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FOREWORD

The research work reported herein was conducted by the Aircraft Division,
Douglas Aircraft Company, Inc., Long Beach, California. The work was
administered by the Aero-Acoustic Branch, Vehicle Dynamics Division, AF
Flight Dynamics Labvoratory, Research and Technology Division, Wright-
Patterson Air Force Base, Ohio, under Contract No. AF33(657)-8217. This
research is part of a continuing effort to obtain tolerance ievels and
design criteria for flight vehicles which is part of the Air Force Systems
Command 's Applied Research Program 750A, "Mechanics of Flight". The work
was conducted under Project 1370, "Dynamic Problems in Flight Vehicles",
Task 137001, "Resonant Fatigue of Structure." Mr. M. J. Cote of the Aero-

Acoustics Branch was the Project Engineer.

The Douglas program was conducted under the direction of Mr. G. E. Anderson,
Chief of the Structures Section, Engineering and Product Development, Air-
craft Division. Mr. P. R. McGowau served as principal investigator aided
b Mr. R. L. Frasca. Additional personnel of both the Structures Section

and the Structural Mechanics Section aided in this project.

Testing in the High Intensity Sound System of the Dou;las Senta Monica
Acoustics Laboratory was under the control of Mr. J. E. Apple assisted by
Mr. M. R. Ballard.

The testing and the analysis of the aluminum structure was performed by
Mr. J. D. Van Dyke and Mr. A. L. Eshleman and credit must be extended to

them for these results.

The time period covered oy this contract was June 11, 1962 to September 30,
1963.

The corresponding Douglas number for this report is LB-31354.
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ABSTRACT

The results of acoustic testing on several types of aircraft structure
are compiled and are used to produce acoustic fatigue design charts.
The theory on which the charts are based is explained. A method of
converting constant amplitude S-N data to random data is presented,

as is a method of converting discrete frequency test results to
equivalent random data. Test results from various other companies

test facilities are compared.

PUBLICATION REVIEW

This report has been reviewed and is approved.
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SECTION 1 INTRODUCTION

Acoustic fatigue is a subject that is no longer new. However, due to the
many factors which must be considered for design, and allowed to vary for
a comprehensive test program, the amount of data available for general
design purposes is almost nil. To partially eliminate that condition this
study extends results of either discretely or randomly excited structural
acoustic tests through an analytical approach and presents the extended
results as design nomographs.

The source of acoustic excitation was considered to be the propulsion system
and the structure of main interest was the lighter structural configuration
common to wing trailing edges, empennage, or fuselage afterbody. These
structural components are most commonly exposed to acoustic environments and

are such that other design criteria is not critical.

The design results as presented are & function of the allowable random
fatigue life of the material. Use of elevated temperature data for this
fatigue life would account for the direct effect on the material of elevated
temperature. No attempt was made to account for the overall effect of
elevated temperature. This depends so greatly on the response of the
adjoining structure that it is beyond the scope of this study. Additionally,
for a majority of the structural components under study the damage occurs at
takeoff when temperatures are nominal and combined effects are insignificant.

Manuscript released by the author, 30 October 1963, for publication as an
ASD Technical Documentary Report.
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SECTION 2 SUMMARY

This investigation has been directed towards developing design data for
acoustic fatigue. The factors that enter into the design of structures
for acoustic fatigue and the manner in which each of these factors affect
the life of various typical aircraft structure is considered. The acoustic
environments considered are those resulting from typical jet propulsion

systems as distinct from aserodynamic noise.

The final results of this study are design charts to aid the designer in
the selection of structural elements to meet the requirements for acoustic
fatigue. These charts are vased on an analytical approach to determine the
relationship of the various parameters which affect the design and are

presented in Section 6.

The analytical expressions developed are for (1) structural mechanical
relationships, (2) equivalent random and discrete acoustic loading or
response and (3) equivalent random and constant amplitude materiai fatigue
allowable data. These expressions are used in conjunction with the test
results to develop the design charts mentioned above. The analytical

expressions and relationships are developed in Section S.

The results reported herein cover two phases of the study
1) Study of conventional - subsonic structure

2) Study of advanced structure

The structure considered in the first phase consists of six types fabricated
of 2024s-T3, 2024s-Th or 7075S-T6 aluminum alloy

1) Skin and rib construction

2) skin and rib with a doubler at the rib

3) Edge attachments

L) Ribs with lightening holes

5) Beaded inner skin panels

6) Honeycomb panels

ASD-TDR-63-820 2



The second phase of this study is conducted on two types of structure
suitable for a portion of a supersonic or aerospace vehicle. The
material for construction is titanium 6Al-4V sheet annealed. The test
configurations are:

1) Corrugated inner skin with a single face

2) sSkin with welded stringers
A detailed description of the test specimens is presented in Section 3.

The tests were conducted in the Douglas Santa Monica Acoustics Laboratory
facilities. Either the siren or the random noise generator was used in
these tests. The siren, producing a discrete frequency output, was used
for the conventional -subsonic structure. The random gemerator, which was
not available in the early part of the program, was used for testing the
advanced structure specimens. This test equipment and the test procedures

employed with each are described fully in Section 4.

Test data were obtained from other sources and, where possible, were
compared with data from this study. Due to data limitations and variation
in test methods, there was little correlation of results. This information

also is presented in Section k.

ASD-TDR-63-820 3



SECTION 3 TEST SPECIMENS

The test specimens for this program are separated into two general types
based on the structure which they represent. These two types of structure
can be Jefined roughly as 1) Conventional-Subsonic Structure and 2)
Advanced Structure. While variations in basic structure between these
types exist, it will be found that the variation in material and in methods
of assembly are as much a criteria defining the types as is the basic
structural concept. Thus, while the specimens for the first type are all
faoricated from aluminum alloy (2024S-T3, 20245-Th or T075S-T6), the
advanced specimens are fabricated of titanium 6A1-LV sheet annealed, with
however, one of these specimens being, in form at least, a conventional

skin and stringer.

Both types of specimens are confined to structure that is most susceptible

to damage from acoustic fatigue. This normally imposes the two restrictions,
that the parts be in a relatively high level area of the sound field and
that other design criteria does not dictate such a high strength capability
that acoustic fatigue 1s insignificant as a design factor. Structures which
usually meet both restrictions are the "minimum gage" structure of the wing

trailing edge, wing control surfaces, fuselage afterbody and empennage.

CONVENTIONAL-SUBSONIC STRUCTURE

Simple specimens were evaluated, initially, using the siren to determine the
best configurations for the various structures. These specimens included
skin and rib box panels with closely spaced ribs which simulate control
surface construction, honeycomb panels, and bonded-beaded panels. The
materials used were 20245-T3, 2024S-TL and 7075S-T6 clad sheet. Based on
these tests, various improvements were made and appropriate rib spacing,

rib gages, skin gages and rib lightening holes were determined for & useful
range of sound levels. Skin capability was improved through the use of
bonded skin-doublers at the ribs. These doublers provided a reinforcement
at locations of high stresses near rivet holes. The doublers were scalloped

to reduce stress concentration at their edges. Improvements were made on

ASD-TDR-63-820 In



bead ends to balance the end and center strength. The honeycomb panel edge
designs and attachments were selected. Material gages and other pertinent
dimensions were varied from specimen to specimen within each configuration.
The limits of these dimensions are indicated in the following paragraphs and
the combinations tested are presented in detail in Table L.

The aluminum alloy conventional structures tested were:
1) sSkin and rib construction
2) Skin and rib with a doubler at the rib
3) Ribs with lightening holes
L) Beaded inner skin panels
5) Honeycomb panels
The specimen overall dimensions were approximately 3 x 4 feet.

Skin and Rib

The skin and rib specimens were representative of & control surface section
with ribs joining an upper and a lower skin and shear webs representative
of spars completing the box section. Various combinations of rib and skin
gage and rib spacing were tested within the following limits:

Skin gage 025 - .063
Rib gage 032 - .063
Rib spacing k.o - 9.5 1inches

Skin and Rib with Doubler

These specimens were fabricated as indicated in the previous paragraph with
a finger or scalloped doubler bonded to the skin at the rib locations.
Specimens were fabricated with doublers of various thicknesses but generally
within one gage of the skin itself. These specimens ranged within the
following limits:

Skin gage .020 - .050
Rib thickness .0k0 - .063
Doubler thickness .012 - .032
Rib spacing 4 and 8 inches

ASD-TDR-63-820



Rib with Lightening Hole

The affect of lightening holes on ribs was evaluated in the box specimens
in conjunction with the other panels. The ribs had standard "c" flange
stiffened edges on the cutouts. The ends of the cutouts were circular in
shape with two alternate radii, 1-1/8 inch or three inches. The rib
thicknesses varied from .050 to .032. The lengths of the lightening holes
tested were either three or 13-1/2 inches.

Beaded Inner Skin Panels

Panels with various forms of beaded inner skins were tested and most failed
through the bead end. Redesign developed a bead end which was equally
fatigue resistant with the other parts of the panel. Only the test results
for this improved bead, described below, are presented herein. The peads
tested were one inch deep and the material was .020 in thickness. The width

and length were 5-1/8 and 29-1/2 inches, respectively.

Honeycomb Panels

The honeycomb panels were sandwich construction with the aluminum face sheets
bonded to the aluminum core. A formed doubler was added around the edges

and the edge core was stiffened by the addition of & foam filler. The

panels tested were square, 21 inches on & side, and the overall thickness

was 7/16 inches.

ADVANCED STRUCTURE

The advanced panels tested in this program are of two basic types. These
represent control surface and trailing edge structure, areas susceptible
to acoustic fatigue. The material for all items, with the exception of
the lower surface in the stringer configuration, is titanium 6Al-4V sheet
annealed. Mechanical properties for this material are shown in Table 1.
This lower surface is aluminum of & thickness to simulate the stiffness of

the "built-up” test surface but offers simplicity for fabrication.
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TABLE 1
MECHANICAL PROPERTIES

Titanium 6Al-4V Annealed Sheet (.020 - .187)

Mil-Hdbk-5, "A" Value

Fiu = 130.0 ksi (Long)
130.0 ksi (Trans)
Fty = 120.0 ksi (Long)

120.0 ksi (Trans)

Fcy = 126.0 ksi (Long)
126.0 ksi (Trans)
F = 76.0 ksi

su

Foru = 244.0 kst (e/D = 2.0)

Fory = 198.0 ksi (e/D = 2.0)

E = 15.4 x 10° psi (Long)
16.4 x 106 psi (Trans)

E = 16.0 x 106 psi (Long)

16.9 x 106 psi (Trans)

€ =  10.0% (Long)
10.0% (Trans)

4.6 x 1070 in/in/°F (70 - 200°F)

x =
\"4 = .33 (Long)
.32 (Trans)
W = .160 - .161 lb/1n3

ASD-TDR-63-820 T



Corrugated Inner Skin with a Single Face

The configuration proposed for a control surface is a corrugation stiffened
panel with formed angles, representative of spar caps, at each end and
running normal to the direction of the corrugations. Welded tees, representa-
tive of rib caps, parallel to the corrugations, located at the ends and two
positions in the central portion of the panel, are clipped to the spar cap
angles and form three bays. Formed angles in each bay are positioned against
the lower crest of and transverse to the direction of the corrugation to tie
each end to the spar cap. These two attachments are by spotwelds as is the
corrugation to skin, the skin to spar cap and the rib clips to spar. The
ribs are fastened through the skin and corrugation by A286 rivets, 5/32
inches in diameter. The corrugations extend in the chordwisge direction.

This orientation permits the rib cap to tie directly to the outer skin

and the inner skin to efficiently work with the outer skin to supply a
torsionally stiff path for actuation loads. Under conditions of spanwige
bending, the inner skin will offer very little restraint which will result

in a comparatively flexible structure. This condition will alleviate the
induced loads which result from deflection of the supporting surface. This
construction also eliminates the need for rib cutouts which increase the
fatigue susceptibility. These panels overall are 24 by 36 inches. The

combination of skin and corrugation thicknesses tested is indicated below:

Outer Skin Thickness Corrugation Thickness
.025 .016
.025 .020
.020 .016
.020 .020

Photographs of these panels are presented in Figures 1 and 2. The manner
of selecting the skin and corrugation test combinations is presented in

Appendix I.
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FIGURE 1 CORRUGATED PANEL - SKIN
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FIGURE 2 CORRUGATED PANEL - CORRUGATION



fkin with Welded Stringers

The trailing edge structure, in form, is a conventional skin-stringer-rib
configuration. The panels are supported by a representative sub-structure
consisting of four rivs, a front and rear spar and a lower closing panel.
The structure is unusual in that it is of all welded construction and the
stringer-skin attachment is achieved by means of a melt-thru weld process.

The stringer does not have a flat against the skin but the web is welded
directly to the skin eliminating duplicate area at this point. The attach-
ments of the ribs, skin and spars is all by resistance spotwelds. At the
stringer-rib intersection, the two elements are clipped together to prevent
stringer rolling. This attachment is by resistance spotweld to the rib but
the attachment to the stringers is by fusion spotwelds. Thesge panels have
overall dimensions of 24 by 36 inches with the stringers running in the
longer direction, approximately four inches on center. The stringers are
+032 inches thick material and are formed by using a melt-thru weld to form
8 tee which is then welded to the skin. Two skin thicknesses were tested:
.025 and .020. Photographs of the panels are presented in Figures 3 thru 5.

ASD-TDR-63-820 11



FIGURE 3 SKIN AND STRINGER - UPPER EXTERIOR
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FIGURE 4 SKIN AND STRINGER - LOWER COVER REMOVED
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FIGURE 5 SKIN AND STRINGER - LOWER COVER INSTALLED
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SECTION 4 TESTING - FACILITIES, PROCEDURES, RESULTS

The testing in this investigation was conducted for the most part in one of
two test facilities at the Douglas Company Acoustics and Vibration laboratory
in the Santa Monica Division. In addition, some of the tests on the conven-
tional structure were conducted in the noise field of an actual Jjet engine.
The following paragraphs describe the test facilities, the test procedures
and present the test results.

TEST FACILITIES

The two test facilities located at the Santa Monica Division consist of a
siren of Douglas design and & High Intensity Sound System (HISS) designed by
the Ling-Altec Company.

Siren

The siren produces discrete frequency noise up to a sound pressure level of
160 db. The available frequency range is from SO to 1000 cps. Air for this
facility is furnished by a squirrel cage blower driven by & 100 horsepower
motor. The air passes through the siren which is driven by & variable speed
motor and produces noise of the required frequency. This noise passes
through an expansion horn to the test section where it impinges on the test
specimen with a grazing incidence. Test panels can be accommodated up to

3 feet by 4 feet in size.

High Intensity Sound System (HISS)

The HISS is an electrically controlled system which has a capability of
reproducing random, sinusoidal or a taped signal as desired. The limitations
are an overall output of 170 db random and a frequency range of 50 to 10,000
cps. The random output is adjustable in octave band widths. The air for
this equipment i1s supplied from a plant compressor and is used up to 50 psi.
The air flow is modulated by an electrical signal to the ten transducers in
the system to produce the desired noise. This noise then passes through

exponential horns to the test section when it impinges on the specimen with

ASD-TDR-63-820 15



a grazing incidence. The test section has & width of six inches and isg
capable of accommodating test specimens up to 5 feet by 10 feet in size.
A general view is shown in Figure 6.

The instrumentation is by Brllel and Kjaer and provides a capability of using
up to 50 strain gages with an automatic selector type 1542 which monitors
the gages in sequence. Strain gage response was viewed on a 502 dual beam
oscilloscope. Peak and RMS strains were read off a voltmeter. A level
recorder type 2305 in conjunction with a beat frequency oscillator type 1014
was used to determine strain response as a function of frequency. A multiple
octave band equalizer was used to obtain the desired shape spectrum. This
spectrum was checked with an octave band noise analyzer type 1350-A. Strain
gage output was recorded on an Ampex 600 magnetic tape recorder. This tape
is reduced through use of a Techno analyzer. During the test, an audio
frequency spectrometer type 2112 which filters to 1/3 octave band was used.
A 52TB power supply and a 30 db amplifier model 4U2C were also used.

TEST PROCEDURE

The test procedure varied slightly with the two facilities to accommodate the
differences in equipment. For each of the facilities, however, the specimens
were first excited with a stress-coat applied to the surface to determine the
most appropriate location for strain gages. Photographs showing typical

stress-coat results and strain gage positions are shown in Figures 7 through 16.

ASD-TDR-63-820 16



WHLSAS GNNOS ALISNEINI HOIH MEIA TVHINED 9 FdNdIA

17



18



(L 9Id ‘V ViMY) IVOD SSTMIS @ TUNOIJ

19



(L 9Id ‘G VEMV) IVOD SSTMIS 6 MuNOIJ

20



(L 12

‘0 VENV) IVOD SSHMIS

OT TNOId

21



(L 011

‘C VE¥V) IV0D SSTMIS TT HMNOIJ

22



(L 914 ‘% VEMV) IVOD SSTMIS 2T

|WNOTA

23



i N A o - e S T R A S B i

STRAIN GUAGE
IQN/G, P,ngéu
/NITALL/QTI@N

24

FIGURE 13 TYPICAL STRAIN GAGE INSTALLATION CORRUGATED PANEL



. - )

R N .

. :

O

o G o

&
>l g™ gtV o

s

O

Lo
o o o b oeNo~oe o o

FIGURE 14 SKIN AND STRINGER STRESS COAT OVERALL VIEW

25



FIGURE 15 SKIN AND STRINGER STRESS COAT CENTER
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FIGURE 16 SKIN AND STRINGER STRESS COAT CORNER
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Siren Test Procedure

In conducting the siren tests on the specimens with strain gages installed,
the resonant frequencies were determined by exciting the panel at a low sound
pressure level in increasing frequencies and noting those of most response.

A more detailed survey was then made of the points of interest and the critical
frequency was determined with the variation in response of near frequencies
to permit determination of the damping factor. Mode shapes were determined
through the use of a stroboscopic light. Response readings were taken at
each of the critical frequencies while varying the sound pressure level.

This data results in a linearity factor as explained in Section 5. After
these data were obtained the specimens were tested to failure. To accomplish
this the panels were exposed to a chosen lower intensity sound level at each
of the more critical frequencies for a period of 20 minutes. If failure did
not occur, the sound pressure level was increased 3 db and the specimens
again excited at each frequency for 20 minutes. This was repeated until

failure occurred.

HISS Test Procedure

In using the HISS equipment, the test procedure was similar to that described
above. The strain gaged specimen was first excited by a low level random
noise to determine which of the gages were indicating the most critical stress
to establish limits of pre-fatigue test noise levels. Using a sinusoidal
excitation, critical frequencies and mode shapes were determined. Linearity
data were then determined as indicated for the siren. The fatigue portion of
the test was then conducted, using a white noise excitation. Testing was

all at a single sound pressure level for each panel. The manner in which an
appropriate test level was arrived at is indicated below. Testing was
conducted for various periods of time varying froam three minute intervals

at the start of a run to 15 minute intervals after completion of an hour of

excitation.

The preliminary analysis showed that the corrugated panels with the equal
thickness corrugations had almost equal critical stress levels for the same
noise input. Thus, these four panels were tested in two sets of two each.

The skin and stringer panels were tested individually.
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Test Sound Pressure Levels

The test sound pressure levels were chosen at a level which was computed
to cause failure in approximately one hour of testing. For the corrugated

panels this was 134 dbR per cps and 128 db_ per cps for the skin and

R
stringer panels. Within the ability of the test equipment to produce white
noise at these levels, the overall equivalents from test were 163-1/2 and

158-1/2 dbR, respectively. The method employed to arrive at an appropriate

test level is detailed in the following paragraphs.

The two general types of configurations being tested, (skin-stringer, and
corrugation) were analysed through the use of a Dougles developed computer
program. This program considers an element of the panel as a two-dimensional
beam with multiple supports of varied translational and rotational stiffnesses.
The critical stress and frequency for the beam are obtained as part of the

program output.

To determine the test sound pressure level to cause failure in a given time,
for example: one hour, the following procedure was followed. Using the
computer program, the critical stress is determined for a trial sound pressure
level (131 db or .Ol psi was used). The program also‘indicates the critical
frequency which permits an analytical determination of the number of load
cycles which are applied in one hour. Having the number of cycles and making
use of the appropriate random fatigue curve, the random stress corresponding
to this life is determined. A simple proportion, based on the computed
pressure and stress, determines the pressure which should be applied to cause
test failure in the desired time. This method was employed for all the
titanium specimens. The skin and stringer panels were checked both normal
and parallel to the stringer direction while the corrugated panels were
checked only in the direction of the corrugations. A sample calculation is

presented below.

The skin and stringer is checked in the direction of the stringer. The
assumed beam is a stringer with its adjacent skin supported at the four rib

points.
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The computer program indicated that the maximum stress occurred in the

middle of the short bay with the following analytical results:

PR = .0l psi (131 db)
‘/ 2 .

o = 7950 psi (max)

f = 970 cps

Nl hour = 3.5 x lOb

From the titanium random S-N curve, stress for failure in one hour
6
(3.5 x 10~ cycles) is:

°L hour = 22,800 psi
and the pressure to cause this stress
2
PR 1 hour = PRV 1 hour = .029 psi (140 db) (1)

oo

Computations are presented in Table 2 for the pressure to cause failure at
various numbers of cycles for each of the titanium test specimens and the

results are plotted in Figures 17 and 18.

The computer results for each of the cases are presented in Table 3, along

with the selected test conditions.
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Table 2

CALCULATED VARIATION OF SOUND PRESSURE LEVEL WITH TEST PANEL LIFE

—

N P P, P, P,
105 L4 ;000 .00993 .01363 .0190 .0216
3 x 10° 36,000 .00813 0111k .01555 .OL76k
10° 29,500 .00666 .00913 .0127 0Lkl
3x 106 26,000 .00587 .00806 .01123 .01275
107 23,000 .00518 .00713 .00995 .01127
3 x 107 22,000 .00496 .00682 .00953  .01077
108 21,000 00473 .00650 .00907 .0103
3x 108 20,000 .00451 .00620 .00865 .0098

P = (.01) yo? - Skin-Stringer (t_= .020")
55,300 8
P, = (.01) Vo2 - Skin-Stringer (t_ = .025")
32,270 8
P3 = (.01) {o? - Corrugation (1:s = .020")
23,140
(tc = .016")
P, = (.01) y 0@ - Corrugation (ts = .025")
20,400 (t, = .020")
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CORRUGATED SPECIMENS
TI 6AL - L4v
LIMITS FOR SELECTION OF TEST LEVEL

Fyu® 130,000 PS|—
22 '

——T_—‘\
r L+ ..025
8 ‘_J“"—'\\ T 50053

N\

A

) . \\\\

6

/§I
Kyl
o5
-_ N
NO

PRESSURE PS! X 10 3

10° 10
RANDOM CYCLES

FIGURE 17 RANDOM LIFE VS PRESSURE CORRUGATED PANEL
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SKIN AND STRINGER SPECIMEN
Tl 6AL-LV
LIMITS FOR SELECTION OF TEST LEVEL

(t  =.,025")

(Fry =130,p00 PS1)

o J6trne -0, N

PRESSURE PS1 X 10 3
(e o)

~——__
5\\5\“‘*-_

. (t = .020"—N\_

N
\\\\\\-

1o’ 108

105 10®

RANDOM CYCLES

FIGURE 18 TEST RANDOM LIFE VS PRESSURE SKIN STRINGER PANEL
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TEST RESULTS

The following paragraphs discuss the test results available from this progrem.

These results are presented in a tabular form.

Conventional -Subsonic Structure

The data for the conventional structure was obtained from tests which were
conducted from 1956 through 1958. The required data from these tests are
presented in Table 4 but much of the related detail is not available.

Advanced Structure

The corrugated skin and the skin and stringer specimen results which were

tested with a random sound pressure are discussed below.

The .016 corrugated skin panels were tested first. The first failure occurred
in the panel with the .020 outside skin after 10 minutes of excitation. These
failures were of two types. Cracks occurred in the corrugation crests at the
ends and extended down the side of the corrugation. Two of these cracks had
occurred at the 10 minute period. The other failure type was in the attach-
ment of the corrugation to the formed angle which connected the corrugation

to the spar cap. In these failures the spotweld pulled out of the corrugation.

These failures continued at different locations on the panel for the duration
of the test run. A third type of failure occurred along the skin to spar

cap row of welds after 19 minutes. These failures occurred first at the 1/3
points of the center panel. At this point, the panel was considered to have
failed completely. It was allowed to remain in the test position, however,
until completion of testing on the companion panel. The test failures are

shown in the photographs in Figures 19 and 20.

The companion panel with the same .0l6 thick corrugation but with .025 skin
experienced the same failure types but these did not occur until 13 minutes

of run time had elapsed. The extension of the failures in this panel was also
delayed. The first failure in the skin to spar cap attach did not occur
until after 79 minutes of excitation.
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SUMMARY OF TEST RESULTS

SKIN AND RIB CONSTRUCTION

Table L

j i g (cps) ao (nin)
8 .0k0 .0ko 202 157 50
8 .050 .050 223 160 Lo
8 .063 .063 315 160 60
6 .032 .032 366 154 20
L .025 .0ko L80 153 1
L .025 .032 357 156 10
L .025 .04O 168 150 10
L .025 .032 376 153 65
9.5 .050 .063 171 153 20
9.5 .050 . 063 163 150 60
SKIN AND RIB WITH A DOUBLER AT THE RIB
S t t, ta (gps) db* (an)
by .032 .050 .020 333 163 10
i .025 .0k0 .06 380 166 22
8 .050 .063 032 397 160 4o
b .020 .0ko .0l2 400 163 20
u .032 .050 .020 333 163 26
RIB WITH A LIGHTENING HOLE
S R L t, e h f db* T
(cps) (min)
L 3 13.5 .040 1/2 3 393 149 21
N 3 13.5 .050 1/2 3 368 153 29
L 1-1/8 3 .032 3/6 1-3/4 333 163 10
4 1-1/6 3 .050 3/8 1-3/k 318 151 Lo
L 1-1/8 3 .032 3/8 1-3/L 362 160 20
6 1-1/8 3 .032 3,6 1-3/k 366 154 20
b 1-1/8 3 .032 3/8 1-3/k 376 147 10
‘:Disc rete Frequency
36
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Table 4 (cont)

WELDED SKIN AND STRINGER PANELS

*

S t f dbR T Type
(cps) (min) Failure

L .025 286 128 90 Skin

L .025 286 128 10 Attachment

L .020 215 128 10 Skin

i .020 215 128 10 Attachment

CORRUGATED PANELS

S ! "2 ll ! dbR** (gin) gg?iure
23 .025 .020 <75 150 134 16 Corrugation
23 .025 .020 <715 150 134 Lo Attachment
23 .025 .020 15 150 134 60 Edge
23 .025 .016 <75 215 13k 13 Corrugation
23 .025 .016 <75 215 134 13 Attachment
23 .025 .016 .75 215 134 9 Edge
23 .020 .020 .75 148 134 14 Corrugation
23 .020 .020 <75 148 134 25 Attachment
23 .020 .020 <75 148 134 60 Edge
23 .020 .016 .75 123 134 10 Corrugation
23 .020 .0L6 .75 123 134 10 Attachment
23 .020 .0l6 <75 123 134 19 Edge

#* White noise

ASD-TDR-63-820
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FIGURE 19 CORRUGATED PANEL FAILURES EDGE
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FIGURE 20 CORRUGATED PANEL FAILURES CORRUGATION

Lo



The other set of corrugated panels failed in a manner similar to that described
above for the first set. In these panels, however, due to the thicker .020
corrugation, the spotwelds did not pull out and failure at this point occurred
within the attaching angle. The cracks in the corrugation occurred as before.
The first failure in the corrugation occurred at 14 minutes for the 020 outer
skin panel and at 16 minutes for the .025 outer skin panel. The angle failure
which did propagate though the spotwelds occurred at 40 minutes and 25 minutes
for the .020 and .025 skin panels respectively. In these panels, the skin to
spar cap failures occurred at 60 minutes for each.

The skin and stringer panels were tested as an element of a complete box
structure. The first failures occurred in the substructure attachments. In

the .025 skin panel cracks were observed across several of the fusion spotwelds
which attached the stringer to rib clips on to the stringer after 10 minutes of
testing. These cracks did not propagate into the clip proper until approximately
50 minutes after which complete failure of a few of the clips occurred rather
rapidly. In approximately the same time reriod some of the fusion welds failed
leaving the clips unattached to the stringer. An additional substructure
failure which occurred was in the rib at the clip attach. Cracks were initiated
at the clip to rib spotweld and propagated approximately 1/U-inch to the
stringer cutout on the rib. These failures were first observed at 24 minutes.
No failure of the rib proper or of a stringer occurred. The critical failure
within this panel occurred in the .025 skin along the short edge of one of the
small panels defined by the stringer and rib grid. The failure was along the
line of spotweld skin to rib flange attach and occurred after 90 minutes of

excitation. This failure is shown in Figure 21.

The skin and stringer panel with the thinner .020 skin experienced very little
substructure damage before critical damage occurred in the skin at 10 minutes.
This failure occurred in two locations on the panel and was along the stringer
and had extended the full length of the bay between ribs in each case. Photo-

graphs of these failures are shown in Figures 22 and 23.
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FIGURE 21 SKIN AND STRINGER FAILURE SKIN AT RIB
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FIGURE 23 SKIN AND STRINGER FAILURE SKIN AT WELD (2)



COMPARISON WITH OTHER TEST DATA

Results of acoustic tests from various companies is presented along with
pertinent test data in Table 5. A method of comparing test results to the
predicted results from the Douglas design charts is given, and comparisons
made using the method are presented in tabular form grouped according to

company.

The testing as performed by these companies was for a normal incidence with
no vaffling of the sound pressure while the Douglas tests were conducted
using grazing incidence with an infinite baffle. Either grazing or normal
incidence could be more representative of actual conditions depending on the
location and type of structure being considered. Another variation in test
technique was in the test frequency. The other companies in general tested
at only the lowest resonant frequency. The Douglas procedure consisted of
exciting the specimen at each of the resonant frequencies at each sound
pressure level which more nearly simulates the broad band excitation of
actual engine exposure. The stresses from the several modes were then combined
to compute a "multi-mode factor" which was applied to reduce the apparent

single mode allowable stress at the critical frequency.

The Douglas results indicated a lower allowable SPL than the other tests and
the differences probably are attributable to two factors. The above indicated
discrepancy in test procedures probably contributes appreciably to the
variation in predicted and test results. In addition, the panels for both the
Martin and the Boeing tests were curved. Limited Douglas data indicates that
curvature can increase the allowable SPL from 7 to 14 dov. The Douglas method
is the most conservative and where it differs, it is on the safe side, which

is appropriate for design.

The coorperation of the companies supplying these data is appreciated.

Boeing

These panels were tested at normal incidence in front of a siren fitted with
an exponential horn. A typical control panel was tested at 143 db, at its
resonant frequency of 125 cps and lasted 7.0 hours. To use the Douglas design

o L5
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charts, the conversion of discrete pressure (PH) to random pressure (PR)

through the use of the following equation was made:

V52 = P (n&f)l/2 (2)

R
UH -f’;l_
P = (PH) ( [6‘2 ) (n&f)l/z (6 = .01 assumed) (3)
[0
H
N = (125 cps) (60 sec/min) (60 min/hr) (7.0 hr)

3.15 x lO6 cycles to failure

=2
]

Using random and normal S-N curves for 202k-Th, the panel material, the
random stress ( V[E:§), and harmonic stress (UH), corresponding to the number
of cycles to failure (N), were found to be 8500 and 18,300 psi respectively.
The peak harmonic stress is converted to an RMS stress (GH) by multiplying

by .707. Assuming & 3 db correction to the indicated test level for band
width effect and converting from decibels to psi,PH,is .029 psgi. PR was
computed to be .00962 psi or 130.5 dbg A 3 db correction was found to be

appropriate in the Douglas siren facility for modifying unfiltered data.

The panel parameters necessary for use with the design charts to determine

the random db level for which failure will occur are: life, skin thickness

(t), and rib spacing (S). For these panels, t = .O4O inches and S = 8 inches.
Under these conditions, for the same life and 3.15 x 106 cycles, the Douglas
chart indicates this panel should have feiled with a random loading of 120.0 dbp

General Dynamics

The specimens were subjected to sonic vibration at resonant frequencies. A
typical panel subjected to 158 db overall SPL had a resonant frequency of 401
cps for 59 minutes at which time the resonant frequency changed to 410 cps
and failure occurred 31 minutes later. This panel had a t = .060 inches and
S = 7 inches. Under these conditions, following the previous method of
analysis, for the same life, the actual and the critical PR were found to be
140.0 and 131.0 db respectively. The panel material used was 7075-T6. The

values for support spacing were scaled.

ASD-TDR-63-820 k6



Martin-Denver

Each specimen was edge supported by knife edges to permit flexure while static
compressive loads were applied to simulate expected forces during lift off.
The panels were subjected to sonic vibration at resonant frequencies by an
exponential horn coupled to & discrete frequency siren noise generator.

For these data, the actual and theoretical PR'B were found to be 137.0 and
123.0 dbg respectively. These panels were not directly comparable to the
Douglas design charts because they were curved and subjected to static
compressive loads.

Data Presentation

A short explanation of the other companies' test results presented in Table 5
follows. Thése data were gathered from test reports made available by the
cooperating companies. The first four columns in the table identify the test
and define the specimen. The next two columns present the applied test siren
harmonic spectrum pressure level in db's and the test frequency. The seventh
and eighth columns indicate the test time for each phase of the test. Where
test conditions were varied as the test continued, the time for each condition
is indicated. The test time at the test conditions at which failure occurred
is indicated separately. The ninth column indicates a random sound pressure
level which is equivalent to the test condition. Column ten compares this to
the random sound pressure level the design charts would indicate for the

test panel,

L7
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SECTION 5 DEVELOPMENT OF DESIGN CHARTS

The information required to produce a design chart for a specific type of
structure is an analytical expression for the stress which is caused by a
distributed air load; the allowable fatigue stress and life relationship;

and the test life or stress and air load causing failure in an actual test.
The analytical expression combines certain constants representing such effects
as dynamic response, boundary conditions or stress concentration factors

which are unknown. Substitution of the test conditions and results into the
proper analytical expression permits the evaluation of these unknown constants
as a factor which can be used to extend the expression to similar structure

with different dimensions.

APPLIED STRESS-ANALYTICAL EXPRESSION

In the following paragraphs expressions will be developed for the stress
existing in structure as a function of the structural parameters and the

sound pressure loading. This stress, as a function of the sound pressure
level, can be expressed in terms of peak values or root mean square values.
For discrete frequency excitation peak values are useful. However, noise,

in general, is a random phenomena and most easily described for analytical
purposes by & distribution of peaks and an RMS value of intensity. The
stresses in & structure which is being excited by this random noise phenomena
will be random in distribution. This stress distribution is not directly
correlated to that of the exciting force due to the effect of the structural
system. The net result over a sufficient period of time will, however, permit
direct comparisons on the basis of mean values. For these reasons, the stresses

defined in this work are expressed as RMS stresses.

The important frequencies for structural consideration have wave lengths
such that it is possible to consider the panel to experience loads, from the
air pressure fluctuation, that are independent of' location on the panel.
These loads are functions of time only. Thus, the stress expressions are
developed as if the panel is responding to a distriputed air load that is

equal to the RMS values of the sound pressure.

ASD-TDR-63-5-0 oL



In the following paragraphs, the analytical expressions will be developed for

specific configurations.

Skin and Rib Construction

For the conventional skin and rib or skin and stringer construction subjected
to an air load applied normal to the skin, the derivation of an expression
for the stress in the skin is presented below with the pertinent limitations

and approximations.

The skin is considered to be acting as a series of unit width strips oriented
in the direction of the smaller panel dimension. If these strips are assumed
to act as separate beams supported with an unknown restraint at the rib or

stringer, the expressions for moment and stress can be written as

M o PS° (4)
and
6 M (5)
2

for a rectangular cross section beam of unit width.

Substituting
o6 = K P52 or 0 o¢ P32 (¢)
t2 t2

The constant (K) is introduced into the formula to represent the various numeri-
cal constants which are suppressed and the various factors previously mentioned,

the effect of which will be evaluated through the introduction of the test data.

Skin and Rib with a Doubler at the Rib

This configuration is the same as that just described with a finger doubler
added between the rib and skin such that the doubler further reduces the
shorter panel dimension and the fingers act to produce a discontinuous or

soft edge.

52
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The parameters which enter the stress expression for this configuration are
identical to those for the previously considered configuration and the
variation between the two only enters into the design data through the test

results.

Rib

The ribs proved, in test, to be most critical in the bend radius of the
flange. The expressions for the rib stress are a function of the load the
skin strip transfers to the rib and are therefore similar to the skin stress
expressions. One factor entering the rib moment expression is the rib-flange
width. This dimension varies only with rib thickness for good design
practice and therefore is evaluated through the test results.

Then, the stress in the rib is expressed as:

0 o P8 . (7)

t
r

Edge Attachments

The proper edge attachment can be a critical design consideration for panels
of the types presented in the preceding paragraphs. If the attachment

spacing is too close, panel strength is reduced by the excess material removed
or if the spacing is too great, the attachments do not obtain the best load
distribution to the skin and portions of the skin are permitted to work below
their capability.

The required attachment is developed on the basis of utilizing the full
potential of the skin panels. The development here is slightly different
from that used elsewhere in this report. This is because the attachment
limitation is not based directly on the design sound pressure level but is
instead related to the SPL only through the panel which controls the attach-
ment limits. These relationships are established below;

Allowable rivet load is proporiional to d2

Applied load per inch is proportional to PS

5
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and
Ao d° (8)
PS )

To express the attachment spacing in terms of the optimum structural parameters,
consider the maximum of the relationship previously developed for the skin-rib
structures

2
“max Pmaxs (9)
-
t
Where Omax is constant with a given material and a fixed desired life, the
maximum permissible pressure for a panel is
2
Pmaxc< —3—5 (L0)
S
Substituting this for "P" in the attachment spacing as above results in the

following expression:

A dQS (11)

t2

Ribs with Lightening Holes

The cutout lightening holes used for ribs have many designs and modifications
each of which requires a somewhat different approach to obtain the neccessary
design data. Only one type of cutout was investigated in this study and the
design data presented is only strictly applicable to thisg design. The general
method, however, is demonstrated and can be used with available test data for

the required configurations as a means of extending that design data.

In arriving at the stress expression for the rib with a cutout that portion of
the rib between the cutout proper and the skin is considered to act like a beam
loaded vy the air Loading on the skin and transferring its load fore and aft

to the fuil depth ribp.

In testing, the failures in the ribs were at the ends of the cutout area in
the bend radius of the stiffening element. This failure was caused by an out

of plane reaction to the "rib-beam" moment which resulted in bending moments

I
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normal to the rib web and failure at the concentration point. The moment

acting on the "rib-beam" may be expressed as:
2
M o PSL (12)

Which derives directly from the standard expression for a beam with a distri-
buted loading. The stress in the "rib-beam" is
2
Oox M X gSL (13)

vhere 2, the section modulus is primarily a function of "h" and "t" .

The force (F) in the flange of the "rib-beam" is proportional to the product
of the flange area and the flange force or
F o¢ te PSL2 (1)
2
Where the flange area is considered to be proportional to the flange width

or eccentricity and the rib web thickness.

The moment acting on the rib web is proportional to the flange force and the
distance of its application from the rib web, the eccentricity. This moment
is reacted by a portion of the rib along the cutout-end, the length of which
is a function of the cutout radius. Thus, the expression for the stress in

the web can be considered as

oxFe (15)
taR

or substituting the previous expression for F
2
UmES_ﬁe__ £(h,t,) (16)
R
The best fit to the test results is obtained with negative exponents of approxi-

mately 2.5 and 1.5 for "h" and "t" respectively.

Beaded Inner Skin Panels

Various designs of beaded-bonded panels were tested and the results presented
here are for the one found to be most effective. Beads with smooth ends were

tested early in the program. These contained a bullt-in stress concentration
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at the point of greatly reduced moment of inertia, such that the failures
always occurred at this point. The double-ended bead was developed to

alleviate this condition. Panels of this type will usually fail in the
outer skin, the bead crown at midspan or the unsupported overhang at the

panel edge.

The bead acts like & beam and the parametric relationships for the midspan
failure are similar to those developed for the plain panel. The bead and its
associated width of skin is treated as a beam loaded by the sound pressure
and supported at the panel edge adjacent to the bead end. The moment expres-
slons for this configuration which has a running load equal to PW pounds per

inch is
2
M or PWL (17)

The section modulus for the bead can be shown to be

2
2 Wbt Wbt 18
00(__ T ( )
b

and the bead stress is

2
0o PL (19)
bt

The failing stress at the panel edge is not clearly definable analytically.
It is,of course, proportional to the load transferred from the bead to the
support, ie., bead width and length, and the distribution of the load at the
bead end. However, this distribution at the end is also dependent on the
bead dimension and requires that the final relationships be developed in
compliance with the test results. The edge stress expression is used in

the form

Oy o f gw,g,)r’ (20)
‘g

o 56
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Honeycomb Panels

The stress expression for honeycomb panels is much the same as that for the
simple panel and is developed using an assumea one inch wide strip. The honey=-
comb panel however usually has proportions which require that the effect of
+he interaction of the end and side supports must be considered. This factor
(C) for aspect ratio correction is applied directly to the derived stress
expression. For these panels the moment on the strips is assumed reacted as
concentrated loads in the faces with the core carrying shear loads only.
This results in the minimum thickness face having the critical stress. The
critical panel dimesnion for bending is the shorter length. For a one inch
wide strip, the stress expression is as follows:

2

0 o B C (21)

nt .
min

As was previously mentioned for the beaded panel, the edge condition stress is
not clearly definable. The panel geometry, aspect ratio factor and air load
enter into the expression and it is used as
% o f(S%PC (22)
T
e

Corrugation Stiffened Panels

The corrugation stiffened panels experilence failure at two locations: The
corrugation crown and the skin to spar cap attach line. The analytical

expressions for these two locations are developed Iin the following paragraphs.

For a corrugation peak to peak length (ll) and an unsupported span (S) in the
direction of the corrugations, the bending moment acting on a single corrugation

and related skin under a distributed pressure (P) is:

M o PLS° (23)
For the optimum condition 12 equals 2(11), the section modulus 2 is
2
24
2 o 1B (2u4)

Where B is a factor to account for the thickness ratio te/tl
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This expression is developed in Appendix I as are the optimum design conditions.
Combining these two produces the stress expression

U PS2 (25)

————

lﬁiR

The attachment of the skin to the spar cap load for a minimum unsupported
length consistent with good design practice is a function only of the span (S),
the pressure (P) and the skin thickness (t). This analysis is similar to the
edge analysis for the beaded inner skin or for the honeycomb panels congidering

a unit width ol skin and minimum unsupported skin

g PS (26)

Skin and Stringers

The skin and stiringer panels are from the general analytical view of the same
form as the skin and rib. The material and the fabrication techniques are
different but this does not affect the analytical expression as it is developed
for this study. The one factor which does change and which is added, due to
the skin and stringer geometry, is the aspect ratio correction as indicated for
the honeycomb panels. With this addition, the stress expression for the skin
and stringers is

2

O o C PS_ (27)
t2

ALLOWABLE STRESSES

The above stresses, which are computed as & function of, or are attributable

to, an external exciting force, are in normal design designated as "applied"
stresses. For design purposes these stresses must be compared to an "allowable"
stress. This allowable stress can be either an ultimate stress which should
not ve exceeded or, for fatigue, it can be a stress which is dependent on the
number of load applications and will vary with the desired life. For usual
long life, lower-stress design, the latter consideration is the only one of
importance. However, for short life design or for accelerated test procedures,

the possibility of exceeding the ultimate stress with one of the peak applied
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stresses must be considered.

The allowable fatigue stresses, as described above, are to be compared to
applied stresses which result from noise and are random in nature and thus
these allowable stresses must also be random. A method to obtain allowable
life data or number of load applications for a random distribution of
stresses 1s presented later in this section. These data then express the

allowable random stress as a function of the life.

APPLICATION OF TEST DATA

If now the applied stresses and the allowable stresses are equated, a relation-
ship is obtained for the life of the structure under consideration in terms

of the structural parameters and the sound pressure level. Were it possible

to exactly define the applied stress in an analytical manner, the relationship
between sound pressure, structural parameters and life would be complete,
analytically. Due to practical limitations this relationship is completed
through the use of test data. These test data supply the missing factors

in the stress expressions and permit generalization of the analytical relation-
ships.

The test specimens, procedure, equipment and results for the structural types

presented in this study are presented in detail in Section 3 and Section 4.

Discrete Freguency Conversion

Portions of the testing were accomplished using a random noise generator. The
test results obtained thus were directly applicable as coordinating data.
Other tests were conducted using & discrete frequency siren as a means of
exciting the structure. The results of these tests could not be used directly
but required a conversion to equivalent random data to be applicable. The

expression used for this purpose is developed in the following paragraphs.

29
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DEVELOPMENT OF RANDOM STRESS - LIFE DATA

In measuring the allowable life of structure which is subject to a random loading
such as that produced by acoustic excitation, it is necessary to have random
stress-life data. This information could be obtained directly by the same

method as is employed in obtaining standard data but substituting a random
loading. This is a costly and time consuming process however, and if possible,
should be avoided. A method of obtaining random data with sufficient accuracy
from constant amplitude reverse bending data is indicated in the following
paragraphs.

The two assumptions with which the data are derived are: 1) that the probability
of obtaining a certain peak value of stress for each cycle follows a Rayleigh
distribution, where the most probable stress is the root mean square stress;

and 2) that the linear cumulative damage theory of fatigue is valid.

A typical response for a single degree of freedom system subjected to random
loading i8 indicated in the sketch, Figure 24. It has a constant frequency
with varying amplitude and a Rayleigh distribution of peaks is assumed.

FIGURE 24 SKETCH RANDOM RESPONSE

An example of a Rayleigh probability curve is shown in Figure 25. This figure
also presents terms which will aid in the following development.

o 60
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As the area under the probability curve is equal to unity and also represents
the total number of cycles to failure, an element of area under the curve, dA,
may be thought of as representing a proportionate number of the total cycles

to fallure.

A = By (30)
NR
nx = the number of cycles at a stress ax
NR = the total number of cycles to failure with random
loading.
From the probability curve, Figure 25, it is obvious that
dA = P(x) dx (31)
Substituting and rearranging
n, = Np P(x) dx (32)

From the linear accumulative damage concept the damage at failure is

represented as

(33)

o
i
'—‘
i

Ve W 8

Where Nx is the number of cycles to failure at the stress O, -

Substituting from the previous expression and bringing the constant NR out

from under the integral sign results in the following:

oo © --!
1 o= N vs. PS;Z dx or Np= Jf,.fifszij (34)
o X

(-] Nx

Evaluation of this integral results in the random life for only one value of
the mean stress and must be repeated several times to arrive at a random

Stress-Life curve.

Integration of this expression by analytical methods is usually impossible,
therefore, numerical methods of solution are employed. This may be accomplished
by hand by plotting the values P(x)/Nx and solving graphically. An example of
such a procedure is presented in Table 6 and Figure 26 to clarify the technique.
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SAMPLE COMPUTATION-RELATIVE DAMAGE

Table 6

%2 = 20,000 psi

ASD-TDR-63-820

b o N, P(x) £§51
X
2.95 59,000 2.2x10°  3.80x10°2 1.72x10"0
2.9 58,000 5.5x10°  L4.3310°2  .787x10°8
2.8 56,000 3.3x107 s.ssxlo’2 1.68x1077
3.0 60,000 10° 3.33x1072 3.33x10’8
3.2 64,000 2.2x10° 1.91x10"2 8.68x10°0
3.4 68,000  1.hx10 1.05x10"2 7.52xlo'8
3.6 72,000 10° 5.52%10 3 5.52x10'8
3.8 76,000 7.3x10“ 2.78x1073 3.82x10'8
4.0 80,000 5.9x10°  1.3wx10"3  2.27x107°
L.2 84,000 4.8x10" 6.21x10"" 1.29x10'8
bob 88,000 4.ox10" 2.75x10'h .688x10'8
4.6 92,000 3.2x10h 1.17x10'h .366xlo'8
63
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The sample computation in Table 6 leads to evaluation of the integral of
Equation 34 for one value of the RMS stress, 20,000 psi. Using arbitrarily
chosen values of x, the ratio of Oﬁ/’J[;§: corresponding values of o and

P(x) are computed (second and fourth colunns ). The constant amplitude

fatigue life, Nx’ (third column) corresponding to the mean stress 1is

obtained from reverse bending S-N data as in Figure 27. The relative

damage P(x)/Nx (fifth column) is computed and is plotted as shown in Figure 26,

The value of the integral in Equation 34 is represented by the area under the
curve in Figure 26, This area is determined in an appropriate manner and the
resultant value of the integral substituted into Equation 34 to obtain the
value of NR for the single RMS stress. Repetition of this procedure will
develop the desired random S=-N data from regular S-N data. The value of oh
corresponding to the peak of the relative damage curve of Figure 26 is known
as the peak damage stresse.

A computer program exists to accomplish the preceding analysis and was used
to rendomize the Stress-Life data presented herein for the titanium 6Al-LV,
Figure 27. A random Stress-Life curve for aluminum is presented in Figure 28.

The computer print-out for this program is presented in Table To

Constant amplitude reverse bending S-N data 1s input to the computer as
discrete points. The computer then simulates continuous data through these
points with a series of parabolas. Sample input data and the smoothed data

as printed out are presented in Table 7 (first through third columns). The

RMS stress values of interest are shown (fourth column) with the corresponding
random life and peak damage stresses (fifth and sixth columns). These result
from a machine solution of the procedure presented in Table 6 and Figure 20,
The remaining columns (seventh and eighth) are not essential data but are of
interest. These data indicate, by a ratio of ordinates, the portion of the
relative damage curve which is used in the solution.
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TABLE 7
RANDOM S*N CURVE COMPUTER PRINTOUT ANALYSIS 2

MINER CUMULATIVE FATIGUE CAMAGE THEORY
RAYLEIGH PROBABILITY DISTRIBUTION OF STRESS PEAKS

S=N INPUT

INFUT INPUT SMOOTHED

STRESS CYCLES/ L1000 CYCLES/1000
1 55C00. 100000, 99531,
2 66CO00. 1000. 810.
3 60500. 500. 622.
4 61C00. 400. 521.
5 62C00, 300. 373,
6 64C00. 200. 231.
7 66300. 150. 155.
8 71500, 100. 94,
9 13z00. 90. Bt .
10 75C0N. 80. 79.
11 77200, 70. 70.
12 8010n. 60. 60.
13 84C00, 50. 50.
14 B6CON, 45. 45,
15 88200. 40. 40.
16 91130n. 35, 35.
17 95100, 30. 30.
18 39200, 25. 25.

DELTA X = 0.015
DATA SMCOTHED 4 TIMES
UPPER 10 PRECENT OF CURVE USED TO FIMD PEAK DAMAGE STRESS
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TABLE T (CONT'D)
RANDOM S'N CURVE COMPUTER PRINTOUT AMALYSTS 2
MINER CUMULATIVE FATIGUE CAMAGE THLORY
RAYLEIGH PROBABILITY DISTRIBUTION OF STRESS PEAKS
MEAN FATIGUE LIFE
RMS NR/1000 SPD Y1/YMAX YN/YMAX
1 19000. 7300242, 65420, 0.00855 0.00491
2 20000. 351897, 66026, 0.00720 0.01037
3 21000. 60063, 66648, 0.00612 0.01944
4 22000, 21522. 67271 0.00528 0.03332
5 23000. 102¢s. 67856. 0.00464 0.05329
6 24000. 5784. 68416, 0.00408 0.07943
7 25000. 3695, 68908. 0.00367 0.11342
8 26000, 2556. 69471. 0.00330 0.154C9
9 27000. 1836, 70007, 0.00299 0.20144
10 28000. 1358, 7564, 0.00273 0.25540
11 29000. 1085, 71057. 0.00252 0.31646
12 30000. 857. 71763, 0.00234 0.38200
13 31000, 694. 72569. 0.00218 0.45271
14 32000, 568. 73459, 0.00293 0.52573
15 33000. 475, 74881, 0.00189 0.59783
16 34000. 40C. 76380. 0.00177 0.66969
17 35000. 34C. 79011. 0.00165 0.73724
18 36000. 293. 81133, 0.00153 0.79754
19 37000. 253, 83799. 0.00142 0.84751
20 38000. 222. 86129. 0.00131 0.89032
21 39000. 194. 88357. 0.00121 0.92551
69
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CONVERSION OF DISCRETE TEST DATA TO EQUIVALENT RANDOM

The portion of the testing which was conducted in the discrete frequency
siren facility produced data which required conversion to an equivalent

random data for use in the design charts. This conversion relationship

is developed below. Expressions are written for both the discretely

and the randomly excited structural systems and combined to produce the

required conversion equation.

Random Excitation

These systems are considered to be linear and excited in a single mode.
Within these limitations Miles, Ref. 2, has presented the following
equation for the RMS stress. In terms of this report

* —
) —1/2
Jo© = Ko, ijf Aif ar (35)

i

If the structure is considered to be essentially a single degree of freedom
systems or to have principal modes well separated, this equation may be
rewritten as

V@ . Ko, P, E%w_] Y2 Ko P, [nf] L/2 (36)

%)

Discrete Excitation

The equation for the stress due to discrete frequency loading follows from
the definition of the term "oo". This general stress per unit pressure is
equal to the resultant dynamic stress divided by the applied pressure and
the dynamic amplification factor or

% = % (37)
Ph
This can be rewritten as
o = Ko, PB.A = Kco_P_lj (38)
26

*Where the "K" is added to account for stress concentrations or other constants
common to both expressions.

70
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Combined Equations

If it is assumed that the similar factors in the random and discrete
equations are truly similar (ie., the response to a single load of a
random system is the same as the response to a single load of a discrete

system within the limits of the load intensity) they can be combined as

follows:
2 . P, ( r16r)H/2 (39)
%y B,

H

By the use of this relationship and the appropriate fatigue data, siren

test data was converted to equivalent random data.

Linearity Correction Factor

In using the discrete frequency test data an additional correction was
made for linearity. This effect arises from the fact that the tests were
conducted at high level to reduce the test time to a practical period.
This factor was applied to the indicated test stress.

This factor consists of the quotient of two ratios. The numerator is a
ratio of the test stress to the applied pressure at approximately the
expected design level and the denominatqr is the ratio of the test stress
to the applied pressure at the test failure condition. This factor
applied to the test failure stress predicts & stress which would be
indicated if the test structure response were linear throughout the

test range. A clarifying sketch of this condition is presented in

Figure 29.
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SECTION 6 DESIGN NOMOGRAPHS

The relationship between the various factors is most usefully presented for
design purposes in the form of a nomograph. Nomographs for the various
structural configurations are presented on the following pages. In these
nomographs, the sound pressure level is indicated in decibels/cps (Ref:

. 0002 dynes/cmz), the panel dimensions in inches and the life in number of

cycles. The stress-life curve is presented for only a single material.

Sketches of the structure and the design nomographs are presented in Figures
30 through 47.

For materials other than those shown in the design nomograph, the following
procedure can be used to substitute the desired new material. Random S-N
data are presented for several materials in Figure 48. This figure indicates
& relative strength, expressed in decibels, for various materials and random
life values. The difference in relative strength of the new material is
determined for various lengths of life. These roints are then plotted
against the "relative strength" scale of the design nomograph to locate the
nev curve.

As an alternate method for quick single point comparison, the allowable dbR
can be determined for the material in the design nomograph and the relative

strength difference at the appropriate life added to the answer.

ASD-TDR-53-820 3
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FIGURE 30 SKETCH SKIN AND RIB CONSTRUCTION

Skin and Rib Construction

This structural configuration is critical at either the bend radius of
the rib, in the skin at the rivet row on the side next to the heel of
the rib, or the skin to rib attachments may fail in tension. Improved

rib cap designs are shown and can be used when rib gage becomes excessive.

Example

A skin on rib structure of 2024-73 material is required to withstand an
estimated spectrum level, db R’ of 118-1/2 db at the resonance frequency

of the structure. The de51gn life is 1000 hours at this load or N lO9
cycles. Following through the chart as indicated by the arrows to an
assumed rib spacing, S=4, a skin gage, t=.025 and a rib gage, t_,of .038,
is found, (use tr=.0h0). The approximate lowest resonance frequency is
found to be 250 c¢/s. At this frequency the spectrum level plot is checked

118-1/2 and a check
9

for agreement with the assumed spectrum level of dbR=

is made for agreement of NR and the assumed value of 10

necessary an iteration is made to obtain agreement.

cycles. If

ASD-TDR-63-820 Th
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FIGURE 32 SKETCH SKIN AND RIB WITH BONDED DOUBLER

Skin and Rib with Bonded Doubler

The purpose of scalloped bonded doublers is to provide increased strength

at the skin to rib attachment with & minimum increase in weight. Doublers
are scalloped to effect & stiffness taper and prevent premeture cracking
at the edge of the doubler.

Example
A skin, doubler and rib structure of 202h-T3 material is required to withstand
an estimated spectrum level, dbR, of 124 db at the resonance frequency of the
structure. The design life is 1000 hours at this load or NR'.YlO9 cycles.
Following through the chart as indicated by the arrows to an assumed rib
spacing, S = 4-1/4, a skin gage, t = .023, and a rib gage, t. of .0k3 is found.
The approximate resonance 1s 325 c¢/s. The assumed values of dbR and NR are
checked as in the example on page 74. The value of NR is found to be slightly
over lO9

would be: S = 4-1/k, £t = .025, ty = .6 (.025) = 016, t. = .050.

cycles but not enough to affect tne results. Thus, the structure
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USE t= SKIN + DOUBLER

FIGURE 34 SKETCH ATTACHMENTS

Attachment Requirements

Skin to rio attachments may be critical in tension if tneir spacing is large

or if they are small in diameter. The chart on the facing page gives the upper
limit for attachment spacing for a particular attachment and structurai config-
uration. Exceeding this limit will result in the attachment veing of lower
strength than the skin and ribs.

Examgle

A structure consisting of .063 skin supported by ribs at 5 inch spaclng has oeen
selected as satisfactory for acoustic loading. Skin to rib attachments are
required to develop full strength of the skin and ribs.

Entering the chart at S=5 and following through to an assumed diameter ot 5/32
and AD rivet, a maximum spacing of .75 is found.
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ATTACHMENT SPACING "A"

ASD-TDR-63-820

FIGURE 35

DESIGN CHART ATTACHMENTS

19




LOCATION OF
POTENTIAL FAILURE

FIGURE 36 SKETCH RIB WITH LIGHTENING HOLE
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SKIN STRESS
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(REF 5)
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SECTION 7 CONCLUSIONS

The design charts presented in this report will serve as a guide to the
designer who is required to develop & structure that is resistant to
acoustic fatigue. While the life under a specific distributed sound
pressure level is not as predictable as a buckling or ultimate load under
some static loading, it is still believed to be sufficiently accurate to
aid in design.

These charts, for the specific structural configurations tested, are
considered to be adequate to predict an allowable sound pressure level
for a given life within a :ﬁdb range. If a design checks within less
than this 6db or if acoustic fatigue is the primary design criteria,

& simulated service test should be conducted.

Special attention must be given to the design of edges of panels which
are of a sandwich type, such that the edges are inherently thinner than
the central portion. This is equally true for both the aluminum and the
titanium materials tested in this study.
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SECTION 6 RECOMMENDATIONS

Acoustic 1atigue, with the ever lncreasing engine power available, is
becoming an ever more important design criterL;; The general design
data available to date of which these charts aré a large portion is
very incomplete. For present day efforts, the designer should have
information on the direct effect of noise, of noise combined with

direct stress and of noise combined with thermal stress.

The direct effect of noise is & fatigue phenomendm\and is subject to
all of the variability that exists in simple fatiéﬁe data as well as
that due to random load distribution and various load spectra. For
this reason, it is believed that the foremost requirement is for a
continued investigation of the direct effect of noise on simple
structure to improve the reliability, available data and to increase

the number of structural configurations for which this data is available.

For the majority of current design combined flight or thermal and acoustic
stresses are not critical. There are many projects for which this
information would be most useful and the need is increasing continually.
Thus, as an extension of the simple tests, information should be obtained

on effect of combining other stresses with the acoustic stress.
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APPENDIX I
ADVANCED STRUCTURE DEVELOPMENT

For the advanced structural configuration to be tested in this work, an
optimization study was carried out. The development of the relationships
is presented along with curves of results. Two types of structure are
considered, 1) the corrugated skin and 2) the melt-thru welded skin and

stringers.

The corrugated skin panel is considered as an element in a control surface
where torsional stiffness is important and therefore the panel is optimized
on the basis of a shear loading. The optimum configuration is taken as
that at which the three basic elements of the panel all buckle at the same
time. These results of course present a varlety of combinations each of
which is optimum. These combinations are then considered in view of the

effect of the noise loading acting on the elements as a beanm.

The skin and stringer structure is conceived as a portion of a trailing
edge and as such is required to carry axial loads in its cover plate. For
this configuration the stringers with the adjacent effective skin are so
selected that they will carry a chosen compressive load per inch for a
minimum weight. The combination of elements is required to carry the load

without failure as a column or in local crippling.

Skin and Corrugation Panel

The panel with the skin and corrugated inner skin is analyzed in the
following paragraphs.
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Critical Shear Buckling

The critical shear buckling stress of the skin and corrugation are given

by the following equations:

» Tcras = KSSE(t/l)e (1&0)

1( lcr = KssE(tl/ll)2 (41)
p\2

Tecr = K E(2t,/1)) (42)

T/ Tder = 41/1)° (471, (43)

Shear Distribution

The following analysis describes the shear stress distribution in the
corrugation and skin based on equal shear deflections of these elements
from node to node with the applied shear load acting in the direction of
the corrugations, Figure Wk,

5, = nih - 5, = Fobp (bk)

1 — 2 —
AlG AzG

Where the subscripts 1 and 2 refer to the skin and corrugation respectively.
For one material, the G's are the same and the shear area A is equal to the

thickness multiplied by the shear length which is the same for the two

elements.
1
P o PBolp (b5)
ts
p, = p (fle (46)
1 2| =
21

The total load transferred from node to node, P, is equal to the sum of
the loads in the elements.

P = P +P, = P Yl 4 (47)
S G v
21

t
P, = P( oh ) (48)
tily

* NACA TN 2661, A Summary of Diagonal Tension, Part I, page 26
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SHEAR LOAD DISTRIBUTION

GEOMETRY

FIGURE 49 ELEMENTAL BEAM - CORRUGATED PANEL
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In a menner similar to the derivation of the expression for P

1
t 1
P (‘ 271 (49)
tl 2
P = P, +P, = P t211 + 1 (50)
1 2 1 T
l 2
(51)
(: I + t l
Shear stress is the shear load divided by the shear area
T, . P = P tall (52)
2
Ty - r ( £ 1 j (53)
1 tlle + 1, 1
As previously’A is the product of thickness and the shear length
T/t = 1,1, (54)

Optimum Shear

Optimum configurations are assumed to exist for the following condition
Actual distribution of (TE/T]_) shear stress equals critical distribution

of (TQ/TIJ shear buckling stress, and from the two previous sections
cr
2 2
Ul 1= L/l = % (/1) (t/y)

ltll/].‘,2 = (‘t,l/‘c,e)2 (for equal shear buckling) (55)

Allowable Buckling Stress in Corrugation in Bending

The following equation relates the allowable buckling stress in the corrugation
to the various parameters involved with the element of skin and corrugation
acting like & beam
2 2
KITE (t (56)
o\L (REF: U4)
12(1- yv<)

* NACA TN 3761, Handbook of Structural Stability, Part I, page 19
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For & given material and aspect ratio and based on the corrugation parameters

this reduces to

1

If both sides of the equation are multiplied by (ll/tl)2 and the terms are

o, = K [tef (57)

rearranged, the following expression results:

1N N ey (58)
Co R S EV

This bending stress factor is thus expressed in the same terms as occur in
the optimum shear expression, As the pertinent corrugation length is 12/2
2

(t/1); = (ﬁ??;f - b E;i} (59)

2 2
For an infinite aspect ratio Kb = 24 #*
Thus K may be evaluated as follows:

K = W ITE = (4) (2b) (m?)(16x10°) = 1.28 x 10  (60)
12(1-._3‘2)

12(1- v %)

Bending of Corrugations

The following analysis results in a general equation relating the bending
stress of the corrugations to the various parameters involved:

2
o = M M = PL (61)
& g B
Where Z is the section modulus, L is the beam length and B is the running load
2
Op = EL (62)
8z

A stress parameter equivalent to that developed for the allowable buckling is
derived based on the assumption that the final stress will be approximately
50 times the stress indicated by the above equations and using the panel
dimensions indicated below. This permits direct comparison of the applied

and allowable buckling stress in terms of the critical shear factors,

% NACA TN 3781, Handbook of Structursl Stability, Part I, page 92
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For: L = 23", ll = 75", tl = .025", p = .104 psi, a sample case follows,

2
(1,/¢)% ( Cap ) = (*1/%00° AEFL N or(L75/.025)2 £(50)(. 10&)(23) (63)
bt K - K ( 8z ;)(: :)

K 1.26x107
2 -
(1,74 Ogp ) = 2:406x10 v (64)
X Z

Developing an expression for "Z" where the geometry is shown in Figure ki

I, = 2(1/3) (te/sino) (12/2 s1n9)3 = 1/12 (t2) (12)3 51020 (65)
where sin29 = 122 - ll2 and 12t2 = A2
I, 2
I, = 1yt (1 112) = A2(122 - 112) (66)
12 12
1./2 sin@)(A.) = 1.2.1.2
d =.f; aa = (1/2)(1p/2 8100)(A)) = A, f1.7 -1 (67)
J' dA A+ A B {Ae &)
- Zme (68)
Icg = I, - _

2 2 2
21 - eny) [ AR - 1) I (69)

16 (A2 + Al)e
2 2 2. ~ 2 2 2
Ay Ay (L," - 17) =| A" + 4A.A (L,” - 1.7) (70)
5 T8 2 1 2 12 2 1
= 2 1 LB (A -+ A))
1 2
The peak distance from the neutral axis, C, is
C = \’1 2. 1 2} -d (71)
/ 2
¢ - (_ :)

2
z = Teg = + bAA, V/ige - 112 (73)
C 12(A + 2A )

A
2 1
cg Té—- ( 2

(72)
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Where

2 + t2
B = t, (80)
1l + 1
B/t

A sample computation of the applied stress factor due to pressure is presented
in Table 8. These results are plotted with the allowable stress factor data
in Figures 45 through 48. The permissible conditions are those for which the
allowable stress factor is greater than the applied stress factor. The
condition at which these are equal is the minimum weight condition for the
configuration. These points of equal stress factor are replotted with the
conditions for optimum shear. These are shown in Figure 49 and 50 for the
025 and .020 outer skins respectively.
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2 = Rlhy M) () 1) (74)

12(A2+2Al)

Rewriting the areas as products of length and thickness

.. 122t2 1ty + bt ] J1- (1,1, )2 (75)

12 [12 p 2Lt

2

z = ot | B ML/ Jl—(ll/la)2 (76)
t /t +21 /1

Eq 76 Results from d1V1ding Eq 75 numerator and denominator by 1,t

271
Multiplying and dividing the first factor by (te/tl)
(11/12)2
2
7 = ( L tl) tz/tl t2/tl + 4 11/12 J 1 - (11/12)2 17)
. (11/12)2 t/t, + 21 /1
a1 1’72
Rearranging — -
5 L+b (1 /12) (L. /1 )2
7 = (1l tl) (t2/t1) N (%57%'7__ 1 - ‘T2 (78)
2 2
-
12 (11/12)2 (12 (1/15) (ty/t)) (ty/t))
N (to/t;)
Optimum Section Modulus
The value of 2 1s defined earlier as
ll 2
t -
2 - Loty [Lariyuh | T, (79)

12 [i t. +21 ti]

which for the optimum condition of l2 equals 2(1l)reduces to
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SKIN AND STRINGER

The following procedure determines the cap width (bc) and web width(bw) for
which the applied, crippling allowable, column allowable, and skin stresses
are equal. A typical cross section is shown in Figure 51, the section
properties are presented in Table 9, and the optimum stringer configurations
are shown in Table 10. Tangent modulus and column data are presented in
Figures 52 and 53.

The procedure is as follows: Assume an applied stress (f). Using equation
82  getermine the value of (bC + bw)' From Figure 53, find the ratio (bw/tw)

at which the crippling stress is equal to the applied stress. Under these
conditions, determine the corresponding value for (bc)’ (bc/tc), and the
crippling stress in the cap. If it is less than (f), revise (f) as indicated
and repeat the above procedure. If the allowable crippling stress in the cap
is equal to or greater than (f), determine the allowable column buckling
stress (Fc) for that configuration. If it is not equal to f, repeat the

above procedure.

The crippling stress in the web, instead of the crippling stress in the cap,
is set equal to the applied stress because the resultant material distribution
yields the greatest allowable column stress. A sample computation is shown

below;

Sample Computation

(t = .020", 1000 lb/in, S = 4", t,=t, = .030")
f = P/A = (1000 lb/in)(k4 in)
(A)skin + (A)web + (A)cap

(the resulting bc and b will be the same for any combination of spacing and
load per inch which yields 4000 pounds).

The effective width (we) is used in computing the skin area

(A)gkin (W )(t) = 1.7 t2E = 2.67 (For Ti-6AL-bv) (8l)
f 3
8 5
2;67 +t (b, +0b)

5
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The applied stress in the skin (fs) is set equal to the applied average
stress (f).

(b +b ) = 4000 - 267 ¢
c v 03 ¢
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TANGENT MODULUS CURVE
FOR TI 6AL-4V ANNEALED, TYPICAL
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FIGURE 57  TANGENT MODULUS CURVE
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