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A Damping Treatment for Resonant Test Fixtures !
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Abstract

The application of a synthetic putty as a vibration damping treatment has been inves-
tigated. The putty was applied to rod specimens of several lengths to obtain frequency
characteristics of the treatment. Test results were compared with analyses for the

various rod lengths and putty shapes.

Up to 1% damping was achieved with various combinations of viscoelastic plug and
elastic rod. The analytic method, though simplistic, did provide guidance to interpret-
ing the results. The analytic method and the experiments, together, established the

inertial nature of the dissipative mechanism.

1This work was supported by Sandia National Laboratories under contract to the U.S.
Department of Energy (DE-AC04-76DP00789).
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1. Introduction

A common problem in vibration testing is the control of a test through a resonant
test fixture. If the resonant mode of the test fixture is lightly damped, the control of
the test near this frequency is difficult, if not impossible. Thus, methods for moving
modal frequencies out of the test bandwidth or sufficiently damping these modes are
of great interest to the test engineer. In many cases, it is not possible to remove the
fixture resonances from the frequency bandwidth of the test, so one must attempt to
damp the fixture sufficiently to allow control through the resonances.

One method for adding damping to a fixture is to apply a viscoelastic material to
the surface of the fixture. The mechanical energy transmitted from the fixture to the
viscoelastic material is partially dissipated, thus increasing the damping of the fixture.

‘In the current work, the effect of applying a synthetic putty to the surface of a
rod specimen was considered. Aluminum rod specimens of varying lengths were used
to obtain frequency dependent characteristics of the damping treatment. The rods
had a plug of the putty attached to one end and were impacted at the other end with
an instrumented hammer. The damping was identified by the logarithmic decrement
from an attached accelerometer and by a modal curve fit. The plugs of putty were
applied in two shapes to investigate shape effects and two volumes to investigate volume
effects. Viscoelastic properties of the putty were obtained from rheological tests, and
a computer code was written to predict the damping for the various plug shapes.

The damping material selected for this investigation was Scotch Seal 1279, a syn-
thetic putty designed for use in sealing environmental test chambers. The damping
properties of this material were not available from the manufacturer so tests were per-
formed in the rheology laboratory at Sandia National Laboratories to obtain the master
curve shown in Fig. 1. The complex elastic modulus was deduced from the shear stor-
age and loss moduli, recognizing that the material was above its glass-transition at all
frequencies. It is clear from the figure that the material’s characteristics are a strong
function of frequency. Under static loading, the elastic modulus becomes quite small
and the material is soft, pliable, and "sticky” to the touch. This is not surprising since
it was designed to seal environmental chambers. The frequency range of interest in
this work, however, was the range from 2000 Hz to 4000 Hz. In this range, the material
has an elastic modulus about one one-thousandth that of aluminum.
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2. Discussion of Testing

The tests performed in this work utilized aluminum rod specimens varying from
24 to 48 inches in length, each rod with a 0,75 inch diameter. To these rods were
added four different "plugs” of the synthetic putty. The plugs were of two masses, G
grams and 19.1 grams, and two shapes, cylin%wica.l and conical. The putty plugs were

atiached to one end of each rod and the rod was then struck at the other end with an
instrumented hammer. The input force and the resulting acceleration of the rod were
measured using piezoelectric transducers on #hq hammer and rod respectively. The
test configuration is shown in Fig. 2. ‘

The natural frequency and damping rati{la were obtained from a modal analysis
complex exponential curve fit. The damping ratio was also obtained from the logarith-
mic decrement technique applied to the meast#red accelerometer response. The values
of the damping ratio obtained in these two manners compared quite well in all cases.
The natural frequencies and damping ratios e given in Table 1.

The thrust of this work was to investiga.t4 the effect of adding synthetic putty on
the damping of the aluminum rods so the natural frequency information appears to
be superfluous. However, the natural frequency data provided a method for gaining
an understanding of the physical mechanisms present. The initial assumption is that
the putty will act as a lossy mass, i.e., a mass and damper combination. However,
when Table 1 and Fig. 3 are considered this model is clearly not reasonable. The data
show that the rods with 6 grams of putty a.d%led had lower natural frequencies than
those with 19.1 grams of putty added. This result is not consistent with the lossy mass
model, since by that model, increasing the mass should decrease the natural frequency.

If the putty plug is modeled as a spring-{ma.ss addition to the rod, the effective
end condition on the rod is either mass-like or spring-like depending upon the natural
frequencies of the rod and spring-mass system, as shown by Snowdon [5]. For example,
if the natural frequency of the rod is much less than that of the spring-mass system
then the end condition is mass-like. This concept extends to considering the plug
as a viscoelastic addition to the aluminum rof. To gain some understanding of this,

the cylindrical plugs were considered as elastic rods attached to the aluminum rods.
The elastic properties were obtained from Fig. 1. The natural frequencies obtained
from the closed form wave equation for the biimaterial rod for the case of the 42 inch
aluminum rod and cylindrical putty lengths encompassing all test cases are shown in
Fig. 4. The figure also shows the predicted natural frequencies for the simple added
mass model. Clearly, the putty plugs acted as rod-like additions in their effect on the
natural frequency of the rods.
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3. Analysis

The system under test was modeled as an elastic rod attached to a linearly vis-
coelastic rod of tapering cross-section. The tapering was assumed to be sufficiently
gradual that only axial deformations would result.

The resulting computational problem is that of evaluating the dynamic impedance
at the driving point of a rod of linearly viscoelastic material, and then finding the
complex frequency at which the impedance matches that of the elastic rod to which
the viscoelastic rod is attached. ‘

Letting
u(z,t) = Im{e™U(z, \)} 1)

and
o(z,t) = Im{¢ME*(\)U(=, ),z } (2)

the equation for extensional vibration of the viscoelastic rod becomes:
(A(R) EX Q) U(z, )iz )i + A(2) X pU(2,0) =0 3)
subject to the no-stress boundary condition on the right:
E*NU(2,A)yz |z= — MAU(z, )= =0 (4)
and the matched-displacement condition on the left:

Uz, A)|e=0 =1 ()

In the above, u(z,t) is the axial rod displacement at time t and location x;
o(z,t) is the axial stress at t and x;
A(z) is the cross-sectional area at x;
M is whatever mass is attached to the free end of the rod;’
A is the complex frequency;
E*()) and p are the complex Young's modulus and density;
and L is the length of the viscoelastic rod.

The notion of complex modulus is discussed in Ref. [2].

The solution, U(z, ), of Equation 3 subject to the boundary conditions of Equa-
tions 4 and 5 for a given complex frequency A defines a dynamic impedance

F,(2) = E*(A\) U(2, A)sz |==0/ U(z, A)|o=0 (6)
KDA-5
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Using a standard Galerkin formulation to
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Digitized 02/25/2015

ing of this impedance to a corresponding
defines the complex eigenfrequencies of

t to its boundary conditions at £ = 0

straight-forward provided that E*(}) is

discretize Equation 3 where U is repre-

sented as _
Uz, )= ) Un(Nha(z) (7)
nodes n
one obtains for each basis function h,(z):
L
0= [ {n(o) () BNV Uss ) oo + ha(2) ¥ pU) } b (®)

(Ref. [1] contains a good discussion of these me

into the above equation, and an integration-by-
one equation for each “n”):

involving the nodal variables Uy, is obtained (s

0 = ho(L)A(L)E*(N)U(z,))

+

>

nodes

L
/o {(~E"(A) hn(a
+A(z) \?

The boundary conditions (Equations 4 and 5)
equations as follows: occurrences of E*(\) U(z,
and the equation associated with the node at

dition of Equation 5. Occurrences of U(z, ),

corresponding sums of Equation 7.

ha(0) A(0) E*(A) U(z, ),

thods.) After substitution of Equation 7
parts, the following system of equations

T |z=L

)z (A(2) hm(2))sz Um(A)

p hn(2) hm(z) Un } dz 9)
are integrated into the above system of
A)sz |e=L are replaced by MA2U(z, A)z=r;
z = 0 is replaced by the boundary con-
=L and U(z, A)z=0 are replaced by the

In our numerical implementation of the above system of equations, the traditional

tent-shaped basis functions are used and a tridi

gonal system of equations with complex

coefficients results. Solution of that system of equations provides the displacement field
U(z, A) as represented in Equation 7, which when substituted into Equation 6, provides
numerical values for F,,(1) for the complex frequency, A, considered.

The impedance of the attached elastic rod is:

F. (’\) = "(AeEe/Le

b (rA)tan(r )
\

(10)
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where A, is the cross-sectional area of the elastic rod;
E. is the Young’s modulus of the elastic rod;
L. is the length of the elastic rod;

r= Lr\/Pe/Ee H

and  p, is the density of the elastic rod.

One would impose a force balance between the elastic rod and the viscoelastic
plug by requiring that
Fe(X) = Fu(X) (11)

and solving for the complex frequency A that makes Equation 11 true. Such a frequency
would be an eigen frequency of the combined system. In the above equation, F.(1) is
evaluated to make proper sense of the sign of the axial force.

At this point, it is necessary to introduce two serious assumptions.

e Since E*()) is known for only real ), the following assumption is invoked:
F,()) = F, (Re{)}) (12)

(Note that though the argument in the above equation is real, the resulting
impedance is still complex.)

e Since the mass of the plug is very small compared to that of the rod, we further
assume that the system eigen frequency will be close enough to that of the rod
alone(wyoq), that we may assume that

Fy(A) = Fy (roa) (13)

The resulting approximate equation:
Fe(X) = Fy (wrod) (14)
is solved for A with a Newton iteration.

We hope to remove the above simplifications in future work, using analytic con-
tinuation to estimate complex moduli at complex frequencies from the storage and loss
moduli of real frequencies.

It is emphasized that the above Fourier technique is not the damping matrix
method of Ref. [4] in which a “small viscoelasticity” assumption is invoked.
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4. Discussion of Results

The comparisons between the test and analysis results for both natural frequency
and damping ratio are shown in Figures 5-10.| The natural frequency results, shown
in Figures 5 and 6, indicate that the analysis was very good in predicting the natural
frequency except for the case of the 6 gram cone. The code predicted that the 6 gram
putty cone would have a resonance at about 3000 Hz which the test did not reveal. The
authors do not feel that this is due to a serious error in the modeling of the physical
mechanism, but probably is an error in the geometric modeling of the cones. The
modeling of the large cone was not as critical as the small cone since the large cone
did not have a resonance in the frequency band of interest.

The test results for the damping ratio are shown in Figures 7 and 8. These figures
compare equal masses of putty applied as cylinders and cones. In each case, the cones
provided more damping than did an equal mass of putty shaped as a cylinder. The
comparisons between test and analysis results for the damping ratios are shown in
Figures 9 and 10. The analysis predicted the trends for all cases except for the 6
gram cone. Just as with the natural frequency comparison, the model predicted a
resonance of the 6 gram cone at about 3000 Hg which was not observed in the tests.
The analysis did predict the higher damping of the cones which was observed in the
tests; however, a physical interpretation of this result has not been obtained. The
analytically predicted damping ratios did not agree precisely in magnitude with the
test results. The predictions were generally larger than the test values, occasionally by
as much as a factor of three. These discrepancies can be attributed to uncertainties in
the values of the material properties and to approximations in the modeling. We do
not feel that they indicate severe errors in the analysis.

The damping of the aluminum rods without any putty was quite small. The
damping ratios obtained for the bare aluminum rods were about 0.0001. This value is
consistent with Zener Thermal Relaxation Theory [6] and with test data from Rogers
[3]. Comparing this value with the damping qtios shown in Table 1, it is clear that
the putty significantly increased the damping of the rods.
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5. Conclusions

The current work may be summarized with a few conclusions. First, the addition
of the synthetic putty does add damping to the aluminum rods, and the putty plug
may be adequately modeled as a viscoelastic addition to the rod. Second, the shape of
the putty plug is important for the amount of damping obtained. Conical shapes give
greater damping for a given mass of putty than do cylindrical shapes.

This damping mechanism is distinct from methods such as the constrained layer
method in that it depends on inertial loads to cause the strains in the viscoelastic
material. The viscoelastic material is optimally placed at a location of maximal ac-
celeration on the main structure, not necessarily at a location of high strain. Such a
placement was demonstrated in the experiments described here.

That the viscoelastic plug is most effective as a damper when its natural frequency
is close to that of the rod, and that the plug's impedance changes drastically with fre-
quency near its own resonance, undermine the utility of the assumptions which are
embodied in Equation 13. Future work will be aimed toward removing these assump-
tions, to solve the full nonlinearity of Equation 11.
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Rod Mass of Shape of Natural Damping Undamped
Length  Putty Putty  Frequency - Ratio Natural
(inches) (grams) (Hz) Freq. (Hz)

24 19.1 Cylinder 4086 0.011 4108
24 19.1 Cone 4076 0.0088 4108
24 6.0 Cylinder 4055 0.0065 4108
24 6.0 Cone 4058 0.0085 4108
30 19.1 Cylinder 3281 0.0102 3294
30 19.1 Cone 3275 0.0088 3294
30 6.0 Cylinder 3258 0.0027 3294
30 6.0 Cone 3259 0.0043 3294
36 19.1 Cylinder 2729 0.0084 2740
36 19.1  Cone 2726 0.0093 2740
36 6.0 Cylinder 2715 0.0022 2740
36 6.0 Cone 2716 0.0028 2740
42 19.1 Cylinder 2340 0.0080 2348
42 19.1 Cone 2336 0.0100 2348
42 6.0 Cylinder 2330 0.0015 2348
42 6.0 Cone 2331 0.0025 2348
48 19.1 Cylinder 2045 0.0085 2052
48 19.1 Cone 2042 0.0100 2052
48 6.0 Cylinder 2038 0.0010 2052
48 6.0 Cone 2038 0.0015 2052

Table 1. Test results for natural frequency and damping ratio.
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Storage and Loss Shear Moduli for the synthetic putty -
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Figure 1. Master curve for the synthetic putty.

Test Setup
) , Synthetic Putty
e T’ (elther cone or cylinder)
Accelerometer

o

Aluminum Rod Y=

\’

<.
T~ gl |

L/ L/2 L/4

—

0
Hammer L

[
i s Cany

A

v

Figure 2. Test configuration.
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ALUMINUM RODS WITH ADDED SYNTHETIC PUTTY
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Figure 3. Natural frequency comparison for all tests.
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Figure 4. Natural bfroquenciut for test, mass model, and elastic rod model.
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ALUMINUM RODS HITH ADDED SYNTHETIC PUTTY CYLINDERS
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Figure 5. Comparison of frequency prediction of model with test
for cylinders.
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Figure 6. Comparison of frequency prediction of model with test
for cones.
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ALUMINUM RODS WITH SYNTHETIC PUTTY ADDED
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Figure 7. Damping ratios for rods with 19.1 grams of putty.
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Figure 8. Damping ratios for rods with 6 grams of putty.
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"ALUMINUM RODS HITH ADDED SYNTHETIC PUTTY CYLINDERS
1 = 19.16 CYL TEST 2 = 19.16 CYL FINITE ELEMENT PREDICTION
3 = 66 CYL TEST 4 = 66 CYL FINITE ELEMENT PREDICTION
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Figure 9. Comparison of damping ratios between test and model for
cylinders.
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Figure 10. Comparison of damping ratios between test and model for
cones,
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