22226
1.22206
1.22296
1.22206

«030873
-7“’?7[
« 73376
«Hl828
«61R62
« 35514
«48R24%
«41034
« 34585
«27123
« 19494
«11745
«03323
«TIBLE
«992130
« 91003
«I61TH
« 93747
« 90744
«B7182
«A33R3
« 78471
«T3376
«67828
61062
055514
40824
«41830
« 34585
«27123
L] 19494
11745
«03G623%
« 29846
« 39230
«98003
«95171
«I3T4T
« 30744
87182
«B83003
« 73471
« 73376
«67828
+H1R42
«55514
«4RB24
«+41834
« 34585
27123
« 17494
«11745
«03323
« 29846
« 99235
« 33003
« 96171
« 33747
A0 T4h
«87182
«33083

57.23578
57.29578
57.235178
57.29%78
57.29578
57T.29578
57.79578
57.29578
57T.723578
57.29578
57.29578
57.295178
57.29578
57.29578
57.23578
57.29578
57.29578
h7.23578
57.29578
57.29578
57.29578
57.29578
57.729578
57.23578
57.23578
5T.29578
57.29578
57.29518
57.29578
57.29578
57.237578
57.29578
57.29578
57.23578
57.29578
57.29578
57429578
57.29518
57.29578
57.29578
57.29518
57.29578
57.29578
57.73578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
57.29578
57.29578
57.29578
57.29578
57.23578
57.29578
57.29578
ST.295T8
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1.22206 ~Ta471 57.239578

1.22206 « 13376 51.23578
1.22204 67828 57.29578
1.2220% 61862 57.29571
1.22204% 55514 57.23578
1.22206 «48824 57.29578
1.22206 «41834 57.29578
1.22206 « 344585 57.295178
1.22206 +27123 57.29578
1.22206 « 19494 57.23578
1.22206 «11745 57.29579
1.22206 .03923 57.29578
1.29735% « 99846 57.235178
1.2973% «99230 57.29578
1.29735 «93003 57.23578
1.29735 «9617T1 57.23578
1.29735 «23747 57.23518
1.2973% « 0744 57.23578
1.29735 +AT182 57.29578
1.29735 «830133 57T.29578
1.23735 « 78471 57.29578
1.29735 «T3376 57.29578
1.29735 «67R28 57.23578
1.29735 61862 57.23578
1.2%735 «55514 57.29518
1.29735 « 43824 57.23578
1.29735 + 41834 57.29578
1.29735 « 34588 57.29578
1.2373% 27123 57.23578
1.29735 « 17494 57.29578
1.29735 «11745 57.29578
l.29735 03923 57.29578
1.372484 + 99846 57.29578
137204 « 992130 57.29578
1.37254 «9HN03 57.29574
1.37254% «F5171 5T.29578
1.37264 + 913747 57.23578
le37264 »90T44 57.295178
l.37264 .87182 57.29578
1.37264 «83083 57.29578
1. 372564 «T047] 57.29578
1.37204 «T3376 57.29578
1.37254 «67328 51.29578
le 37264 61862 51.23578
1.372564% +9551 4 57.23578
1.37264 «48824 57.23578
1.37254% «41834 57.29578
1.37264% «34585 51.29578
e 37264 «27123 57.23578
137264 19494 57.29578
1.37204 «1174% 57.29578
1.37254 «033923 571.29578
le446732 « PGR4G 57.29578
l.44792 - 33230 57.29578
l.44732 «98003 57.23578
len4732 295171 57.27578
le/792 « 93747 57,29578
1.44737 «30T44 57.295748
letr732 +37182 57.29578
1.%44792 «83083 57.295718
1.447732 «THATL 57.235178
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o732 TV 3T, 23771
1ol 3? I 703373
le %772 31022 a7.1337
lawi732 S35t a 57.23574
Lot 742 SHiilN 37.03373
Letn 7732 P3G 57T.7233713
Lea732 « 34323 57.2331713
Lasn?32 271213 57.23373
14732 el %3 57.23371%
la=n?32 <1743 5S7.233713
Latrh 732 «033273 37.235373
l.32321 77345 57.23373
1.92221 «32213 57.23578
1.52321 «?3723 57.235714
l.5213121 « 75171 57.,29573
372321 « 33747 57.23%73%
1.52321 «IIT b 57.23573
1.52321 37132 §7.23578
1.52321 33333 57.23573
l.592321 73471 57.295738
1.52321 « 73374 $7T.23578
1.52321 «57323 57.23378
1.52321 £51852 57.29573
1.52321 «53314 5723578
1.52321 «+4392% 57.23573
1.%2321 «41334 57.2331718
1.%2321 + 34535 57.23574
1.%2321 27123 57.23578
92321 < 13474 57.23579
1.57321L « 11745 57423378
1.3232] «03323% 57T.27573
193920 e 33545 57.29578
1.5135%0 33230 57.23578
1.572153% « 94733 57.239578
L371055 «95171 57.23578
1.330859) «93747 57.29578
1.37R5%7 «INT4H4 57.23578
1.37452 07192 57.23578
1.995373 REEDLK 57.23578
1.335%29 5471 57.23578
1.59AR5) « 73376 57.29578
14554957 «+b67828 57.29378
1.5245%2 +618A2 57.29578
l1.53752 «e55514 57.29578
l1.59450 +41R34 57.29578
1l.5985) «34585 57T.23578
1.594%5) £27123 57T.29578
1.59850 « 17494 57.29578
159159 « 11745 57.29578
1.5285%) .03923 57.295783
LoAT373 «FI3R4A 57.29578
1.67379 «33230 57.29578
1.671373 + 98003 57T.295178
1.4T7379 «933747 57.23578
t.573179 «30Thi 98T7T.29578
1.67373 .87182 57.23578
l.AT3749 +A3083 57T.29578
L6137 « 78471 57.23578
1.47373 » 173376 57.29578
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1.573719
1.A7AT73
1.67373
1.47379
1.57373
1.67379
1.67373
1.07373
1.67T373
1.A7379
1.74908
l.T%900
1.74908
1.74908
1.74933
176908
1.74908
1. 74904
1.74908
1. 74309
1. 76708
1.74730A
17473908
Le 747904
1.747308
1.74908
1.745303
l.74208
lLo74°9017
1.741%08

+67828
.{'31862
«9h514
ARG
41834
« 34585
£27123
17496
«11745
«.039213
«3IR4E
oQ‘)ZBO
« 780303
«96171
33747
« 30744
87182
+83083
« 70471
- 73376
«hT7828
61862
«55514
.48824
«41834
« 34585
27123
« 19494
« 11745
«0392%

57423578
57.23578
5T.2957A
57.23578
57.23578
57.23578
57.23578
57.29578
57.29578
57.29578
57.29578
57.23578
67.29578
57.239578
57.23578
57.29578
57.29578
57.23578
57.29578
57.29578
57.729578
57.23578
57.29578
57.29518
57.23578
57.23578
57.29518
57.29578
57.29578
57.235178
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BudY GEIMETY

X

ELLIPTICAL CRJSS SELTIONS

{(DISTANCE

FROM NOSE)

13,2261
13,4047
13.66811
14.013Hr
lé.4337
14.92366
15.47514
16.07T94 6
LA 72T0H
17.40779
19.1108A
18.82515
19.5395]
200242%“
20.92324
2157091
22.17527
22.720T1L
23.21667
2363737
23.98217
24.24567
24.47360
24%.51337
25.4839 ¢
29.65281
2752251
23,39224%
27.36197
30433164
31.3004
iz.27110
Y3.24084
310'.21 05!’3
35.1832¢
16415007

HODY LENGTH =

HIRTZONTAL

AXTS

1.46100
1. 46800
1.47700
1.48800
1.53200
1.51700
1.53390
1.549%0
1.561300
1.57800
1.58900
1.59700
1.60200
1.60600
1.60400
1.60120
1.594N0
1.58900
1.58000
1.57200
1.56300
1.55790
1.551%0
1.54920
1.51930
1.48500
l1.441J0
1.39520
1.33830
1.27500
1.21000
1.13800
1.05300

96100
« 75000

364150

VERTICAL
AXTS

1.46100
l.46800
1.47700
1.47800
1.50200
1.51700
1.53300
1.54900
1.56300
1.57800
1.59900
1.53900
1.62200
1.67600
1.62400
1.67100
1.5300
1.58900
1.5H000
1.57200
1.56309
1.557090
1.55100
1.54900
1.51900
1.48500
1.44100
103QS00
1.3%800
1.27523
1.21000
1.1380%
1.05300

« 96100
« 600D
« 75000
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ANGLE OF
ATTACK

Do
D.
0.
0.
0.
0.
2.
0.
a.
0.
OI
0.
D.
0.
0.
0.
0.
0.
J.
0.
0.
J.
J.
0.
0.
2.
2.
0.
0.
0.
0.
0.
0.
J.
DI
0.



WING-0DDY CMAINATION SEIMETRY
WING LDCATION ON BODY
LEADING EDGE DISTANCE FROM NIISE = 13.137

HE IGHT JF ROOT CHORD ABOVE B{ODY CENTERLINE = J.

FLIGHT COIDITIONS
ANGLE OF ATTACK = 57.2958 DEGREES

MACH NUM3ER = « 900
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THE FILLIWING NUMERITCAL PARAMETFRS MHAVE BEEN USED TN THE CALCULATIONS

PARAMETER USE VaLUE

M NUMBER OF STATIONS ON BODY 24
RETWEEN WING LEANING AND
TRATLING EDGES

M1 NUMBER OF STATIONS ON BODY 12
BETWFEN WING TRAILING EDGE
AND AFT END 0OF RDDY

M2 NUMRE 0OF INTERVALS USED IN 13
THE NUMERICAL INTEGRATIONS
EMPLOYED IN THE LAWRENCE PROCEDURE

M3 NUMBER JF INTERVALS USED IN 13
THE NUMERIICAL INTEGRATIONS
EMPLOYED [N THE WEISSINGER
PROCEDUARE

N NUMBER JF STATIONS ON THE WIMNG 23
SEMI-SPAN
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LIFT DN WING-BODY COMBINATION

CIIORDWISE LIFT OISTRIBUTION ON THE BODY, INCLUDING

THE LIFT DF THE WING. THE FOLLOWING DEFINITIONS APPLY.

X DISTANCE FROM ROOT OF LEADING EDGE
TO ZENTER OF SPANWISE STRIP
B EFFECTIVE SEMI-SPAN OF STRIP
DX WIDTH OF SPANWISE STRIP
Q DYNAMIC PRESSURE
X B DX (1/QV0L/DX
.04‘09 00000 -0397 '18666
« 1737 « 0000 +1780 ll44
+3374% . 0000 «2635 ~.0189
« 7036 1.0106 «3448 <4886
1.08n3 1.0106 «4207 -22541
1.5417 1.0106 «4300 +9199
2.0624 2.0149 « 5515 «T124
2.6402 2.0149 «6043 1.1050
3.2643 3.0068 «6476 1.3994
3.93)4 3.0068 «6807 1.2631
4.6273 3.9801 « 1031 2.5711
5.3310 4.3290 « 7143 1.5871
b.0453 4.9290 «T143 2.0111
647540 5.847¢4 « 7031 2.0870
Ted%59 5.8474 «6807 2.0039
8.11.1 6.7298 « 6476 3.0317
8.736!1 T.5707 «6043 2.0813
9.3140 7.5707 +5515 2.2507
F.8347 8-3649 .4900 2.0986
10.2900 8.3649 «4207 1.8208
10.6778 9.1075 3448 1.8946
10.97469 9.1075 « 2635 1.0639
11.1947 %.7940 «1780 1.3407
11.3315 9.7940 0897 -1.210!
LIFT CIEFFICIENT (WING-BOOY COMBINATION) = 2.6605
CHORDWISE CENTER QF PRESSURE = «5948

{PERCENT OF 23T CHORMD)
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CHIRDWISE LIFT DISTRIBUTION ON THE WING ALONE

x {1/0)DL/DX
+ 0449 ~e 4865
«1787 «03594
« 3994 1658
«T036 » 7347
100863 --2866
1.5417 1.0447
2.0624 «B8605
2.6403 141062
3,2663 1.3733
3.9304 1.1971
4.,6223 2.4025
5.3310 1.4586
5.04532 L1.8435
6.754) l.8879
T.4459 1.8136
8.1101 2.7179
B.73561 1.8691
9.3140 2.0162
9.8347 1.8759
10.2900 L.56163
10.6728 1.6892
10.8769 « 9353
11.19717 1.1936
11.3315 -1.1120
LIFT COEFFICIENT (WING ALONE) = 2.4825
CHORDWISE CENTER OF PRESSURE = «5798
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CHORDWISE ODISTAUIBUTION OF BODY CARRY-QOVER LIFY

X

« 0469

.1787

«3954

. T036
1.0863
1.5417
2.062%
2.6403
3.2663
3.9304
4.6223
5.3310
6.0453
6.7542
T.4453
8.1101
B. 7361
9.3140
9.8347
10.2900
10.6728
10.9769
11.1977
11.3315

LIFT COEFFICIENT

(1/2)0L/DX

(BODY CARRY-QOVER)

«3801
0750
» 1847
« 2462
-0326
. 1248
.0882
»0012
«020t
+ 0660
+ 1686
1285
<1676
«1991
«1903
»3138
2122
2445
«2227
« 2044
«»2054%
<1286
1471
+ 0981

154

« 1780



EFFEC
GLOMETRY N
TIE REAL W
SPANWISE A
FROM THE G
FOLLOWING

MtASURED F

XLE

XTE

12.860)
12.7809
12.6228
12.3869
12.0746
11.6879
11.2291
10,7011
10.1071
9.4508
B.7362
T.9678
T.1502
6.2886
$.3882
4.4546
3.4935
2.5108
1.5127
+»5053

TIVE WING GEOMETRY

F THAE EFFECTIVE WING, WHICH APPROXIMATES
[NG BY RECTANGULAR ADXES. AN EFFECTIVE
NGLE OF ATTACK ODISTRIBUTION IS CALCULATED
TVEN ANGLE OF ATTACK DISTRIBUTION. THE
DEFINITIONS APPLY. ALL DIMENSINONS ARE

ROM THE ROOT OF THE LEADING EDGE.

SPANWISE DISTANCE TO CENTER OF CHORDWISE STRIP
“HIXDWISE DISTANCE TO EFFECTIVE LEADING EDGE
CHODWISE DISTANCE TD EFFECTIVE TRAILING EDGE

EFFELTIVE CHORD

XLE XTE c ALPHA
15.2552 17.1047 1.8495 1.000
15.2552 17,0694 1.8142 1.0000
15.29%2 16.9990 1.7437 1.0000
14.2855 16.8939 2.6084 1.000)
14.7855 16.754A 2.4693 1.000)
14.2855 16.5825 2.2970 1.0000
13.3158 16,3782 3.0624 1.0002
12.3461 16,1430 3.7969 1.000)
12.3461 15.8784 3,5323 1.000)
11.1087 15.5861 4.4774 1.000)
10,5004 15.2678 4.7674 1.000)
9.5897 14.9255 5.3358 1.000)
B.4339 14.5613 6.1274 1.000)
7.7863 14.1775 6.3912 1.000)
6.4025 13,7764 7.3739 1.000)
4.9739 13,3606 8.3867 1.0002
4.2708 12.9325 B.6617 1.000
2.9425 12,4943 9,5523 1.0009
1.7867 12.0502 12.2635 1.000)

.5312 11.601% 11.9703 1,000
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LIFT ON P4YSICAL WING

SPANWISE LIFT DISTRIBUTION ON THE PHYSEICAL WING ALONE.
CCL [S THE SPANWISE LOADING.

Y cL cCt ALPHA
«9985 « 1379 «2256 1.0000
«9923 2.3131 6741 1.0000
+ 3800 3.6092 l.1147 1.0000
«3617 4.6032 1.5417 1.0000
«9375 S.2745 1.9488 1.0000
+9074 5.6512 2.3303 1.0000
.8718 5.7912 2.6832 1.0000
.8308 5.7627 3.0085 1.0000
« 7847 5.6262 3.3095 1.0000
« 7338 S.4261 3.5889 1.0000
6783 5.1915 3.8477 1.0000
6186 4.9405 4.0855 1.0000
+5551 4.6837 4.300A8 1.0000
+4B882 4,4270 4.64913 1.0000
4183 4.1736 4.6542 1.0003
+ 3459 3.93251 4.7867 1.0000
2712 3.6820 4.8859 1.0000
«1949 3.44418 4.9497 1.0000
«1174 3.2142 4.9770 1.0000
«0352 2:3944 4.9741 1.0000
LIFT COEFFICIENT = 4.0483
SPANWISE CENTER OF PRESSURE = « 4319
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LIFT 3N PHYSICAL WING WITH BODY

SPANWISE LIFT DJISTRIBUTION ON THE PHYSICAL WING

PRESENCE 0OF THE

«9985
«9923
«+ 9800
«95617
«9375
+9074
«B718
«8308
« 7847
. 1338
6783
6186
« 5551
«48382
+ 41813
» 3459
2712
«1949
«0392

LIFT COEFFICIZNT

RODY,

ce

«8l46
2.3619
3.6862
4.7031
5.3917
5.7804
5.,9285
5.9055
5.7T729
5.5762
543451
5.,0980
4.8459
4,5952
4.3494
4.1105
3.8797
3.6579
3.44T3
3.2484

cCL

+2303

«5884
1.1385
1.5751
1.9920
2.3B836
2.746R
3.0831
3.3958
3.56882
3.9415
4.2157
4.4494
4.6620
4.8503
5.0124
5.1482
5.2559
5.3384

SPANWISE CENTER} OF PRESSURE =

157

4.2389
4272

ALPHA

1.0024
1.0025
1.0026
1.0027
1.0029
1.0032
1.0036
1.0040
1.0047
1.0255
1.0066
1.0082
1.010¢4
1.J136
1.J183
1.0259
1.2387
1.0628
1.1160
1.2706

IN THE



LITT N wQRy nur

CHIPEVTISE DISTRIRUTION DF

) WiN

GF THE TRAILIMAG FESE OF IHE

FURWARD CF THALI TG

COEFFICTENTS (1

ASE 0N

CONTLERS CF PRESSUNE AR

AND FOR THE ENT

™ (1

ROLLFLN=1P YRRTEX,

Jlabkhl2
12.R% 4
3.4 7
14,774
15,7471
16. 798
17.679%
13,6473
193.014%
A
Jtethilig
Pr.n2H1

Bl a0 PORY TN
AT T PORTICN

COMPLETFE A0DY

1

11.5792
11.5792
11.5792
11.5792
11.57972
11.5792
11.5792
t1.5792
1t.5792
11.5792
PL.%792
11.5797

AYOPALT BIINY AMGL T DF

STREAGTIH AF ROLLER=-UDP

WING
£ GIVE

HaY

G

CARRY-Hyrw 1 {FT AFT

LNOT Crndg, fea1n1 T TION

\REAY
N FOR

TOGE GIVEN ABOVE).  Tirtsn pqft

AND CHUORNDVLSE
EACH SEGMENT 0IF THE BODY,

Y. XI AND ETA GIVE POSITION OF THE

1
1

CL

.178
« 47
225
ATTACK

VORTEX

ETA

«9697
1.9394
2.9492
31.B789
4.B486
5.B8183
E,TRAN
T.7574
2.7275
9.69T2

6669
l1.6366

&

7

11

(1/Q¥InL/DX

« 196
7257
273
AR
302
« 5279
.. 262
a: 250
L0227
o247
o'.' ‘.'-5
—« 38

Xce

. R2.43
1.768%4
.9 22
le  © RADIANS

1.3918
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APPENDIX II

EVALUATION OF CONTOUR INTEGRAILS

It is necessary to evaluate the following complex contour integral:

8} Y /8
£ )

Ax)
where the contour &¢X) in the & -plane is shown below
iZ
8=y+iz
/“”
)
s
7
/
_-..y
Bix)

The integral may be evaluated in two parts, by separating the terms
due to the vortices from the terms due to the free stream. Thus Eq. (162)
may be written:

5 FNSY = f N E Y G
romT/ICcES

PeLe- sradéam 0/;

any am an) 11-1)
where
(8) =Ll #n /8- 8-, ,(»/9 ‘9) (I1-2)
VoRTICES _7 &+ J
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The integral containing the terms due to the vortices may be evaluated
by the use of Cauchy's integral theorem, which states that if a function #¢Z)
is analytic inside and on & closed curve ¢ , then

§ Al2) sz =0 (1I-4)

Thus we may write that

§ f /9)7(;:_’:0 (II-5)

VoRTICES
c

where the contour << *<, is shown in the following sketch

iz

Egjuation (II-5) may be wrltten

) -e v e
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-€ PP - a8
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where &, is the segment of the contour € consisting of the large circle
of arbitrary radius £, and Ca is the segment around the transformed
wing-body combination, vortices and feeding sheets as shown.

It is possible to show that the first and third terms, taken along the
horizontal branches of the contour, cancel in the following manner.

-

f a/fd/é -d[' /” } (.f’ ! #n/ 8 9///
6’*& &re,

Na /W} /.c (/_;_.I___%;/)/a/a (11-7)

which may be evaluated in four parts. Since the four resulting integrals
are nearly identical in form, only the first will be evaluated in complete
detail, as an illustration,
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since &+ ¥ and o® 2d¥ on the real axis. The third term of Eq. {II-6) may
be written

-j;!.dfd@ f/ 4 _en :;Zo)_ :;?’/n ava,/)/
N ot )% /(/ﬂ?)/

which again may be evaluated in four parts., Considering the term corres-
ponding to the integral evaluated in Eq. (II-8) and Eq. (II-9),

{II1-10)
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since the arguments of & (@ -4) and £n (8 * &) gain an additional 27 when
the function is evaluated around the portion of the contour C, Equation

II-11) may now be rewritten by letting #=%. Taking the opposite sign and
reversing the limits of integration:
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which is just the negative of the right-hand side of Eq. (II-9), since the terms
containing.#¢ will cancel. It may be easily seen that the other three inte-
grals contained in Eq. (II-7) will just be cancelled by the other three integrals

contained in Eg3. {II-10). Thus the first and third terms of Egq. (II-6) just cancel.
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The second term of Eq. {II-6) will now he evaluatedﬂ on the large
circle ¢, . Making a substitution of variables let & =4e‘® | Then
o = Re'ofw , and:

‘: ’f“’r
¢ &we . ”.Io" [vornccs s
orie 8cx)
w. .
= lem L a8, ) L j"/,e, AP
L b G r ;o <7 PR 9’
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X t"-u-y K dow ,3
ars Ve.ea(w‘,smr _-u..a /A?TC‘T;—
(1I-13)
Since:
som (#e “/a lom /‘e.zea«u* ar 60')"'/?»: /;é‘e'""',« s )
(II-14)

we may combine terms to give:
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£y=o Lo tn/Re‘"- 8, 1-17
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Now:
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a
Neglecting terms of order e or greater:

é*—r-ﬁxn[/_ e v /«9,,*9)] Qr-19)
Q7 2
~ G| @mew Za‘,fa;)
kT2 2
Similarly:
8, = J;[e—iw (6+8) (I1-20)
an 3 :
Finally, then:
I’. (6,+8)s L7 ﬂ' (9+€) e
=0 /5.*65) -4 (8+8) (I1-21)

The integral containing the terms due to the free stream in Eq. (II-1}
should be evaluated directly gn the contour 8¢x) . However, since the
function f L is analytic inside the portions of the contour

free stream o€

which go around the vortices and their feeding sheets, the contour may be
collapsed to one around a vertical line between the end points of the trans-
formed wing-body combination, as shown in the sketch below:

iz

t-y

B (x)
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where €y and €y are the portions of the contour around the end points

at 2 (4s™ *4") as shown in the close-up view below

ivs?+ar? B=ivs'"+ar? + ie'¢

Ca

The first term may be evaluated in the two parts as follows:
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The first integral has a branch point at the end points of the contour,

2¢¥Ys*+¢/* . The second integral has branch points at zcs’ . The
function is analytic at the end points. The integrals may thus be evaluated
as real integrals provided that the branch points are treated carefully. The
limits of the second integral may be replaced by #2¢s“ , since the function
is analytic on the portions of the contour between the branch points and the
end points, Since & ¢ 2 and &/@ =(o2 Eq. (II-23) may be written

‘. f"(l*y’,l-é) S""f«"-é

fm !/&) Y b = L1 74 .smaf//i)ﬂ't"’

Ev 0 7 & v .?A-’/q/s".,y.u-‘g’

(Y573 P - €) Y LT

5(
_Sm _¢ (/ sme (C2)/E3-#° L E (o2 (11-24)
o ) Jse-ax
..5’

4/-5 ¥t

=_. smﬂ.’/ / - 5"‘,‘4’;-—5.“ S+ 4r "'/* sm/
2+ Veid, 5, v yp 2

5 f{f}'

&, 3m f"_”y - E a7, s sm'//i/.
< v ’

_—._({a..f/na! _i-:,;,// ., ,/,./ /‘?’a // )/ (T11-25)

o2



The third term in Eq. {II-22) contains exactly the same integrals as
the first term, with the limits reversed. Since the integrals are to be
evaluated on the opposite side of the branch cut (line joining the branch
points) however, the square roots contribute an additional minus sign to
each term.

Thus the third term in Ey. (II-22) has exactly the same value as the
first term, and is also given by the right-hand side of Eq. {II-25),

The integrals around the branch points may be evaluated in the
following manner:

;f(é)a/f o/ _4//51)7«5 / ar/ )

s ey
= tU Shec & l"ﬂ'} & P - -<U Sine & (" g
ar? Ves s wr a *S"‘
€y
(11-26)

/ L 4
where the contour €g is that around the branch point at ¢S5 . Letting

&= ‘.1/5""-» R éo‘ﬂ in the first integral
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Thus the integrals around both upper branch points are zero in the limit
as €*0 , The integrals around the lower branch points are similarly
Zero.

Thus the free stream integral may be written:

a
T =t sinew f"ﬂ-/ s’ //»— )s' (11-29)
o el _3}'3 J)-J

Finally, then
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(I1-30)
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Figure 4.

Reduced Lift Curve Slopes for the A /4= 40" High Aspect
Ratio Wing-Body Combination at Various Mach Numhers.
Comparison with Theory
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Figure 5.

Center of Pressure Location for the A c/4 =40° High

Aspect Ratio Wing-Body Combination at Various Mach
Numbers. Comparison with Theory
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Reduced Lift Curve Slopes for the A /4 =45° High Aspect

Ratio Wing-Body Combination at Various Mach Numbers.
Comparison with Theory

Figure 6.
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Figure 7. Center of Pressure Location for the A /4 =45° High
Aspect Ratio Wing-Body Combination at Various Mach
Numbers. Comparison with Theory
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Figure 8. Reduced Lift Curve Slopes for the A /4 = 50° High Aspect
Ratio Wing-Body Combination at Various Mach Numbers.
Comparison with Theory
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Aspect Ratio Wing-Body Combination at Various Mach
Numbers. Comparison with Theory
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Figure 10. Model of Ref. 25
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Figure ll. Reduced Lift Curve Slopes for the Medium Aspect Ratio

Highly Swept Wing-Basic Body Combination. Compari-
son with Theory
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Figure 12. Reduced Lift Curve Slopes for the Medium Aspect Ratio

Highly Swept Wing in the Presence of the Basic Body.
Comparison with Theory
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Reduced Lift Curve Slopes for the Medium Aspect Ratio

Highly Swept Wing in the Presence of the Indented Body.
Comparison with Theory

183



20

o T7T 1 [ |

(18] REF.25 WING WITH
10 f— BASIC BODY _
Xep/e, ———  WING BODY
2 0onp g COMBINATION
\
0 l [ | l l I 1
o] i 2 3 9 5 6 7 8
B AR
Figure 15. Center of Pressure Location for the Medium Aspect Ratio
Highly Swept Wing-Basic Body Combination. Compari-
son with Theory
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Figure 16. Center of Pressure Location for the Medium Aspect Ratio

Highly Swept Wing in the Presence of the Basic Body.
Comparison with Theory
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Figure 17. Center of Pressure Location for the Medium Aspect Ratio

Highly Swept Wing-Indented Body Combination. Compari-
son with Theory
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Figure 20. Reduced Lift Curve Slopes for the Medium Aspect
Ratio Relatively Unswept Wing-Basic Body Com-
bination. Comparison with Theory
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Figure 21. Reduced l.ift Curve Slopes for the Medium Aspect

Ratio Relatively Unswept Wing in the Presence of
the Basic Body
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Figure 22. Reduced Lift Curve Slopes for the Medium Aspect Ratio
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Comparison with Theory
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Figure 23. Reduced Lift Curve Slopes for the Medium Aspect Ratio
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Comparison with Theory
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Figure 29. Variation of Lift Coefficient with Angle of Attack for
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