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AN IMPROVED ESTIMATE FOR THE ERROR OF TRUNCATION
FOR AN INFINITE SYSTEM OF
ORDINARY DIFFERENTIAL EQUATIONS

by

M. L. Bandy
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ABSTRACT: Many of the partial differential equations arising from physical prob-
lems may be reduced to an infinite system of ordinary differential equations. An
approximate solution of the original partial differential equation can be obtained from
the infinite system by truncation. In this section some explicit estimates for the
error of this type of approximation are obtained. An extension of Gronwall's Lemma
is also proved. This section is an extension of a previous paper by the author and

P. K, C. Wang, "Estimates for Truncation Errors of Infinite Dimensional Systems
of Linear Ordinary Differential Equations,” IBM Research Report, 1964.
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7.1 INTRODUCTION

Many of the partial differential equations arising from physical problems may
be separated into space-dependent and time-dependent parts, where the latter
assumes the form of an infinite system of ordinary differential equations. An
approximate solution to the original partial differential equation may be obtain-
ed from the infinite system by truncation.

Some estimates of the error of this type of approximation were obtained for

certain classes of infinite systems of linear ordinary differential equations, in

a previous paper by the author and P. K. C. Wang (Section 6). In the present paper
these estimates are refined and extended. '

Use of the familiar Gronwall's Lemma in the previous paper suggested the
more general theorem, i.e.,

Theorem A : Let A(t), B(t), C(t), Dit), Pi(t), and Py(t) be non-negative
and twice continuously differentiable functions in the interval {0,T). Let
Uy(t) and Us(t) be continuously differentiable functions in [0, T}, and, in this
interval, also satisfy

t

Uty S P) + J' | A Uy + B Tym) dr, and
t

Uyt) 5 Py(t) + J’o [C(1) U (m) # D(n) Uy(n] dr.

Then,

¢

UL ) S Pyt) + J‘o [£,(n +g 01 dr, and
t

ORECRN R gy(n] dr,

where fl and f2 depend on P
C, and D,

1’ A, and B, while g, and g, depend

only on Pz,

This theorem appears to be new, but its proof will be deferred to a separate
paper, since a special case of this theorem is sufficient in this paper. (See
Lemma I.)

Section 7. 1 contains the derivation of bounds for the error of truncation. Know-
ledge about the solution of the truncated system can be used to sharpen bounds.

Section 7.2 shows that our results, applied to the system discussed in 7.1
yleld very precise error estimates.
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7.2 ERROR _ESTIMATES

Let there be given a denumerably infinite system of first order ordinary dif-
ferential equations of the form,

it + anxn(t) - anmxm(t), n=12, ..., (7.2-1)
‘ m=]
0
x(0) = X ,
where the a and a ., are constants and a = -p2 > = o, (Clearly we

may take g = 0. Let a solution to (7.2-1) exist and be denoted by

X{t) = x,(t), x,(t), ...) .

Further, for 0 <t < T = %, agsume that X{t) ¢ 11 (or 12). Also let the
Nth order truncated system, corresponding to (7.2-1), be

dYNn(t )

N
at + anYNn(t) = E aanNm(t). n=12, ..., N,

m=1
o (7.2-2)
YNn(o) = xn '

where the a,a and xz are the same as in {7.2~1), and let the solution
to (7.2-2) be denoted by

Y& = (Y 0) Yo,lths ooey Ypoo(t)) .

We define the error of truncation to be the difference between the solutions of
(7.2-1) and (7.2-2), l.e.,

Et) = (e,(t), ey,t), ...},

xn(t) - YNn(t)’ n=1,2,.., N,

where e (t) =
n (7.2-3)

xn(t), n> N,

Our purpose here is to derive estimates for the magnitude of E(t), which de-
pend on the order N of truncation. The systems of differential equations,
which we are considering, are derived from certain kinds of partial differential
equations. Thus we must choose a measure of the magnitude of E(t) which can
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be related to the original partial differential equation. There are two obvious
choices which arise quite naturally. The first is an £2 type,

IE], = lZ e P12,

which directly yields an estimate of the error of the solution of the original

partial differential equation. The second is an 1 type,
o0

el = 3 fe],

n=1"

which can be compared with the £° measure, i.e., if IE[, = 1, then

Iel, = |E],

The components of the error E(t) are of two kinds. The first kind, e,(t) for
n > N, represents, so to speak, the tail of the solution, which the truncation
process simply cuts off. The second kind, ey(t) for 1 = n = N, repre-
sents the effect of the coupling of the first N components of the solution with
the aforementioned tail. We will, for this reason, derive geparate error es~
timates for each of these kinds of error.

From equations (7.2-~1), (7.2-2), and (7.2-3), we obtain a system of differen~
tial equations satisfied by E(t), so that

[ Z a E (), n= 12 ..N
dEn(t) | m=1
dt M 8‘nEn(t) = o0 N
> a E_(t) + > a Y. (), n> N,
=1 m=1
(7. 2-4)
E () _{o, a = 1,2, ..., N,
n (v ]
. X , n > N.
n

We Tewrite equation (7.2-4) as an equivalent system of integral equations,

t
I [ 2 a E (n+ 2 a E (n]ew[at-n]dr,
o m>N

m=1

En(t) = h = 1’21 ey N. (7.2-5)

X exp(-a_t) + J' [ Z o Y, (7]ew(-a@-dldr +

o me=l

130



t
f 1 }:a LE M+ T 8 E (] exp - (t-n)] dr,
0

m=1 m>N
n>N.

‘We define, for each of the two kinds of error, a pair of norms as follows:
1 1/1 i 1/1
=2 [ 177 Bl x = IEIEI i=1,2.
1 N N 0N

In order to continue we must impose upon system (7, 2-1), the requirement:

either
oD
Z sup [a |< %, fori=1 (7.2-6a)
n=1
or
Q0 o0
PIEEDD a < w, fori=2. (7.2-6h)
n=1 m=]

With conditions (7.2-6a,b), we obtain, fori=1, 2,
t

i i
[EN; yexplkyt) = jo (A Bl & + A, IEl _\1 expliyn dr,
(7.2-Ta)
t
: i
JEl, _y ol gt = X1 g+ J'o Ay Iyl exple ) dr +

t
i i
+ J.o [A3 "E“i,N + A4 "E"i,-N] BXP(k_NT) dr,

(7.2-7b)
where k. = min an , K = inf a,
n=m -N a>N B
N N N
1 2 2.1/2
A, = max | | A7 ={ | 1] ,
12y e el At 2 g
1 = 2 Z” N 2.1/2
A, = max |a_ |, A, =] la 9177,
8 n;N m=sN nm 3 n> N mgl nm
N 00
1 2 2.1/2-
Al - sup la |, AL =[D la_ 11777,
2 nz=:1 m>N nm 2 n=1 m>N nm
o0 oD o0
1 2 2.1/2
TS M N NN APV TD DD DI b b

)
v
Z
B
v
2,
g
prA
B
v
Z
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(Conditions (7.2-6a,b) indiire uniform convergence of the summations which
arise in the derivation of (7.2-7a,b) from (7.2-5), allowing interchange of
summations and integrations.)

At this point, we require:

Lemma I. Let A, B, C, and D be non-negative constants, and le' and
Pz(t) be non-negative and caatinuously differentiable functionsin ¢ =t<sT= oo,
Let Ul(t) and Uz(t) be continuous functions in [0, T) and in this interval

satisfy

t
aT
ULty S P.() + J'O [AU (1) +BUyne"]dr,

arT

t
ULt SB,E) 4+ Io [Ccu(ne *" + DU, dr.

Then,
t .
Ul(t) = Pl(t) + J.o [k1P1(1-) + kzpz(r) e” T] exp[(1/2 HA+D+a+2 X ) (t- 1) |d7 ,

t

- - aT
U, t) SP1) + L k,P( 7 e

+ k 4P2(1')]exp[(1/2) (A+D- q+2 ) {t-7)] dT,

where
A = [1/2][p+D-~ A+ 4B<311/2 '
k, = max[A, 2BC-A(a+D- AN/2 ],
k2 = max [B, (2BD - B{a+D - A))/22},
k, = max[C, (2AC +C(a+D- A)/21],
k4 = max [D, (2BC + D(a+ D - A))/2A},

The proof of Lemma I will be found in the Appendix.

Since ]|E||i - ”EH1 _N < © and is continuous, we may apply Lemma I
] ’
to inequalities (7.2-7a,b) to obtain

"E"i,N = ki’zni(t)exp(-k_Nt) * (7.2-8a)
132
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where ¢

R@t) = jo B ,(7) exp (Bt-n) dr,

t

o i
Pa® = X7 vt _L Ay MYyl g exple_ym dr,
i i i .2
ko ~ A, max (1, [2A; - (ay + A, - A1)/2A),
i i 4, i i .1
ki,4 = max(A4, [21512 A3 + A4 (aN + A4 - Al)]/z"i) '
= [1/2 A1 +Ai - + 2
B [1/2] [A; 4~ ON Al
N = kykye
i .i.2 ,1,i,1/2
;\i = [(1/4)(aN + A4 - Al) + A2A3] .

Using the definitions above, inequality (7.2-8b) can take the form,
t
0 i
Bl x =UIX(, v + 4 L Iyl exple o dri{1 +

+ [ o (1-exp (BINI/B; } [expi-k )] .
(7.2-8b")
In those instances where the solution, YN(t) s of the truncated system is avail-

able, or where an estimate of is available, inequalities (7.2-8a)

el x
and (7.2-8b") provide bounds for the errors of truncation. If neither is known,
then we may use an estimate for [ Y [l, ., which we obtain using the method

of Bandy and Wang. (Section 6.3, theorem 1), i.e.,

0 i
Yol x X1l oxp ia) -k . (7.2-9)
This yields an estimate for Pi 9
0 4] i, i ~1 i
P, ,0t) = |Ix ﬂi,_N + J|x “LNA (A - ay) " lexpt(A; - ay)-1l.
(7.2-10)

Using (7.2-9) and (7.2~10) in (7.2~8a) and (7. 2-8b'), we obtain estimates
which involve only the coefficients and initial conditions of (7.2-1) :
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7.3

I i
Il o = { 1%,y B @

1X°1; N5 (R;-Ri)/(A‘I- ay = B} K5 om0

h"Eﬂi.-Ns[ |]x°ui'_N + [x° l; N 3 (t)][l t ;(t)] exp(-k_.t)

where
i
i _ i ) i
Ryt) = [exp(tA -ay))-U/A - ay].

Conditions 7.2-6a,b) and the condition that the a are bounded from below

imply first, that the Rj(t) exp(-k_ t) for i,j = 1 2 may be bounded by ex—

pressions independent of N and finite for all finite t; second that the A

for i = 1,2 are bounded for all N ; and third, that A A3, A k 9¢ and
ki 4 fori= 1,2 gotozeroas N - %, Thus for all fixed and fuute t, if
' i

the initial condition is boundedin £°, both [ E| i, N 2nd lE| |, N 80 tozero
as N - %,

EXAMPLE

In Section 6.1, the example,

da
1 2
it + al'.-r/4 o,
da
n 2 2 n 2
3 t 8, "n = - (-1) 3alar/4n, n=23,...,
+1 2
a_(0) = -1V brn-Dl,  n=12, ...,

was considered. We will now calculate the error obtained by truncating this
system after the Nth equation. Condition (7.2-86a) is not valid here, so we use
condition (7. 2~6b), l.e.,

00 o0
2 " ed am® = ext 1/16) 3 (/m)?
n=2 n=2

= 31’4 (1/32)(!2 -6) < o,
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We can easily compute the various constants required for estimates (7.2-8a) and
(72-8b"):

Ky g = 0 Ky 4= 0 K=o me1?,
- 2 2. 1/2
P, &)= (/[ X @ -1 1Y
' n=N+1

t

00
NEITED ) o2 Ve S Nayll,  exet 2+ 12 1) dr,
n=N+1 ) '

where a__ denotes the solution to the truncated system. The error estimate

than is
lEl,y = 0 (7.3-1a)
IEl, = Py o) exp (- Sty (7.3-1b)

We can solve the truncated system and compute an exact value for
gl

N
lagly, n = /™ IRZ; n (4n? - 9778 Y2 exp(afii-1/4)) .
(7.3-2)
From (7.3~14), (7.3-1b), and (7.3-2) we obtain the estimate for error,
TEly x = o (7.3-3a)

[+ o]
IEl, y = W/n exp- N+ 2001 Y mad-01? V2
’ n=N+1
(7.3-3b)

o0 N
sumen?-t Y 0 H Y2 3 mest-ur4YA
n=N+1 n=1

00 N
R A (U DN T DR ) ai YR 21

n=N+1 n=1

The first term (1. e. within the first brace) of equation (7.3-3b) is in fact nega-
tive and therefore may be discarded, so we have as our estimate of the error
of truncation:
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lef, x = 0. (1.3-4)

ot N
IIEHz Ny = 3lar(N+ 1)2-1!']-1{ E n_zl [ Z (4n3-n)—2] } l/zexp(—'zt/4).
- n=N+1 n=1

Comparing (7.3-4) with the exact result, i.e.,

lEl, v = 0.
2,N (7.3-5)
. o0
[El, =l Y 6?12 expi-deay
' n=N+1

we note that the exponential parts of both (7.3-4) and (7.3-5) are the same, and
the constant factors are nearly equal. (For N =1, this difference, which is
just the first term of (7.3-3b), is approximately 0 .00590.)
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7.4 APPENDLX A4 The £IT001L GL seming &.

We are given,
t .
Ul(t) = Pl(t) + jo [A Ul( T) + B Uz(-r) eaT] dri

t

U, ) = Pyt) + J’o {culme"”

+ D Uz('r)] dr,

for 0 st =T = o, with the conditions on Ul’ U
D as given in Section 7.1. Further let

2 Pl, Pz. A, B, C, and

U, U, (t) - P(t),

T, it) = U,t) - Pyt),

= at
Pl(t) = A Pl(t) + B Pz{t) e R

CP ) e 4D P,(t) » (7.4-1)

e

ba
-
23
e
"

€
HA
[
——
|

t
J'o [AU(r) + BUyr) e *7 + B (r)] dr,

o

G
=
S
®

]

t
- T ——
L [cUr e” 7 + DU, ) + B, (n]dr,

a = o+ D - A, 12=a2/4+BC.

It is easy to show that
W1(t)eAt = U, W0y = 0,
Dt = .
Wyit)e = U,lt), Wo(0) = 0,
and
dw. (t)
dt

— A
= B e by B W,t) o,

(7.4-2)
aW, (t)
dt

D at

< 132(t)e’ + CWl(t)e-

We may decouple inequalities (7.4-2) to obtain
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daw l(t )
dt

-At

= Pl(t)e

aw,(t)
dt

~-Dt + Ce-at

= Pyt)e

{

t

0

Let W3(t) and W 4(t) be solutions to

at = -Dr at ¢ -a
+ Be J’ P2 {T)e dr + BCe j‘ Wl(-r)e T
o 0

(7.4-3)

t
Pl (T)e‘AT dr + BCe—atJ Wz(r)eﬂ"d'r ’
o

L

drwameat/zl = . =At at (* -Dr
= P (t)e +Be P.(r) e dr
dt 1 J "2
0
ot -
+ BCeat Wa(r} e a"r/"?d'r , Ws(g.) =g,
-at/2
d[W (T)e ] t (7.4-4)
4 =P t)e ece™ [ B (r)etTda
dt 2 J, 1 T

t
+ BCe'atJ' w4(r)ea"/2d-r, W,(0) = 0.
0

Equations (7.4-4) become, after differentiation,
-(a+A)t

aw_it) d[P_(t)e ]
3 2 at/2 1 —  -t(D-a/2)
— T T A W) =e o + BP,{t)
dt
aw,(0)
w3(0)’0’—a-t——_= P (0),
= {a - D)t
a'w 4t [at/2 dPyit)e ] t(A+a/2
5 1 HAR/2)
—_— - Aw & = — + CBb)e ,
dt
aw,(0)
W,(0) = 0, —— = B,(0).
Solving,
W,it) = (1/7L){f>'1 (0) sinh At +
t
o772 [stan ag-m)] 1B (re @A)y + BBy m) e DT ar}

+J‘o

(7.4-5)
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Wg(t) = (1/3) {P,(0) sinh At +

(a~-D)r

t _— — -
+ f e™7/% fotan A -7 [(Bytr) € D))+ C B e A Tar} .
o

Equations (7.4-5), after elimination of ?1 and 52 through use of equations
(7.4-1) and simplification, take the form,

t -
Wy(t) = e)\tf fk, P(r) o at/2 . kz Py(r) e at/2 e (D+A+2”T/2d1-
o

t .
W4(t) < oM fo [k3 P.(7) o @ /2 + k4P2(-r) o a'rlzle -(D+A+2701'/2.d1_

where kl,kz,k3. and k , 2re as given in the statement of Lemma I, and
equations (7.4-6) are valid forall t, for0 =t < T,

Comparing 'Wl(t) and Wz(t) with Wa(t) and W 4(t) respectively, we see
from equations (7.4-3) and (7.4-4),

t/2
dW. (1) = W_(H e ] t i
1 dta = B(‘:e;at f [Wl(-r) - Wa(r) eaT/Z] e lwd'r s
[+
W (o) - Wgl0) = 0,
-at/2
aw, () - W, ity e 7] t i
22 = BCe ™ f W, (1 - Wyne™"%1e*ar ,
[a]

Wolo) -~ W,(0) =0 .
By Lemma II (See Appendix B},

' at/2
Wl(t) - W3(t) e =9,

W, (5 - W, 22 < o, for 0=t <T
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Thus,

Ui SPH + Wy QA tDF Atz

U, 5Py + W, o ¥ D= Y2 (1.4-7)
and finally, from equations {(7.4-7) and (7.4-6), we obtain

t
ar, (D+A+a+22)t-7)/2
UI(t) = Pl(t) + f . [.la:1 Pl('r) + kzpz(r) e Je dr,

t
Uy(t) SP,H) + J'o[m3 P.(7 e 2T 4 k, P, (,.”e(D +A+a+ 2Nt -7) /2dr.

7.5 APPENDIX B. Lemma II.

Let U(t) and _c'i%_ U(t) be continuous functions for 0 =t < T = o and

satisfy there

t
—(ﬁ— Uiy s Keat f U(n e T ar , where o and K are constants.
o

If U(®) < 0 and K > 0, then Uit) < 0 for 0 st < T,

Proof. Set
t
Vit) e®/2 o g o™ f U(r)e  Tdr.

o

It is easy to show that

2 .
—-—dz V() - 12V(t) = -fz(t) =90,
dt
V{0) = 0, d—‘:*v(o)SO ’ 12= 02/4+K.

for some function f(t) . Solving for V(t),
V() = (1/3) sinh At Edt— V(o) - ‘r [sinh A(t-7) ] t‘z(-r) dr = 9.
o
Thus,
at/2

d_
3 U = Ve <90,

U s U0) = .
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