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ABSTRACT

Methods of dynamic structural analysis in the frequency domain are
strongly indicated when the structural and damping properties are
frequency-dependent. Typical problems in which this dependency occurs are
soil-structure interaction problems. Moreover physical non-linearlities can
be present due to high strain levels in the soil.

In the present work a method of dynamic analysis in the frequency domain
is presented that performs a rigorous analysis of non-linear structural
systems with physical non-linearities and frequency-dependent properties.
Stiffness and damping properties can be considered as frequency—-dependent and
the stiffness property can also be strain-dependent. The method is a
step-by-step incremental one with linearized steps. In each step the
integration is performed in the frequency domain through a FFT algori thm.

Examples of the analysis of SDOF soil-structure interaction system are
presented in order to assess the applicability and stress the features of the
method and to show the influence of frequency-dependent damping in the
structural response.
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INTRODUCTION

Methods of dynamic structural analysis in the frequency domain are
strongly indicated when the structural and damping properties depend on the
excitation frequency. Typical problems in which this dependency occurs are
soil-structure interaction problems. On the other hand physical
non-linearities can be present due to high strain levels in the soil.

Linear Structural dynamic analysis in the frequency domain is well known
and had a great development with the use of the FFT algorithm. Nevertheless
only recently methods of non-linear dynamic structural analysis in the
frequency domain have been developed. Kawamoto [1983] presented the so
called Hybrid Frequency-Time Domain(HFTD) method in which the non-linearities
are treated as pseudo-forces. Darbre and Wolf [1987] demonstrated the
convergence for the partial version of the HFTD method.

In the present paper a method for non-linear dynamic structural analysis
in the frequency domain is presented that works for
Single-Degree-Of-Freedom(SDOF) systems with frequency-dependent properties
and physical non-linearities. Stiffness and damping properties can be
considered as frequency-dependent and the stiffness property can also depend
on the displacement. The method uses a step-by-step incremental technique
vith linearized steps and a secant stiffness. In each step the integration
of the dynamic equilibrium equation is performed exactly in the frequency

domain through a FFT algorithm taking into account the frequency—-dependent
properties.

Examples of the analysis of non-linear SDOF systems with
frequency-dependent properties submitted to transient excitation are
presented. The influence of the frequency-dependent damping wupon the
structural response is highlighted in these examples.

FORMULATION OF THE PROBLEM

Consider the SDOF system of Fig. 1 submitted to an arbitrary excitation
P(t). The spring stiffness k depends on the displacement v due to the
system non-linearity and the damping coefficient depends on the frequency of

the excitation, . The problem is then to integrate the dynamic equilibrium
equation

m + c(w)v + k(v)v = p(t). (1)

As the damping coefficient is ® dependent a frequency-domain analysis
has to be performed and, as the stiffness depends on the displacement, a
linearization technique must be employed. Consequently the present method is
a Step-by-Step Incremental Linearization in the Frequency Domain (SILFD)
method. In each linearized step a secant stiffness is considered.
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THE SILFD METHOD

In order to calculate the response of the system governed by Eq.1 two
approximations are made. The first one is the approximation of the given
load by piecewise linear segments. The total time interval in which the
response is to be calculated is divided in intervals At = t.‘l - tj-l i Py
and pJ_1 are the values of p(t) in times t:J and tj-l , respectively,
and Ap‘1 = pd—pj_1 , Fig.2a. The load variation in time interval At‘1 is

given by, Fig. 2a ,
Ap
P(T) =Py * rt‘} T. (2)

where T 1is the current time in At j (o< 7 € At J). The second approximation

refers to the spring force versus displacement curve. This curve is also
approximated by piecewise linear segments as indicated in Fig. 2c. The
levels of these two approximations depend on the accuracy with which the load
and the stiffness variation can have a good representation.

The response of the system is calculated through the linearized steps
along the time intervals At j in which the spring is considered linear with
stiffness k, , Fig. 2b. The linearized dynamic equilibrium equation in

J
time interval AtJ is

m + c{w)v + ka = p(T) (3)
with the initial conditions Vi-1 and V.IJ_I , Fig. 2a. Taking the Fourier

Transform (FT), (F)., of both sides of Eq. 3 and considering that F is a
linear operator one obtains

F[mv] + F[c(w)Vv] + F[kjv] = F[p(7)]- (4)

The following equations are now considered by definition:

Finw] = S m ¥ e 297 ar ; (5a)

Fle(@)v] = S~ c(0) v e T dr ; (5b)

FLkyv] = I x & e 19gr = k § V@) (5¢)
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Flp()]1 = [° p(7) e 1T dr = P(o) . (5d)

noting that in Eq. 5¢ k.1 is constant. Integration by parts of the
right-hand sides of Eqs. 5a and b gives respectively

FIwv] = - mv, ;- 10 vy g - v (o) (6a)
Flc(w)v] = - t:.(m)vJ_1 + iwc(w) V(w) . (6b)

Introducing now Eqs. 6a, 6b, 5¢c, and 5d into Eq.4, the following equation is
obtained

[H(©)1™! V(o) = B(o) . | (7)

In this equation

P(w) = P(w) + m'rj_l *+ domv, o+ c(w)vj_l . (8)
is the FT of the load with due regard of the initial conditions, Vi-1 and
;'3-1 . and

H(w) = [<o°n + foc(w) + kJ]-l (9)
is the system complex f requency response function in time interval At

The Fourier Transform of v(r) 1is obtained, by inversion in Eq. 7, as

V(o) = H(w) P(w) . (10)

The response v(t) in time interval At
Eq. 10. In this way

j 1s then the inverse FT of V(w) .

v(r) = '%" ]‘: V() T do . (11)

The FT of the velocity is
V(0) = 10P(w) H(w) . (12)
The velocity response is the inverse FT of V(w) and is given by

v(1) = —12; ]: V (0) &7 qo . (13)
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COMPUTATIONAL PROCEDURE

The computational procedure of the SILFD method consists of the
following steps:

i. for each time interval AtJ Fig. 2a, obtain kJ from the spring

force versus displacement curve, Fig. 2c.
ii. extend the load function in time AtJ with a trail of zeroes in

order to total o™ points (m integer); calculate the discrete FT's
P(w,). Eq. 5d, and P(o). Ea. 8, (k=1.2, ..., 2™, Fig.3

iii. calculate H(wk). considering c(uk). for k = 1,2, ..., 2™

iv. calculate the discrete FT's V(wk), Eq.10, and V(wk). Eq.12, for

k=12, ..., 2" .
v. calculate the inverse discrete FT's of V(mk) and V(wk) to obtain
v(t) and v(T).

vi. if v,C(v, ., Fig. 2¢c, go to time interval Atj+1 s 1f vJ> Vi

J
Fig. 2c, reduce At, and go to ii.

J
EXAMPLES

The first example is the SDOF system of Fig.l with mass m = 1.0 x

loekg. The spring force versus displacement variation is bi~linear and is
given in Fig. 4 where the initial stiffness is ko =15 x 10g N/m. Several
damping coefficient versus frequency variations are considered which are
shown in Fig. 5. The maximum values of these curves correspond to damping
ratios of 5%, 10¥%, 20%, 30%, and 40% of the critical damping of the linear
system. The system is submitted to the load given in Fig. 6. The curves ACC
and A10 in Fig 7 are the system responses with a constant damping coefficient
corresponding to 10X of the critical damping and with the damping coefficient
given by the 10X curve in Fig. 5, respectively. The consideration of
variable damping, in this case, leads to greater values for the
displacements. The curves in Fig.8 display the response with damping
coefficients given by the 5X, 20X, and 40X curves in Fig.5. The great
influence of the damping variation on the pseudo-period of the response and
the great difference in the obtained displacements, after the load develops,
is to be noted.
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The second example is a SDOF linear system with m = 1.0 x 106kg , k =

1.5x 1010 N/m and an hysteretic damping coeffient D = 0.10 submitted to a
transient excitation. The analysis is performed considering a viscous
damping ratio £ = 0.10 and and equivalent viscous damping coefficient
defined by ceq = 2—21‘— . The variation of ceq with o is shown in Fig.9.
As this variation has a singularity for w = o the following approximations
are considered: horizontal (1): tangent (2); and parabolic (3). Fig. 10
shows the responses obtained with a viscous damping coefficient corresponding
to a damping ratio of 10X and with equivalent viscous damping coeffients with
the horizontal (CHR), tangent (CTG), and parabolic (CPA) approximations.

From Fig. 10 it can be observed that, for a transient excitation, the
consideration of the frequency content of the excitation leads to greater
values of the response. On the other hand, for a resonant harmonic
excitation, the response can be calculated with a constant equivalent damping
coefficient equal to the hysteretic damping coefficient.

OONCLUSIONS

The method presented herein is applicable to the analysis of the dynamic
response of non-linear systems in the frequency domain. The stiffness and
damping properties can depend on the excitation frequency, as in
soil-structure interaction systems, and the stiffness can depend on the
displacement in face of non-linearities.

The use of a FFT algorithm turns out the method to be competitive with
methods in time domain. On the other hand the method is mandatory for
systems in which the properties depend on the f requency content of the
excitations. The system non-linearities ar treated by incremental linearized
steps with a secant stiffness.

Great differences in the responses considering constant and
frequency-dependent damping are observed in the analysed cases mainly when
the transient load dies out.
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Fig. 4 - Spring force versus displacement
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Fig. 5 - Damping coefficients versus frequency
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