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ABSTRACT

For aircraft weapon systems which deliver unguided armament {guns,
rockets, bombs), small improvementindeliveryaccuracy can result in sub-
stantial reductions in weapon dispersion. The concern in the work reported
is the development of a dynamic precision weapon delivery system model for
analyzing the effects of system parameters and disturbances on delivery per-
formance. In addition, a methodology of precision weapon delivery flight
control design is developed, without considering the pilot as a control ele-
ment. The developed model is general enough for use in piloted weapon de-
livery investigations as well, although no such investigation was performed
in this program. The aircraft model accommodates a wide variety of air-
frame nonlinear dynamics, control points and methods and measurement
systems. The bomb model is general enough for a variety of dive-bomb
angles, release altitudes and release speeds. The circular error probable
(CEP) at impact is chosen as a measure of weapon delivery performance,
and a technique is developed for relating the effects of flight control param-
eters, airframe dynamics, measurement errors and gust disturbances to
this measure by using the system model. Demonstration analysis is per-
formed to show how to identify critical system parameters for delivery of
an iron bomb, in order to illustrate how the method of analysis can be used.
Digital computer subprograms (in Fortran IV language) were developed and
documented implementing the mathematical models., Extensive use of sub-
routines was made to provide flexibility. Development and documentation
of the computer programs are presented in Volume II and the demonstration
example is presented in Volume III of this report. Finally, by consolidating
the subprograms, an efficient and versatile "Armament Delivery Analysis
Programming System'' (ADAPS) was developed for the analysis and design
of weapon delivery systems.
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SECTION I
INTRODUCTION

- For aircraft weapon systems which deliver unguided armament (guns,
rockets, bombs), small improvements in delivery accuracy can result in
substantial reductions of weapon dispersion [ 1]. The net result is a reduced
number of sorties required per target and hence less exposure of aircraft to
enemy defenses. Consequently, the analysis of precision weapon delivery
has become an area of extreme interest. Two approaches to the problem
have evolved. The first is to analyze the precision weapon delivery task by
detailed simulation of the tactical situation and the second is to investigate
the effects of initial condition errors, release point errors, and gust dis-
turbance errors by propagating them along the weapons trajectories to im-
pact. For the latter approach, a method of analysis is needed which con-
siders the effects of flight control parameters, airframe dynamics, measure-
ment errors and gust disturbances on the release parameters and then
propagates these release errors to impact to obtain a meaningful measure
of weapon system performance,

Such an analysis tool can then be used in connection with the former
approach to establish critical measurement requirements as well as to
evaluate the effects of various control points and methods prior to large-
scale simulation or flight tests.

In this study, a dynamic precision weapon delivery system model, a
method of performance analysis, and a set of computer programs are devel-
oped to evaluate effects of various process parameters on overall weapon
system performance, with particular emphasis on flight control parameters,
airframe dynamics, measurement points and errors, and gust environments,
The model of the process assumes precision control without considering the
dynamics of the operator as a control element, The controller is in the form
of an optimal controller consisting of an optimal estimator and optimal feed-
back gains. The model is general enough, however, to consider existing
controllers as well as the operator in the loop. For the latter case (i.e.,
pilot weapon delivery) mathematical models of the operator have to be in-
corporated into the present model [2, 3, 4, 5]. Since the operator tracking
error is one of the major contributors to impact dispersion, the piloted
delivery deserves separate attention. The model is also flexible enough for
considering alternate airframe dynamics/control points /measurement system
combinations. The developed armament model is for the delivery of iron
bombs. It is sufficiently general to treat a variety of dive angles and release
altitudes and bomb characteristics., The delivery of other weapons can be
considered also by minor modifications,

The impact covariance and the circular error probable (CEP) are used
as measures of delivery performance,



A simplified variance analysis is given in [5] by ignoring cross-
covariance terms, The elimination of the cross-variance terms was pur-
sued in [ 2] by choosing random variables which are uncorrelated.

In this work the full impact covariance matrix is developed and retained
in the analysis using the complete dynamical model. The concepts of half-
probability circle and circular error probable are extended to half-probability
ball and spherical error probable, These are thought to be more meaningful
performance measures in air-to-air delivery.

The complete report is divided into three volumes. Volume I contains the
works on the weapon delivery system modeling and optimization, Volume II
documents the programs which implement the analysis developed in Volume 1.
Volume ITI contains a demonstration example to illustrate how these programs
are used.

In this volume the presentation begins with a brief description of the wea-
pondelivery process and the approach taken for the performance analysis of
the overall system. In addition, the synthesis of the optimal weapon delivery
controller is outlined and the overall organization of the analysis program is
given, In Section III the development of a mathematical model for the six-
degree-of-freedom motion of aircraft and weapon is presented, In Section IV
the development of the total force and moment system for the aircraft and
weapon moving in an unsteady airmass is given. The wind model is developed
in that section also. The development of the measurement system model is
presented in Section V, The nonlinear observation geometry as well as sensor
dynamics are considered. In Section VI the process of linearization is treated.
The transformation of the perturbation states is presented in that section also.
The development of the nominal states and parameters (trimming) for the
linearization is discussed in Section VII. The methods of algebraic as well
as the autopilot trim are presented. The performance measure development
for the analysis and design of the weapon delivery controller is given in
Section VIII. The circular error probable performance index is generalized
to the spherical error probable for the air-to-air weapon delivery. In Sec-
tion IX a method for nonstationary optimal weapon delivery controller design
is presented. Both deterministic and stochastic disturbances are considered.
This is followed by the presentation of a stationary controller design method
in Section X, The iterative solutions of the ILiyapunov as well as the Riccati
equations are given in that section also. Section XI summarizes the analysis
and modeling work and lists recommendations for additional areas of study
and extensions.

The reduced controller (fixed-form) design method is given in Appen-
dix I. The development of the fire control equations for the nominal release
time is given in Appendix II.



SECTION II

PERFORMANCE ANALYSIS AND OPTIMAL DESIGN
OF WEAPON DELIVERY PROCESSES

This section provides an overview of the approach taken for the system
analysis and the optimal design of weapon delivery processes. First, a
brief description of the air-to-ground weapon delivery processes is pre-
sented; then the mathematical models of the subsystems and the overall
delivery system are described. Subsequently the optimal perturbation
control of the delivery model is discussed, and finally, the overall organi-
zation of the "Armament Delivery Analysis Programming System (ADAPS)"
is given,

AIR-TO-GROUND DELIVERY PROCESSES

Air-to-ground delivery is currently accomplished with a limited number
of well-defined attack maneuvers, each designed for a particular tactical situ-
ation (i.e., for given target type and defenses, aircraft type, armaments and
electronic aids), Figure 1 shows some of the basic dive-bombing trajectories
used mostly for manual (iron-sight) delivery [7]. In this delivery technique,
the pilot flies a fairly consistent preplanned flight path which brings the air-
craft to an initially set release condition, e.g., release altitude, ground
speed and dive angle, The weapon is released when these three conditions
are satisfied simultaneously in the ideal cases and the target passes through
the center of a depressed reticle sight. The depressed reticle sight display
system is used most often for target tracking during conventional air-to-
ground weapon delivery.

The aim dot (pipper) of the reticle image, which the pilot attempts to
position onto the target by steering the aircraft, is "depressed' below the
velocity vector of the aircraft as shown in Figure 2 in order to display the
nominal bomb impact point corresponding to the preselected nominal release
condition,

The setting of the sight angle is determined from the nominal trajectory
line-of-sight angle, %¥jgg. The sight depression angle, m, is the angle of
the line of sight below the fuselage line (x-axis) of the aircraft., The pilot
determines from tabulated data the correct fixed sight depression angle for
the selected pickle (release) conditions, and adjusts the sight depression
mechanism to this setting. He dives towards the target in such a way as to
achieve the nominal release conditions at the time the pipper is on the target.

When using fire control computers, achieving the same accurate dive
conditions is not necessary. Instead, the target is held on the center of an
"undepressed' reticle sight throughout the dive, and the weapon system is
pickled at the desired release altitude. This initiates the weapon system com-
puter for automatic release.
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The automatic release capability increases the number of possible de-
livery maneuvers. Figure 3 shows a typical example, the "high-approach
dive-toss'' maneuver with automatic release [ 8]. After target acquisition,
this maneuver may be broken into four phases:

. Dive -- The aircraft is aligned with the target and flown
to a desired release altitude, ground speed, and dive angle.
The automatic weapon release computer set (WRCS) is
(pickled at the desired altitude) for starting the pull-up.

This initiates the weapons system computer for auto-
matic release,

e Pull-up -- Following the release or pickle command, a
constant-g pull-up is initiated. This serves the obvious
purpose of reducing exposure to enemy defenses and also
provides for clean aircraft-bomb separation. With fire
control, weapon release will occur automatically during the
pull-up maneuver.

e Release Transient -- Weapons are commonly released from
their mounting racks with explosive charges that inject them
into the airflow near wings or fuselage with uncertain linear
and angular velocities, The resulting short-lived but poorly
understood transients establish initial conditions for the
weapon's free fall,

e Weapon Free-Fall -- The weapon follows a ballistic trajectory
foward the target. This may be single-stage, as for iron
bombs, or multi-stage, as for dispenser-type weapons, This
work deals primarily with free-falling weapons, subject only
to aerodynamic and gravity forces, The analysis program,
however, is sufficiently general to accept nonballistic tra-
jectories for, say, guided bombs or missiles,

While the dive-toss is a specialized attack maneuver, it can easily be
parameterized with respect to acquisition altitude, dive angle, speed,
release altitude and pull-up g's to generate various other maneuvers. For
example, letting the dive angle y vanish and executing a zero-g increment
pull-up (and depressing the sight reticle appropriately) leads to the standard
"1ow-level approach and laydown' maneuver. Similarly, ¥ = 0 with positive-g
pull-up and automatic weapon release gives a "loft bombing' maneuver,

Because of this inherent generality, the discussions to follow are built
around the dive-toss maneuver as a typical nominal trajectory.
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MATHEMATICAL MODELS

The weapon delivery processes in this work are treated as nonlinear
stochastic phenomena. This is both realistic and computationally attractive.
For each phase of the attack maneuver, the process is linearized. CEP per-
formance is evaluated with standard covariance analyses, and optimization
is accomplished with linear-quadratic control theory. No repeated runs or
Monte Carlo methods are required. Discussed below are the models appli-
cable to each trajectory phase -- dive, pull-up, release transient, and weapon
free-fall,

Dive and Pull-up Phases

The mathematical model for the dive and pull-up phases includes aircraft
equations of motion, measurement equations with measurement noises and
biases, and wind model equations for gusts and mean winds. The model also
includes simple fire control equations which define the nominal pull-up and
release times. The overall system contains both linear and nonlinear dyna-
mics (Figure 4).

Airframe Model -- To handle arbitrary trajectories, various control points,
and methods, the aircraft model is described by a set of nonlinear, time-
varying differential equations of the form

kp = fx, ;'cp, Fpr Yo W, V)
where
Xp = state vector of the aircraft
yp = vector of effective thrust inputs to the aircraft
y6 = vector of effective surface deflection inputs to the aircraft
w = vector of disturbances (gusts) on the aircraft
v =  vector of deterministic inputs (mean winds) to the

aircraft

Actuator and Thrust System Model -- To allow variations in the effectiveness
of thrust and aerodynamic surfaces, the actuator and thrust system outputs
are assumed to be nonlinear functions of their states,

The actuator and thrust dynamics are modeled as follows:
5 = X u, + K
*s T Fsfst s T Ry m

T FTXT + GTu + K‘yT Ym

n

x T
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with nonlinear outputs

= h.(x
s %5’
yp = Bplp)
where

x(_) = acftuator system state vector
Xp = thrust system state vector
Vg = effective aerodynamic surface deflection output vector
Yo = effective thrust magnitude and deflection output vector
K-yﬁ’ K are arbitrary feedback gains and Ym is the measured

signals as modeled below,

Measurement System Model -- To allow various measurement points and
methods, the measurement system model is represented by a set of linear
differential equations (i e., sensor dynamics) with linear and nonlinear in-
puts. The nonlinear inputs correspond to the observation geometry of the
state measurements

x = X+ : + G + +
m Fm m Gmp ypm mp ypm GrmT mi Gmé yam
+ G_n
m m
Ym mxm+Dmeye+Dmna
where
Xm © measurement system state vector
v = gensed signal vector for aircraft states
pm
y = sensed signal vector for aircraft state derivatives
pm
N4 = gsensed signal vector for the thrust magnitude and thrust
Tm .
deflection states
Y om " sensed signal vector for the actuator states
m = white noise input vector to the measurement system
m
Y - measured signals



Y e = output vector from the bias error process

na = additive, white measurement noise

The sensed signal vectors for the aircraft states are assumed to be non-
linear (i.e., observation geometry) functions of the states and its derivatives:

Ypm

Y-pm

hix , x )
P’ T p

h (x'p)

The sensed signal vectors for the thrust and actuator states are assumed
to be linear functions of the thrust and actuator states

Yrm = Hpm X7

Yem ~ Hom™p

The measurement system model not only contains those measurements
for controlling the aircraft in flight (such as gyro and accelerometer outputs
used for augmenting pilot control and for flexure control), but also those mea-
surements necessary to estimate the states for the fire control equations
(such as radar range, azimuth and elevation, and altimeter outputs to deter-
mine time of weapons release), Error sources in the measurement system
are also included. Examples of these are gyro biases, accelerometer noise
due to engine vibrations, and radar angle errors due to misalignment,

Linear Equations ~- For small perturbation analysis the nonlinear part of the
overall system (i.e., the nonlinear equations of motion, the effective input
equations and the observation equations) is linearized about the nominal
flight path to the form

R ) 3 .. f _ of of of |-
pr “lax )éxp-'_ d% )5Xp+ 3y )(WT+ oy )6Y5+ aw |V 5%
p p T 5
ah
0¥y SXIT) 0%
dh
|0
23h
6ypm ={——E—3X )pr
P
3h 3h_y .

10



The measurement perturbation equations become

+ G 6& + G

me - Fmﬁxm + Gmp 6ypm mp Y pm mT Gmi
+ Gmé 6y6m + Gm Mm
Letting
of dof of of
F_ = =—, F =—, G ==, G =,
p 0x p s pd Y5 PT  ¥p
Gw=af’ '='§—£‘HT _ahT,Hﬁ_ahﬁ
P dw PV 3y P 8%, P 3%,
dh N oh . dh
H =P = =_P . w =_P
Py pm Ay pm o %
xp p p

the state perturbation equations become

3 = y 3 + + -—
(‘Sxp Fp(’)xp+Fp5xp+GpTH bx G H5p6x5+GpWW Gpvv

Tp °T pd
axm = Fmﬁxm + (Gmp om ax + Gmp pm) 5x +GmpHpm5 0
+ GmT Tm GX + Gma Hﬁm 6X5 + Gm 1']m

The wind gust model with the Dryden spectrum is described by

b .
1]

t +
w Fw( )XW Gw “w
w = X
wWp W

where

X, = gust filter state

w = gust filter output

Ny = white noise input to the filter

The measurement bias error vector xe(t) is modeled as adifferential
equation with a long time constant so that it remains approximately constant
over the time of the weapon delivery maneuver, That is
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*e 7 FeXe + Geﬂe

Yo Hem Xe

x, = bias error vector state

Yo = error systerm oufput

Ne = white noise input to error filter

The matrix Ge is selected so that the steady-state rms values of x_ are
equal to the rms biases.

Defining
x = col [Xm, Xss X Xp’ X Xe-|
¥ =Y

m

u = col [uﬁ, UT]
noo= colln ., N, M. ne]

the augmented mathematical model is obtained in the form of

[(-F®)] % = F(Ox+ G (th+ G (t)v + Gyn
y = M(t)x + Dn

where the matrices I, Gu’ G\_r’ G'ﬂ’ M and D are given as follows:
" Fh Camgfem  CmrHrm CmpHpmt émpﬁpm 0 0 g
GﬁyKyéMm Fs 0 0 0 G5+, 5Pmetom
F = GT_yKyTMm 0 Fo 0 0 GryKyrPreHom

0 GpﬁHép GpTHTp o pwW WP 0

0 0 0 0 F 0
B 0 0 0 0 0 F, |
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B 0 0 0 G H 0 0
mp pm
0 0 0 0 0 0
F o= 0 0 0 0 0 0
0 0 0 F 0
. 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0| 0 K B
G, 0 0 0
0 D
G(3 0 0 GMKY5 o 0
G, = 0 G.|, G-= , =
a - 0 G1r1 0 GTyK,yTDm 0 0
0 0 Gp‘—r 0 0 0 0
0 0 0 0 0 G 0
W
0 0 0 0 0 0 G
e
S —_ ) p_— L b
M = [M 0 o 0o 0o D T ], D=I[0 D 0 0]
Im me em m

This finishes the dive phase of the modeling, Figure 4 shows the overall
system linearized state diagram.

Release Phase

For the automatic release, equations predicting the nominal pull-up
time and the release time are needed, They are in the form o

13



t, b [, t <t

tp =he, [x(t), x(t) ], t, <t <t

where
tp = nominal pull-up time
tr = nominal time of weapon release
X = state vector of the nonlinear model

These are linearized at the nominal release time t = t,. yielding
aht’
—PB

s7— O X(tp)

0t
p

7 ’
aht 3h

t
S S,
61:]5‘ B ax(tp) |:(Sx(tp)] *

[ox(t_ )]
9x r

where prime indicates the transpose.

If the estimate of perturbation state 6x is available instead of 8x itself
then in the above equations 6x is replaced by 6X. These equations define the
timing errors in the release time., Computation delay and rack relay delays
contribute additional timing errors. These are modeled as independent addi-
tive random variables, '

Release Transient Phase

The release transient phase is defined here as the period from the actual
release time of bomb to the time when it leaves the region of the wings, Al-
though this phase is not modeled in detail in this work, it has an important
influence on the weapon delivery performance. The records in some cases
show that when the bomb is ejected from the wing rack, the wing moves up
(flexure) while the bomb follows a trajectory without safe separation. Because
of the inability to predict bomb aerodynamics and stability in the region of
the wing, experimental data are used for the description of the release
transient phase. At the present time, the U.S. Air Force has a program
called "SEEK EAGLE" [9, 10], which is both analytically and experimentally
studying the release problem. In this work, the release transient phase is
taken into account by introducing at release an independent, additive, stochastic,
initial -condition error.

14



The

The

where

The

where

state of bomb at release is described by
X = hb (Xp)
perturbation state of bomb at nominal release is then given by

5Xb(tr) = Hb pr (tr)

state of bomb immediately followinhg release transient is given by

bx (t.,) = H [6Xp(tr‘)+fr' 6tr]+ H g,

x (1

5 (&)

= release fime error

= release transient error input matrix

= release transient error

Weapon Free-Fall Phase

In evaluating weapon delivery performance, translating the dispersion
errors at bomb release to the impact of the bomb on the target and introducing
errors which occur during the bomb trajectory is necessary. Two possibili-
ties exist for satisfying this requirement -- bomb tables or trajectory compu-
tation. As trajectory computation allows treatment of various weapons and
permits introduction of disturbances such as winds and uncertain bomb param-
eters during the trajectory, this method has been chosen in this work.

The

where

bomb model is described by

x, = f(x u, w, v)

b b *p’
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state vector of the bomb

el
I

b
u = input vector due to bomb imperfections
w = vector of disturbances (gusts) on the bomb
v = vector of deterministic inputs (mean winds} to the bomb

For small-perturbation analysis, the nonlinear equations are linearized
about the nominal free-fall flight path. This yields

0x, = Fb(t) éxb + Fb(t) 6xb + be(t) w+ G

b oV + Guu

b

The perturbation state of bomb at the impact on the horizontal plane is
given by

aé‘{(tf-) = Ox(tg) + 1, (t,) Ot

where
Gx(tf) = the perturbation state of bomb at the nominal impact time te
fb(tf) = X (tf)
and
ohft,)
Bt, = —mk
f hi(t,)

h, being the altitude state component of the bomb.

After having modeled the delivery process from the target acquisition to
the impact, various performance measures can be defined for the analysis
and design of the delivery system as presented in the following subsection.

OPTIMAL CONTROL OF PERTURBATION MODELS

The mathematical models just discussed provide small perturbation
descriptions of the weapon delivery process. They are incomplete, however,
in that the control variables ug and ut for the dive and pull-up phases of the
trajectory are undefined. Adding arbitrary (linear) controllers to the mathe-
matical model is a simple matter, and the developed aircraft model provided
thig option. Its utility lies in quick performance evaluations of all kinds of
specific bomb systems and control schemes.

Tools are needed for evaluating intrinsic properties of various constraint
configurations to answer questions such as:

16



. For a fixed complement of sensors and a given set of control
inputs (control points), what minimum CEP is attainable within
these constraints?

e What maximum CEP improvements does adding a single sensor
to the above configuration give?

° What performance penalty exists for replacing a sensor with a
noisier, but cheaper, version?

These questions call for performance analyses of optimal controllers.

A large number of possible optimal control problems can be formulated
for the weapon delivery process -- for example, computing optimal attack
trajectories. This has already been avoided by saying that these are largely
predetermined by the tactical situation. Another problem is that of optimally
controlling velocity deviations and target deviations from the reticle of the
bomb sight during the dive phase of attack, followed either by an open-loop
or optimally controlled pull-up. Assuming the steady-state operation, the
performance index for this formulation takes the form

_ 2 2 2 F
Iy = Efayy 0Vi+ gy, "+ agg e "+ u’ Rul
where
8V = velocity deviation from nominal
€y, = vertical deviation of target from center of reticle
ey = lateral deviation of target from center of reticle
91 999 933’ R = weighting coefficients and prime indicates the
franspose

The solution mimics apilotis own efforts to hold target alignment and
velocity during his dive., The weights q;;, R can be chosen via the iterative
methods of quadratic equivalence [11]

Still another optimization problem which is followed in this work involves
direct minimization of the HPA, This can be done with a performance index
obtained in the following manner, -

Strictly speaking, HPA is the area of a 0. 5 probability circle centered
at the mean impact point; CEP is its radius, For normal distributions with
small cross correlations, this area can be closely approximated by

HPA = [chXZ (tg) + g 2 (te)]

y %
where ¢y and oy are downrange and crossrange standard deviations, and gy,
qy are weightings which depend on the ratio oy/ Oy -
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This expression, in turn, can be written in terms of the bomb release
covariance matrix X(tH_) using the perturbance equations of the bomb

HPA = tr{X(¢t_)Q, +XQ,)

where
Qr- = propagation weighting matrix for release errors
Qf = propagatioﬁ weighting matrix for the forced response
Xf = impact covariance response due to wind gusts
tr = trace operator

The expression given above shows that, with this performance measure,
performance analysis of a weapon delivery process reduced to standard linear
covariance analysis.

To directly minimize HPA, therefore, the performance index should be

. t
J, = HPA +jrtr fu’Ruldt

t
o]

Note that this is a performance index with the terminal cost, penalizing
errors at the nominal release time tyr. This means that the optimal controller
will be time varying even if the system dynamics are stationary. This makes
for expensive analysis, If stationary dynamics are adequate, modifying the
performance index such that it yields a stationary controller is desirable,

A steady-state version of Jg does just that:

J; = HPA +tr {R U}

where
U = E{uu"?

An important distinction exists between the optimization problems based
on Jo and J, and the optimization problem based on the earlier index J4.
Solutions ofgthe J1 problem depend on the type of sight in the aircraft -~
whether it is fixed, or drift stabilized, or pitch stabilized, etc. Solutions of
the Jo, J3 problems, on the other hand, compietely bypass the sighting sys-
tem. They depend only on the basic constraint configuration, i.e., on the
signals available for measurement and on the control points available for
manipulation.
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OVERALL ORGANIZATION OF ADAPS

The various subroutines implementing the above model provide the capa-
city to analyze weapon delivery as a general linear time-varying, stochastic
process or to analyze it as a much simplified process that is stationary during
each of its phases. The one extreme offers fidelity to the physical situation,
while the other offers low computing costs and the possibility of many analysis
iterations. By using the program organization shown in Figure 5, both ex-
tremes (as well as the many possibilities in between) are readily attainable.
In this organization, the individual subroutines are accessible from a main
program with which they share common memory. They communicate with
each other within the groups indicated. Optional inputs are provided to cover
the various special possibilities discussed above, A detailed description of
the overall organization of ADAPS is presented in the Section II of Volume II.

INPUTS

« AIRCRAFT PARAMETERS
« ATTACK MANEUVER
o TYPE OF OPTIMIZATION

P! SIMULATOR AND LINEARIZER
NONLINEAR MEASUREMENT NONLINEAR AIRCRAFT MEASUREMENT | | wEAPON
AIRCRAFT SYSTEM WEAPON LINEARIZATION | | LINEARIZATION | | LINEARIZATION
SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE SUBROU TINE
| weponw ]
AIRCRAFT AERO| | TRIM WEAPON WEAPON WIND SYSTEM AUXILIARY
AND THRUST CONTROLLER AERD RELEASE |
SUBROUTINES SUBROUTINE susrouTine | | suBROUTINE | | SUBROUTINE SUBROUTINES
———d
LINEAR DATA LINEAR DATA INPUTS
OPTIMAL GAINS FORAIRCRAFT | | FORWEAPON
WEIGHTS
INITIAL COVARIANCE
PERFORMANCE EVALUATOR
OPTIMIZER —
FORCED
WEAPON MEAN HOMOGENEOUS
COVARIANCE
AUXILIARY CONTROLLER | | EGTIMATOR RESPONSE RESPONSE RESPONSE
SUBROUTINE GATNS GAINS
DATA COVARIANCES NCE
MANIPULATION Ay
SUBROUTINES
Iconmmunnu
CEP MATRIX
QuTPYT
CONTROLLER, FILTER % ouTPuT

RELEASE COVARIANCE

» WEIGHTING MATRIX
o RESPONSE COVARIANCE
o CEP, ETC.

Figure 5. Overall Organization of Armament Delivery Analysis
Programming System {(ADAPS)
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A typical analysis proceeds as follows:

° I - Linear Data Generation

1. Read input data for attack maneuver, read nonlinear air-
craft aerodynamics.

2. Trim aircraft, and fly it to obtain nominal trajectory up to
nominal release altitude.

3. Linearize the aircraft equations of motion numerically at
specified time points during flight. Write on tape.

4. Read input data for nonlinear weapon aerodynamics.

5. Using the release conditions, generate free-fall trajectory
by the nonlinear weapon model,

6. Linearize the weapon equations of motion numerically at
specified time points along the free-fall trajectory, write
on tape.

e Il - Optimization

1. Generate the propagation weighting matrix using linear
weapon data.

2, Input control points, measurement points, measurement
variances.

3. Choose the type of optimization, and obtain controller gains,
estimator gains, total system covariance at release.

® III - Performance Evaluation

1. Propagate the release covariance to impact using performance
evaluator.

2. Compute impact covariance matrix, CEP performance
measure and the variance contribution matrix.

This defines one complete cycle of the use of ADAPS. Each part can be
used independently of the others, for different needs. The main program itself
is largely at the discretion of the user, to be organized as best suits a parti-
cular analysis problem.
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SECTION IIT

DEVELOPMENT OF A NONLINEAR DYNAMICAL MODEL
FOR RIGID-BODY MOTIONS

The ADAPS is a six-degree-of-freedom optimal delivery control and
aircraft-weapon simulation programming system. It is based on the THRUST
program developed in Honeywell [12].

The equations of motion in ADAPS are referenced to a flat nonrotating
earth. The forces and moments acting on the vehicle and the weapons are
generated by gravity, aerodynamic effects, and thrust, The aerodynamic
coefficients are input in tabular form as functions of Mach number, angle
of attack, sideslip angle, etc. The aerodynamic force and moment sub-
routines allow the description of the vehicle and weapon characteristics
over a wide range of flight conditions,

ADAPS has three running phases: (I) modeling and linearization phase;
(II) controller optimization phase; and (I1I) performance evaluation phase,
Briefly, phase I consists of generating a prescribed steady trajectory of an
aircraft weapon system and its variational equations starting from a given
initial condition to a weapon release point, then continuing to generate six-
degree-of-freedom free-fall trajectories of a weapon and its variational
equations until a prescribed target altitude is reached. The coefficients
of the variational equations are obtained by a simple numerical differentia-
tion process.

In the following, analyses pertaining to phase I of ADAPS operation are
given.

DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS OF MOTION

For completeness, this subsection presents the derivation of the equation
of motion of an airplane and a weapon [13, 14, 15, 16, 17]. These equations
of motion are implemented in subroutine DYNK. Since they are unaffected by
the interchangeable subroutines describing alternate airframe and weapon
aerodynamics, they are applicable to both aircraft and weapon. In the follow-
ing, aircraft or weapon will be referred to as a body or a rigid body,

Reference Frames

The coordinates necessary to specify the six degrees of freedom of a
rigid body are defined by means of two right-handed reference frames, the
X, Y. 2z, frame, or earth-fixed frame, and thex, y, z frame, or moving
framé€ or %ody frame. They are defined as follows:
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e Earth-Fixed Frame —
0 = origin, fixed at the target

xeg-axis is horizontal, in the vertical plane containing the
initial velocity vector of the mass center (downrange)}

ve-axis is crossrange to the right
ze-axis is vertically downwards

e - Moving Frame —
0 = origin at the center of gravity of body
x-~axis is parallel to the longitudinal axis of the body
y-axis is perpendicular to the plane of symmetry (for a
weapon which has more than one plane of symmetry
choose the one most nearly parallel to the aircraft
plane of symmetry before release)
z-axis is perpendicular to xy plane and positive down
viewed by the pilot (before weapon release in the case

of the weapon)

Earth-fixed and moving frame definitions for airplane and weapon are
illustrated in Figure 6,

%e

(a} AIRCRAFT MOVING FRAME (t) WEAPON MOVING FRAME (c} EARTH-FIXED FRAME

Figure 6, Earth-Fixed and Moving Coordinate Frames
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It should be noted that the orientation of earth-fixed frame differs in accor-
dance with its use [17]. The earth-fixed frame generally used in bombing
and range tables is obtained by rotating the fixed frame described here by
90 degrees counterclockwise about the x-axis.

The differential equations of motion consist of:

The dynamical laws of motion

The kinematical relationships between the reference frames

The Dynamics of Motion

Two vector equations define the motion of a rigid body completely. They
are [13, 16, 17]relative to the earth-fixed frame.

= m —
¥ dt (3.1)
» dh
T = E— (3. 2)
where
= Zﬁ"i resultant external force acting upon the body
§0= velocity of mass center reélative to inertial frame
m = Tdmtotal mass of the body
'f = Z’f"i resultant external torque about mass center

h = angular momentum of the body about mass center

For a rigid body, the angular momentum about mass center is defined as

h=7% Xy 6m

(3.3)

with

v = ; + -(Ij X ? (3- 4)

o}

where

v o= velocity of the mass element ém relative to earth-fixed frame

30 = velocity of center of mass relative to earch-fixed frame

W = angular velocity of the body relative to earth-fixed frame

r = position vector from c.g. to the mass element dm
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Substituting (3.4) into {3.3) and using body-coordinates one obtains

h=a Z(X2+ y2+ 22)6m - Tr(pxtqy+rz)dm

- - .
hx p
in matrix notation further simplification yields hy = Jia
LA

where J is the moment of inertia matrix given by

- I
XX Xy Xz
3= - I -1
Xy yy yz
L —Iyz L2 (3.5)

In order to supress the derivatives of moment of inertia elements, the
equations of motion given by (3.1) and (3.2) are expressed in body axes
which rotate with the body.

Thus (3.1) and (3.2) expressed in rotating frame of reference become
57

- _ —2 —D. —

Fﬂm(at )+m(w><vo) (3.6)

%=5—?+EXE (3.7)

dv - av - dv
LMY S Bt S AP (e 3 5.
ot dt dt dt :
Referring to Equation (3.7), let
A = W X ;o = T(gw-rv) + j(ru-pw) + E(pv—qu) (3.8)

In matrix notation (3. 8) becomes

0 -r q\ u
n= r 0 - v (3.9)
-q P 0/ W, '

Now making use of (3.9) equations of motion (3,6) and (3. 7) can be expressed
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Fy mil v |Hm r 0 -p A

F w -q p 0 w (3.10)
and

M_ p 0 -r q p

My =J | g + r 0 -p| J |{4q

M, | b -q p 0 r (3.11)

These six differential equations, cafled the Euler equations of motion,
completely describe the dynamics of the rigid body.

The Kinematics of Motion

To describe the position and orientation of the body as a function of
time, earth-fixed frame of reference is introduced as defined earlier, To
find the differential equations of the coordinates of mass center relative to
the fixed-frame (i.e., differential equations of the flight path), it is necessary
to develop the time evolution of the transformation matrix ((t) which trans-

forms a vector from the body coordinates to the earth-fixed coordinates, that
is

v_ = Qv (3.12)

Thus, if X, Ve, Ze are the velocity components of mass center in the earth-
fixed reference system, and if (u, v, w) are the velocity components of mass
center in the body frame it follows that

X u

e
Ye|= afv (3.13)
Z W

e

Among the various angular coordinates that can be used to express the
direction cosines (i.e., the elements of Q matrix), a system of Eulerian
angles is commonly used. Because of their trigonometrical form, how-
ever, Fulerian angles cause a singularity in the differential equations
connecting the angular velocity with the Eulerian angles [17]. This singu-
larity gives rise to a considerable truncation error in the integration pro-
cess. To avoid this, the components of a normalized quaternion (versor,
Euler symmetrical parameters) are used as angular coordinates. For
completeness, discussions on both the usage of Eulerian angles and quatern-
ions as angular coordinates are given in the following two subsections, re-
spectively. Quaternions are implemented in the subroutine DYNK for
nonlinear simulation. The Eulerian angles are used for the perturbation
model.

25



The Eularian Angles as Angular Coordinates -- In the following, the elements
of the transformation matrix ) are expressed in terms of the so-called
Eulerian angles. In general, one can carry out the transformation from a
given cartesian coordinate system to another by means of three successive
rotations performed in a specific sequence. The Eulerian angles are then
defined as the three successive angles of rotations., Unfortunately, there

is no unanimity in the literature about the definition of the Eulerian angles,
The convention of [ 17, 18], and [16] will be adopted here, The body is
imagined first to be oriented so that its axes are parallel to earth-fixed axes.
This system will be denoted by (xl, Y1 Zl)‘ The sequence will be started by
rotating the initial system of axes (xl, ¥is 2 ) by an angle { clockwise about
the z1 axis, and the resultant coordinate sys%em will be labeled the x99, yg, 29
axes, In the second stage the intermediate axes X5, y9, Zg are rotated about
the yg axis clockwise by an angle # to produce another intermediate set xg,
y3, Z3. Finally the x3, y3, z3 axes are rotated clockwise by an angle ¢ about
the xg axis to produce the desired x, y, z body system of axes. Figure 7 illus-
trates the various stages of the sequence. The Eulerian angles 6, §, ¢ thus
completely specify the orientation of the (x, y, z) body system relative to the
(xe, e ze) earth-fixed system.

ORDER OF ROTATION AXES AND ROTATION ANGLE

X1 Y1 21 %e, Ve, %o

1 ‘wy
X2 ¥3 %2
2 $ 8
X3 ¥3 I3
3
3 X y z BODY

Figure 7. Body Orientation and Euler Angles

The elements of the complete transformation II can be obtained by
writing the matrix as the triple product of the separate rotations. Let Eq,
Fg, Eg3 be transformations describing the rotations |, 6, and ¢, respectively.
The complete transformation E from earth-to-body system is given by

X Xe
vy |- Elve (3. 13a)
z Ze
where
E = Eg By B,
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Clearly, rotation about z; axis by the angle § is given by
cos sin ¢ 0

E1 = [-sin ¢y cosy O

0 0 1

Similarly rotation about y, axis by the angle 8 is given by
cosg 0 -sin ¥
E, = 0 1 0

sin 8 0 cos §

Also rotation about Xq axis by the angle ¢ is given by

1 0 0
E3 = 0 cos ¢ sin ¢
0 -sin @ cos ¢

The product matrix E then follows as
cosbcosy cosbOsiny -8inb
E = -cosgsiny + singsinfcosy cosgcosy + singsinfsiny sinpcosg
sin ¢siny + cosgsinfcosy -singcosy + cos¢gsingsing cosgcosh
(3.14)

Since E is an orthogonal matrix, the inverse transformation from body coor-
dinates to earth-fixed axes is then given by
S R (3. 15)
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Equations (3, 13) together with (3. 14) and (3. 15) constitute the flight-
path equations of a rigid body in terms of body-axis velocity components
which in turn are found by solving Equations (3. 10) and (3.11). We develop
in the following the differential equations of the Euler angles which when in-
tegrated enable one to evaluate the direction cosine matrix Q as a function

of time.

Let _ﬁ be an arbitrary fixed vector. Let mne and 7 be its component
representation in the earth-fixed and body frames respectively.

Then one can write
n = En, (3.16)
Differentiating (3. 16) w. r.t time and noting that

dn

e _ 0
dt
yields
n = Eng (3.17)
using (3. 16) in (3. 17) yields
h = EE'n . (3.18)
where
dnx dny d'r'&
mo= coli TR Tar v a

On the other hand, the time derivative ﬁ w,r,t. rotating frame of reference
is given by

dq__ oM ., = . = . (3.19)
at 5t + w X n 0
where
51 A dn an_  _ dm
— = nd X 2 v Z
t L +tig +tE g | (3. 192)

In matrix notation (3. 19) and 3, 19a) become

R (3. 20)



where

0 -r q 7
W = r 0 -p (3.21)
-q p O

Comparing (3.18) and (3.20) yields

EE! = -W (3.22)
or

E = -WE (3.23)

The differential equation of angular coordinates 6, ¥, ¢ are obtained from
the proper elements of equation (3.22):

B 0 CcOS ¢ -sin ¢ P
5,15 =) 1 singtan®8 cosg¢gtané | q (3.24)
¥ 0 sin¢sec 8 cos ¢gsec B r

The Quaternions Used as Angular Coordinates -- In this subsection a brief

description of the properties of quaternions and their usage as angular coor-
dinates is presented. Then the differential equations of the elements of a
quaternion are developed [17, 19, 20, 211,

A quaternion may be thought of as a generalized complex number. I is
defined as

q = q,+ [ig, +ja, + kg, (3.25)

where qp, 9q, 4g, d3 are real numbers and i, j, k are basis elements satis-
fying the relations

iz = jz = kz = ._1
(3.26)
(ij)k = i(jk) = -1
. -1 .
An immediate consequence of (3,26) (since, for example, k = = -k} is
i = -ji =k, jk = -kj =i, ki = -ik = j (3.26a)
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When g, = 0, the quaternionis saidto be a pure quaterion. By definition then, a
vector is a pure quaternion and, consequently, the bracketed term in (3.25)
is called the vector part of q. Defining four angles o, B, ¥, and @ in the
following way, one obtains polar representation of a quaternion [17)

q=(q  +iq; +jdy + kqg) = VN(q) [cos 2y sin% (i cos & + j cos B + k cos y)]

2
(3.27)
The conjugate of q is defined as
qQ = q, -iq; - jag - kag (3.28)
If may be verified that
qq = 4q = N(q) (3.29)

An equivalent definition expresses the quaternion as a 4 x 4 matrix of a spe-
cial type

4, 9y 9 9
"4 9, "9 9
e = »
q ¢ Q -9y 9y -q (3.30)

where q_, dy, 9., Qg are the components of a quaternion given in (3.25) . In
matrix i%rm the conjugate, q, of the quaternion q becomes Q’, the transpose
of Q.

qg«Q’ (3.31)

The product r = gp of two quaternions represents an operation on p that rotates
p by an amount /2 and stretches its magnitude by YN(q). Let

r = r0+ir1+jr2+kr3
q = q  +lia; +ja, +kqg] (3.32)
P = p, *tip; +ipy +kpg

Using (3.26) and (3. 26a) the product r = gp can be expressed as
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(qgp, = 44Py = dzPy - 43P3)

r, = {gq,p_ +dp, - AePy T 9,P,)
1 170 o'l 372 23 (3.33)

(ayp, + 3Py + 9 Py - d;P3)

rg = (dgp, - 4yPy * Py T G5P3)
The same result can also be obtained by considering the matrix equivalent of
r = qp,

R = QP (3.34)
and equating elements of the first row fo find ros rys ry, I'

Clearly (3.33) can be written as

r = P'q | (3.35)

where r and g now are 4 x 1 column vectors. Equation (3. 33) can also be
written as ‘

ro= Qp (3.36)

where p is the 4x 1 vector representation of the quaternion andf(\;)i is a 4x4 ma-
trix obtained from Q by interchanging the first row and the first column of Q.

Besides rotating and stretching four-dimensional vectors, quaternions
also effect rotations and stretchings of the three-dimensional space, and it
is this property that makes quaternions useful for the description of rigid
rotations. To demonstrate this, let x be a pure quaternion (i.e., a vector)
described by

X = ix, +x

1 o T KXg (3.37)

Let X be a unit quaternion (that is, M\ =1) described by

A= K0+i?xl+j1\2+k?\3 A (3.38)

and i be the conjugate of A,
Now consider the guaternion y defined by the triple product

y T OAX A (3.39)
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By actually performing the indicated multiplications with the rules given in
(3.26) and (3.26a), or writing (3.39) with the aid of (3.35) and (3.38) as

X e AX (3.39a)

M
y = )N = ni : ‘ (3.39b)

and substituting (3.39a) into (3.39b) upon returning from four to three
dimensions for y one obtains the equation

y = Ox ’ (3-40)
where
;(Azﬂz)lz(xx-m) 2(7\A+xk)_
o M1 /- 1h2"hohg) 137 2
_ 2 2
Q = 2(A1K2+K0A3) 2(x0 g y -1 Z(AZAS-?\OA 1) (3. 41)

: 2 2
_2_“‘1?\3"?\0?‘2) 2(>\2x3+>\0>\1) 2“‘0 thg ) - ﬂ

It can readily be shown that (3.39) preserves the norm, that is

XX = yy (3.42)

" On the basis of (3, 40) and (3. 42) one concludes that (3, 39) defines a rotation
of x. This demonstrates that quaternions can be used as angular coordinates.

Now, the differential equations of the elements of a quaternion will be developed.

Let # and 7 be fixed-vectors attached to earth-fixed frame and rotating
body frame respectively as shown in Figure 8,

AXIS OF
ROTATICON

£ ATTACHED ON THE FIXED FRAME
7 ATTACHED ON THE BODY FRAME

N

Figure 8. Relations between Fixed and Rotating Frames
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Consider transformation defined by (see Equation 3. 39)

To keep track of reference frames, rewrite Equation (3. 43) in the body
frame as:

IR gbi (3.43a)
where the subscript b implies the corresponding vectors expressed in body
frame (x,y,x). Let us further assume that the two vector systems coincide
when » =1,

That is

M, = Ee (3.44)

- where the subscript e implies the corresponding vector expressed in the
earth-fixed frame. Since 7N moves with the body frame, (3.44) holds for all
values of \,
Substituting (3. 44)into (3. 43a) yields

g, = M5 N (3. 45)

or

&, = NS (3. 45a)

-

This relates in quaternion notation the components of the vector £ 1in the
two coordinate frames. In matrix notation it becomes

Y = A'Ye!\ : (3.46)

where Y is the matrix representation of the quaternion & .

Differentiating this and noting that Ye is a fixed quaternion matrix yields
Y = MY A+ AT Y A (3.47)
e e
but from (3. 46)

Y, = AY Af ‘ (3.48)
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Substituting this into (3. 47) and simplifying yields
Y = A AY + VAR

Noting that y is a pure quaternion so that [see Equation (3,30)], Y'= -v
results in

Y = AAY - (AAY) (3.49)

Now, differentiation of a vector in a rotating frame in vector notation gives
Equation (3. 19):

E = wx§ (3.50)
which can be shown to have the quaternion representation
Y = () (WY -(WY)'] (3.51)

where W is the quaternion matrix of the angular velocity vector of the rota-
ting frame presented in the rotating frame, that is

W =—]?_p+i’q+1—§‘r ’ (3.52)

Comparing (3.49) and (3.51) gives

e l
Mh= 5w

or
M= (- W (3.53)

In the manner of Equation (3. 34), after performing the multiplication the first
column of this equation constitutes the differential equations of the components
of the quaternion N, which are given by [see Equation (3. 30)]

?\O 0 p +q r }\0.

A -p 0 -r g A

S e ! (3. 54)
A - 0 - A

2 q r p 2

To integrate this set of equations, an initial value of X\ must be specified.
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Initialization of the Angular Coordinates -- By comparing corresponding
elements of matrices (3. 14) and (3.41), the components of the vector
can be related to Euler angles [21] as follows

P\O = COS%cos%cosgaLsm%smgsin%
le = cos-g-cos%sm %-sm-g-sinzicos%
?\2 = ¢OoS8 5 sin gcos -gé + Sm—g- cos -g— singi 8.55)
)\3 ==co8 -24'- sin g sin gﬁ + sin % coS Ee cos%

This set of equations can be used to obtain initial values of the versor (unit
vector) components, An alternate way of obtaining the versor components
from the Euler angles is to compute the initial cosine matrix and use the
following easily verified relations:

\ 2 1+irE
o) 4

where tr is the trace operator, and

provided that Ag # 0. Since for certain initial conditions (i.e., 6 = m, K =0,
® = U} this condition is violated, Equation (3, 55) is complemented in ADAPS
instead of (3. 56)

Gravity Components in the Body Axes

The inertial components of gravity are resolved into the required body
components by using the direction cosine matrix.

g, 0
gy =gl 0 (3.58)
g, g

which picks the third column of E given in ( 3. 14), that is
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g -sin 8

g | cos € sin ¢ (3.59)

0g
n

g, cos 6 cos <I>/
This finishes the analysis of the equations of motion.

Summary of the Analysis

In the development of the equations of motion, the aerodynamic forces
are taken to be through the aircraft mass center and the moments are about
the body axes. The accelerations on the aircraft are computed by combining
the aerodynamic forces and the forces from the engine, All cross products
of inertia are included to allow for a nonsymmetrical body.

™ Accelerations due to Aero and Thrust Forces in Body Coordinates

ax X+ XT
ay = E Y (3.60)
&Z Z o+ ZT

L Total Moments in Body Coordinates

M L+ 1L
pe

T
IVIy = M+MT | (3.61)
Mz N+ NT

. Differential Equations of Body Translation Velocities in Body

Coordinates — '
u a -sin 8 10 r -q [
v = :3.y +g|cosfsing |+ |-r 0 p v ( (3.62)
W az C0S B Ccos ¢ qg -p 0 W
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with prescribed initial conditions

u(0)
v(0) | =

wi(0)

u
8]

v
0

W
o

Differential F.quations of Body Angular Velocities in Body

Coordinates —
p M ¢ -r q p
q | = 371 My r 0 -p|J]|a
r _Mz_ _-q p O r
where
- -1
XX Xy XZ
J = -1 I -1
Xy yy Yz
__Ixz Tiyz IZE_
is a symmetric matrix; or
P di; 4 dygp | H
A = [d9; dogg dog| 1 Hp
r 1931 933 d33f | f3

where the coefficient matrix D is J-land symmetric and

b
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s 5 -

E(Iy-Iz)q]r - Iyz(r -q7) + (IZXq-Ixyr)p]
2

[(IZ-IX)p]r -1, (p"-r

2 2
[(IX-Iy)p]q - IXy(q -p7) + (Iyzp-IZXq)r

et

2
) + (Ixyr-I plq

(3.63)

(3.64)

(3.65)

(3.66)



and

I 2
dll - 1 _TYIZ_ (IXK)
y Z
d,. = +I 2ex (I 1K)
12 Xy 1 ¥y x

jo R
=
w
1
——— e
—t
"
S
+
-
»
< [
et
IN
e ——
X
N
—
b
g

I
de, = 1 -2£ (I K) (3.67)

ja3
1]

jo R
4%
w2
n
et e, e,
—
w
N
+
-
I
i MI—I
[
e
.
N
—
]
=
S

o, [o B
o A
O3 DN
1 1
f‘__l-." - Yt
L
| ]
N|—||'ﬁl--1 +
= ]
&g (] HE
- . >4 =
]
\
=
N \
—t
- g
—
N
=
e

I I 1 I 1 1
K = 1- ny _ yIz _2ZX o Xy yz zX
I, y I.Y ” IzIx InyIz

with prescribed initial coﬁditions

p(0} Po
a@) | =| g,
r{0) r

o
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Differential Equations of the Angular Coordinates (i. e.

Quaternions) —
A Ay Ay Ay P
. i _
M ! o Y3 Ay g
‘ i 3 0 1 [
A3 i Hy M A
with initial condltlons (expressed in terms of the initial FEuler angles
» 6, ¢2)
o o
_ — —
— ¥ 6 P ¥ 6 ¢
FKO(O) cos 20 cos 20 cos§2 + sinz—o sin?cl sin —29
¥ & ¢ tlf 9 @
?\1(0) cos —29- cos 2—0 sin - 5 - sin— 2 gin ?O cosz—0
= ] 5 " (3.69)
@ 0 @
kz(O) 005-2—9 Sil‘lfo cos 20 + sin 2? cos -59 sin—zc2
I e ¢ ] g ¢
k3(0) ~Cos - sin?Q sin 5> + sin 20 cos 20 cos 20
Earth to Body Transformation Matrix in Terms of Quaternions —
2 2 2 ]
+ ?\1 - ?\2 - 2(3\ A +}\ ?x ) 2(?\1?\3-7&0?\2)
_ 2
E = 2()\1?\2-A0h3) + A‘Z - )\3 - 2(;&2?\3+)\Ok1)
2 2 2 2
A - - -
2(?\1?x3+?\02\2) 2( 2}\3 Ao?\l) ?xo +7\3 7\1 ?\2
The Euler Angles —
g = -gin (e13
$ = tan (e23/e3'3) (3.71)
_ -1
i tan (elz/ell)
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. The Differential Equations of Body Mass Center in the Earth-Fixed
Coordinates (i.e., Flight Path) —

x u

e
j}e = B! v {(3.72)
z W

e

with prescribed initial conditions
x (0}
7,(0)

ze(O)

DEVELOPMENT OF INTEGRATION ALGORITHM FOR THE EQUATIONS OF
MOTION

The method of integrating the differential equations_of motion in ADAPS is
the open quadrature process (i.e,, Adams formula) [22], 1t is given by

. 1 :
- - % (3.73)
X = %o PRI I x
where
= - 3.74
b=ty =t (3.74)
% = £, 1) (8.75)
and
Vv = backward difference operator

3 . .
Truncation error associated with the process is of the order of h™ and is given
by

- 3.(3)
E = a,h’x "), te_g <5 <t (3.76)
This integration process can be written as
I 4 l
- b (33 ; t o, bt (3.77)
X 7 X1 T 3% - Xep) k-2 k-1 :

To start the solution, the derivatives at two time points are needed. The
solution can be started by using

X, = Xk—1+hxk—1 (3.78)
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with

2

E = 5 x (5 feq <5<t (3.79)

In ADAPS, the initial values, 3:_1, are set to zero for simplicity. For
small h the error caused by this simplification is small.
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SECTION IV

" DEVELOPMENT OF TOTAL FORCE AND MOMENT SYSTEM
FOR RIGID BODIES MOVING IN UNSTEADY AIRMASS

The methods by which the aerodynamic and thrust forces and moments
are introduced into the six-degree-of-freedom trajectory program are pre-
sented in this section. Aerodynamic forces and moments for aircraft are
treated first. The computer program which implements the aerodynamical
model of aircraft is called subroutine AERK. The aerodynamics of bombs
are treated next. The corresponding subroutine is called subroutine WAERK.
Then a model for the thrust forces and moments is developed. The program
which implements this model is called subroutine THRUSK. Finally, the
effects of moving air mass on the aerodynamics of rigid bodies are treated
to take into account the mean winds and stochastic wind gusts. The program
which implements the wind model is called subroutine WINDK.

AFRODYNAMIC FORCES AND MOMENTS FOR AIRCRAFT

The aerodynamic forces and moments are computed by making use of
extengive aerodynamic data tables. The primary objective of the function
lookup subroutine (FLOQOK), presented in Volume II is to provide for a
complete accounting of the various contributions to the aerodynamic forces
and moments regardless of the flight conditions or the body (i.e., aircraft,
weapon) being considered. The technique used is an n-dimensional table
lookup and linear interpolation. This method has the advantage of accurately
describing even the most nonlinear variations with a minimum of preparation
effort. However, the amount of storage space and computing time increases
rapidly with the number of dimensions of the tables.

The Functional Form of the Aerodynamic Forces and Moments

The major variables that affect the aerodynamic characteristics of a
body are: Mach number, M; dynamic pressure, q; angle of attack, g; angle
of sideslip, 8; total linear velocity, angular velocity, and control surface
deflections. Two typical functional-dependence relations can be written as

F = F(x,, e 8, 5, h, M) (4. 1)

1’ Xz) Xz)
F(V) a.‘ B} VJ CIJ BJ X2} Xz’ 63 6’ hj M) . (4‘ 2)
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where

Xy = linear velocity state vector

Xy = angular velocity state vector

& = control surface deflection vector
h = altitude
'M = Mach number

V = total velocity

a = angle of attack

8 = gideslip angle

The decomposition of (4.1} or (4. 2) into functional relationships with
fewer number of arguments is needed for practical reasons. Unfortunately,
there is no standard form for this decomposition, and it is dependent on the
available data. Usually airframe and weapon manufacturers provide empiri-
cal or estimated relations in the form of curves or data tables.

Usage of Aerodynamic Data

Aerodynamic characteristics strongly depend upon the orientation of the
relative wind or velocity vector with respect to body, so the angle of attack,
a, and sideslip angle, 3, which define the orientation with respect to the air
mass are used often, as indicated in equation (4.2). In general, the aero-
dynamic data is classified into two groups; static data and dynamic data.
Static data implies that, during the wind tunnel testing, the body is at rest
with respect to the relative wind, The dynamic data implies that body oscil-
lates or rotates with respect to the relative wind.

The aerodynamic data are usually given in the "wind-tunnel stability
axes' defined as follows [15];

Origin: center of mass (cg)

X in the direction of motion along the projection of V upon
the body reference plane.

Ygt same és body axes, positive right

Z 3 perpendicular to XY plane forming right-hand {riad
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The wind tunnel stability axes system is illustrated in Figure 9. Clearly
the body axes system and stability axes systems are related to each other by

x X
8
v * g | ¥ (4.3)
v z
s
where
CcoS a 0 sin o
E = 0 1 0
s
-8in g 0 cos o

The resolution of the total aerodynamic force in the xz plane is shown in
Figure 10 where lift, L, and drag, D, are forces normal and parallel,
regpectively, to the projection of V in the xz plane, Lift and drag are defined
to be positive ag illustrated.

Aerodynamic forces and moments are expressed in terms of the basic
aerodynamic coefficients in the wind tunnel stability axes with origin located
at an arbitrary reference point, The aerodynamic force and moment
coefficients are defined by the following relations:

0
@s)

0

X -D -(g )
f_=1Y = | Y| = 0
sa s
Z -1 0
Lgd (g S)b 0
m_ . = Msc = {gS)c
NS | 0
where
q = dynamic pressure (1b/ft2)
S = wing area (ft2)
b = wing span (ft)
¢ = wing mean aerodynamic chord (ft)
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1sc
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Figure 9, Body and Wind Tunnel Stability Axes Systems

Figure 10. Aerodynamic Force Angular Resolution
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It is assumed that the moment reference center 0., is located by Zi'rca
from the cg of the aircraft as shown in Figure 11.

Figure 11, Moment Reference Center With
Respect to Mass Center

The total aerodynamic forces at the cg in body axes are then given by

Xg
_ ') -~ I
fa - Es fsa - Es Yg (4.6)
Z

Similarly the total aerodynamic moments at the cg about the wind tunnel
stability axes are given by

- -t + = —_
Msa Msca (Arca)sx fsal (4.7)

Or in matrix notation, and in body axes

- 7

My = By Mgea VAR, Ty (4.8)
where, in terms of a reference point RP on the body (see Figure 11),

Ar = Teg tr o (4.9)
and

Ar = position vector from 0 _to O

ca cg ca
rcg = position vector from ch to RP
ra © position vector from RP to Oca
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and, with coordinates expressed in body axes,

0 -Azca Ayca
ARca = Azca 0 —Axca
-Ayca Axca 0

(4. 10)

Substituting (4. 5) and (4. 9) into (4. 8) yields the moment components in

body axes at the cg.

L sc
_ ’

M) = Es Msc

N sC

0 “AZ o BYea
+ Az 0 -AX (4.11)
ca ca
-Ay AX 0 z
ca ca

Total Aerodynamic Coefficient Model for Aircraft

In the formulae given below the superscript "o" indicates degrees, the
subscript ''a" denotes quantities with respect to the air-mass, and subscript
"w' stands for wings with respect to the air mass {ay, = a4 + i,). This

notion will be useful in treating a moving air mass as discussed later.

The

aerodynamic force coefficients in the wind tunnel stability axes are assumed
to be in the following form [36];

nCh Cp (PowM,, CL) + Cpl6,, Cp. M)
tCy 0
(8]
z CL CL(Ma’ h, ay ) |
- . _ _
0 0 ey 0 0 3
0 Q a.
0
0 Cy (aw,h,Ma) B,/ * 0 .
a
L0 0 -Cp, (b, M) |0
\re— G' —
0 0 0 ZuS E 0 psa
o o L
+ Cy (h, o . M) 0 C_ @ . h M) 0 = 0 ||,
p r 5 b
0 -CLq(h, Ma) 0 0 0 ’2—{-1; rsa
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[8)
C.D(’5 {h, Ma) C {h, ozw, Ma)
a 0
+ |C M o h, M
Yaa( a) 1ﬂ( a)
Cy (b Ma) , Ma) 0
fa ]
— o —
CDos (h,Ma) CD (a W)
P 1g
+ Cy (Ma) 0
5Sp
—+ o
CL@ (h,Ma) R Ma) CL (o ,;)
| sp lg 1

Similarly the aerodynamic moment coefficients in the stability axes are
assumed to be in the form of

EC1sc
rC = | C
msc msc
chsc
_ o —_
0 CIB(a W h, M )
+ 0 0
0 Cn (o
| 8
- o)
C1 (a - h, M )
P
+ 0
o)
Cn (h, ", M_)
. p
C (o
158. |
+ Cm ta w
da
Cn
§a

»h, M)
w a
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m. (h’Ma) 0
Q
0 0
o
C1 (a. w’ h, Ma)
r
0




C., (d° h,M) 0 0 5
g W a sp
SP (40 o) o) 80
* Cma (@ w’ h’Ma) Cm (Ma’OL w) Cm(5 @ W) sb
sp ‘ sb 1g o
&
Cné (o M) 0 0 1g
sp ——

AERODYNAMIC FORCE AND MOMENT MODEL FOR BOMB

A complete aerodynamic model for a slowly spinning, four-finned bomb
is given in [17], where the aerodynamic parameters are assumed to be
linear functions of spin, cross-spin and accidental configurational asymmetry
but nonlinear functions of yaw orientation and roll orientation. Then the
effects of roll orientation on the aerodynamic forces and moments are
obtained by a Fourier series expansion of roll angle (the angle between the
[plane of yaw] and a reference fin), The model based on [17] (i, e., Cohen's
model} requires approximately 20 aerodynamic tables (i.e., tests), and these
tables are not readily available,

In ADAPS, a simplified aerodynamic bomb model is developed. It
utilizes generally available bomb aerodynamic data. The effect of roll
orientation is ignored. [The cross-velocity frame and cross-spin frame are
the same as defined in [171,]

Simplified Aerodynamic Model for Bomb

The reference axes used in the bomb aerodynamic model are illustrated
in Figure 12.

0 = origin, at the [center of gravity] of bomb

The weapon body axes are defined as follows:
x-axis is along the bomb body, positive forward
y-axis is horizontal positive right

z-axis is perpendicular to the xy plane, positive down.
The cross-velocity axes are defined as follows:

X4 is the same as the body x-axis

Zq is in the direction of cross-velocity v (Vv 2 . v+ W2)
ca' ca

Y1 is perpendicular to the X124 plane forming a right-handed system.
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Figure 12, Definition of Stability-Like Axes for Bomb

The cross-spin axes are defined as follows:

X is the same as the body-axis
Yo is in the direction of cross-spin, ac(qc2 = qz + rz)

Zo is perpendicular to X9Yq, the plane forming a right-handed system.

The aerodynamic forces and moments in body axes are given as

X ECX
Y| =gS [T

q Cy
Z zC

Z

L Ecl\
M| =qg58d ZCm
N iC
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where

2
1/2p Vi,dynamic pressure, lb/ft

q =

a2
S = cross-sectional area of the bomb =T 2 ft
d = diameter of the bomb, ft

and (Z Cx’ zC_, ECZ) = aerodynamic force coefficients in body axes system

(ZC ZCm, ECn) = aerodynamic moment coefficients in body axes system

13
The nondimensional aerodynamic data are given in the cross-velocity
frame, They are:

CA(M) = axial force coefficient, along x-axis, positive aft

CN(OL, M) = normal force coefficient perpendicular to the plane of yaw

CNa(a‘, M) = coefficient of normal force due to canted fin shielding

Cm(OLiM) = restoring moment coefficient, about y, ~axis

Cmg (%, M) = restoring moment coefficient, due to canted fin shielding
X about Yy -axis

C‘mq(ﬁ, M) = damping moment coefficient about Y o-axis

The data for the moment coefficients are referenced to the center of
gravity | 26, 29],

The transformation matrices from the cross-velocity frame to body frame,
and from the cross-spin frame to body frame are given respectively as

T B g n o= Egn
where
1 0 0 1 0 0
El = Q0 cos ¢1 gin ¢1 . E2 = 0 cos @2 sin qbz
0 -sin ¢)1 cos @1 0 -sin ¢2 cos ¢2
and
¢, = tan™t 2 and ¢, = tan~! ZL | deg
1 W 2 q ’

The aerodynamic coefficients along the body axes are given by
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IC_ -C, (M)
ECy = El ) 0 A )
ECZ “CN(G‘J M) -CNG(G': M) 6
0
ZCI “ 0 ~ ~ ~ d
ECm = El Cm(CL, M) + Cm6 @, M) & + E2 Cmq(a,‘ M) (EVE) d,
ZCn 0 0
where
N -1 Vea .
of = tan = magnitude of yaw (deg)
a :
v o=\fvl+w? cross-velocity (ft/sec)
ca a a ’
2 2 2 .
\' ='\/u +v, " +w_ ", total velocity (ft/sec)
a a @ a a
2 2 . .
8 ="\f6 "+ y » magnitude of fin cant angle (deg)
qQ, =\a + rz , cross-spin (deg/sec)

DEVELOPMENT OF A MODEI: FOR THRUST FORCES AND MOMENTS

in general, the total thrust forces and moments acting on a rigid body
depend upon the positions and orientations of the thrust producers with respect
to the body axes and the magnitudes of the thrusts (geometry). There are
also dynamics associated with the thrust variables since they are produced
and oriented by engines and actuators,

To provide an analysis tool by which the effects of various control points
and methods can be investigated, both aspects are considered in the develop-
ment of a thrust model in ADAPS.

In the following, a geometric model for the effective thrust acting on a
rigid body is developed first. Then the dynamics of thrust producers are
treated, In the development, the effects of angular momentum of rotating
thrust producers are neglected,
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A Geometrical Model of Thrust Producers

In the following, first the description of a geometrical model for thrust
producers is given, Then the total force and moment contributions of thrust
producers are developed in the form of

tr

M

where

Yy

5
H

He W
= A

B (Xd)yT {4.12)
BT (Xd)yT (4. 13)

total thrust force vector along body axes

total thrust moment vector along body axes

thrust force coefficient matrix of size 3 x v

thrust moment coefficient matrix of size 3 x v
state vector of thrust orientation actuator positions
effective thrust output magnitude vector

number of thrust points in the thrust-producing system

Figure 13 shows the geometry of a single thrust producer.

Figure 13. Geometry of a Thrust Producer
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In this model, the nozzle of the jt'h thrust producer is located by vector & r...
from the cg of body.

It is assumed that the orientation of the nozzle axis ig“]

described by (6 3 ‘l’Tj), the elevation and azimuth angleg from body to

nozzle axes,
the cg varies,

center is

from a body-fixed reference point RP are used to specify Erp;. Dénoting

The position vector Rrqi is assumed to vary as the position of
_ In this model it is agsumed that the movement of the mass
confined to the xz plane, The position vectors rey and B j
“the

thrust vectors by I’Tj, the total forces and moment due to thrist producers

become

as shown

In matrix

fp

and

= ?:1 T (4.14)
v, -
= % Ar.,. xf.. 4,15
j=1 " Tj T ( )
- I‘(:,g,_FrTj i=1, 2, ...V {4, 16)
= position vector from 0 to OTj
= position vector from 0 to RP
= position vector from RP to OTj
in Figure 13,
notation
2
= . 4,17
j=1 Ti { )
¥
= AR .T. 4,1
j=1 Tj Tj (4.18)
0 —Asz AyTj
= /_\.sz 0 -Aij (4. 19)
-A yTj Aij 0
| S —1
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and

A XTj Xc. g. XTj
A Ty A i | * 0 + YT (4. 20)
a ZTj zc. g. sz

Let Tjbe the effective thrust magnitude of the jth thruster. Then, in terms of
of the elevation and azimuth angles, @7; and §; of the nozzle axis from the
body axis, the components of thrust forces ij along body axes can be ex-
pressed as

f... = b.T. i=1, 2, ...v 4,21)
Tj T ] ( )
where
blj cos lij cos eTj
bj = sz = sin qITJ (4, 22)
b3j -cos wTj gin eTj
p—

Making use of (4. 21) and (4, 22) yields

fr = Boyop (4, 23)
where
Ty
By = [by[byl.. b |andy, = | T, (4.24)
’::[‘\)

Similarly, using (4, 21) in (4, 18) yields

N

m, = By 0 (4. 25)
where
Bp = [bl EEE |bV] (4. 26)
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with

b:l = ARTJ.bj and {4, 27)
) 1 (2 yTj)(b3j) - (Asz)(sz)
b;i = sz = (Asz)(blj) - (Aij)(ij) (4. 28)

Equations (4. 23) and {4, 25) constitute the geometry of the thrust producers.
In the following, the dynamics of thrust producers and thrust orientation
actuators are treated briefly.

Dynamical Model for Thrust Magnitudes

It is assumed that the magnitude dynamics of each thrust producer can be
represented by a first-order transfer function. This is shown in Figure 14,

Wi = x4t

hoGpn Mo [
T

g (j+1)

Figure 14. Dynamical Model for a
Thrust Producer

8(j) = xd(j +1)

1Y

In this model

xT(j) = the magnitude state of the jth thrust producer in percent

ypli) = effective thrust output of the jth thrust producer acting on the
rigid body in 1bs

hT(j) = nonlinear output function

uT(j) = throttle input to jth thrust producer in percent

aT(j), bT(j) = transition and input coefficients of the producer
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The output function for the two main thrust producers (i, e., engines) is assumed
to be in the following form [36.:

yp(i) = |:(l—l-ell\/l)(1-t~e0h)]y0 + {(1+82M)(1+e0h)(c)[XT(j)_gT(j)]}’ j=1, 2

In this equation e, ey and eo are Mach-number- and altitude-dependent co-
efficients of the effective thrust, yo is thrust bias, ¢ is the thrust output
coefficient. and &7 (j) is a function of xT\j). These coefficients are piece wise-
constant functions of x(j), and typical values for F-4 engines are given in
Table I,

Dynamical Model for Thrust Qrientation Actuators

The thrust orientation state of each thrust producer is described by the
azimuth and elevation angles of the nozzle axis as defined in Figure 13,

. ¥ {3)
Xd(J) = . (4. 29)
J

Table I. Effective Thrust Output Coefficients, j = 1,2

Coefficient 0 SXT = 50 50 < XT < 100
70 9650

Yo 0
179 137
0 50

S

) 0 -0, 2342
e, ~0. 25150 0. 32846
e ~(0.25)10" % ~(0. 25)10" %

It is assumed that first-order dynamics is associated with thrust orientation
actuators. Thus for each thrust producer (see Figure 14b)

= A (4. 30)

aa t Ba%y
4,31
Va0 * *q (4.31)

X4
Jq

H

57



where

: o ¥
Yqo = orientation bias = P (4. 32)
b

Implementation of the thrust orientation dynamics is outside the scope
of the present program. However, in ADAPS, the thrust model includes
equation (4, 31) through which thrust orientation dynamics can be inserted into
the overall program.

EFFECT OF MOVING AIR MASS ON THE AERODYNAMICS OF A RIGID BODY

The aerodynamicforce and moment system developed above is with respect
to the air mass {i.e., atmosphere), Itis known that the air mass through
which a rigid body flies or falls is in a motion which is variable both in time
and in space (Figure 15), In this subsection the influence of this motion on
the rigid-body aerodynamics is presented,

Modeling for the Influence of Unsteady Air Mass

Meteorological observations indicate that the velocity field of air mass
(i. e., winds) in the lower atmosphere consists of two distinct components,
a low-frequency component with energies concentrated in 0. 0l-cycle/hour
range and a high-frequency component with energies in the 70-cycle/hour
range. The former is called the "mean wind', and the latter is referred to
as atmospheric turbulence or simply as "wind gust'.

AIR MASS

Figure 15. Rigid Body in an Unsteady Air Mass
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In the earth axes, the velocity field of the air mass can therefore be
decomposed into

w, = x?ve +we (4. 33)

where, in matrix notation,

w, = velocity field vector
{'rve = mean velocity field vector
'\}er = gust velocity field vector

and all are, in general, position- and time-dependent,

The influence of motion of the air mass on rigid-body aerodynamics is
taken into account with various degrees of accuracy by considering a rigid
body as a point, line, surface or volume. When a rigid body is considered
as a point in the air mass, then the relative motion appears as the difference

v, = V-w (4, 34)

where w is the velocity field vector in body axes, In this case, the aero-
dynamic effect of the motion of air mass is accounted for by the use of the
equivalent (i, e,, producing the same aerodynamic effects) velocity vq, angle
of attack Oca and angle of sideslip Ba.

It should be noted that the equivalent linear velocities are to be used only
for developing the aerodynamic forces and moments. Elsewhere in the
dynamical equations the inertial velocities are used,

If a rigid body is assumed to have one or more dimensions in space, then
the space distribution of the velocity field on the assumed rigid-body model
must be taken into account, At this point, various approximations are made
to simplify the modeling problem, One such approximation is given in [30]
where the space distribution of the velocity field is lumped at the various
stations on the body. The resulting equivalent velocities are used for com-
puting aerodynamic forces and moments. In [30]), the penetration effects of
the wind gusts are also considered, The treatment with such depth produces
a relatively complex model for the air-mass velocities; it is recommended
for cases where the body velocities with respect to ground are relatively low
and the body-bending modes are significant,
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In ADAPS, a simpler model canbe usedbecause of relatively highaircraft
and weapon velocities and rigid-body model, It is assumed that the velocity
field is linearly distributed about the cg of a rigid body. The overall influence
of the motion of air mass is accounted for by ¥5 and its space gradient matrix
aVa
3x
effects of space gradients can be conveniently taken into account by use of
the equivalent angular velocity vector defined by

evaluated at the cg of a rigid body. It can be shown [16, 317]that the

wa = W+ wW : (4, 35)

where &_ is the synthetic angular velocity vector corresponding to the gradient
effects of the moving air mass,

In the following, a simplified model for the equivalent linear and angular
velocities is presented.

Modeling for the Equivalent Linear and Angular Velocities

First the modeling for the mean wind is presented. Then modeling for the
turbulence {i. e., gust) is treated, '

Mean Wind Model -- As shown in Figure 16, the mean wind is described by its
magnifude and its orientation in the earth-fixed axes as follows:

(4. 36)

£
n
DSy

Figure 16, Description of the Mean Wind
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3% = magnitude of the mean velocity vector relative to the origin of the
earth-fixed axes

¥ = azimuth angle of the mean velocity vector with respect to earth
axes

0 = elevation angle of the mean velocity vector with respect to earth
axes

The transformation matrix from the mean wind axes to the earth-fixed axes
becomes

_ cos 8cos§ -sin¥ sin 6 cos ¥
E' = cos Bsin§ cos ¥ sin 0 sin (4. 37)
- sin 8 0 cos 6

Thus the components of the mean velocity vector along the earth-fixed axes
becomes

v
We = E 0 (4, 38)
0
or
cos B cos ¥
W= cos O0sin¥ | ¥ (4. 39)
- sin ©

Then along the body axes the mean wind has the following components:
wo= Bw, (4.40)

where E is the transformation matrix from earth to body axes as defined by
equation (3. 14) in Section IIL.

The magnitude V of the mean wind is assumed to be altitude-dependent
according to the following simplified functional relationship

V(h) = VO

h =1
b ) (4. 41)
0
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h = the altitude of interest
h0 = g reference altitude at which the mean wind speed is known
—VO = the mean wind speed at reference altitude hO

an empirical exponent which expresses the thermal stability
conditions of the atmosphere and the degree of roughness of
the surface beneath

]
1

For slightly unstable air, typical values of e range from 0. 12 for smooth
surfaces (such as deserts) to 0, 38 for very rough terrain, In ADAPS, a
constant value of 0, 25 is used, representing average conditions. Equations
(4. 39), {4.40) and (4, 41) constitute the mean-wind model used in ADAPS.

Gust (Turbulence) Model -- The gust model used in ADAPS is the form
attributed to Dryden with the coefficients specified in Ref. 31. In this

form, it is assumed that gust velocities are locally isotropic (i.e., locally
invariant with respect to position and orientation) and that time variations
are statistically equivalent to distance variations in traversing the gust field.

The translational gust velocity vector is defined as

w = v (4. 42)

The power spectral densities for the translational gust velocity components
are given by

B 2
L
6 (Q) 02 u 1 5
ug ugn [1+(L )]
5 (@) () . LV) [, (4. 43)
= ) = |of |=— —_— 4, 43
w vg v o\ [1+(LVQ)2]2
I, [1+3(L_ %]
o (Q) | 02 _ﬂ_‘E _L.W%_E
we w [1+(1. )]
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Q=5 = spatial frequency, (rad/ft) (4. 44)
S = wavelength, (ft)

Li = sgcales (ft)

g = the root mean-square gust velocities (ft/sec)

i = u, v, W

The mean-square gust velocities and the scales are related to each other
through the following set of equations:

o7

L% o
M. v W (4. 45)
u A% '

The quantities appearing above have the following altitude dependence:

100 < h <1750 ft

LW = h

_ . 1/3
L, = L, = 145.0h (4. 46)
h> 1750 ft
L. =L = L = 1750 ft
W u v

1.25

O = 9.25-log, (10,000)

For 0 <h <100, the value of h = 100 is used in the above equations,
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The gradient effects of gust velocities are considered as explained
earlier by defining angular gust velocities as follows:

ow
P - £
g 3y
— I wW
av
r -8
g 3 X
The spectra for the angular gust velocity vector @ are given by
. HLW 1/3
— — g 0.8)\——
¢, () LW ( )4b4b 2
. @
0, (@ =le (@ = W (4. 48)
Ve g [1+(ZRa]?] 8
o2
¢ (@) 4—5-— ¢ {0
| rg | 1+(% Q 2 Vg

where b = wing span, (ft)

Random velocities with above spectra are obtained by passing a gaussian

random "

G(s)

gﬁi@———% G(s)

It is known that

. 2
0,8 = |GGw) |8, (w)
where the bars denote the magnitude of the complex variable.
The power spectral densities given above are ratios of polynomials in w

%(m)

where w is the temporal frequency given by

w = VaQ rad/sec

can be spectrally factored out.

functions as follows:
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white' noise through a linear system with a proper transfer function

(4. 49)

2

(4. 50)

This process yields the proper transfer



G () | _ﬁ — )
G s o) — L
ug u 'rrVEl [1+(v1-1-)s]
a
/31,
y
) W {1+ Va) 5]
Gvg(s) = UV Wa Lv ; (4. 51)
[1+ ‘T*)S]
a
VsL,
o VTW L1+ va s]
s o _
wg wY TV L
& [+ TW)S:I2
L = | a —
[ ™ TL_\ 173 1
G (s) o\/ a)((0.8)(—-—-‘“-”) )
pg (W LWV \/ 4b \:144(%. sl
a,
1 s
G, (8) = (—') — G__ (s) (4. 52)
qg Va [1+(1-Té€_a s ] Wg
G (s) (—1—) 2 G (s)
rg Va L1+ ??-}—DV—S] Vg
a

The outputs of these six filters are combined as shown in the following to
obtain equivalent translational and angular velocities to be used in the
aerodynamics model

. r'_'__ ) -
u, u u ug
v, = v - v |+ Vg (4. 53)
w W w w
a g _J
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Py p Py
9G] 71 2] "% (4. 54)
I‘a r I‘g

Figure 17 shows the structure of the equivalent linear and angular gust
velocity generator model, Figure 18 shows its state representation, and
Table II gives the filter coefficients,

The pole locations of roll, pitch and yaw gust filters for aircraft are
invergely proportional to wing span, b, The corresponding term for a
weapon would be its diameter, When weapon diameter is used in place of
wing span, the magnitudes of poles of roll pitch, and yaw filters become
excessively large, Numerical integration (i, e., non-real-time simulation)
of these extremely fast dynamics requires very small integration step size,
For small weapons, the space gradient effects of wind gust (i.e., roll,
pitch and yaw filters) are small. For this reason, these filters are omitted
in the simulation of weapons in ADAPS.

Steady-State Qutput Variances of the Dryden Gust Filter -- In the following,
only side gust filter covariance analysis is presented, Others follow the
same pattern,

The transfer function for the side gust is given as [see equation (4, 51)]

rl (JSLV)]
- [L +1 Vg s
_ v I
Gvg(s) - % TV, [ Lv) ]2 (4, 51a)
1 +o—]s
Vall
This can be written as:
G, (s) = k| 2R (4. 55)
g (s+a)
or
s+a (s+a)

I
rlm<:
W

| 3a
where a = b== k= U'\ﬁ (4. 57)
v '\/E, Vi
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Figure 17. Structure of the Equivalent-Linear and Angular
Velocity Gust Generator (Dryden Model)
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The Jordan-state diagram for (4, 56) is given in Figure 19,

Figure 19, State Diagram for Side Gust Filter

The state equation ig given by

X = Ax+ bn , (4. 53)
= Cx
where
-a 1 0 1 (b-a)
A = , b = , C =k (4. 59)
0 -a 1 1

With a unity input covariance, the steady-state output covariance is
obtained from

X = AX+XA+bWh'= 0 {4, 60)
Y = ¢’'XC (4. 61)
where
11 %12 , 0 0
X = and bWb = (4, 62)
X192 %93 0 1]

From (4. 60) the following solution is obtained
bie = ....1_. X = — X = - (4 63)
22 2a’ 12 27 :
Substituting these into (4. 61) yields

v = %—25 [1+ (%)2] (4, 64)
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Finally using (4. 57) in (4. 64) results in

y = — (4, 65)

This shows that in order to obtain variance Ovz at the output, the input
hoise M must have a variance

s 2 (4. 66)

instead of unity, or the gain element k in transfer function (4. 51a) should
be

k = o VX (4. 67)

with a unity input covariance,

Subroutine WINDK computes the coefficients of the gust filter having the
Dryden spectrum and the components of the mean wind along the body axes as
a function of altitude.
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SECTION V
DEVELOPMENT OF MEASUREMENT SYSTEM MODEL

Sensors on board an aircraft can be divided into two groups: instruments
for the automatic control of vehicle motion and instruments for the avionics
(i.e., fire control navigation, etc.).

In general, the readings (i.e., observations) of sensors on board an
aircraft depend upon where and how the sensors are mounted with respect
to the body axes of the aircraft(geometry). There may also be dynamics
associated with sensors.

To provide an analysis tool by which the effects of various measurement
points and methods can be investigated, both aspects are considered in the
development of a measurement model in ADAPS,

In the following, a geometric model for the overall measurement system.
is developed first (i, e., observation equations). Then the dynamics of
sensors are treated. Throughout this development it is assumed that the
body on which instruments are mounted is rigid. Aeroelastic effects for the
measurements and controls are beyond the scope of the present program.

DEVELOPMENT OF A GEOMETRIC MODEL FOR MEASUREMENTS

The basic vector quantities which may be measured are:

» Control surface deflection vector:

X5 = col (6., b5 O Gsp) (deg)

e [lLinear acceleration and velocity vectors:

col (1, v, W) (ft/sec2)

B e
"

col (u, v, w) (ft/sec)

o]
n

e Angular acceleration and velocity vectors:
= col (p, q, T) (rad/secz)

Xy = col (p, g, r) (rad/sec)

e Angular position vector
(i.e., body attitude with respect to earth-fixed axes)

Xg = col (8, ¥,¢)
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] Translational position vector
X, = col (xe,ye, ze) (ft)

As is shown in the subsequent subsections and illustrated in Figure 20,
instruments sense, in general, the nonlinear combinations of these
quantities. This is referred to as the geometry of the measurements
or in state space terminology, the observation relations.

AIRCRAFT STATES

SENSED SIGNALS
AN B AT S (OBSERVABLE SIGNALS)
l @
> ——
A/C NONLINEAR LINEAR ——» A

» MEASUREMENT INSTRUMEN MEASURED
GEOMETRY IVNAMENT I VARIABLES

. —

L »

h
EARTH
Figure 20,

General Structure of Perfect-Measurement Model

In the following, first the geometry of the measurements for the
automatic control of vehicles motion are given. Subsequently, a geometric
model for air data measurements is presented for completeness. Then

a simple geometric model for fire control measurements (i.e., radar
measurements) is developed.

Geometry of Control Measurements

Attitude Measurements -- The geometric model of very simple forms of free
gyros (i.e., vertical and directional gyros) are given in [15]. In many
advanced vehicles, however, more complex attitude and direction-sensing

instrumentation is used. Models for those which are used in fire control
system are treated later.
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The relation between the attitude state x, and the sensed (i.e.,

measurable) attitude Y3g 18 given by 3
Y35 = Pyp (%3 Eg) = Bg¥s (5.1)
where E~ 18 a fixed transformation matrix which takes into account the

nonalignments effects of the gyro axes and is normally equal to an identity
matrix,

Velocity and Acceleration Measurements --

Linear-Velocity Measurements -- The geometric model of linear-
velocity measurements is given in Figure 21. In this model, it is assumed
that the orlgm Oy, of the instrument axes system is located by a vector Arv
from the origin, 0, of the body axes. It is further assumed that, yy, 0y and
¢y are fixed Euler angles from body to instrument axes, and Ey is the
corresponding transformation matrix as described in Section III.

-

v

Figure 21. Axes Systems for Linear Velocity and Acceleration
Measurements: (a) Body Axes, (b) Instrument Axis

The linear (i.e., translational) velocity of the point 0y, in body axes is
given [16] by

— - - —D — 5' 2
Vap v + wX Ar v ( )
where
v = linear velocity of cg with respect to earth axes in body-axes
system
@ = angular velocity of body with respect to earth axes in body- axes
system
z\.rv = position vector from 0 to 0, in body-axes system
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As described in Section III, the matrix equivalent of (5.2) is

VaR =v+WArV (5.3)
where
Ugp 0 -r q __AX‘W
Ve T |Vsp | W=1]r 0 -p{, Ar = Ayv i (5. 4)
VsSB 4 p 0 bz

Transforming (5.3} from body to instrument axes system yields the
measurable velocity components along the instrument axes '

vg = E/ v+ W ArV] (5.5)

Equation {5.5) constitutes the geometric model of the linear velocity observa-
tions, It is noted that the measurable Veloc1ty vector is a linear combin-
ation of the linear and angular velocities in body axes; E, and Ar_ are the
velocity observation parameters. v

In state vector notation (5.5) becomes:

Vs hX1 (x, X5, Ar_, ) (5.86)
where

hXl =E_ {xl + LWix,)] Arv} ' (5.7)

and W(xz) is defined by (5. 4).

Linear-Acceleration Measurements -- The accelerometers are
assumed to be located and oriented in much the same way as the velocity
instruments. In the following the geometric relations which express the
accelerometer observations in terms of the vehicle body axes accelerations
are developed similar to previous section.

Differentiating (5.2} in a rotating frame of reference (i.e., body axes)
yields the following equation:

. _-6— - — - — - - 'y (5-8)
vy = ESt[v+uux Ara] +wx [v+wx Araj

Noting that Ara is constant, one obtains
T:O‘—; GaxA; +mx;+ax(fﬁxAF) (5.9)
Vst Bt T B a a

79



where

N
\'IS = acceleration of point 0_ where accelerometer is located
expressed in body axes
-
¥ = acceleration of mass center, 0, expressed in body axes
- *
Ar‘a = position vector from 0 to Oa’ expressed in body axes

‘The matrix equivalent of (5.9) is:

'vS:{r+Wv+(\5v+w2) Ar, (5. 10)

Now let ¥ _, 6_, and ¢_ be the fixed Euler angles from body to accelo-
meter ax€s, dand E5 b€ the corresponding transformation matrix, then
the observable acceleration components along the accelerometer axes
are given by

a_ = Ea[(aﬂ'zv Ara) + (Wv+W2 Ara)] (5. 11}

Equation (5. 11) constitutes the geometric model of the linear accelerometer
observations. It is noted that the observable acceleration vector, a_,

is linearly dependent to body axes accelerations, but also contains
nonlinear combinations of the velocities. E, and Ar, are the acceleration
observation parameters.

In state vector notation (5.11) becomes

Vg = By ({:1, 5:2, X3 Xg, Ar, E ) (5.12)
1
where _
R . 2
hi{l = Ea{xl + [W(Xz) ] Ar, + Wixy)x, + [W(xz)} Ara} (5. 13)
Angular-Velocity and Acceleration Measurements -- Here it is

tacitly assumed that the axes of the instruments which measure the

angular velocity and acceleration with respect to nonrotating earth are
fixed with respect to the body axes. It should be noted that, in radar-based

measurements which are treated later, the radar axes system on which
rate sensors are mounted moves with respect to the body.

Let E_and E: be fixed transformation matrices from body to
angular rafe and angular accelerometer axes respectively. Then the
observed angular rates and accelerations are given by

w_ = w
s Ew
w, = ECU W

Here E  and E, are the observation parameters. In state notations these
equations become
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Yo = Hyfx5)

Yag = Bylky) (5.14)
where

h, = I:Ew] x,

hy = [E 1%, (5. 15)

Air Data Measurements

Three measurements are made on the air data; (1) static pressure (2)
total pressure and (3) total temperature. These measurements are used by
the air data computer to obtain, among other things, the altitude, altitude
rate, mach number and airspeed.

In the following, the geometry of the air data measurements are
developed via the physics of the variables which are observed.

Static Pressure Measurement -- The observed static pressure is a non-
linear function of the altitude. The static pressure-altitude relation is de-

rived from the barometric equation which may be expressed in the following
form [38]:

gwW
dlog, P, =- {p dh (5. 16)

and
T = T +t . (5. 16a)

where

= altitude

= acceleration of gravity
molecular weight of air

= gas constant

Hom s R
I

= absolute temperature (Kelvin)

o
1l

temperature (centigrade)

TO = constant

Approximately, one can write from (5. 16)

E_l_ h
_ T
pS = pb € (5.17)
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or in state space notation

k
e 'x
p =p e (5.18)
where
¢ = col(0 0 1)
and Py, kl are the observation parameters.

Total Pressure Measurement -- The observed total pressure is connected
o the static pressure and the speed of air with respect to body, through the
following relationship:

y

y-1

- Y-1
Pt = Py L=

<
mlm o

(5.19)

1]

where y= 1.4

and Va = airspeed with respect to body
a

= speed of sound

At this point, it is convenient to introduce the Mach number parameter
defined by

<

= -2
M = = (5.20)
Temperature observations are functions of this parameter.

The speed of sound is related to the temperature as follows:

a =\/T{:)'\/To+t (5.21)

where k =Y
© o 0o (5.22)

Now combining (5.21) with 5. 19) and noting that

Vo= V- W (5.23)
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One can write in terms of states, the following observation equation:

_ (3.5)
T T ) 6y
o %1 a (5.24)
where
Xla = (X1 - x,lw)
k1 =koTo (5.25)

Total Temperature Measurement -- The total temperature is related to
the static temperature t, by [38]

— 2 2
t = (1 -.2M7) (1 - .004M")t (5.286)

and is observed by a resistive sensor obeying the Callendar-Van Dusen
eguation

Ry = glty) (5.27)
where the function g is a second-degree polynomial in t- Thus in (5.24) the
parameter t (i.e., temperature) is indirectly observed and this observation
is described by (5.26) and (5.27).

In summary, the air data observation vector is connected to the states

as
Pog = hps(x4, P, t)
Prs ~ hpT(Xl’ 1w’ Pgg’ £
Rypg = Bpplxys x00.1) | (5.28)
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where

B k
5o ]
=ip, e(T +t) 4
ps b o]
, 3.5
Geyxpy) (%)% ) 5201
h = j(h 1+ 2 5.29
pT ps kO(TO+t)
h _
TT/ = i g(ts) _
Fire Control Measurements
Description of Fire Control Measurement Model -- Fire control measure-

ments involve body-mounted sensors also. From the readings of ’Fhese sen-
sors, the target's relative position and velocity with respect to aircraft

are derived [39].

The radar measurement model considered here, is illustrated in
Figure 22. In this model the relative position of target is defined by the
vector

—

R

R
Yrp 'R (5.30)
-eR
where
R, = magnitude of the position vector of target relative to point OR on
aircraft
wR = azimuth angle of position vector with respect to body axes
BR = elevation angle of position vector with respect to body axes

It is assumed that the relative position vector ypp,as defined above is observed

using a radar device which is located by a vector Arg from the origin, O, of
the body axes, The radar axes are assumed to be oriented by synchros so
that the antenna (i.e., iy vector) always points to the target. It is further
assumed that the angular velocities qp and rR of radar axes with respect to
earth are observed by antenna-mounted rate gyros, and the rate of change of
Rp is observed by doppler shift. This describes the fire control measure-
ment model used in ADAPS. In the following, the geometry of the radar-
based measurements are developed parallel to the previous subsections.
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(a)

Figure 22, Radar Measurement Geometry: (a) Body Axes,
{b) Radar Axes, (c) Earth Axes
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Ceometry of Fire Conirol Meagurements --

Position Measurements -- From Figure 22, the position vector T of
c.g. is given by

T = -(Ar +FR) (5.31)

R
where:

—

r = position vector from OT to 0

R

zr = position vector from 0 to OR
r = position vector from DR to 0T

R

From (5. 31) one obtains ?R in body axes and in matrix notation as
R

'r YR

“R

= - [E(8, ¥, ¢)r + ArR] (5.32)

In state space notation (5.32) becomes

r_ = - [E(X3)1X4 + Ar (5.33)

R R

On the other hand y as defined in (5. 30) can be expressed in terms of
cartesian cornponen%g3 of (5.32) as

Ar (5.34)

Ypp ~ Prp(¥sg X4 Lrp)

where

> 2 2
\/XR+YR+ZR

= -1y
hRP'" tan "R (5. 35)
R

tan”LZR____
i V*RT VR
Thus (5.33), (5.34) and (5.35) constitute the position observation equations,

with ArR position observation parameter.

Velocity Measurements -- Differentiating ;R in rotating radar frame
one obtains

dr 5t
R _ R - -
3t ot YR*TR (5. 36)
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Since
d

_R_ 2
dt R {5.37)

33’1 1

Wh_er_'e v, is the linear velocity of O, with respect to earth-fixed frame
origin d?l‘ One obtains from (5. 36)§nd (5.37):

—?R =EE + IﬁRx ?R
{5.38)
In matrix notation
&r
—VR=~6T—+ WR FR (5.39)
where
0 i
e (B TR R
rp 0 . 5= O), Wg = rR; 0 P (5. 40)
0 9 PR O
Using (5.40) in (5, 39) yields
‘R
vp = |-Rr_ (5.41)
R d.

It is noted that R, f{, and angular rates g, and r_ of radar axes with
respect to earth axes are the observed qu%ntities.

Now, the linear velocity of OR can be expressed in terms of the velocity of
cg in body coordinates:

L d

YRR = {?+'GJ,><.A1’~R (5.42)

Let E, = E.(6,, ¥V _) be the transformation matrix from body axes to radar
axes. I%E idtotfainBd from equation (3. 14} of Section III, by letting 8 = BR,
¥ =wRan%¢=o).

Then in matrix notation the linear velocity of Op In radar axes becomes

VR T [ER(GR, WR) l1lv+w Arp] (5. 43)

where VR is given by (5.41).
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Defining the velocity observations by

AR . (5.44)

one can write using (5.41)

= .45
YRV D(R) v (5 )
where
-1 0 0
DR) = | 0 -lR 0 (5. 486)
1
0 0 T

Finally substituting (5. 43) into (5, 45) yields the observation equations in
the form

= h Ar

Ry *1- ¥po Ygp: ArR) (5.47)

YRV
where

h

gy = P®) [(ER(6g 2N [x, + Wixgy) Arp ] (5.48)

This finishes the treatment of the observation equations of the measure-
ment system considered in ADAPS.

In the subsection that follows, the development of a model for the
dynamics of sensors which read the above observations is briefly presented,

DEVELOPMENT OF A DYNAMICAL MODEL FOR SENSORS

Almost invariably, the dynamics associated with each measured-scalar
signal is of second order. Therefore, the overall system order increases
very rapidly when the number of measured signals increases. To overcome
this difficulty, the sensor dynamics with poles lying outside of the signifi-
cance circle of radius R _ on the complex plane as shown in Figure 23 are
ignored in the dynamicaf;representation of the overall system. However,
their positions are checked after the optimal gain loop is closed, because of
the sensitivity of high-frequency open-loop poles to feedback.

Figure 24 is the block diagram of the ith sensor dynamics.
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Figure 24. NMeasurement Dynamics of
1" Scalar Signal
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in this diagram, i and Yim correspond to the ith scalar observable and
meastﬂred signals r%spectf‘vely; X35 and Xy, Are the state components of
the i sensor.

The dynamics of each sensor are identified by five coefficients, a,.,
g s b i’ b,., and di’ where i is the sensor index. These coefficients
corregpong %o the olitput-frobenius implementation of the sensor transfer
function. For those cases in which the transfer coefficients (i.e., dj) are
zero, this representation provides output as the first component of sensor
state. This finishes the development of a dynamical model for sensors.

Figure 25 shows in detail the kinematics and dynamics of measurements.

v
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SECTION VI

LINEARIZATION OF THE
WEAPON DELIVERY PROCESS

The weapon delivery process is a nonlinear stochastic phenomenon. To
analyze the nonlinear equations, practically, they are linearized about the
nominal path, The nominal path considered here corresponds o a dive-toss
maneuver and consists of essentially three phases: (2) dive, (®) pull-up, and
(c) free-fall, as shown in Figure 26,

The development of a model for the release transient phase is outside the
scope of this work, This part of the nominal trajectory is taken into account
in a simplified manner, by introducing an independent, additive, stochastic
error on the initial condition for the free-fall trajectory.

{a)

{b)

(d)

(c)

A 4

Figure 26, Nominal Trajectory for Dive-Toss Maneuver:
(a) Dive Phase, (b) Pull-up Phase, {c¢) Free-
Fall Phase, (d) Release Transient Phase
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LINEARIZATION PROCESS

It is assumed that the dive and pull-up maneuvers are carried out with a
fixed thrust level, and by controlling the elevator deflection, The missing
states and parameters along the paths (a) and (b} are obtained either by
solving a set of trim equations developed for the case at hand or by a soft
flight-path controller, The trajectory (c) is developed by integrating the
six degree-of-freedom free-fall equations of an iron bomb

The linearization process along the paths (a) and (b) yields the state
{ransition and the input matrix pair (¥, G) of the aircraft, which are used {o
design an optimal weapon delivery controller, The linearization along the
path (¢} yields the sensitivity matrices which are used in translating the
dispersion errors at bomb release to the impact of the bomb on the target
as well as errors which occur during the free-fall,

The numerical development of the ideal nominal trajectory is illustrated
in Figure 27 for the algebraic trimming. The process starts at t = to with
altitude hg and range x,. First a trimming is performed as outlined in
Section VII: then a linearization is performed. This sequence continues
with every AT seconds along the dive path until the pull-up altitude, hy,y, is
reached. Similar steps are carried out along the pull-up trajectory, until
the release time, tp, is reached. Subsequently, integration of the six
degree-of-freedom equations of motion of the bomb is carried out N steps
with At = AT/N time interval. Then a linearization is performed at t =
tp + AT. The process is continued until the impact plane is reached.

The equations which describe the general motion of a rigid body are
given in Section III. Many problems of rigid-body motion involve only small
disturbances (i.e., perturbations) from steady or quasi-~steady flight condi-
tions. In the following, the assumption of small disturbances from reference
flight conditions is used to reduce the equations from nonlinear to linear form.

DEVELOPMENT OF THE PERTURBATION EQUATIONS
In the state vector notation, the general equations of motion of a rigid
body, as developed in Section III, is described by a nonlinear vector
differential equation of the form
x = f[x(t), u] (6. 1)
where f is real, continuous and hag continuous first order partial deriva-

tives with respect toxi, i=1,2,..., n; anduyj, j=1, 2,..., I; in a region
of { X, u) space which contains the solution curve (x(t), u) with tg =t < tf.
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G TRIMMING POINTS
e INTEGRATION POINTS

[ LINEARIZATION POINTS

Figure 27,

Development of Nominal Trajectories and
Linearized Equations of Motion for an Aircraft
Weapon Pair for a Dive-Toss Maneuver in xz
Plane
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Let (x, u) and (x,1) be two neighboring pair of solution curves
satisfying (6. 1). Define

£ =% - X
and - . (6. 2)
nm=u - u

Also let the matrices with columns

(-g%) , i=l... o,
RO

|

be denoted by Fy ( X(t), 1), Fy ( ult),u), respectively. Then from (6. 2) it
follows that %40?

and

f
u

o

n

., j=l,...,r

o

3') (x(t), 0)

dg

$= fOE+x, n+w) - fOx0),w (6. 3)
or
L. r (W + Fy (X8 + olfg)+olln]) (6. 4)

where ofg) is a vector such that

lim ole) _
sop & = 0 (6. 5)

When the last two terms in (6, 4) are omitted, there occurs the linear
system

.g_%i = F_( XD, Wy + F (x(t), 0 (6. 6)
with .
yt) = x(t) - x(t) (6.7)

which is called the first variation of (6. 1) with respect to the solution
(x(t), W). It is also called the variational equation of (6, 1), The first
variation determines the dependence of solutions on the intial conditions
and parameters. It also determines in some cases the nature of the
stability of the solutions (x, u) of (6, 1)

91



In engineering practice, the procedure described above is called the
linearization process, and the variational equation (8. 6), is called the
linearized equation of motion. Also the solution (x, u) is referred to as the
nominal solution or the reference trajectory. It follows from (6. 8) and the
definitions of Fy and Fy that, in order to carry out the linearization:

(a) the solution (x, u) must be specified on an interval {5 <t < ty, and
(b) the first partials of f{(t, x, u) with respect to xj and uj must be developed,

In the following, first the development of the nominal solution (x,u) is
given then the development of first partials is presented., At this point a
few words on the notation for small disturbances (i. e., perturbations) are
in order,

Usually, perturbations of velocity and orientation variables are desig-
nated by the lower case symbols for these quanfities, i, e.,

u p P Xe
viis 9. |98, |V,
W iy ] Zg

Upper case symbols are used with a subscript zero to denote the reference
values of these variables. Thus

UO PO ‘I;O Xeo
VO 2 QO : ®O s eo
Wo R lL‘O Zeo

are reference values for linear and angular velocity components, orienta-
tion angles, and positions. Incremental changes in aerodynamic force and
moment components are denoted by the pertinent symbol with a prefix A,

e.g., AX, AZ, AM, etc.

DEVELOPMENT OF THE NOMINAL SOLUTION

The way the nominal solution (x, u) is developed depends upon whether
or not the parameter vector 4 is controlled or uncontrolled, The term
"controlled" here_implies the description of i over a time interval such
that the solution (x, u) behaves as specified. Uncontrolled u on the other
hand implies generally, disturbance parameters effecting the evolution of
the solution,

The nominal solutions (i, e,, reference trajectories) are developed by
means of a set of specified reference-flight conditions, Reference-flight
conditions are divided into two groups: free reference-flight conditions
- and controlled reference-flight conditions.
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Free reference-flight conditions constitute the specification of an
initial value of the state, x(t,;) = Xo and the specification of the free parameter
u over an interval to =t stf, The nominal solution in this case is developed
by integrating (6. 1) over the specified time interval,

A nominal motion of an iron bomb, released from an aircraft falling
freely under the influence of the gravity and winds is an example of this case.

The set of controlled reference-flight conditions consists of steady
flight conditions, quasistead%' flight conditions, straight flight conditions, and
symmetric flight conditions [15]:

. Steady Flight Conditions imply a motion with zero linear and
angular accelerations, That is

u p

d - a4 =

s lv)] =0 and | g 0 (6.8)
W r

Steady sideslip, level turns, and helical turns are examples to this
kind of motion.

e Quasisteady Flight Conditions imply a motion with some nonzero
linear and/or angular accelerations. A steady pitching motion
(i. e., steep dive) which is described by the quasisteady flight

conditions
u u p
d - d = . '
W W T

is an example to this case,

. Straight Flight Conditions imply a motion with zero angular velocity
components. That is

P
qgj= 0 (6. 10)

r

Steady sideslips and dives or climbs without longitudinal acceleration
are examples of this kind of motion,

93



® Symmetric Flight Conditions imply a motion in which the body plane
of symmetry (i.e., xz plane), remains fixed in space throughout the
flight. That is the asymmetric variables are all zero:

p 0 u u 8 8
al={q}, |v;=10],[|¥]=]0 (6, 11)
r 0 \i/ \J @ 0

Wings level dives, climbs, and pull-ups with no sideslips are
examples of this kind of motion.

The set of mathematical consequences associated with all specified
reference flight conditions is used to construct the nominal trajectory,

At this point it should be noted that some of the reference flight conditions
are on the derivatives of the state variables rather than on the state
variables themselves,

The process of finding the values of involved state variables and inputs
so that the conditions as specified by the equations given above are satisfied
is called "trimming". (The process of trimming for a particular set of flight
conditions, i.e.,, dive and pull-up maneuver, is described in Section VIIL.)

DEVELOPMENT OF THE FIRST PARTIALS

Consider a general rigid-body motion characterized by

x = f(x,u, w) _ (6.12)
where

X = sgtate vector of the motion

u = control vector of the motion

disturbance inputs of the motion

Equation (6. 12) can be decomposed into the following form by using the
Equations (3.62), (3.63), (3.24) and (3. 72) of Section III:

5{1 = -W(xz)x1+ E(x3)ge+ Ell fa(xl’XZ’XS’ 5, W) +r%1 B Y (6.13)
5{2 = ~J_1W(x2)J Xg+ J_1 m, (xl,xz,xg,(),w)-p J-1 BTyT (6, 14)
5;3 = G(Xg) Xg (6. 15)
x, = E'(xg) x, (6.186)
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where the subvectors are defined as follows:

X, = \% linear velocity vector

P
Xg = (q ) angular velocity vector
r
s
Xg = (¢ ) angular position vector
y :
x
e
Xy = (ye translational position vector (flight path state}
7z
e
&
a
6 = 65 control surface deflection vector
&
r/ -
Y effective thrust input
u
w
w = % wind velocity vector
w

W

and finally f, and mg are the aerodynamic force and moment vectors,
respectively, expressed in the body coordinates, These two vector functions,
in general, do not have analytic form, Their values as functions of their

arguments are supplied in the form of tables, In this work, the dependencies
of f5 and mg to the derivative of the state vectors as defined above are ignored.

If a quaternion is used to describe the angular position coordinates, then

equations (6. 13) through (6, 16) basically remain the same except the angular
position vector becomes
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and the differential equation of angular position can be written as [see
Section III, Equations (3, 54) and (3. 868)
Xg = G(xz) Xq = G(XS)Xz {6. 153)

where é(x )and G(x3) are linear functions of Xq and §3 respectively. The state
diagram o% the nonlinear equations of motion is illustrated in Figure 28,

Equations (6, 13) and (6, 14) describe the evolution of the linear and
angular velocity vectors, respectively. Equations (6. 15) and (6. 18) describe
the evolution of the angular and translational position vectors, respectively,
Two approaches are available for the development of partials of the right-hand
sides of (6. 13} through (6. 18): (a) mixed (i. e. , analytical and numerical)
partial differentiation approach or (b) pure numerical partial differentiation
approach, Depending upon what approach is used for obtaining the partials,
linearization will be referred to as (a) mixed linearization, and (b) pure
numerical linearization, Both approaches are presented in the following,
but only the pure numerical linearization approach is utilized for the lin-
earization in ADAPS,

Mixed Linearization Approach

It is intuitively obvious that mixed partial differentiation approach for the
linearization is more accurate than that of pure numerical partial
differentiation approach. However, as will be seen in the following develop-
ment, it requires more programming effort and computer memory for its
implementation, Observation of the right-hand sides of equations (6, 13)
through (6. 16) reveals that the majority of the analytical terms are in the
form of

f(Xi, XJ.) = F(Xi) Xj (6.17)

In the following the incremental change in f(x;, Xj) is developed for various
values of i and j:

. Case 1; [see Equation (6.13)] Clearly, an incremental change in
about the nominal states (xl, X2) in terms of perturbations ﬁxl and
5x2 is given by

0f(x, xy) = 0 LW(Xz)XIJ =[W(X2)]L6x1 + ESW(XZ)}(I(L (6.18)
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On the other hand

OW
5[“{"2)1:3{5 |t 35 | 8a *5= | er (6. 19)
O O o}

So that

5f(x1, Xy) = GEW(XZ)XI.] = [W(xz)] ° 6 X+

W oW W
3o M1l ag lEe T e% (8. 20)

Since W(x,,) is a linear function of x, indicated partials are constant
matrices.” When the components of%’V(xz) are used in {6, 20) in
accordance with equation (3. 21) of Section III, one obtains

GEW(Xz)XIJ = W(xz)0 6%, - W(xl)0 o%, (6.21)
where
0 -W v 0 -r q
W(xl) =| w 0 -u|, Wxy) =1|r 0 -p (6. 21a)
-v u 0 -q p 0

The same result can also be obtained from the vector notation
representation of f by noting that

-f=v_v)x§;=—§r’x?v (6, 22)
so that
5?= \;; |X5V-—\-;|X 5{; {6.23)
0 o

Equation (6, 21) is matrix representation of equation (6, 23},
Case 2:

f = [J"sz(xz)J]x2 | (8. 24)

Following the similar steps
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éf(xz, Xz) = S[J_ ]W(XZ)J XZJ = LJ IW(XZ)J]O 6x2

-1 8w -1 W 13W
197 5% SENR 3q9% g =T Ix, ] 5%, (6. 25)
L] Case 3:
f(xz, x3) = [G(XS)]XZ (6. 26)
so that
8 #(xy, x4) = [Clxg)) | 03y + LOG(xg)x, | (6.27)
Q 0
But
aG Xe 3G
O(G(x ))— 69+a¢ 5¢ — sV (6. 28)
So that
- 1 2G oG 3G
6 f(XZ’XS) [G(XB)O 5x2 + 13 le 50 X2 | ST %2 5x3 (6. 29)
Q
L Case 4:
f(xl, X3) = LE (XB)']XI | (6. 30)
so that
3’ PR’ ol
of(x., x.) = Efx Mox, +[= x, |[7=% x, |[£—x )5x (6. 31)
1°73 3’5 71 |88 1a¢1|a¢ 3

In summary, the linearization of the analytic terms in (6. 13) through (6. 16)

yvields the following set of equations-

_ 3w oW aE 3E 5
2y =Wy 0y (ap 1| %y I57fo%, |az> ge 157 ge) *3
o
1 (6, 32)
+ 5 BTﬁyT + Afa(xl,xz,xs, 5, W)
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[, LB L LW (13w
Oxz =~ |J W(XZ)J-!- (J 3D Jx2|J 3q Jx2 | J . sz)O] 5x2
- . (6. 33)
+J " By +J Ama(xl,xz,x3,6,W)
. 3G . (3G _ (3G
6X3 = [G(XS)]Oﬁxz + 58 Xy | 56 X2 |a—¢- X 5x3 (6. 34)
o
6, = [R'(x)lox, + (2B ¢ |3E", 3BT 4 (6. 35)
4 37071 30 “1'ag 17 ay 1O 3 .

where the matrices W, E, and G are defined by equations (3, 21}, (3.14) and
(3. 24) of Section Ill, respectively. The set of equations (8. 32) through (6, 35)
can be written as

1 = 1 o] 1.7 !

X T "Fip Fyg O 0x | |5Bp mAfa (X %9, %5, 8, W)
8 ;cz _ 0 - F22 0 0 6 Xq . J-IA AyT-FJ-lAma(Xl, X5, Xa, & w )
5%, 0 Fys Fay 0| [oxg 0 0
] [Far 00 Fyg O o] oo || 0 _

(6. 36}

This finishes the linearization of the analytical terms, What remains to be
done to finish the problem is to compute A f and Am appearing in (6. 36), Since
these vector functions have tabular representations, one must resort to a
numerical procedure to compute them in terms of the increments in their
arguments, At this point there exist two methods of approach: (a) the
equations of the force and moment vectors presented in Section IV can be
utilized to further the analytical differentiation process/ this procedure
finally yields to the stability derivatives of the aerodynamic force and
moment system; or (b) direct numerical partial differentiation of f and m,

This brings us to the problem of numerical partial differentiation of
vectors with several argumenis, Since the size of a vector and its arguments
are immaterial, the computational procedure presented in the section that
follows for the pure numerical partial differentiation approach applies here
as well,

Pure Numerical Linearization Approach

As can be seen from the equations (6. 32) through (6, 35), the mixed-
linearization approach requires more effort in its computer implementation
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and it does not completely eliminate the numerical differentiation process,
For thig reason, sacrifice is made in the accuracy of computations to grossly
simplify the linearization process. In the following, a set of candidate
numerical algorithms is presented and the one which is implemented in’
ADAPS is discussed,

Numerical Differentiation Algorithms -- Numerical differentiation algorithms
can be developed either by (a) differentiating the Lagrange interpolating
polynomial of a table function or (b) using the discrete approximation to the
derivative operator,

By differentiating three-point L.agrangian interpolation formulas and
evaluating the results at tabular points, the following derivative formula is
obtained [411]: '

fl-f_l) 2

1 = o
f n 6

o

frir(g), X, - h<§<x0+h (6. 37)

If it is known that | ”(x)] < M3 in the interval (x5-h, xp+h} and if all
given data were exact, the maximum possible error in the calculation of
f'(xo) would be

- _ 3
3lmax © 76 (6. 38)

|E
On the other hand, if each of the ordinates involved is in error by + €, then
the magnitude of the corresponding error in the calculation of '(xg) could be
as large as

[
IRslnax ~ h (6. 39)

whereas a reduction of the truncation error E3 would generally require a
decrease in h, a small value of h would lead to a large possible round-off
error R3 and, conversely, a reduction in |R3lmax would generally correspond
to an increase in | Eg]max. '

A reasonable procedure consists in determining the interval h such that
the predictable upper bounds on the two errors are about equal, if this is
feasible. The optimum value of h and the corresponding maximum total
error T are then found to be [41]

1/3 4, -1/3 2/3

1/3
3 M

B o= [
h 1.8 3

T =1,1¢ (6. 40)

By using a discrete approximation to the derivative operator, the derivative
of a function at discrete points can be expressed in terms of the differences of
the function at tabular points., Let s be a differential operator, that is

sf(x) = f'{x) {6, 41)
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If z is a shift operator defined by
zf(x) = f{xth) (6, 42)
Then it can be shown by using Taylor series expansion that

z = oIS (6. 43)

If Ais a forward difference operator defined by Af(x) E f(x+h) - f(x), then one
can write z = {1+A ) and

_ logz _log(i+a) _ 1 1 2
§ = = —=p—=p{t-9 27H.0) (6. 44)
In terms of backward differences, z = (l-v)-1
- 1
s = PEA-9 = (v 3 el (6. 45)

If the expansion is truncated after the first term one obtains

d 1 .

=~ 5 (A) (6. 46)
so that

% f(x) = % f!x-;—lh)—fjx) (6. 47)

Derivatives using more data points can be obtained from (6. 44) or (6, 45),

At this point a remark is made about algorithm selection, In aircraft or
weapon linearization problems, the listed increments in the function arguments
are much larger than that of increments that can occur about a nominal
argument set due to small perturbations, Consider a table function

f o= f(u)
where
h(x, u)
W= M(x, u)
a(x, u)

is the data argument set of the table function, Let

Ah
Ay = (AM)

Ao
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be the set of increments on which data is given. Then there is a perturbation
(5 x, 6u) such that
E ul < |au|=|C |0X) + | C ou| (6. 48)

1] 21

This fact is illustrated in Figure 29,

h

On the other hand, for every| M| in the i, j, k data cube, f(h, M, a) is

represented by a

s

@ (6. 49)

E Y
=

f(h, M, a) = LO +£1h+ 9 + 3

+ El2h M + 2231\11 o+ ,6310, h
+ '2123h ™M a

where L's are functions of data point indices i, j, k only, and H, ffl, @ are
linear functions of (h, M, o). This representation follows from the multi-
dimensional linear interpolation algorithm used in ADAPS for generating a
value for a table function inside the interval of tabular points, It follows
from (6. 49) that the partials

af, af | af
ah 3aM 3o

o
depend only upon (a) the data cube in which the nominal parameter vector is

located, and (b) the value of the nominal parameter vector. It does not
depend upon the size of the perturbations as long as the perturbation cube is

&

G+l

o
@-
(=]
R
-
=
v

o k\ Mj+1
\n

13

w

T

Figure 29. ''Data Increment' and "'Parameter
Perturbation' Cubes
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inside the data increment cube, Therefore, we may conclude that a two-

point linear interpolation algorithm is used for representing a tabular function
inside the data interval, and when small perturbations are assumed then, the
use of elaborate differentiation algorithms is not justified for the table functions

and partial differentiation algorithms given by

ﬂa*‘_ga‘l)“_f(ﬂ)] (6. 50)
[

fla)y-f{o -6

71_)_3é7-‘__l] (6. 51)

Flotr =) -fle-5
L oa

r(éa f( Q.

(6. 52)

arelall equivalent and moreover independent of the size of 8« provided that
|[6a] < aa,

For pure numerical linearization process, however, the use of the
central differences given by equation (6, 52) provide better accuracy in the
linearization of analytic functions appearing in the equations of motion. For
this reason (6, 52) is utilized with a set of fixed perturbation increments, in

ADAPS.

The analysis presented up to this point is implemented as the subroutine
LINK. Itis used to linearize numerically, the nonlinear state equations of

motion,

TRANSFORMATION OF THE PERTURBATION STATES
A few words are in order here about the state component assignment to

various physical quantities in the dynamics. The standard state component
assignment for the nonlinear equations of motion has been defined to be

x=collxy, Xp Xglxy, xg, xglxg, xg xglx g0 x4, %)) 6. 53)

=C01(u: V, W’p: q4, ]_",e, ¢: ¢|Xea ye: Ze)

The resulting state perturbation equation of motion is illustrated in Figure 30,

When dealing with the linearized equations, the state components may be
reordered with respect to longitudinal and lateral dynamics for convenience.
The state component assignment for this case is defined as

bx= col(éx_, Sh , bu, 86, &q, dw |6y, &, br, &, 54, Op) (6.54)

The resulting state perturbation equation of motion is illustrated in Figure 31,
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The gust filter states (Section IV) are also grouped with respect to
longitudinal and lateral excitations:

= 7
w col(Wl, Wn, Wg, W5[w8, Wo, Wy WB) | . (6.57)

The resulting state equation of the full-gust filter is illustrated in Figure 32
and the state equation of the reduced gust filter (rolling gust terms omitted)

is illustrated in Figure 33, These definitions, produce almost upper-block
triangular transition matrices. They are obtained by permutational similarity
transformations. This operation is referred to as ''Shuffling" of the linear
data and is carried out by Subroutine SHUFF.

Besides permutational similarity transformations, as explained above,
there are transformations induced by the various selections of physical
variables as state components, For instance, instead of selecting (u, v, w)
as state components, one may choose {V, B, ) to describe the velocity vector.

Consider the state differential equation given by (6.12). Let & be a chosen
state vector related to standard state vector x by a nonlinear relation:

g = gx) | (6.58)
Then

£ = hix,u) (6.59)
where

hix,u) = {%gfﬂ] £(x, w) (6. 60)

Let us assume that x, & and g are evaluated for each nominal point using
(6,12), (6.58) and {6,59). Then the partials

%f";)o :(g—i)os'(%ﬁ')o, (%]0 s and(g%)o can be computed along the

nominal trajectory during the linearization process with the standard state,
as described previously.

Noting that

58 =(%§L) 6x (6.61)
0
and 5
y ah h
85E =(~a—x—] 5x + a’l) du (6.62)
0 0
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The state perturbation equations in terms of the new perturbation state
vector become

5% = F, 82+ Gy bu (6. 63)
where -1
F, -(2—2) %}%) (6. 64)
0 (o]
and
GE = a—E- (6.65)

By this procedure, the linear data can be generated for any arbitrary axes
system.
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SECTION VII

DEVELOPMENT OF THE NOMINAL STATE
AND PARAMETER (TRIMMING)

The way the nominal state and parameters of a rigid body in flight are
developed depends on whether the body is controlled or uncontrolied. When
a prescribed nominal trajectory to be generated by a controlled body (i.e.,
aircraft, guided missile) is under consideration, one can find it either: (a)
by simulation with an autopilot for given flight conditions and reading out the
nominal values of state and control parameters during the flight; or (b} by
assuming that a body is forced to fly in accordance with given flight condi-
tions and computing the missing nominal states and parameters which produce
that flight. The first technique is called "trimming with an autopilot’ and
the second ""algebraic trimming."

When a body is uncontrolled (i.e., iron bomb, hullet) the nominal
trajectory cannot be arbitrarily specified. It is obtained by integrating the
differential equations of motion starting from a given initial condition,

In the following the development of the nominal state and parameters
along a prescribed trajectory are treated for a controlled body first using
the algebraic trimming approach. Then trimming with an autopilot is dis-
cussed, In ADAPS the latter approach is utilized.

ALGEBRAIC TRIMMING

Consider an aircraft represented by

x = f(x, u) (7. 1)
y = h(x) (7.2)
where |
x = state vector
u = control vector
y = response vector

The response rate is then given by

vy = H(x) f(x, u) (7.3)
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where

Hix) = 28 (7.4)

The response vector may consist of a set of trajectory variables such as

y = = (7.5)

-
Vv [\/u2+v2+w12
Y

-1_W..

8 - tan »

Most often, y and some of the components of %, and x are specified along
the nominal trajectory.

For instance
_ RY a
Yy, = A (7. 6)
R

indicates a quasi-steady motion with a constant acceleration and a constant
flight-path angle (steep-dive bombing).

The trim problem is to find the missing state variables and controls
such that the error defined by

o) = |H(x) f(x, u) - yq | (7.7)

is small,

Algebraic Trimming for Dive and Pull-up Trajectory

The two-phase nominal trajectory considered here corresponds to a
steady, symmetric, straight-path, dive-bombing maneuver [ 7], followed by
a symmetric, steady-pitch (i. e., constant-g) pull-up maneuver,.

In the first part of the nominal trajectory, it is assumed that the aircraft
is in a steady flight with a constant velocity V, along a straight path with a
flight-path angle ¥, and altitude hg, > 2hpywhere hy, is the pull-up altitude as
shown in Figure 34. This type of flight is assumed to be accomplished by
adjusting the elevator angle (i. e., stabilator in F-4 case) and the magnitude
of the engine thrust,
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Figure 34.

Nominal Dive and Pull-Up Trajectory

In the second part, it is assumed that the aircraft flies with a constant

velocity Vo and a constant pitch rate Q.
to be accomplished by adjusting the elevator angle and the magnitude of the

engine thrust.

Apgain this type of flight is assumed

In the following, the trim equations for the dive phase of the maneuver

are developed first.

Then the constant-g pull-up case is treated.

Development of the Missing Nominal Values for a Dive Maneuver -- It follows

from the above descriptions that the mathematical implications associated

with the given conditions are:

Constant Speed = v

u

Steady Flight = (\'r

Symmetric Flight = (

w

v
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(7.9)
0

= |lq(t)], (7.10)
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and

2] o(t) Ao cos 6/2
p1=10 or equivalently )\1 = 0 (7.11)
U 0 ?tz sin 6/2
*3 0
P
Straight Flight = [q| = 0 (7.12)
!\ r }
Finally,
Oy 0
Controls = (SS = 68(1:) , T = T(t) (7.13)
ar 0

It is obvious at this point that the specified set of flight conditions does not
give, directly, all the states and parameters along the trajectory. In the
case treated here the missing state information is the angular position coor-
dinate 6(t), and the missing parameters are the stabilator deflection 0g and
the thrust magnitude T.

Observation of the differential equations of motion reveals that

X + Xy - mg sin g = mu (7.14)
Y = v = 0 (7.15)
Z+ZT+mg cos f® = mw ‘ {7.16)
L=p=0 (7.17)
M+ My = ch} (7.18)
N=r =0 (7.19)

114



and

6 Mo
¢ |= 0 or equivalently 7(1 = 0 (7.20)
] A

&

Therefore the problem is to find 6(t), §4(t), and T(t) such that

X
_ X T _ . _
u o= = gsing = 0 (7.21)
Z
w =24+ T g5cos6 =0 (7.22)
m m
M
C.l = .1%4__1“_".[: =0 (723)
y y

Theoretically speaking, it is impossible to produce a steady flight during a
dive motion due to changes in the altitude and Mach number parameters.
However, for all practical purposes the contributions of u, w and q terms
are negligible.

It should be noted here that in the solutions of the above equations, an
equivalent state o is used instead of @, since the aerodynamic forces and
moments are functions of this variable. After having found the value of q,
o(t) and X(t) are computed from

8 = o+ (7.24)
and
)\0 cos 6/2
}\1 0
N, | | sine/2 (7. 25)
X
3 0
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Development of the Missing Nominal Values for a Steady-Pitch Pull-Up
Maneuver -- As discussed previously, symmetric, steady-pitch flight con-
ditions imply a quasi-steady motion in which

U u(t) p
(\}) (0 ) (ci = 0 (7. 26)
. .

w w(t)
and
u u(t) p 0
f{v)='{0),(q =(q) (7.27)
W wit) r 0
Similarly
0 6(t) N [cos 6/2
9 1= | 0 | or equivalently [ x |- 0 (7.28)
§ 0 X, sin /2
)\3 0
with controls
6, 0
Og | = ﬁs(t) ,» T =T(t) {(7.29)
Op

Observation of the differential equations of motion for this case reveals that

X+Xp-mgsing = mu + mqw (7. 30)
Y = v = Q (7. 31)
Z + ZT +mg cos 8 = mw - mqu (7. 32)
L=p=0 (7. 33)
M+ My o= LG (7. 34)
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N=rz=0

6 =49

¢ = 0

§ =0

}'{e =(cos BHu +{(sin w
Yo = 0

z'e = -(sin B u +{cos Ow

Now, substituting u = V cos @, w = V sin ¢ into (7.30) and (7, 32) yields

X

X T . . o

—I—n+?—n--—g81n6-qV31na—u
Z

Z T -

E+-IF——+gcosE)Jqucosa«—w
M

M T _ -

[ S

Y Y

(7. 35)
(7. 36)
(7.37)
(7.38)

(7.39)
(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

which shows that the set (7.42), (7.43), and (7.44) reduces to set (7.21),

(7.22), and (7.23) when q is set to zero, Here u and v are functions of t
and @ # 0, w# 0. If contributions due to u and w are neglected (this is a
common procedure in algebraic trim), the set of equations to be solved be-

comes almost the same for the two parts of the nominal trajectory.

In practice, usually, pull-up maneuver is defined by specifying the so-

called load factor. Assuming w# 0 in (7.32), one can write

-(Z+ Z

mg

T

- cos 6

- 8
EETY

The load factor is defined as

-(Z + Z_)
n = T

zZ mg
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In terms of this quantity the q terms in (7.42) and (7.43) become

qV sina = g(nZ - cos 0) tan o (7.473)

gV cos o = g(nZ - cos 6) (7.47b)

Now, for a symmetric flight, the engine thrust variables are given by

XT = T(cos & cosn) (7.48)

ZT = = T(cos § sinmn) (7.49)
and

My = XAz= ZTAx = T{Az cos € cosn + Ax cos £ sinn) (7. 50)

Observation of (7.48)-(7. 50) together with (7.21)-(7.23), or, equivalently,
(7.42)-(7.44 , indicates that the total thrust, T, enters into the equations
linearly. That is,

T X . .
u = Cyqpte—-gsing-qVsineg = 0 (7.51)
. T Z
W= Cy ot tgcosf+qgVcosa = 0 (7. 52)
and
A = e+t =0 (7. 53)
y ¥
where
¢c; = CO8§ cosn (7. 54)
Cy = - cos € sinn (7. 55)
cg = (Az cos § cos 1 + Ax cos £ sinm) (7. 56)

For this reason the number of equations to be solved can be reduced to two
by eliminating T,
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Solving (7. 51) for T yields

T = -é——{mg sin 8 + mqV sin ¢ -~ X ] (7. 57)
1
and substituting this into (7. 52) and (7. 53) one obtains

w = glcos ¢ - c, sin 0) + qV(cos @ - c, sin @)
(7.58)
+ [(c4.X + 7Z)y/m] = 0
q = [05 (mg sin 8 + mqV sin o - X) +IVI]/Iy =0 (7.59)
where
¢y = cos £ cosn
c, = tann {7. 60)
Cg = (Ay - C4AX)

- Hence the problem is reduced to finding o and §g such that (7. 58) and (7. 59)
are both zero,

To summarize, in the development of the trim equations it is assumed
that the adjustable parameters are the magnitude of the engine thrust and the
elevator deflection angle:

® Trim Equations -

w = glcos 6 - ¢, sin 6) + qV(cos & - ¢, sin a)
4 4
(¢, X + Z) (7.58a)
4
+ D ——— ]
m
q = [Mm- ¢ { X - mg sin 6 - mqV sin a)]/Iyy =0 (7.59a)
where, neglecting o

Y = ¥4+ aAT ' (7.61)
8 = ¥ +a (7.62)

119



and

0 dive
q = (7.47a)
5 - -
T e [nz cos 6] pull-up

e Trim Value of FEngine Thrust

T = (mg sin 6 + mqV sin o - X)/c1 (7.57a)
® Trimmed Accelerations

‘ Xpt X

u = - g sin 6 - gV sin o (7.63)

_ Zopt2Z

W = —————+ gcosf+qgVcosa (7.64)

1 = (M + M,.)/I (7. 65)

q ( )/ vy

In the following, a procedure is developed by which 6(t), 5S(t) and T(t}
are found at time points [tk}, k=1,2,.... The method is based on the con-
cept of "finite number iterations. "

Development of the Finite Iteration Algorithm

In short notation, (7.58) and (7.59) are expressed with the aid of (7. 61)
and (7.62) as

f, (Mach, h,aq, 5) 0 (7.66)

f, (Mach, b, o, ) 0 (7.67)
where mach number and altitude, h, are parameters and o, §g are the real
solutions of these nonlinear algebraic equations f42,43],

In the following, we shall formally develop a discrete version of the
method given in [42], for solving (7. 66) and (7. 67) since the partial deriva-
tives of f; and fs cannot be evaluated analytically as assumed in [42]. During

this development, the parametric dependence of (mach, h) will be suppressed
for the writing ease.
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Define

ro (a6, Ty5Ty) ] [Tyl 09) - T8 (e 0 )
= (7. 68)

2

where o, g _are initial estimates for @ and §g, respectively, and 71, Ty are
unknown para?neters. Clearly for the initial values 7 =179 =1

Blagr g T TR |0

l_ = _ (7. 69)
Goler, by ,T1,T5) 0
2 Sy7 172
Moreover, the values ¢ and §g for which
M
¢1(Q’, 68’ 0: 0) 0
= (7. 70)

@2(01, 68,0,0) 0

are the solutions of (7. 66) and {7.67). Hence, one can find the solution «, 85
by gradually decreasing 71 and T to zero from the starting values 71 =79 = 1,
and at the same time determining @ and §g so that ¢, =¢5 = 0 for every value
of 74 and T5.

Now let Aty and AT, be small perturbations about the initial values T
and T%. Then by expanding ¢ and ¢, about the initial point (@, 85,7T1,T9) i]’c is
le

possi to find small perturbations Ac and Afg such that
¢4 _ ¢1(a+Aaf, 5S+AGS, T+ AT, 72+A72) 0
¢ 2(a+Aa, 0  + Adg, T AT 72+AT2) 0

Jgnoring the second- and higher-order terms and making use of (7.69) one
obtains

of, {afl
65 S 3 Jés ©
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of

2
e A+ 1Iy(a , 64 ) AT, = 0 (7.72)
abs’a,ﬁ s 270 Vs, 2

" afz
¢2 = g&'-a,és Ac -+

where indicated partials are obtained by divided differences. Now if these
two equations are independent, then Ao and Adg can be obtained in terms of
given AT, and AT,.

By continuing this procedure, the parameters T, and Tg can be reduced to
zero in a finite number of steps and the values of « and &5 corresponding to
T1 =79 = 0 become the real solutions of (7. 66) and (7. 67). From the above
formal treatment, a numerical algorithm for finding the values of ¢ and g
emerges. The subroutine which implements the procedure is called
SUBROUTINE NOMK.

In the following, finite iteration algorithm is compared with the Newton-
Raphson process with respect to convergence.

Finite Iteration Algorithm versus Newton-Raphson Process

The development given above is closely tuned for solving a specific trim
problem. However, the method of solution applies equally well to solving
nonlinear vector equations of the form

f(x) = 0 | (7.73)

with a vector argument. In this case, one obtains the following vector equa-
tion with initial guess solution x(0),

af(x)\‘
9x j

Ax + £1(=x% ar(0} _ (7.74)

Then for given value of AT(O), Ax is found as

Ax = - [a—m—.f(x)] i

ax

1
1(x{9y arf0) (7.75)

Provided that the inverse exists. Starting with x = (0 and T = 1, the
variables are updated by

T o= 1. arl®
(7.76)

X X + Ax
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and a new Ax is computed from (7, 75). This process continues until T = 0,
and at that point x{1} = x is the new solution,

To improve x(l), one may repeat the computations with the new initial
vector f(x(1)) and with possibly larger value of AT(1), as illustrated in Fig-
ure 35. Note that as AT{i) = 1 this algorithm reduces to the Newton-Raphson
process (Figure 36} in which the increments are computed [59] as,

“ar] 71
Axk = -i.-é-gk f(xk) (7,77

and solution is corrected as

Xy = xk+Axk (7.78)

Note that, in the finite iteration algorithm, the solution is approached in small

steps (i, e., AT << 1) and corrected in small steps. Consequently, it is not so
sensitive to the convergence problems as the Newton-Raphson process,

TRIMMING WITH AN AUTOPILOT
Figure 37 shows a trimming process by an autopilot. During the nonlinear
simulation of aircraft, the error signal, (i.e,, the difference between actual
and desired trajectory variable) is used in a simple autopilot to generate a con-
trol input. If the gains are properly chosen, e£(t) can be maintained reason-
ably small while obtaining trim profile, The controller equation used for
dive and pull-up is in the form:

Oty = gl K Ly -y @] + Ko vity) (7.79)

+ Kq[ q, - alt )] + K4 qft,)

This equation is implemented as subroutine PI1.OT in ADAPS.
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Figure 37. Trim by Autopilot
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SECTION VI

DEVELOPMENT OF A PERFORMANCE MEASURE FOR
OPTIMAL WEAPON DELIVERY CONTROLLER DESIGN

In this section, a methodology is developed for determining weighting
mairices for optimal weapon delivery controller design. Half probability
area, HPA, is chosen as a measure of weapon delivery performance, and
the effects of flight control parameters, airframe dynamics, measurement
errors, and gust disturbances are related to this measure by using the over-
all system model.

HPA is the area of a circle centered at the mean impact point with 0.5
hit probability. CEP is its radius.(see Figure 45). For normal distribu-
tions with small cross correlations, this area can be closely approximated
in terms of the impact covariance matrix of the bomb.

For this reason, performance analysis of a weapon delivery process
can be reduced to linear covariance analysis. In the following, a model is
developed for determining the initial perturbation state of bomb, and propa-
gating the release point errors to impact. Next the expression for the HPA
performance measure is developed and its approximation in terms of quad-
ratic cost is given., The analysis is implemented as subprogram PERK
which propagates the release errors to impact.

DEVELOPMENT OF THE INITIAL STATE OF BOMB

The statistical description of the perturbation state of bomb just after
release is needed to propagate release-point errors to impact.

The state of bomb and the state of aircraft which carries the bomb are
related to each other by a nonlinear algebraic equation

x, = by % E.» Arg | (8.1)
where
X = gtate of aircraft
Eb = meb orientation matrix (transformation from
aircraft to bomb axes)
Arb = homb position vector
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The perturbation state of the bomb at t=t_ for fixed E. and Ar

is given by r b b
6xb(tr) = H 6x(tr) (8.2)
where
gh
- b
B = 3% | (8.3)
t
r
In this work it will be assumed that
Hb = 1 (8.4)1

(i.e., the bomb is at the cg of the aircraft and oriented parallel to the aircraft
axes). However, for completeness, the bomb station geometry will be
given briefly in what follows.

Nominal State of Bomb at Release

The twelve components of the state of the plant undergo a jump at the
release time (Figure 38). This is due to changing the plants, namely the
transition of dynamics from the aircraft to the weapon and adding ejection
velocities,

Xp ~ X

To compute the nominal state of the bomb at release from the nominal
state of the airplane, the bomb station geometry is considered,

It is assumed that the mass center 0p of bomb is located by a vector
Arp from the mass center 0 of the aircraft (Figure 39), It is further

assumed that yp, 6}, are fixed azimuth and elevation angles from aircraft to
bomb axes.

Then, as developed later in this section, the nominal state of the bomb
at release is obtained as follows(see Figure 38):

° Transition of the Linear Velocity State -

xp () = By (0, ¥ {EQ (8) %, (£ ) + WAr) (8.5)
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Figure 38. Discrete Nonlinear Transition of
the State at Release

Figure 39, Bomb Station Geometry
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where

Xls(tr"i‘) = col(us,vs,ve)

2 2
u = u + w
s a a
v = v
5 a
Ve T ejection velocity
Es = transformation from aircr

body to stability axes

Eb = transformation [rom aircraft body axes to
bomb body axes

e Transition of the Angular Velocity State -

x(t,.) = Ep(0,, W) x,(t ) (8.6)

° Transition of the Attitude State -

{a)

{b)

(c)

Transformation matrix from earth to bomb:

E(t.) = E6,, ¢ ) E(t) (8.7)

Corresponding attitudes (Section III)

6 (t )

r+

J)

Wt

@ (tr

Corresponding quaternions (Section III)
7\0 (tr-f-)
Rl (tr+)

)

3 (tr+)

A, (t

2 ' r+

A

® Transition of the Position State -

Xg(tpy) = x40t0) + B’ (t,) Ar (8.8)
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where Ax the distance vector from aircraft

b
Ar = | AYy cg to bomb cg in aircraft axes
Azb
E(tr) = transformation matrix from earth to aircraft body axes

The set of equations given above defines the nominal state of the bomb
at t =t . The linearization of bomb dynamics at t = tr utilizes this nominal
state.

Perturbation State of Aircraft at Release

To express the perturbation state of the aircraft at release, consider
the nominal and perturbed release points representea by [x(t ), tr] and
[?(f}),f“r] respectively in Figure 40. r

Define the release point error to be
5x(t,) = [x(T)) - =x(t)] (8.9)
with

6tr = t - t (8.10)

"’.‘I’.

Figure 40. Linearization About the Nominal Release Point [x(tr), tr]
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and

6X(tr) = X(tr) - X(tr) (8.11)
Let

X = f(x u) (8.12)
be the equation of the evolution of }? (i.e., perturbed state of the aircraft).

Then along the perturbed trajectory

x(tr) = x(tr) +f f(x, u) dt (8.13)

tI‘

Making use of (8.11) and expanding the integrand into Taylor Series about
the nominal yields

i~

t
r
[x(t) + ox(t )] +f f(x, u) dt + h.o.t. (8.14)

t
r

i

X(tr)

Using (8.10) and assuming small 0t.., it follows from (8. 14) that

(T - x(t,) ] = Bx(t,) + £ (xtty), ule) ot + (8.15)

Therefore the perturbation state of the aircraft at release in terms of
terminal perturbation state and terminal time error is given hy

6x(t,) = Ox(t,) + f(x(t.), u(t,))ot | (8.16)

From (8.16) the mean error vector and the covariance matrix of the error
can readily be obtained:

bx(tr) + f(x(tr), u(tr))ﬁtr (8.17)

ir

Ox(tr)

I

o~ 2 ’
X(t,) X(t ) +f E {ﬁtr } £ (8.18)

Here f,. denotes the derivative of the aircraft state vector evaluated at the
nominali release point (x(tr), tr).
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Equations (8.17) and (8.18) show that the statistics of 6ty (i.e., E{5tp ],

E fﬁtrz }) must be known to compute release point error statistics.

The release time error 6t,. consists of two components: (a) timing error
0ty due to delays in the release mechanism, and (b) timing error §t,. in com-
puting the releage time.

For closed-loop fire control algorithms in which release time continu-
ously depend upon the current state, the release time perturbation &6t. is a
deterministic function of the state at the nominal release time ty.. That is

t. = hix(t)] tst (8.19)

For small perturbations in state, Equation (8, 19) yields

- F
Otr = M 6X(tr) (8.20)
where
dh ‘
n = _6; {8.21)
tZlf'

Equation (8.20) is the linearized model of the release computer, If instead
of dx, its estimate is available, then

ot, = M [5x(tr) + €(tr)] (8.22)

where €(t.) is the error in the state estimation, and Gﬁ(tr.) is the optimal
estimate of &x(1).

Thus, (8.16) and {8.22) define the release-point error in terms of the
perturbations about the release point.

Perturbation State of Bomb at Release

The transition from the aircraft perturbation state to the bomb perturba-
tion state is accomplished using equation (8.2). The nonsingular matrix Hp
is obtained from the linearization of (8.5)-(8. 8) at nominal release point

[x(tp), tyJ. Substituting (8. 16) into (8.2) yields the perturbation state of the
bomb at release:

0%p(ty) = Hy {ox(t) +£x(t,), w(t)] ot} (8.23)

As indicated before, in this work H. =1 will be utilized.

b
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Perturbation State Transition During Release Transient

Modeling of the state transition during the release transient phase
(Figure 41) is outside the scope of this work. A detailed model is currently
being developed in 9,101

Since it is difficult to predict the bomb aerodynamics (i.e., aerodynamic
forces acting on bomb) in the region of wing, the state transition during this
phase is taken into account in a simplified manner by introducing an additive
release transient error §,. with known statistics. (Ejection velocity is in-
cluded in %r.)

be(tr+) = ﬁxb(tr) +Hr %r (8.24)

where H_ is the release transient input matrix. Thus, perturbation state of
bomb just after release is given by

~ - -
ox, (t ) H, [ox(t )+ £6t J+H &
Figure 42 shows its structure.

Statistical description of perturbation state of bomb at release, (mean
and covariance), are given respectively as

5Xbo

Hb[éxr +f, 5tr] +H,E (8.25)

! 2 ; 5 7
Hb[Xr+for ot.. ]Hb +H ZH

Xbo

1

(8.26)

where X, and Zr denote the covariance matrices of 8x;. and gr respectively.

In these equations 6_}2; and Xy are obtained by using the linear equations
of the aircraft together with the deterministic and stochastic inputs (i.e.,
mean wind and gust).

The estimate of 6ty and 6tr2'involves basically, determining: (2) the
contribution of the release computer and (b) the contribution of uncorrected

delays in release mechanism.

The estimate of £r and 2. involves the knowledge of ejection velocity,
its uncertainties as well as transient effects. In this work they are con-
sidered to be arbitrary input parameters.
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Figure 41; Weapon State Transition
During Release Transient
Phase

lgr

v BOMB STATE INITIALIZER
e bx(t, ) 'q "1 &) “t, ox, (t,,)

f (x,u,tr)

Gtr

n atd BOMB

I »
6% b(t)

Figure 42. Structure of Perturbation State of Bomb
Just After Release
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Perturbation State of Bomb at Impact Planes

Consider thg rlaniJnal and perturbed impact points represented by
[X(‘tf), tf] and [X( tf), tfj respectively (Figure 43).

Analogous to (8.16) the impact error can be written as

ox(ty) = bxl(t) + fIx(t), u(t)] ot (8.27)

f

where f is the derivative of the nonlinear bomb dynamics. In (8.27) 0ty is
computed using horizontal or vertical impact planes. Horizontal impact
occurs when the end point of the perturb trajectory lies in the xy plane
(6h = 0). Similarly vertical impact occurs when the end point lies in the
yh plane, (0x, = 0).

These take place when

5h(t,) ox (t,)
s A . e f
%t = Thity Oty = % (t,) (8.28)

Substituting (8.28) into (8.27) yields the horizontal and vertical impact errors
in terms of the nominal impact error:

5 E?h(tf)
! Xv(tf)

Hh (Sx(tf)
(8.29)

n

HV ox(t f)

Figure 43. Linearization About the Nominal Impact Point [x(tf), tf]
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where

f(t )e !
—i " h

f(t et
H, =|1 L e

v cyr f(tf)
e

—

where ¢, and Cy, are vectors which pick up h and X, components out of full
state vector x.

From (8.29) the mean error and the mean square error matrix can
readily be obtained

bx(t) = H EE(tf)
N , (8.31)
X, (t) = H_X(t) H

(Similar expressions apply to the vertical impact errors.)

DEVELOPMENT OF STATISTICAL PERFORMANCE MEASURE
FOR WEAPON DELIVERY PROCESSES

For a linear system driven by a Gaussian white noise, the mean and the
covariance of the state are described respectively by

x = FX + Gyu + Gyw (8.32)

y = Hx (8.33)
and

X = FX + XF 4 Gl’i}glq GZWGZ’ (8.34)

Y = uxn’ (8.35)
where

x= E{x}, u= E{u}, w=Elwl], y =E{y], (8. 36)

X= B{(x-2)x-8)’}, U= E{u-D(u-0)1, ¥ - E {y~)(y-5)"} and

W= E{ww’}
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Since the process is linear the state turns out to be Gaussian also, For this

reason, the mean and the covariance (i, e., first and second moments} com-
pletely determine the statistical behavior of the state, and the output. The
probability density function of the state vector x of sizenx1 is given fa7]

by
1 -)1""—1 -
f(x, t) = 1 om 7 Gex) X (ENx-x)
V2m)? det X(t)

(8.36a)

The loci of constant probability densities at each time instant are families

of concentric quadratic surfaces centered at x and are described by

(x-7) " X Hx-%) = ¢ (8. 36b)

The density is maximum at its center, and it equals

(R, t) = 1 (8.36¢)
V @m? det X(t)

For weapon delivery performance, the distribution of x4 (i.e., position
coordinates) are needed for computing the probability of an event described by
{x4¢D}. In general the probability density function of x4 in subspace

R3, (i.e., marginal density) is obtained by integrating the joint density fy:

+® +® +o
fx4 (x4) = f f f fx(xl, Xos Kas xé,:)d_xldxgdx3 (8.36d)

However, for the case ireated here this integral can be eliminated since the
output is linear function of state and is therefore, normal (i.e., Gaussian).
It follows that x4 has a mean and covariance given respectively by

X, = Hx (8.37a)

X HXH ’ (8.37b)

1]

4

where H is a matrix of size 3 x n which selects the position coordinates

from the full state vector x of size nx 1., Thus its density is described as
L = o -1 =

1 ) (x4 X4) Xy (X4-X4) (8.38)

f. (x4) = =
\/(2 '!T)3 det X4

4
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This shows that when components x; are jointly normal, they are also
marginally normal,

Now, consgider a region D in RS, and an event described by

{x4 eD} {8.39)
The probability of occurrence of this event is

P£x4eD} = f fX4(x4,t) dx dy dh (8. 40)
D

where the integration extends over the region D.

Region D may be a cube or a ball. For weapon delivery performance
against a specific target of dimensions a x b x ¢, hit probability Py given
by (8.40) is used with

sysg,_gsz s% (8.41)

If the shape of target is not specified, n-dimensional ball {n =1, 2, 3) centered
at the mean ig used most often for region D. The probability that the weapon is
within this ball at time t is also given by (8. 40) with integration extending
over the ball:

D: (x-82 + (y-9? + (-? s (R (8.41a)
The radius R for which P =% is referred to as the ""spherical probable
error' and is denoted by SEP or SPE.

When the region D ig circular, the radius of its boundary is referred to
as CEP or CPE, (These are confusing names attached to a radius.)

Figure 44 demonstrates the evolution of the spherical region D as a
function of time.

In air-to-air weapon delivery, SEP can be used to measure the delivery
performance. For air-to-ground delivery, a simpler measure, CEP can be
used effectively.

For horizontal targets, CEPH is obtained from

1
J’ fx,y(x,y) dx dy = 5 (8.42)

Dy
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N
i Rit,)

Figure 44. Evolution of the Region D

where the integration extends over the circular region defined by
=2 ~\2 2
Dy (x-x)" + (y-y)” = (CEPy) : (8.43)
Similarly for vertical targets, CEPV is obtained from

- 1
f fyh(x, h) dy dh = 5 (8.44)

Dy

where the integration extends over the circular region defined by

Dy: (y-5 + (h-h)? s (CEP,,)? (8.45)
A% A%
Regions DH and DV are illustrated in Figure 45,

Range error probable (REP), deflection error probable DEP, and
elevation error probable (EEP), are defined respectively as

[ f(x)dx =1, D_: [x-x | = REP (8.46)
X 2 R
Dg
1 -
f fy(y) dy =5 DD: [y-yl <= DEP (8.47)
Dy,
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CEPy HPA

Figure 45. Regions for Horizontal and Vertical CEP
Evaluvations

and

-1 . h-f
[ f(h) dh = 5, Dyt |h-h| < EEP (8.48)

Dy

Table III shows the terminology associated with the radius of the half
probability ball for one-, two- and three-dimensional balls.

Table III. Terminology for the Radius of Half Probability Ball

Dimension Symbol for the Name for the
of Ball Radius of Half Radius of Half
(n) Probability Ball Probability Ball
3 SEP Spherical Error Probable
2 CEP, (CEPH, CEPV) Circular Error Probable

(horizontal, vertical)

1 LEP, (REP, DEP, EEP) Linear Error Probable
(range, deflection, elevation)

In general, the integrals given by (8.40), (8.41a) and (8. 43) cannot be
evaluated analytically., The resuits from a computer solution for the case
where x and y are independent stochastic processes is given in [44].
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In [45, 46], CEP is expressed as
CEP = Q(p) 0, (3. 49)

and this dependence is exhibited as shown in Figure 46, where Q(p) is referred
to as the CEP parameter and is a function of the ratio

0.
0sp =_J =1 (8. 50)
i
and o, greater of [cx, Oy}, o5 = smaller of [c‘x, Gy}, and o_, Gy are the cross-

range and down-range variances, respectively.

1.2

e

1.0

Qi) -

0.8 %
B

0.6

.6 0.8 1.0

©
i
a ’._9
o

Figure 46, CEP Parameter versus Standard Deviation Ratio

Now, we shall introduce a modified performance measure, ''Half-Proba-
bility-Area (HPA)" defined as

HPA 2 (m) (CEP)? (8. 51)

and relate this to the quadratic measure described by

J = tr {HX(t)H "} (8. 52)
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where tr is the trace operator and H_is the output matrix which selects and
weighs appropriate elements (i, e., 02, o2, cﬁ) of the covariance matrix, To
be specific, we wish to find We1ght1ng parameters ¢ and 3 such that the
quadratic cost given by

= (m @) [1+ (%8 o (8. 53)
where
a.
p :'FJ_S 1 (8. 54)

is a good approximation to HPA,

For a close fit, « and 8 should be functions of p. For simplicity, we shall
assume constant o and 8 in the interval

0 = p = 1.

Approximation to Weapon Delivery Performance

The CEP parameter Q(p) is approximated by two line segments

Q(p)aki(lwip) i=1,2 (8. 55)

for the ranges 0 s p<0.2 and 0.2 £ p<1.0, as shown by dotted lines in Fig-
ure 46. The values for ki and py are:

0=p=0.2 0.2 <p=1,0
kl = 0.6744 k2 = 0. 385
H1=0.24 }~L2=1

Figure 47 shows the IIPA parameter Q(p) defined by

Qe 2 Qe ? (8. 56

Also shown is an almost-bound to EQ(p) defined by
Qo) = al1+ 8 p2] (8.57)
where o = —é—, and 3 = 2. (8.58)

With these values, the quadratic cost becomes
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Figure 47, HPA Parameter versus Standard
Deviation Ratio
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;=X 2p2]oiz (8. 59)

or

J=q.o.+q.cﬁ,ci>% (8. 60)

where

= =
q = 5 a.ndqj m (8.61)

Finally from this quadratic cost (i.e., half-probability area} approxi-
mate CEP can be computed as

CEP = % (8. 62)

Development of Design Performance Index

It was shown in the previous section that for normal distributions with
small cross-correlations, the half-probability area HPA is almost bounded
by the quadratic cost:

_ 2 2
J = q; o; + qj Oj (8.63)
where

g, * downrange standard deviation
O'y = crossrange standard deviation
o = greater of {GX, oy}
. = smaller of {o ,
j oy g3
q; = 7 /2
9. = 7

Equation (8. 63) can be written in terms of the covariance matrix as
HPA = tr {HX(A)H'} = tr X(1) QO} (8. 64)

where
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0 0 0
Q, = H'H = (8.65)
a, 0
0 0
0
9y
0 0 0

which selects and weighs the downrange and cross-range variances out of the
full weapon state covariance matrix.

DEVELOPMENT OF THE RELEASE ERROR
PROPAGATION PROCESS

In this subsection the bomb covariance, CEP measures and the equivalent
quadratic weighting matrices are developed in terms of the release state
covariance, using the results of the initial-state development and the wind
model. This analysis is implemented in subprogram PERK,

Figure 48 shows the vector state diagram of a linearized bomb model
with a wind driver.

Yo -
MEAN WIND v W
GENERATOR 1
G
b2
Jyxb(tr_,)
~ +
b + x, (L} Yy
= Cu Hy —=—— Gy3 L : " Hy [~
+ 5
Uy ™1 Gy '
Figure 48. Bomb Dynamics with a Wind Driver
The state equations are given by
. ) .
X FWXW Gwnw (8.66)
Yw = HWXW (8.67)
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and

Xy = Fpxp + Gpoug + Gy oYy * Gb3yw (8. 68)
Yp = beb (8. 69)
letting x = col (xblxw) and substituting (8.867) into (8.68) yields
x = Fx+Gup+ Gyy  + Ggn (8.70)
y, = Hx (8.71)
where
e P | (Ggd EY (?_ta;.) S ) N )
0| F | 0/ T2 {70 | Y3|G
w
and H = (H_ | 0) (8.72)

From (8, 70), (8.71) and (8. 72) the mean and covariance responses are
determined using (8, 32) through (8. 35).

For convenience, the total state covariance matrix is separated into two
components, (a) homogeneous and (b) forced. This enables one to evaluate an
impact covariance matrix for arbitrary initial covariance matrices. Obviously,
if only one initial covariance matrix is considered it is better to 1ntegrate
(8. 34) with nonzero initial conditions to obtain total covariance.

It should be noted that forced covariance component is obtained by inte-
grating the differential equation (8. 34) rather than evaluating the integral

t

X At) =j B(t, 5) W(s) ¢/ (1, 5) ds (8.73)

t
r

Where ¢(t, 8) is the state transition matrix.
The total covariance at any time instant is given by

X(t) = ¢t )X ¢’ (6t )+ Xut), t=2t (8. 74)
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As was shown previously, the quadratic approximation to HPA(t) is given

by
HPA(t) = J(t) = tr {X(t)QO} : (8. 75)
Substituting (8. 74) into (8. 75} yields
Jt) = tr (¢ X, o'+ X (1) QO}
or

I = tr {(X_,) (6" Q8+ (X(1) (Q)] (8.76)
The matrix defined by
Q° Qe (8. 77)

where ¢ = ¢(t, t,.) will be referred to as the state covariance weighting matrix
or the propagation matrix.

The approximate radius (‘J-iﬁ"(t) is computed from

CEP(t) =\/¥, tst (8. 78)

As developed previously, the non-zero elements of Q,; (ay, qy) or
(qy, gp) are determined from (@:2: 0,2) or (oyz, O-hZ) by a simple test.
Nimely, in each pair, greater variafice is asbociated with weighting value
7/ 2 and smaller with .

At impact it follows from (8. 74) that

_ ‘
X(tp) = oltnt )X, ¢ (tpt)+ Xty (8.79)
Substituting this into (8, 31} yields the impact covariance
it _ / t
Xty = H [¢X o' +X I H (8. 80)

where ¢ and Xf are matrices evaluated at impact time tf.

HPA at impact is then given by
HPA(t) = J(t) = tr {X(t) Q_} (8.81)

Substituting (8. 80) into (8.81) yields
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It = tr (H (X, ¢'+X)H Q] (8. 82)

or

)= tr K, [6'Q 01+%,Q,1 (8. 83)

where N
Q, = Hh"Q0 H, (8. 84)

is called the impact propagation matrix '

DEVELOPMENT OF THE VARIANCE CONTRIBUTION MATRIX

The variance contribution matrix, V, displays the effects of the pertur-
bation state vector components onto the position error variances at impact.
Its brief development is presented in what follows:

The diagonal elements of X(tg), can be expressed as:

x(t,) = Y.x + Y. x ...t Y x + x.(t,.) (8. 85)
f 1 1r+ 2 2r+ n'n_ ., o f
where
X sanes X are the column vectors of the X matrix, that is
1 n r+
r+ ™+
X =

- [xlﬁixz_ﬁ\ |an+] (8. 86)

and x{tg), xf(tf) are vedtors made up from the diagonal elements of X(t:) and
X¢(tf) matrices, respectively. The elements of the weighting matrices i,l/j and
covariance vectors Xipt for j=1,... nare given by

$i%11 P13%12 e e P15%1m Ox; 0% 5
Bi®21 P22z rreecr Pg5%an 0x40%,
W, = - g , x. =E . (8. 87)
j Jps .
' ' bx.bx.
. i
¢nj¢n1 ¢nj¢n2 ettt ¢nj¢nn éxnﬁxj
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In the decomposition represented by (8. 85), each vector inthe sum, e.g.,

XK.
11DJ J

r+

is identified as the contribution of the perturbation state component dx; to the

impact covariance vector. Note that in this identification the cross-variance
terms are also included as given by (8. 87).

If position error covariances (oxez, O'yez, chz) about the nominal impact
point are of interest only, the three rows of (8. 85) need be evaluated.

The matrix which is made up of the vectors d/j Xjn+ is called the variance
contribution matrix:

[1 11”r ‘1[/3 It Y n.

Each row sum of this mafrix gives a component of the error variance
about the nominal impact point. Dividing the elements in each row by their
row sum gives a normalized variance contribution matrix, in which each ele-

ment shows the relative contributions of state components onto position error
variances about the impact.

The normalized variance contribution matrix is used to identify those state

components which are important contributors to impact error variances.
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SECTION IX

DEVELOPMENT OF A METHOD FOR
NONSTATIONARY OPTIMAL WEAPON DELIVERY CONTROLLER DESIGN

In this section, a method is presented for designing an optimal non-
ftationajry perturbation controller for the precision weapon delivery processes
47, 11:,

The optimization problem considered here involves direct minimization
of the CEP. Strictly speaking, CEP is the radius of a 0. 5 probability circle
centered at the mean impact point of a bomb at target, For normal disiributions
with small cross correlations, the area of this circle can be closely
approximated in terms of the impact covariance matrix,

As shown in Section VIII, about a nominal trajectory, the impact covariance
matrix can be expressed in terms of the state covariance matrix at bomb
release, By this process, controller optimization for the precision bomb
delivery is reduced to optimization with a terminal time performance index,
in which the state deviations at the nominal release time are penalized by a
weighting matrix which depends upon the nominal bomb trajectory
sensitivities,

In the following, the statement and solution of the optimization problem
corregponding to continuous time-varying processes are given first for

completeness, Then the discretized model and its solution are developed.
This solution is implemented as a program called DISCOP.

STATEMENT OF THE PROBLEM
Given the linear system
x(t) = F(Dx(t) + Gy(BDult) + Go{thv(t) + Ggltm(t)
r(t) = H (t)x(t) + D (Du(t) + Dy(t)v,[t) (9.1)

m(t) = Hy(Dx(t) + 1 y(t)

where v, {t} is a deterministic (known) time function, the inputs M 1(t) and
M 9(t) are independent white noise processes

E {n ()} = W (0)8(t-t )

E {ny(0n () = Wylt)o(t-t,) (9. 2)

E {ﬂl(t)ﬁ i)' = Wat)s(t-t )
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and the initial state mean and covariance are khown
E {x(0)} = Xx(o) (9. 3)
E {(x(0) - X(0)) {x(0) -~ x(0))'} = X(o0)

Find the linear control functional of past and present measured outputs m(t)

u(t) = L{t,mlo, t], (9. 4)
that minimizes the quadratic J
T
7 = tr [QITIS(T) + V(T)R(T) + | (QUIS(t) + V(DR(E)dE] 9. 5)
0

where R(t) is the mean response matrix defined by

R(t) = T(t)r(t)’ (9. 6)
S(t) is the response covariance matrix defined by

S(t) = E {(x(t) - T() (x(t) - T()} (9.7)

and Q(t), V(i) are the weighting matrices, assumgd to be symmetric and non-

negative definite for all te [0, T], the matrices DIQ(t)D; and D'1V(t)D1 are
assumed positive definite for allte [0, T ]

QTID(T) = V(TID(T) = 0 (9. 8)

SOLUTION OF THE PROBLEM

In this subsection, solution to the optimization problem posed above is
given in terms of differential equation formulation. It is shown [46] that the
minimization of J can be separated into a deterministic problem and a
stochastic problem, and that the solutions of these two problems can be
combined to form the optimum controller,

Minimization of the Continuous Model

The J minimization problem can be divided into the control of the mean
response r{t) and the control of the response deviation from the mean,
r{t) - T(t),
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By defining X, m, T to be mean responses, and

Xk = X-X
m* = m - m
u:{: = u_'ﬁ (919)
™ = r-T

to be deviations from the mean, there results the two sets of system equations

(1) = FORD) +G (DT + G4(t)7, ()
T(t) = Hl(t)'i(t) + Dl(t)ﬁ(t) + Dz(t)“ﬁw(t) (9. 10}
Tty = H (DED)

and
2E(t) = F(t)k(t) + Gy (Bhus(t) + Gy {t)n (t)
() = I (Dk() + D, (Dhwk(t) (9.11)
m*(t) = Hy(t)xx(t) + n,(t)

The cost J bhecomes

T
3= [HTY VITXT) + | o(t) V(HT(t)dt]
0

T (9.12)

+ ELes(TY QUT)rs(T) + [ r#(1) Q(t)r(t)dt]
O

Since w¥ in (9, 11) does not in any way affect T in (9. 10), and u in (9. 10) does
not in any way affect r* in (9, 11), the controls U and u* may be designed
separately to minimize their respective contributions to J.

Development of the Optimal Mean Control Law -- The mean control u will be
determined first L47J. Given {9, 10), the functional J where

T
3= BT VCTIR(T + [ HE VDT (9, 13)
0

is to be minimized,
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Examination of the responses whose terminal behavior is to be controlled
reveals that the equations for those responses do not contain the final control
u(T). It can therefore be assumed that the contribution of T(T) to TT) V(T)(T)
is zero, That is

V(T)Dl(T) = 0 (9. 14)
The ahove problem is then a Bolza variational problem. By writing

T
J = GX(T)+ [ Gy(x(1), u(t), t) dt (9. 15)
O

The Hamiltonian for the problem is
H = G, +A'X (9. 16)
and the control u{t) is defined by the equations

3H _
9 ult)

SRR (9. 17)
3 x(t)

3
Gy

8x(T)

= AT

With
H = [Hl(t)E(t) + Dl(t)‘{i(t) + Dz(t)'wa(t)J’ V(t)[Hl(t)E(t) + Dl(t)ﬁ(t)

_ .- _ _ (9. 18)
+ Dot ()] + A1) [F(Ex(t) + G (L) + G4(t)v ()]

then
.%{%) = - (0 = T M) + 2H (0" VIOLE () + D ((t)
+ Dy(t)v, (t)]
3G

Szery = MT) = 2H(TY V(D)L H(T) X(T) + Dy(T)7 ()]
oH

= =0 = G (0" Mt) + 2D (1) V(IH, (Ux(t) + D (EFa(t) + Dy(t)v,,(t)]
Jult
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By making the additional substitutions [49]
At) = 2[PV(t)it) + g(t)]

_ _ (9. 19)

u(t) = Kv(t)x (t) + fV(t),

and assuming that the inverse D1(t) V(‘c)Dl(t)T1 exists for t € [0, T1, there
results the familiar Riccati end conditions:

P.AT) = HAT) V(T)H,(T)
v v e (9. 20)
gT) = H(T) V(TID,(TIV(T),
the backwards differential equations
- PV(t) = F(t) PV(t) + PV(t)F(t) + Hl(t)' V(t)H (1)
- TP ANG, (D) + H () V(D ()] D, (1) V(t)Dl(t)]'1
) [Gl(i:)' PAt) + D, (£)" V(H (1) ] (9.21)
- s(t) = F(t) glt) + [PV(t)Gz(t) + Hl(t)’ V(t)Dz(t)]'x?w(t)
- [P(BG (8) + H (1) V(D (HIID, () V(t)Dl(t)]_l
. G, (W gt) + D) VD, (v, (1],
and the controller equations
_ 7 -1 7 ?
K {t) = - LD (1) V(t)Dl(t)] G, (1) Pt + D, (1) V(t)Hl(t)] 6. 23)

£,(t) = - (D6 V(OD ()]G, (8 g(t) + Dy(t) V(DD (07, §0)]

These three sets of equations completely define the mean control u(t),

Development of the Optimal Stochastic Control Law ~- Given the system
equations, (9,11), it remains to find the controller

wi(t) = L{t, m*Llo, t])

minimizing the quadratic J%*

T
J5 = Elex(T) QIT)r=(T) + | re(t)’ QUt)r(t)dt] (9.23)
0]
Let x*(t) be the sum
we(t) = x (1) + x(t) (9. 24)
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where xl(t) is defined by the orthogonality condition

ELx) (0" %(t) |m#(o, 1), ut(o,t)] = 0 (9. 25)
This is the expected value of the product x1(t)’ X(t), given present and past
output measurements m*(t) and past inputs w(t), Let KQ(t) be the set of

gains defined by (9. 20), (9,21} and (9. 22) when V(t} is replaced by Q(t). It
is asserted that the controller L{t, m#*(o, t}) minimizing the quadratic J* is

wk(t) = KQ(t)xl(t)
That is, the optimum control input u*(t) is the product of the state estimate
x1(t) defined by the orthogonality relation (9, 25), and the gains KQ(t} defined
by the Riccati equations, (9.20), (9. 21) and (9. 22).

This assertion is known at the "separability property'. It permits
separating the J* minimization into two problems:

. The determination of the state estimate xl(t)
. The determination of the controller gains KQ(t) that would be

employed if the entire state x*(t) could be measured, and the
system inputs ﬁl(t) were known

State Estimation

The state estimate x1(t) must be generated fo complete the controller
design, The problem of generating state estimates x1(t) satisfying the
orthogonality (9, 25) has been completely resolved [50]. It is well known
that the orthogonality condition (9, 25) implies that, with x*(t) Gaussian,
x1(t) is the conditional expectation

x;(t) = E {x4(t) Jm*[o, t], wrlo, t1} (9. 26)

It can be shown that xl(t) could be generated by a linear transformation of
m*(t) and wk(t)

x () = L# {t, m*[o, t], ulo, t]} | (9.27)

In [49], the appropriate linear transformation I* is developed for the case
where

rank[ W,(t)] = dim[m*(t)]
Ws(t) =0
That is, every nonzero linear transformation of m*(t) contains white noise,

and the inputs Mi(t)N2(t) in(9.11) areuncorrelated. In [52], the latter restriction
(W3 = 0) is removed,
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Assuming the system is of the form (9, 11), xl(t) could be generated from
the linear system

x,(t) = [F(t) - LOH,(t)]x, (t) + L(t)ma(t) (9. 28)
where L{t) is the solution of the forward Riccati equation
Py(t) = FIOP(1) + PAOF(D)' + Gy(IW (DG (1)’
-UP, (H (D) + G (W ,(D)] (9. 29)
(W, (5 IEW ()G (1) + Hy()P, (1))

Then the estimator gains are given by

_ ’ -1
L(t) = [P (OH () + G (W (1)] W,y (1)
where the initial conditions are

P (o) = covix#(o)x#(o)’] (9. 30)

Combining the Results

The optimum control is the sum of the deterministic and stochastic
solutions

u(t)

u(t) + wk(t)
= Kv(t)i(t) + f(t) + KQ(t)xl(t) (9. 31)
= KQ(t)[xl(t) + X))+ [Kv(t) - KQ(t)]E(t) + £,(t)
= KQ(t)E‘c(t) + (t)
where f(t) is the deterministic input given by
ft) = LK {t) - KQ(t)]SE(t) + £,(1) (9. 32)
and %(t) is the conditional state expectation
%(t) = x, () + x(t) = ELx(t) [m(o, 1), ulo, 1), v (o, t)] (9. 33)

where x and x, are generated by (9. 10) and (9, 28), respectively, Figure 49
shows the decOmposition of the state vector.

DISCRETIZATION OF THE CONTINUQOUS PROCESS AND OPTIMIZATION
OF THE DISCRETIZED SYSTEM

For computational purposes the differential equations given above are
approximated by difference equations, Also, the performance integral is
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xI‘

Figure 49. Decomposition of the State Vector

approximated by a sum. This is called the discretization of the continuous
optimization problem. The discretized model is derived with two constraints
in mind. Both of the constraints are based on the desire to achieve
reasonable computation time for the optimization program and at the same
time maintain a sufficiently accurate approximation of the differential '
equations, and the performance integral,

The simplest discretization is based on the rectangular rule, This
approximation would be sufficiently accurate if At is chosen sufficiently
small. But the computation time is inversely proportional to At; to reduce
computation time it is desirable to choose At to be as large as possible,

In the following discretization based on the rectangular rule is presented
first, Then a'more accurate discretization with matrix exponentials is
given. The latier discretization can be used for the high-frequency dynamics
of the overall system, and former for the low-frequency dynamics of the
system.

Discretization by Rectangular Rule

Choose a large, finite integer N and let

T

At = 57 e (9. 34)
Define
A(n) =1+ At F(nAt) Hl(n) = Hl(nAt) Wl(n) = Wl(nAt)
B,(n) = 4t G (nbt) D, (n) = D, (nAt) W, (n) = W, (nat)
B,(n) = At G,(nAt) D,(n) = D, (nAt) Wq(n) = Wo(nat) (9. 35)
B3(n) = At G3(nA t) Hz(n) = HZ(nAt) Q(n) = Q(nAt)
vy, (m)=v, (ndt) V{n) = V(nAt),
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The above quadratic problem may then be restated: given the linear system

x(n+1) = A(n)x(n) + Bl(n)u(n) + B2(n);r_w (n) + Bs(n)'ﬂl(n)
r(n) = H (n)x(n) + D (n)u(n) + Dy(n)v, (n) (9. 36)
m(n) = Hy(n)x(n) + ny(n)

where

E {n, ()1, ()

_1 .
b= (At) Wl(l)éij

E {ngliny (D} = (8077 Wy(i) .
f

-1 _ (9. 37)
E {1, 0Ny} = (2677 Wa(i)o .

éiizl’ 6ijz01fi%j
E {x(o)} = x{0)

- — , {9. 38)
E {(x(0) - (o)} (x(0) - x (o))} = X(o)

find the linear functional (i. e., piecewise constant controller)
N

u{n) =.% L{n,i) m(i) (9. 39)

i=o

that minimizes the quadratic J

(N-1)
J = tr(QNS(N) + VINR(N) + 2 4HQn)S(n) + V()R(mPL. (9. 40)

where

R(n) = T (n)T (n)’

- _ o, (9. 41)
S(n) = E{ (r(n) - r(a)) {r (n} - r(n)) }

It is assumed that Q(n) and V(n) are symmetric and nonnegative definite for
n=0,...N, and D;(n)’'Q(n)D(n) and D1(n)’ V(n)D{(n) are positive definite for
n< N s.nd

QN)D, (W) = V(N)D,{N) = 0 (9. 42)

Discretization by a Matrix Exponential

For a given value of At a more accurate approximation to equation (9. 1)
is given by the sample-data form
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xl(k+1)at] = AFED Lgenry + w7 ean [1 - o AtT (ki) |
(9. 43)
(G (katy(kat) + Gkt ON(KA 1) + Gk (kat) | }

This form is approximate in that the various coefficients are not constant over
the At intervals, and the control u(t) is continuous and not piecewise constant,
The major disadvantage of equation (9. 43) is that almost all of the elements

of the coefficient matrices are nonzero, whereas in equation (9. 35) the
majority of the elements of the coefficient matrices are zero. Computation
time increases at least linearly with the number of nonzero elements [11],

SOLUTION FOR THE DISCRETIZED MODEL WITH PIECEWISE CONSTANT
CONTROLLER '

The solution to the above discretized model problem follows that pre-
sented for the continuous-model problem, The optimum control is of the
form

- %(n) + - 3

u{n) KQ(n)x(n) [K V(n) KQ(n)]x (n) + fv(n) (9. 44)
where x(n) is the a priori mean state

x(n) = E {x(n)} (9, 45)
and x(n) is the conditional estimate

X(n) = E {x(n)| m(o0), ... m(n), uo),...u(n-1), v (o),...V (n-1)}

The gains KV(n) and input fv(n) are the solutionsg of the backwards difference
equations

P (N) = H,(N) V(N)H, (N) (9. 46)
g(N) = H, (N)" V(N)D,(N)v,(N) (9. 47)
Ky(n) = - [B,(n) P(n+1)By(n)+ AtD (n) V(n)Dl(n)]_l -
. [B,(n) Py(nt1)A(n) + AD (n) V(n)H, (n)] ]
£,(n) = - [B(n)' P (n+1)B, (n) + AD (n) V(n)Dl(n)]'1 0. 49

{B(n)' [g(n+1) + P {n+1)B,(n)v, (n)]+ 4D, (n)" V(n)Dy(n)v, (n)f

PV(n) = [A(n) + Bl(n)KV(n)]' Pv(n+1)[A(n) + Bl(n)KV(n)] ©. 50)
+ Bt[H, (n) + D (K (m)])’ V), (n) + D (K (m)] '
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g(n) = [A(n) + B (n)Kv(n)]'[g(nﬂ) + PV(n+1)(B1(n)f(n) + Bz(n)Vw(n))]

1
+ At[H (n) + Dl(n)KV(n)]’V(n)[Dz(nﬁw(n) + D, ()] (9.51)
The gain (n) is the solution to the above where V(n) is replaced by Q(n),

A major simplification which has been found satisfactory in [46] and [11]is
setting

V(n) = Q(n), Osns=sN (9.51a)
This is assumed in the implementation of the above equations.
The solution to the state estimation problem is
x(n) = x, (n) + X(n) (9. 52)
xl(n+1) = (A(n) - AtL(n)Hz(n)) xl(n) + AtL{n)mi(n) (9.53)

where I.{n) is obtained from the solution of the forward Riccati equation

P (o) = X(o)
Ty , Wq(n)
AtL(n) = A(n)Pn(n)Hz(n) + By (n) X
, W2(n) -1 (9. 54)
[Hz(n)P,q(n)Hz(n) + :
; Wl(n) ;
Pn(n+1) = A(n)Pn(n)A(n) + BS(n) A BS(n) {9.55)
W, (n)

2 | L(n) at.

- AtL(n) Hz(n)Pﬂ(n)Hz(n)' +

The matrix P (n) in these equations is the covariance matrix of the estimation
error x(n) given by

~

X(n) = x(n) - x(n) (9.56)
P (1) = cov{X (nX(n)'} ©9.57)
= | {X(n)x(n)"}
The estimation error ®n) has zero mean
E{'E’:(n)} =0 (9.58)
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A state covariance transition matrix can be derived from this property.

With
x(n+1) = A(n)x(n) + Bl(n)K(n)i\;(n) + Bz(n)Fw(n) + B3(n)'ﬂ1(n)
(9.59)
X (n+1) = A(n)X(n) + Bl(n)K(n)')E {n) + Bz(n)‘v‘w(n)
then

x{n+1) - x(n+1) = A(n)(x(n) - X (n)) + Bl(n)K(n)(S\i(n) - X(n)) + Bg(n)nl(n)

=(A(n) + B, (mK(n)(X (n) - T(n)) + A(n)x(n)
(9. 60)
+ Bg(n)n, (n)
Then

A
cov {x(n+1)x(n+1)’} = B {{x(n+1) - X (n+1))(x(n+1) - X (n+1))'} (9.61)

= (A(n) + B (KM)E {((n) - K(n))(X(n) - X(n)'} (An) + B (MK (n)’

+ (A(n) + B (WKM)E{(X(n) - % 0))X(n)'} An)’
+ (A(n) + B (WK(n))E {(&(n) - Z(n))n,(n)} By(n)’
+ AME{X (n)(Xn) - X))’} (Aln) + B (0K (n))

+ A(n)E {dn)x (n) '} A’

+ AME{X (nn, ()} B, (n)’

+ Bg(mE {n ()(&(n) - X))} (A() + B, (R)KD))’
+ BS(H)E{n (n)X(n) }A(n)

+ Bg(n)E {1, ()1 (n)’} Bg(n)

Since x{n), %(n), and hence §(n), are functions of past inputs, they are
independent of the current (white) input nl(n), and

E{& ) - T@)n, )} = E{X @7 @'} =0 (9. 62)
From the above
E {(X(n) - T(m))x(n)'} = B{x()XMn) } - T E{Zn)} (9.63)
=0-0=0
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Hence
cov {x(nt1)x(nt1)} = (A(n) + B, ()K(m)E {(X(n) - ®(n))(&(n) - X ()}
(An) + Bl(n)K(n))’ + A)E{Xm)Xm) } A + B3(n)E{‘r‘11(n) (8.64)
rh(n)' } By(n)
With% -X =x - ¥ - % (see Figure 49,)
E{Gm) - T@)Em) - T} = E{xn) - @) xm) - m)'}
- B {x(n) - XMt - B{X(n)(x(n) - X (0))'} (9. 65)
+ E{;f(n)'i(n)'}
= cov {x(nmx(n)’} - 2E{X(nx(m)} + E{ X(n)X(n)'}
then
cov {x(n+1)x(n+1)} = [(A(n) + B, (nK(n))]

- Leovix(nx(n)} - P_(n)¥A(n) + B, (nK(n))’ (9. 66)
T Wiln)

+ A(n)Pn(n)A(n)' + By(n) » BS(n)’.

Thus the optimal state covariance matrix
X(n) = B{x(n) - X(n) Ix(n) - ¥ ()1}
satisfies the difference equation

X(nt+1) = [An) + ByK(n)] X(n) - P (m]I[A() + B K]’

1

+ AP (WAD) + ()™ By (M)W (n)B, (n) (9.67)
with X{(o) = XO.

The response covariance matrix, S{n) = E {[r(n) - T(n)l{r(n) - F(n)]'},
may be obtained as follows:

r(n) - r(n) = Hl(n)[x(n) - x(n)] + Dl(n)K(n)[fc (n) - X(n)]

= [H,(n) + Dl(n)K(n)]Bi(n) - X (n)]- D (MK(n)Xx(n) - x(n)]
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S(n) = [H,(n) + D, (WK(n)X(n)[H, (n) + D, (MK(n)1’
+ Dl(n)K(n)Pn(n)K (n)'Dl (n)' - [Hl(n) + Dl(n)K(n)]
+ E{[x(n) - Zn)1l(n) - ()]} K'(n)D; (n)’- D, (0)K(n)
* E{lx(n) - %(m)1lx(n) - X@ 71} [H, (@) + D, (K (n)]’
= (11, (n) + D, (K@)IXM)LH, (n) + D (n)K(n)]’
+ Dy (mK@)P, (n)K (nfD(n) - [H, (n) + D, (n)K(n)]
. P,-ﬂ(n)K (n)’D1 (n)’- Dl(n)K(n)Pn(n)[Hl(n) + Dl'(n)K(n)]’
Thus the response covariance matrix is given by
S(n) = [H,(n) + D, M)Kn) [X(@) - P_(n)][H, (n) + Dl(n)K(n)]'
, i (9. 68)
+ Hl(n)Pn(n)H1 {n)
For the special case in which it is assumed that the complete state can
be measured exactly, m(n) = x(n) and the above results are simplified since
%(n) = x(n) and Pxn) =0, The mean optimal response vector is obtained by

substituting (9. 44) into (9.36) and averaging the resulting equation. It is
given by

T(n) = Hl(n)i(n) + Dl(n)[K(n)E(n) + f{n)] + Dz(n)Vw(n) (9.69)
where
X (n+1) = A(n)x (n) + B1[K(n)x(n) + f(n)] + Bz(n)?w(n) (9.70)

This finishes the discussion on the development of the optimal control
and estimation algorithms. These algorithms are implemented as program
DISCOP. The discretized dynamics of the overall system is shown in Figure
00.

The gains and performance values obtained from the equations are

functions of sampletime At, As At goes to zero, the values obtained by
DISCOP approach to the continuous model solutions.
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SECTION X

DEVELOPMENT OF A METHOD FOR STATIONARY
OPTIMAL CONTROLILER DESIGN

Asg developed in Section IX, the computation of optimal controllers involves
integration of Riccati differential equations backward for the controller gains
and forward for the estimator gains together with state covariance differential
equations.

If the dynamics are stationér‘y, and constant gains are used, very substan-
tial savings can be achieved by directly computing steady-state solutions of the
covariance and Riccati equations {57]

In the following, the development of stationary design equations and the
description of algorithms for solving these equations are briefly presented.

DESCRIPTION OF ALGORITHM LYAK

The LYAK is an iterative algorithm for solving either of the following
matrix equations for the unknown matrix X given the matrices A and Q

XA+ A'X+Q

0 (10. 1)
XA+ AX + Q

0 (10.2)

In what follows the method for solution is briefly stated. Next the con-
vergence criteria is explained.

Method of Solution

The method used to solve the equations is iterative and based on conformal
mapping and matrix functions [53,57]. Given the matrices A and Q where A is
a stability matrix (real parts of all eigenvalues of A are negative), let Y =
(A-a1)-1 where « is a positive constant ¢ = 1, define

¢, = 1+ 20/ (10. 3)

XO = 2oy’ QY (10.4)
then the iterative algorithm is given by the following set of equations:

AX, = X ¢, (10. 5)

Xi+1 = Xi+/_\§;i (10. 6)

i1 T B9 (10.7)
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Choice of the Parameter o

It is shown in [53] that there is an optimal value for the parameter «
(i.e., optimal in the sense that the algorithm will converge in a minimum
number of iterations), call it @*. Calculation of o* requires solving for the
eigenvalues of A. This cannot be considered because it is too expensive com-
putationally. It is also shown in [53], however, that a good suboptimal choice
of w, call it @, is the arithmetic-mean of the eigenvalues of A, Since the sum
of the eigenvalues of A is just the trace of A

a = |trfA}}/N (10. 8)

where tr is the trace operator and N is the order of the matrix A.

Convergence Criteria

The convergence criteria for this algorithm is a ratio test which is per-
formed at the end of each iteration. The absolute value of the ratio AXi/Xi+ 1,
for each element in the upper triangle of the two matrices AXj and Xj+1, is
tested to see if it is less than or equal to some small constant €. (The value
of ¢ currently being used is 0. 01.) If this test is passed X;; | is accepted as
the converged solution. If the test is not passed the iterative process will
continue.

DESCRIPTION OF ALGORITHM DIAK

The DIAK is a doubly iterative algorithm for solving the algebraic Riccati
eguation

PA+ AP+ PEP+Q = 0 (10. 9)

where

~

A = (A-EP) (10.10)
In the following, first, equivalence relations are developed between

(10. 9} and the optimization problem posed. Then the method of solution is
given,

Stationary Optimization Problem for Controller Gains

Given the time-invariant matrices F, Gq, G2, H, D, Q defining the con-
trolled system

x = Fx+ Gu+ Gymy (10.11)

r = Hx+ Du (10, 12)
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where r is the vector of controlled responses, u is the control-input vector,
and nis white noise

Efny(t) ny{r)'} = W 8(t-1) (10. 13)
Let the cost of control be
J = E{r‘Qr} (10.14)
where Q = 0, D'QD >0, (F, Gl) controllable and (F, H) observable [47].

The problem is to find the gain matrix K such that the controller u = Kx
will minimize the cost J.

The covariance equation for this problem is

0 = (F+G KX+ X(F+G,K)+ G,W G’ (10.15)
where
X = Efxx’} is the covariance matrix
R = Efrr‘} = (I+tDK) X(H+DK) ’ is the response covariance matrix
(10. 16)
The cost is
J = tr {(H+DK)’ Q(H+DK)X} (10.17)

where tr is the trace operator. Appending the covariance equation to J via
the Lagrange multipliers P yields the Hamiltonian

111} = tr {H+DK)’ Q(H+DK)X }+ tr {P[(F+G1K)X+X(F+G1K)'

(10.18)

s
+ G2W1G2 11
Taking derivatives

3 - - / ’
"aJP*L = 0 = (F+G1K)X + X(F+G1K) + G,W, G, (10, 19)
ialfl'z 0 = (F+G1K)’P +\P(F+G1K) + (H+DK) ' Q(H+DK) {10. 20)
%%l = 0 = {D'Q(H+DK) + Gl’P}X (10.21)
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The optimal controller K, for this problem, is the solution to the pair of
equations (10, 20) and (10.21), Solving (10, 21) for K results in:

K = -(D‘QD)" ! [G, P + D’QH] (10. 22)
Substituting this into equation (10, 20) yields the Riccati equation in P
0= (F-G,[D‘QD1"'D ‘Qm) ‘P + P(F-G, [D‘QDT ! D Q)
-P {G,[D'QD] ™" G,'}P+H'QH-H'QD [D’QD] ' D’ QH (10.23)

Equating matrices in equations (10.23) and (10.9) gives the following rela-
tionships:

A = (F—Gl [D’QD]'ln’QH) (10.24)
E = (G [D'QD]‘lel’) (10. 25)
Q = H'QH - H'QD [D'QD]™! D’'QH (10.26)

Method of Soluticon

Equation (10, 9) is rewritten as

PA+A'P+Q@ = 0 (10.27)
where

A = (A-EP) (10.28)

Q = (Q+PEP) (10. 29)

Starting with P, such that A = (A-EP,) is a stability matrix, equation
(10. 27) is solved by the iterative algorithm LYAK. The solution to (10.27)
is substituted into (10. 28) and (10. 29) and then equation (10.27) is solved again
for the updated values of A and Q (54} This process is continued until two
successive solutions to equation (10. 27) are the same to a certain number

significant figures (i.e., the same convergence test as is used in the algorithm
LYAK.
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STATIONARY OPTIMIZATION PROBLEM FOR THE
ESTIMATOR GAINS

Consider the following time-invariant plant, measurement and estimator
equations:

x = Fx+ Glu+(}_2n1 (10, 30)
m = Hzx+ up {10.31)
2 = (F-LH,)%+ G,u+ Lm (10. 32)
2 1
where m; and no are stationary white noises with
E{ny(t) ny(r) '} = W,d(t-r) (10. 34)
E {n,(t) nz('r)'} = Wgo(t-1) = 0 (10. 35)

and L is the estimator gain maftrix, (F, G2) controllable and (F,Hz) observable.
Define the estimation error to be

X = x-Xx (10, 36)

¥ = x-% (10.37)

Substituting (10. 14) and {10. 16) into (10, 37} yields

~

X = (F-LHz)X‘+ Gznl - Ln2 (10.38)

The covariance of the estimation error is given by

= - - ! ! ! =
P'q (F LHZ)PT]+ Pﬂ (F-1L.H) + LWZL + G2W1G2 s Pﬂ (o) X(Oz
10. 39)

The minimization of inith respect to L yields optimal estimator gain as

L = PH, Wz“1 (10. 40)
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Substituting (10.40} into (10. 39) results in
P = (F-P )P +P (F-PIV+PIP +G W.G' 10,41
M n n n( n) nom 27172 ( )
where
o (10.42)

is called the "information rate'.

The steady-state value of the estimation error covariance is given by

AP +P A'+Q = 0 (10.43)
n n
where
A = (F - Pﬂi) (10, 44)
~ _ I )
Q = (G,W, Gy + PﬂIPn) (10.45)

Note that the set of equations (10.43), (10.44) and (10.45) have the same
structure (i.e., duals) of the equations (10.27), (10.28) and (10,29). There-
fore, the steady-state estimation covariance and the estimator gains are
obtained also by using the algorithm DIAK.

THE STEADY-STATE COVARIANCE WITH THE
OPTIMAL ESTIMATOR

The covariance of the controlled system with the estimator is obtained
from the definition given by (10,36 ):

x = £+ % (10.46)
where
X = the state of the estimator dynamics
X = the estimation error
Clearly,
X = §§+Pn+ Y + Y’ (10.47)
where
X = Elx'}), X = E{&’], P, = EEX) and Y = E{ 2%}
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We remark here that for the opti;mal estimator gains
Y =Y =0
so that (10,47) reduces to
X = X+ P
Now using the feedback law given by
u = -KzX

and substituting (10. 31) into (10. 32) yields
X = (F—GlK)x+ LH,x + L,

From {(10.51) and (10.38) one obtains

|

This yields the following set of differential equations:

[@E-ax) | LHz'
- 0 I (F'LHZ)

M1 poe

I_m,z
L revay
2N =~ LMy

Wt M

[
-~

X = (F-G,KX + X(F-G.K) '+ (LH,Y '+ YH,’ L) + LW L’
. o ,

Y = (F-GlK)Y + Y(F LHz) L(WzL Han)

: - _- : _ ' ’ /

PT] = (F LHZ)PT]+ Pﬂ(F LHZ) + LWZL + G2W1G2

The initial conditions are given by

X(0)

0

Y(0) = E{20)X'(0)} = 0

1]

Pn(O) = X(0)

(10.48)

(10.49)
(10.50)

(10.51)

(10,52)

(10.53)
(10. 54)

(.10. 55}

(10, 56)
(10.57)

(10.58)

On the account of the optimality the last term in (10.54) vanishes so that with

equation (10.57) one concludes that

Y(t) = 0
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Also noting that

LW, L' = P_iP (10. 60)
2 non
equation (10.53) can be written as:

X = (F-G.K)X + X(F-G,K)'+ P_IP (10.61)
1 1 noom

The steady-state value of X is obtained from

AX+XA+Q = 0 | (10. 62)
where
A = (F-G,K) (10.63)
G = p_IP (10. 64)
noom

Once Pnand X are found X is obtained from (10. 49).

An alternate way of computing X can be developed by writing (10.55) as

p _ ' : )
Pﬂ = FPn+. PnF P’QIPT]+ G2W1G2 (10.658)

This can be written as

.P'—'F-GKP+P F-GK’+GKP+PK'G’
n= FG P+ P(F-GE)TH G RE T P, RG,

- PﬂIPﬂ+ G2W1G2' (10.66)

Summing (10.61) and (10. 66) yields

S = - - 4 ! ’ )
X=(F-GK)X + X(F-GK)'+ G,W, Gy’ + [GlKPn+ PnK G,’] (10.67)

Equation (10. 67) indicates that the estimator error covariance acts as a
driver in the state covariance differential equation. The steady-state value
of X is computed from

AX+XA+Q = 0 {10.68)
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where

A

)

(F-G,K) (10. 69)

/
(G2W1G2 + G

G ' 10.7
1KPﬂ+ PnK G1 ) ( 0)

~ In ADAPS, the total covariance, X, is computed from (10,49) by solving
X from equations (10. 62), (10.63 and (10. 64) using the algorithm LYAK,
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SECTION X1
CONCLUSIONS AND RECOMMENDATIONS

The overall objectives of this study were threefold: (1) development
of theoretical analyses and mathematical models for precision weapon
delivery, (2) development and documentation of computer analysis programs,
and (3) demonstration of their use,

These objectives were primarily met. In the following, qualitative re-
sults and recommendations for future studies pertaining to the work reported
in this volume are discussed,

SIGNIFICANT QUALITATIVE RESULTS

The following aspects of the technique developed in this study are con-
sidered significant:

The stochastic formulation of the weapon delivery problem is meaningful
and tractable. It incorporates into the design the stochastic nature of the
incident winds, the time-varying aircraft and weapon dynamics, and the
finite-time nature of the weapon delivery control problem. It develops the full
impact error covariance matrix using the overall system model. It handles
high-order system descriptions, arbitrary sensor arrangements, arbitrary
sensor noise levels, and arbitrary control points. The formulation defines
an optimum controller, and it provides a criterion for measuring the quality
of any linear controller. Its basis minimizing the CEP at impact is a mean-
ingful and appealing design motivation. The technique makes the physical
nature of the weapon delivery problem evident. The release covariance of the
airframe and the impact propagation matrix of the weapon show where the con-
trol and measurement emphasis should be placed for the best delivery.

RECOMMENDATIONS FOR FUTURE ANALYSIS AND MODELING WORK
Many interesting issues came up in the course of the study:

. Optimal steering of aircraft from an arbitrary target acquisi-
tion point to weapon release. This can be posed as an optimal
control problem with a nonlinear cost functional., It can be
treated using iteratively quadratic control in the quadratic equi-
valence theory of Skelton,

e Although no simulation was required in this study, the developed

model can simulate nonlinear aircraft and nonlinear weapons,
To increase the simulation capability to automatic weapon
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delivery a model of the nonlinear weapon release state predictor
based on the current state of aircraft should be developed and
incorporated into the program.

° For efficient piloted-weapon delivery analysis, the model of the
operator should be incorporated into the program.

. The nominal trajectories for the linearization are generated
by using a soft autopilot. The selection of suitable gains in the
autopilot depends on past experience and trial-and-error pro-
cess, To increase the versatility of the program, the algorithm
designed for algebraic trim should be programmed, tested and
incorporated into the program.

® In this study, an exact probability density function of the overall
system is developed as a function of time. Therefore, the uni-
versally used assumption of small correlations in the CEP
evaluation should be removed by using this density function. A
good approximation to HIPA should be developed using the full
covariance matrix.

CONCILUSIONS

A reasonably powerful technique for the analysis and design of precision
weapon delivery systfems is developed in this study. The technique employs
nonlinear modeling, linearization, stochastics, quadratics and a significant
amount of digital computation. The optimum controller it produces minimizes
the CEP at impact. Optimal time-varying as well as time-invariant gains can
be evaluated for various airframes, control points, measurement points,
and weapons. .

The value of the approach lies in its mathematical models and algorithms,

They provide total system analysis and design capability by a digital com-
puter,
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APPENDIX 1

DEVELOPMENT OF A METHOD FOR FIXED-FORM
OPTIMAL CONTROLLER DESIGN

A method is presented in this appendix which designs optimal algebraic
controllers with limited number of states (i. e., fixed-form controllers) [55].

The method is based on the concept of orderly reduction of the elements
of optimal full gain matrix to zero for the states which are not measured. This
is achieved by adjusting the remaining elements (i.e., elements corresponding
to measured states) while maintaining the optimality. It tacitly assumes the
existence of solutions.

The program which implements the technique is called "PROGRAM PAPS'.
It enables one, among other things, to asses the performance degradations
which occur when the complexity of a full set of optimal gains and a Kalman
filter cannot be permitted.

In the following, the problem statement is given first. The method of
solution is treated next.
PROBLEM STATEMENT

Given a time-invariant stochastic control system

x = Fx+ Gu+g (I-1)

r = Hx + Du

x = vector of state variables

u = vector of controls

r = response vector

£ = vector of disturbances such that

Efg}=0 E{g{) £(r)}=N6&(t-1)
The problem is to minimize the performance index
J Ky = (tr (H+DK4K%) 1 QE+DEMKY '] (-2)
with a controller of the form

u = (K1+K3)X (I-3)
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(K).. = 0 jeQ, i=1,2,...,m

The set Q denotes a prespecified collection of integers which define the
unmeasured states. K3 is an arbitrary fixed matrix.

METHOD OF SOLUTION

A gain matrix K corresponding to full-state measurement can be decom-
posed into the following components:

1 2

K = KI+MK%+K>, \=1

A ig a scalar parameter with

- { Ky () e 0y

H 0 (i) do
K2 = : Ki; ) eq (1-4)
& 0 (ij) 40,

K 3 _ IFKij (ij) € Qg
0 (i)} ¢0q

where the sets (04, 9, and (3 denote preselected collections of integers
which define the row and column indices of K1, K2 and K3,

The necessary condition for the optimality of K1 is

__B_I J(Kl'*‘}\-Kz
3K

+K3) = 0 (1-5)
A=0
To express Kl ag a function of N, (I-5) can be written as

) 2

SK 1

J(K1+7\K +K3) = 0 (with K2 and K3 constant and M arbitrary)

which implies K1 = KI(\),
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Then by the Implicit Function Theorem K1(7\) is defined by the following;
differential equation;

-1
2+ k%) 327 (k124 K5
T

sklavklT SK 3

akley o [pAalak
3

(I-6)

A solution to equation (I-1) can be obtained by starting with any known
terminal condition K = K1 + NK2+ K3 for M = 1 and integrating (I-6) backwards
to» = 0. In the program the terminal condition used is the global optimum
of the performance index J (i.e., the solution of the perfect sensing optimal
quadratic control problem). In order to integrate (I-6), one must develop the
indicated partials and select a numerical integration algorithm,

NUMERICAL INTEGRATION ALGORITHM

The numerical integration algorithm used to solve (I-6) is a predictor-
corrector scheme [55] which employs the following equations:

(Predictor)
1 1
P 1 AN dK dK
Koo KOO+ 5 |55 g (g -89 70 O y)
1 1
dK dK
K~ o _g 9K o i
v3r Lo o Koo ) (1-7)
(Corrector) . 1
32rkE+n, K24k ST +h. K2+ KD
1 P K+ 1 K4 1
KoOy gy = K0 - T 1T 1
Klak 3K
(I-8)
o _ 1
where ?\o = 1; )\K = 7\0 + KAh, (K=1,2,..., Ak)'

In order to obtain enough 'back information'' to use (I-7), the first three
predictor steps employ the following equation

1
kP = k! () + AN dE_ o,

oy K=123 (1-9)

K)

The major computational task is to evaluate the first and second partial
derivatives in (I-6) and {I-8). A method to evaluate these partials is given in
the next subsection,
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METHOD OF EVALUATING PARTIAL DERIVATIVES

Let X denote the covariance matrix of system (I-1) with the controller
u=Kx

(F+CK)X + X(F+GK)' + N = 0 (1-10)

and corresponding to X, define an adjoint matrix S as follows:
(F+GK) 'S + S(F+GK) + (H+DK) ‘Q (H+DK) = 0 (1I-11)

The performance index J{K} of (I-2) is given by
J(K) = tr {(H+DK) " Q(H+DK)X} + tr{sSN} - {1-12)

The first partial of J [55] is:

°J_ = 2tr {[H+DK]'QD+ SG E'xX]) (I-13)
SK,
where
ij A 3K
E K

1]
The second partials of J are

BZJ

aKijaK*’m m

2 {(D7 QD) X+ D LKD)’ QD 5G], (a}:}X
L

ja

+ % [(H+DK)’ QD+ SG]M(E’—X (I~14)
a

o K..
1]

ma

oX . .
where aKij is defined by
X dX

(E+aK) 2=+ 2E (FroK) +(@EYx+x(GED = 0 (I-15)
J ij

2

- 2y i] ‘ g2 X X
K X+ 5 -

aKJax 2TR1( D”)" QDEVX+ [(H+DK)' QD+8SG]|[K BKJ+ 5

(1-16)
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where 3X/3aM is defined by (I-15) with oR replaced by Kz. Therefore, if the
number of non-zero elements in K1 is & the partials required to solve (I-6)

and (I-8) can be computed by solving £+ 3 covariance equations for the
matrices S, S

oX . X
aKij (j e Natotal of £) and N

The program PAPS implements these analytic developments.
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APPENDIX II
DEVELOPMENT OF THE NOMINAL RELEASE EQUATIONS

In the analysis and design of weapon delivery systems, for a given attack
maneuver and a slant range, the prediction of the nominal weapon release
time is needed.

With a high-power airborne computer, the prediction of release time for
hitting a target can be based on the six-degree-of-freedom weapon trajectory,
computed on line, taking into account all miss-producing effects, and the
current states of the aircraft. This may be referred to as "release with a per-
fect computer." To reduce demand on high computing power, however, a
simplified model is usually used.

Since no real-time simulation is involved in ADAPS, the prediction of
nominal release time is based on the integration of six-degree-of-freedom
trajectory equations (i.e., perfect computer). For determining the magnitude
of timing errors in release, the release model must be developed separately
by the user as it depends heavily on the fire control system being evaluated.
In the following one such model is developed for completeness.

DEVELOPMENT OF NOMINAL WEAPON RELEASE EQUATIONS

It is assumed that the position vector of the bomb's trajectory is given by

7 T 8
T (=T + | ¥ dr+ v dsd (I1-1)
rotm =1, v,.dT v dsdr -
O O O
where
;r = weapons velocityat 1= 0
v = weapons acceleration

The acceleration term can be decomposed into contributions due fo gravity,
aerodynamic drag per unit mass, lift per unit mass, rotational effects per
unit mass, etc. In order to avoid line integrals given by (II-1), it will be
assumed that all these effects can be lumped into the form of [56]

Ed

g, = kg (II-2)
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That is, the bomb "sees" gravity as equivalent to ge. In addition, the drag
terms affecting the forward velocity are neglected. With these assumptions,
(II-1) can be written as
— = - — 2
re6m = (O+v (B) 7+ g 7

o) =

(I1-3)
Referring to Figure 51, the miss-vector, ¥, (i.e., the position vector
from target to weapon) can be expressed as

P8, 1) = T _(6,7) -7y (11-4)
w
= ROV (0) 1+ 15 10 -F (1-5)
r r 2 e T
Now the problem becomes finding € and 7 such that
¥ (6,7 = 0 (-6)

Equation (II-6) forms the basic part of the so-called fire control equations.

This algebraic problem can be solved in various ways.
to evaluate

One approach is

Jwk = n-éin min | ¥ (8, 1) | (II-7)
T
which overrides the questions of existence of solutions to (II-6),

In the following the existence of solutions to (II-6) is assumed and a solu-
tion algorithm is developed as given in {42] (see Section VII also).

In matrix notation (I1-6) is expressed as
(’3& _ £,(6, ) . (o)
z £,06, 0] 10

(I1-8)
where

0, 0 [0 [uo] | o

X
T
+ T+ % 2
f2(9, T Zr(e)

(11-9)
Wr(e) kg z
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Figure 51. Weapon-Release Geomeiry in the x_~z
Plane ¢ ¢
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With ejection velocity -‘}e along ?r’ the velocity term in II-9 becomes

|

one can write

|

Substituting (II-10), (II-11) and (II-12) into (II-9), collecting terms

u Vv A% sin 6
T e
W -V Vv cos 0
T . e
On the other hand, letting
sin 6 v Ve
r{@) = [ ] 9=fx. and, q, = T (I1-11)
cos @
Xp
= R r(8) (II-12)
A
iy

and dividing

throughout by R yields the normalized miss-vector equation

where

and

with

-fl (0, ] 0
- e 2
f (6, =|_ = {[1+Q+] r(&) + SRrT " Nt 1= (I1-13)
f2 (6, 7 0 -
A g
Q = (I1-13a)
-q q,
T
ﬂT = ‘R:I‘_ (I1-13b)
[ X -R S sin y
rT = = (11-13(_‘,)
Zp S R cos vy
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DEVELOPMENT OF THE FIRE CONTROL ALGORITHM

Let gé[i]and define
p(z, ) = T(9)-f(5)-h) = 0 (11-14)

For h= 0and £ = £ one gets ¢ (£,, o) = 0.

o

For h = 1, ¢(g, 1) = I(s) = 0. This implies that if one can maintain ¢(¢, h) =
0 by properly choosing the values of z while increasing h from zero to one,
the value of £ at h = 1 becomes the solution vector to f (g) = 0.

Using the implicit function theorem:

BR 29 = -
A 5h = 0 (I11-15)
If (3¢/3¢) is invertible then
-1
dg . _|3¢, | ,
@? (Bg} (ah. (II-16)
But
3p _ 2f 3¢ _ §
é—g-—— ag and h = f (XO) (II'].’?)
Therefore
-1
dg _ _[of F
== - ‘BE_) f(z,) (1I-18)

With the given h, and g, this differential equation is integrated up to
h=1to get £. Now

_ ) ge 9

f(z) = I+Qr]lr(@)+ 3R -Mp (11-19)
and

af _ af | af

g = FE) (ae ST
where
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I 121 - [0+ Qo Prd) | Qr(o) +ar) (I1-20)
farl fag
with
0 1 0
P = , a = (I1-21)
-1 0 kg

If Euler's integration algorithm is used, one can write from (II-18)

] ] -1
(T :( ) - FTN (0, )b (11-22)
k+1 Tk
where
b = f Ah
o
and (II-20) is iterated from k= 0 to k = A_l‘rf = N,

To establish startup values for the fire control algorithm, select

6 = tan ! Ve (1-23)
o n v B
and compute 7, so that rzvo = f2(90, 7} = 0. This gives
2(z. - R)
- T _
T, —‘\/—-—k-g—- (11-24)

Substituting this into fy in (II-9) gives the normalized range error at the
beginning of the iteration

~t

XO = fl (80, TO) = VI_ Ty = X (i1-25)

Thus, following equations are used to start up the iterations:
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A%

£
)
3

- fz(zT-R
\ kg

After having found g, so that (II-13) is satisfied, the predicted time during
"pullup" is given by

tan~ 1

(II-26)

v+ 8
tou = —g P (11-27)

Due to simplifications used in the modeling of the weapon trajectory, the
predicted nominal release time tpu must be corrected. This correction is
in the form of

tr = kc tpu + Atc - At (11-28)
where
kc = algorithmic error correction multiplier
Atc = algorithmic error correction bias
At = known delay in the release mechanism

Obviously, the actual nominal release will occur at

t = k t
c

ra + Atc (11-29)

pu

The correction multiplier k_ and bias At, are obtained from numerical experi-
ments with actual six-degreé-of-freedom weapon model.
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