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Abstract

The provision of an effective internal damping treatment for the bending
vibrations of a hollow structure is a difficult task. This report on Work in
Progress explores the possible use of a stiff-skin laminate with a thick
viscoelastic core as a damping insert for a box beam. The work of Kurtze and
Watters [J. Acoust. Soc. Am., 31, 739-748 (1959)] has shown that in its mid-
frequency, core-shear range such a laminate has its dominant elastic energy of
transverse-wave deformation in shearing of the core, with negligible extension
of the stiff skins. As a result the transverse-wave loss factor of the lamin-
ate alone is the loss factor of the core, making the laminate an attractive
candidate as an internal damper. Coupling to the interior of the box beam
would be through normal forces driving the transverse displacement, with
relative tangential displacements allowed by a "slip" layer of low shear
stiffness. The analysis to date explores the wave propagation and damping
properties of the composite structure (box beam plus insert). The results
show that high damping could be realized if the core-shear mode of the insert
laminate could be made to dominate the composite properties. Unfortunately
this clear dominance would require that the coupled-skin bending stiffness of
the insert greatly exceed the bending stiffness of the box beam, a result
unlikely to be achieved in practice. Continuing work will explore the utility
of the laminate insert under more realistic requirements. Other insert-damper
configurations also await evaluation.
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1.  INTRODUCTION

- The damping of bending waves of hollow structures by internal treatments
has long represented a vexing problem. Standard approaches (such as simple
free or constrained viscoelastic layers) are not very effective, principally
because of geometric and kinematic limitations imposed by trying to work
inside a structure, as well as the ever present bounds on the properties of
dissipative materials. This paper is a first report on work-in-progress, and
proposes a treatment concept that can in principle provide effective damping
(although the required properties of the structural parts of the treatment
appear to be elusive).

The particular damping treatment configuration chosen for first study is
a core-shear composite adapted from the the work of Kurtze and Watters on the
control of the speed of transverse waves in acoustical panels. The proposed
damping treatment is unusual in that it is to be driven by the transverse
displacement and normal forces (vs. interface shear forces) of the structure
to be damped.

In this paper we describe the concept, illustrate its potential to
provide significant elastic energy storage in the viscoelastic core, and
describe the dynamic functional behavior of the components of the combined
system (hollow structure plus internal damper), including the expected system
loss factor. In our conclusions we note the material-properties limitations
that appear to block the realization of an ideal damping treatment as first
proposed. However, alternatives and further anlayses are both indicated.

2. THE DAMPING PROBLEM CHOSEN
2.1 The Box Beam

The structure to be damped is the box beam of Figure 1. The walls are of
equal thickness on all sides, and are thin relative to the cross dimension of
the beam. We are to assume that it is important to the problem at hand that
an effective level of damping be provided for the (free) bending vibrations of
this beam. The objective is to be pursued agressively, including the
consideration of heroic (heavy etc.) measures.

A common first suggestion as a damping treatment for such a hollow beam
is that it be filled with a dissipative material. Such an approach
effectively places a simple viscoelastic beam within the structural beam. The
result as is seen in Figure 2 is that the neutral planes of the two beams
coincide; they undergo the same transverse displacements and rotations of
cross sections. No shear is generated between the two, and the elastic
energies of deformation for maximum displacement Yo at wave number k are those
of individual bending as follows:

1
YBox Beam = Yo = 3 Bbkuyo2
(1)
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EI, the bending stiffness
Young's modulus
area moment of the cross section

where, in each case, B
E
I

and

A c !

the wavenumber* of the transverse displacement, and

k

A = wave length
f = frequency
¢ = wave speed.

If we assign a loss factor n, to the insert and assume the box beam is
(relatively) without losses, we have for the loss factor of the composite
(beam plus core damper)

. ):nj VJ _ Vins y ' (2)
zVJ Vb+vins ins

For a homogeneous insert within a thin walled beam we will find
I, =1 (3)

(The two are equal where the wall thickness is 0.08 times the outside
dimension of the beam), and we expect that Eins << Eb.

It then follows that Vin << V,; and Eq. (2) become

s b;

E.
+ _1ns
noE Eb Nins * (H)

Thus, in this case the system loss factor is only a small fraction of that of
the insert material, and such a treatment is ineffective.

An alternative suggestion that is frequently made is that one employ a
structural beam as an insert, with a thin layer of viscoelastic material
between it and the inside walls of the box beam. For such a treatment one
argues as before that there is no relative motion generated in bending of the
composite, hence no shear deformation of the viscoelastic layer, and
essentially no damping.

¥The wavenumber k = 2n/\ is very useful in describing phenomena that are
harmonic in space with spatial period A. By analogy with the circular
frequency w = 2nf = 2n/T, which describes a phenomenon that is harmonic in
time with temporal period T=1/f, the wavenumber is sometimes called the
spatial frequency.
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2.2 The Shear-Core Configuration

Clearly, one needs to find a way to generate more deformation in the
damping insert. The work of Kurtze and Watters suggests such a mechanism.
They were concerned about controlling the speed of bending waves in acoustical
panels, because good acoustic transmission loss could be preserved if a way
could be found to keep the bendéng wave speed below sonic speed through enough
of the audible frequency range.“~" This bending-wave-speed problem had become
more important with the advent of lighter, stiffer panels.

Kurtze and Watters evolved a stressed-skin panel construction (see Figure
3) in which the shear properties of the thick core placed the broad transition
region between coupled-skin bending at low frequencies, and uncoupled-skin
bending at high frequencies so as to keep the "bending" (i.e., transverse)
wave speed subsonic, as the Figure shows. In the transition region, the panel
skins appear essentially inextensible so that core shear controls the stiff-
ness of the panel in transverse deformation. As a result, the wave speed is
essentially constant at a level determined by the panel mass and the core
shear stiffness. A consequence of this behavior, as Kurtze and Watters
recognized, is that in the transition region the panel loss factor is
essentially that of the core material. If such a "panel" could be adapted as
an insert damper that could control the transverse motion of the composite
(box beam plus damping insert), then high system loss factors might be
realized. It is this possibility that lead us to investigate the shear-core
insert.

Figure U sketches the desired transition-region, core-shear behavior in
comparison to the simple bending insert discussed earlier and shown in Figure
2. In core-shear deformation, cross sections do not rotate but rather stay
vertical and parallel. This motion is forced by the stiff skins, which must
"slip" relative to the inside surface of the box beam. As a result, the core
shears throughout (if it is homogenous), and the core stores an average
elastic energy Vcs per unit length of

VCS =z ]}GAkzyoz (5)

shear modulus of the core
cross section of the core
maximum transverse displacement.

where G
A

Yo

Comparing the elastic energies of the shear core and the viscoelastic
beam inserts (See Equation 1), taking them to be made of the same material, we
find

Ves G _ 126 - 4
Ve - BKZ ° E(kh)Z © (k)

5 (Large). (6)

Note that the ratio is large because for simple bending of the system we would
find (kh)2 = (2nh/A)2 to be small relative to unity. Thus the shear core can
store much more elastic energy than a viscoelastic beam of the same material.
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As we noted earlier, the shear core laminate has three distinct free
transverse wave types in different frequency ranges:

low frequency: coupled-skin bending with dominant elastic energy
in stretching of the skins

1

VBC =g Bﬁk"yo2 (7)

transition region: core-shear transverse deformation with dominant
elastic energy in core shear; skins essentially
inextensible

1
Veg = gOAk?Y,? (8)

high frequency: uncoupled skin bending with dominant elastic
energy in the bending of the two skins

- 1. wy 2

ey = § * Bgink*Vo

These regions are indicated asymptotically in Figure 5 as wavenumber vs.
frequency. In each of the bending regions, coupled bending (BC) at low

frequencies and unco*9éed bending (BU) at high frequencies, the bending wave

speed increases as f£'/¢. In the transition region (if it is broad enough),

the wavespeed is essentially constant so that wavenumber increases as f.

(9)

The "break" frequencies between these regions occur at wavenumbers Ky
and k;y, at which the elastic energies for the two adjacent transverse wave
types would be equal. That is, where

Vee = Vess
GA
k2 = k2_ = = ,
1° B,
and where
Ves = Veus
GA GA
2 = Ik - ) e ———
k2 = k 11°8 ° 28 . (10)
u skin

It follows that the transition range of core-shear behavior in wavenumber
and in frequency is

fII i kII i Bc 1/2 (1)

k 2Bgkin

Kurtze and Watters, see Figure 3, showed a panel design with a transition
range of two decades. A little thought shows that a broad range should also,
in principle, be achievable in a damping insert.
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3. THE COMPOSITE BOX BEAM WITH SHEAR CORE INSERT

Figure 6 shows the composite beam that we wish to consider; a stressed-
skin insert with a viscoelectric shear core placed as a damper within the box
beam. The "slip" interface that is required between insert and box beam is
assumed to transmit normal forces between the two, but to allow relative shear
displacement with only minimal shear stresses. For the moment, let us assume
that this is accomplished with a thin layer having a low shear modulus.

3.1 Component Impedances for Transverse Motion

In determining the characteristics of the composite beam in bending,
i.e., its wavenumber (or wavespeed) and loss factor, we require the impedances
of both box beam and insert for transverse motion. In either case, the
impedance is the ratio of a transverse force at wavenumber k and frequency f
to the resulting transverse velocity at k and f. For a beam in simple bending
one has

4
2, = 1 B [1-Cep)*] = -tom[ 1-(kric )+ ] (12)
where B ='Bending stiffness (ratio of bending moment to resulting curvature)
m = Mass per unit length of the beam, and
kg = w?m/B, the wavenumber of free bending waves.

With the appropriate parameters B and m, this expression also describes
the impedance of the insert in its bending regimes at low and high frequen-

: -iwt .
cies. Since our convention here is a time dependence e , positive
reactance represents stiffness, and negative reactance represents mass.

The condition for the propagation of free waves is that the impedance go
to zero (in the case of losses, one sets the imagninary part equal to zero).
Thus the wavenumber for free bending waves is kp, as defined above.

The impedance expression of Equation (12) shows that at a given frequency
one finds the following:

k < kb ’ Zb + mass reactance
k> kb , Zb + stiffness reactance

The physical interpretation of these results is that if we try to bend a
beam dynamically at a wave length longer than its freewave length (k<kp), its
behavior is as a mass. Correspondingly, if we try to bend the beam at a
wavelength shorter than its free wavelength (k > kp), it appears as a
stiffness that increases rapidly with increasing k'

For the insert in its core-shear region, we can show that the transverse
impedance is the following:
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. GAK?
es * 1o [1-[ks/k]2]

(13)

-iwms[1-[k/ks]2]

where kg = w?m/GA, the free wavenumber.

For the insert in core-shear the wave-number dependence of the impedance
at a frequency is qualitatively like that of the bending beam, that is, a mas-
sive reactance for k < k. and stiffness reactance for k > ks. However, the

variations with k are less rapid than for the beam (see the following section).

3.2 Characteristics of the Composite Beam

In Figure 7 we show the wavenumber dependence of the beam and shear core
impedances. Each impedance is normalized by wm, the mass reactance at the
frequency considered, i.e., the transverse reactance found as k - o, simple
transverse translation. Here m represents my, or mg. Also, each reactance is
plotted as a function of the wavenumber relagive to its respective free
wavenumber. In each case, the reactance is massive approaching wm for small
wavenumber, and dropping to zero at the free wave-number.

Above the free wavenumber, the reactance is stiff, and increases rapidly
with k. This is especially true for the bending beam (note the right-hand
scale which is compressed 100 times relative to the left-hand scale. Also
note that the stiffness reactance for the shear core is plotted at 10 times
its value, i.e., the reactance itself has a value of 10 where the right hand
scale shows 10 x Insert = 100).

To illustrate the desired behavior of the shear-core insert as a damper
in the box beam, we show the free wavenumber characteristics of both as
functions of frequency in Figure 8. The three characteristics appear for the
shear core, the core-shear branch being the one of principal interest for
damping. In each case, the nature of the transverse impedance is indicated
qualitatively as "S" for stiffness above the free wavenumber line, and "M" for
massive below. The relative frequency and wavenumber scales are each unity at
the crossover "c" of the beam and core-shear characteristics.

The free-wavenumber characteristic for the composite beam will lie
between the box-beam characteristic and the dominant characteristic of the
insert, i.e., the one closest to the beam characteristic at the frequency of
interest. (The true insert characteristic will fair smoothly from one of its
branches to another. The asymptotic lines are being used here to illustrate

the behavior.)

Figure 9 shows the combined wavenumber-frequency characteristic for the
composite beam. In the region well below fc, the crossover of box-beam
bending and insert core shear, the compositeé approaches a line lying above the
core-shear characteristic, by the following factor
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1/2
k/kg + (1 + m, /mg )

f <« f (14)
n o+ ong c

and the expected composite loss factor approaches n_, that of the shear core,
This happy result depends, however, on the assumptign that the insert behavior
is controlled by core shear, and that the transition to coupled~skin bending
lies far enough below the frequency and wavenumber range shown. (See
Conclusions below.)

At frequency f., the free wavenumber of the composite coincides with those
of the box beam and the insert individually. Because only the insert has
significant losses, the composite loss factor is

n = ns/(1 + mb/ms) y £ = £ . (15)

That is, the composite loss factor is reduced by the ratio of insert mass to
total mass at this crossover frequency. This result is indicative of the
relative vibrational energies in the two components of the composite,

Again, as shown in Figure 9, at frequencies well above fc, the stiffness
of the box beam controls, and

1/4
k/k, - (1 + ms/mb]

fc/f f » fc (16)

n/ng
® [lmy/mg)(1 + my/m )]

In this high-frequency region where the box-beam bending dominates
progressively, the composite loss factor decreases inversely with frequency;
and again the system mass parameters conveniently describe the results.,

The loss factor variation over the frequency range 0.1 £, to 10 f_ is
shown in Figure 10 as the ratio of composite loss factor to n_ . The result
presented is for the example mg = m,, i.e., the insert and boX beam have equal
mass. The performance shown represents a significant fraction of the core
loss factor and can be realized if, as we have assumed, the core-shear
properties of the insert are effective over the frequency range, especially at
the lower frequencies.

4, EVALUATION AND CONCLUSIONS

In this preliminary assessment of the damping potential of the shear core
insert we have used asymptotic expressions to characterize the insert. OQur
focus has been on the interaction between the box beam and the insert in the
frequency region in which core shear dominates the behavior of the insert.

Implicit in this approach are several assumptions about the insert's
characteristics -- namely,
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a) that core shear dominates over a broad frequency range so that the
expected high levels of damping will be realized over a sufficient
bandwidth, and

b) that the lower break frequency f; between core shear and coupled-skin
bending (at lower frequencies) lies well below f_ where the core-
shear freewave characteristic intersects the box-beam free bending
wave characteristic (see Figure 8).

The first of these does not of itself appear troublesome. As we saw in
Figure 3, Kurtze and Watters demonstrated a core-shear region (actually a
spread between break frequencies) of two decades in frequency.

On the other hand, the second assumption imposes the requirement that

B

B
( E]box beam °

a]insert
coupled-skin

»

This is indeed a condition that may prove difficult, if not impossible to
meet. Further, the damping results of Equations 14-16 as indicated in Figure
10 show that the mass of the insert must not be too small, and probably should
be comparable to the mass of the box beam. Thus, a requirement for effective
damping may be

Binsert >? Bbox beam °

coupled-skin

Energy arguments would support such a result.

It would be difficult to achieve a coupled-skin bending stiffness of the
insert that is much larger than the bending stiffness of the box beam
particularly since the insert must fit within the box beam. (We note that the
coupled-skin bending stiffness varies approximately as

~ 2
Bcoupled—skin Eskin h,h,

so that the core thickness is a strong determinant of the bending stiffness.
The box beam is assumed to be made of a material with high elastic modulus, so
that Eg i, cannot be very large in comparison.)

It appears unlikely that the idealized conditions first assumed can be

realized. (i.e., Binsert > Bbox beam)' However, the damping achievable with

less extreme requirements should be determined in the continuing work. In
addition, the simple shear-core configuration is only one of several damping
insert designs presently under consideration.

FBD-9
Confirmed public via DTIC Online 01/13/2015



From ADA309666 Downloaded from contrails.iit.edu Digitized 01/13/2015

Incidentally, we note that since the shear-core configuration is driven
by the lateral motion of the beam-to-be damped, its performance is not
dependent on its being inside the beam. Thus there may be cases in which an
external core-shear damping treatment (with its dimensions not restricted by
the inner dimensions of a hollow beam or panel) may prove effective.
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Fig- 1. Box beam. Fig. 2. Bending deformations of box beam and of viscoelastic beam
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Fig. 3. Experimentally determined transverse wave speed versus
frequency, for sandwich bars of wood fiber-board cores and steel
skins. (a) For core material arranged with the grain perpendicular to
bar (for lowest shear stiffness). (b) For grain of core layer parallel to
axis of bar, shear stiffness reduced by cutouts (Kurtze and Watters,
Ref. 1).
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Fig. 5. Transverse wavenumber regimes for shear-core

insert; BC; coupled-skin bending, CS; core shear, BU;
uncoupled-skin bending.

Fig. 4. Transverse deformation of box beam, viscoelastic beam, and
core shear insert.
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Fig. 6. Core-shear insert damper for box beam.
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Fig. 7. Transverse reactance vs wavenumber for box beam
and core- shear Insert at frequency .
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Fig. 8. Wavenumber vs frequency characteristics of box beam
and of core-shear insert.
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Fig. 9. Wavenumber k of the box beam with core shear insert.
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Fig. 10. Box beam with core-shear insert. Relative loss factor
n/n, vs frequency. ‘
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