FOREWORD

This research was conducted by the Electronic Systems Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts, under
Contract AF 33(616)-8363 with The 6570th Aerospace Medical Research
Laboratories. This work was performed in support of Project No. 6114,
"Training Equipment, Simulators, and Techniques for Air Force Systems,"
and Task No. 611408, "Simulation Computers.' Work began on 1 May 1961
and will terminate on 30 April 1962. Mr. William Goeckler, Simulation
Techniques Section, Training Research Branch of the Behavioral Sciences
Laboratory, was the contract monitor.

This report is based on a thesis submitted by Louis Krasny in August 1961

in partial fulfillment of the requirements for the degree of Master of Science
in Electrical Engineering at the Massachusetts Institute of Technology, Cam-
bridge, Massachusetts. It has also been published by the M. I. T. Electronic
Systems Laboratory as Report ESL-R-118, Project DSR 8823.

The author wishes to express his appreciation to Professor Alfred K. Susskind
for his patient supervision of this thesis and to Mark E. Connelly, project
engineer, for his invaluable assistance in all phases of this study. Both are
members of the Electronic Systems Laboratory at M. I. T.

Esptnadls

Approved for Public Release

ABSTRACT

To determine the ability of a moderate-sized digital computer, such as
the M. I. T. TX-0, to solve a complex real-time flight simulation prob-
lem, the complete equations for the unrestricted simulation of the F-100A
aircraft have been programmed using the TX-0O order code. From an
analysis of this program, specific recommendations are made for logical
modifications of the TX-O to facilitate real-time simulation. With nine
additional orders, including a 25u sec. addressable multiply, a 40u sec.
divide, and a special level-sense order to facilitate nonlinear function
generation, the TX-0 would solve the full F~100A equations at 23 solutions
per second.

The areas of function generation, order code specification, usage of sub~-
routines, integration, word length requirement, input and cutput procedures,
decision-making, and high-speed multiplication are investigated in detail
with quantitative comparisons between different methods wherever possible.

Although the emphasis of this study has been on the specific requirements
of the F-100A problem, the design methodology and the various design
trade-offs described should be applicable to the functional analysis of
other simulation problems of greater or lesser complexity.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

,//f, i Z,‘Z T
WALTER F. GRETHER
Technical Director
Behavioral Sciences Laboratory

iii

CHAPTER 1

CHAPTER I

CHAPTER III

CHAPTER IV

CHAPTER V

TABLE OF CONTENTS

INTRODUCTION

1.1 Statement of the Problem
1.2 History of the Problem
1,3 Outline

DESCRIPTION OF THE F-100A MODE L

2,1

2.2

Introduction

The F-100A Model

DESCRIPTION OF THE TX-0 FLIGHT
SIMULATION PROGRAM

FUNCTION GENERATION

4.1

4,2

4.3

4.4
4.5
4.6

4.7

4.8

Introduction

Description of the UDOFT Function
Generation Method

Description of the TX-0 Function
Generation Method

Comparison of Memory Requirements
Comparison of Operating Times
Results of Comparisons

Modification of the Order Code for
Function Generation

Summary of Conclusions for Function
Generation

MODIFICATIONS OF THE TX-0 ORDER CODE

5.1
5.2
5.3

5.4

Introduction
Level-Select Order
Multiply Order

Load Accumulator Order

iv

Page

25
33

33

33

39
44
46

47

47

50
53
53
53
54
55

CHAPTER VI

CHAPTER VI

CHAPTER VIII

TABLE.OF CONTENTS (CONTINUED)

5.5

Subtract Instruction

THE USE OF SUBROUTINES IN REAL-TIME
FLIGHT SIMULATION

6.1
6.2
6.3
6.4

Introduction
Subroutines for Function Generation
Subroutines for Other Parts of the Program

Conclusions

INTEGRATION AND WORD LENGTH

7.1
7.2
7.3

7.4

7.5
7.6

7.7

Introduction
Integration
Word Length - Introduction

Ingtructions, Addressable Memory and
Word Length

Effect of Integration on Word Length
Double Precision Methods

Method of Selecting the Word Length

DECISIONS, INPUTS AND OUTPUTS

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

Introduction

Decisions

Analog and Digital Inputs and Outputs
Analog Inputs

Discrete Inputs

Analog Cutputs

Discrete Outputs

Summary of Conclusions for Decigions
and Inputs and Outputs

Page
55

59
59
59
64
64
65
65
65
68

68
70
77
78
79
79
79
87
87
87
89
89

91

CHAPTER IX

CHAPTER X

BIBLIOGRAPHY
APPENDIYX I

TABLE OF CONTENTS (CONTINUED)

HIGH-SPEED MULTIPLICATION

9.1
9.2

0 ~O O ~O
. . . e

Introduction
Methods of High-Speed Multiplication
Recoding of the Multiplier

Recoding of the Multiplier with
Multiple Shift

High-Speed Carry Propagation
Comparison of Multiply Times
Comparison of Complexity

Selection of a Multiplication Method

SUMMARY AND CONCLUSIONS

10,1
10,2
10.3

10, 4

Introduction
Results of the Analysis of the Problem
Specification of Computer Characteristics

Conclusions

A BRIEF DESCRIPTION OF THE TX-0

vi

Page
93
93
93
924

102
104
105
107
111
113
113
113
115
117
119

121

10
11
12

33
14
15
16
17
18
19
20
21
22

LIST OF FIGURES

Title

Main Information Flow

Definition of Body and Stability Axes
Definition of Euler Angles
Definition of Direction Cosines

Functions of a Single Variable Used by UDOFT for Cn
37
CmS Used by UDOFT as a Function of Two Variables
J
Aircraft Manufacturer's Data for Crr18
J

Notation Used for Describing UDOFT Function Storage

Cm Used by TX-0 as a Function of Two Variables
N

Two Variable Linear Interpolation
Operation of the Level-Select Instruction, cxs x

Effect of a Solution Rate and Integration Formula on
a Simulated Aircraft Transient

Alrcraft Instruments

Word Length Diagram for Altitude

Two Methods of Implementing the son x Command
Method of Implementing the sag x Command

Method of Handling Discrete Inputs

Method of Handling Discrete Qutputs

Recoding of Multiplier Method of Multiplication

Special Control Logic for Recoding of Multiplier Method
One or Two Position Shift Register '

Complexity Index and Multiply Time for Various
Multiply Methods

vii

Page

10
15
15
34

36

37

38
4]

42
48

66
72
74
83
86
88
90
96
98
103

109

Vi

VII
Vil

XI
X
X1
X1v
XV

XVI

XVl

XVIIl
XIX
XX
XXI

LIST OF TABLES

Title

Program Timing

Breakdown of Worst-Case Timing by Operations
Memory Requirement

Memory Requirement Breakdown

Number of Breakpoints Used in TX-0 Program
for Variables Used in Aerodynamic Coefficients

UDOFT and TX-0 Data Storage for Aerodynamic
Function Generation

Time and Memory Saved Using Additional Instructions
Breakdown of Non-Linear Functions for TX-0 Program

Results of Using Subroutines with Present TX-0
Order Code

Results of Using Subroutines with Additional
Arithmetic Instructions

Word Length Required by Roll

Classification and Coding of Decisions
Breakdown of Decisions by Types

Coding of Decisions Using Skip-Type Instructions

Time Saved for Each Type of Decision Using
Skip=-Type Instructions

Total Time Saved by Each Instruction Using
Skip-Type Instructions

Number of Discrete and Analog Inputs and Outputs
Used for the F-100A Simulation

Truth Table for Recoded Multiplier Method
Truth Table for Shifting Multiplier
Maximum Multiply Time

Complexity Index

viii

Page

29
30
3l
32

45

45
57
60

62

63
77
80
81
84

85

85

87
97
103
106
110

SYMBOLS

A. AERODYNAMIC TERMS

Xs‘ Ys, Z
Ls’ Ms’ N
Xy Yo 2y,
Lps My, Ny
L] L 3 .

u, v, w

L] [] [)
P’ qls r
u, v, w

P, 9. Tr
8, ¥, ¢
£, m;, n,
‘!2’ mz, nz
13, m,, n,
a

a

pOOOOOO"mU‘
Q

aerodynamic forces along stability axes
aerodynamic moments about stability axes
total forces along body axes

total moment about body axes
accelerations along body axes
rotational accelerations about body axes
velocity along body axes

angular velocity about body axes

Euler angles

direction cosines for x-inertial axis
direction cosines for y-inertial axis
direction cosines for z-inertial axis
speed of sound

angle of attack

wing span

sideslip angle

aerodynamic coefficient of drag
aerodynamic coefficient of side force
aerodynamic coefficient 1lift
aerodynamic coefficient of roll
aerodynamic coefficient of pitch
aerodynamic coefficient of yaw

center of gravity

ix

SYMBOLS (continued)

c, M.A.C. mean aerodynamic chord
DT drop tanks
DC drag chute
DR_AC-WM windmilling drag
8J speed brake deflection
SR rudder deflection
SA aileron deflection
3H horizontal stabilizer deflection
d distance from 35% M. A.C. to center of gravity
AM pitching moment due to nosewheel contact with ground
€, EZ' 63 correction factors for computation of direction cosines
FBR’ FrL right and left brake force
g acceleration due to gravity
GE grounti effects
1 normal acceleration
h pressure altitude
H altitude above the ground
H haorizontal stabilizer in aerodynamic equations
Ix, Iy’ Iz moments of inertia
K nosewheel damping factor
LG landing gear
Ma Mach number
Mi instantaneous mass of the aircraft
f mass of fuel
N2 asymptotic value of RPM

SYMBOLS (continued)

percent thrust

dynamic pressure

air density

engine revolutions per minute
rate of climb

wing area

engine thrust

throttle pogition

indicated airspeed

true airspeed

wings

air entering the engine inlet duct

fuel flow

B. COMPUTER TERMS

AC
MBR
LR
AR

PC

C(y)

AC
n

MBR
n

LR

{x

accurmulator

memory buffer register
live register

index register

program counter
contents of register y
replaces

scale factor

bit n of the accumulator

bit n of the memory buffer register

bit n of the live register

register whose contents is x

xi

SYMBOLS {(continued)

s +n current address plus n

C. MULTIPLIER TEBRMS

t maximum multiply time including memory accesses
max for an addressable multiply command
t average multiply time including memeory accesses
avg for an addressable multiply command
tha half-add time
t. carry propagate and carry addition time for an
p n-bit register using conventional carry
t;: carry propagate and carry addition time for an
P n-bit register using high-speed carry
t shift time
t. time required to complement a flip-flop
t c memory cycle time
n word length
kn average maximum carry length for an n-bit word
1 complexity index
N : number of inputs to gates in additional multiplier
circultry
F " number of flip-flops in additional multiplier circuitry

D. LOGIC SYMBOLS

—_— logic level

E— pulse

xii

(D

|I0‘ ||I'I
QUTPUT OUTPUT

0 I

0
!
SET

=

n

0 SETTO
‘I“

SYMBOLS (continued)

logic gate whose output will be present if N
or more inputs are present

inverter

flip-flop
there 1s a logical delay built into the flip-flop

80 that the output may be sensed at the same time
that the input is pulsed

xiii

Contradls

Approved for Public Release

CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

Up to the present time, real-time flight simulation has usually heen
carried out on analog computers. There have been two successful attempts
to simulate large-scale aircraft models in real-time on a digital computer. 1, 2%
However, both of these computers were complex and costly.

The object of the investigation reported here is twofold: (1) To test
the ability of a moderate-size digital computer, such as the M. 1. T. TX-0Q,
to solve a complex, real-time flight simulation problem, and (2) To deter-
mine how such a general-purpose digital computer could be modified to
facilitate real-time simulation and yet maintain the cost at a level competitive
with present analog computers performing the same task.

The particular simulation problem used for this study was the F-100A4A,
a supersonic fighter manufactured by North American Aviation.

In relation to the design of a special-purpose computer, the method of
attack in this study was to first determine the exact nature of the F-100A
problem. To reduce the labor of data processing and to provide competitive
standards, the mathematical model used by Melpar for the analog F-100A
simulator and by Sylvania for the UDOFT digital simulator was employed.
Then, using this model, the full F-100A problem was programmed with an
order code very similar to the TX-0O machine language. This program was
then a quantitative standard against which the performance of various proposéd
logical alterations were compared. A functional design of a special-purpose
computer gradually evolved that was not only suitable for the specific problem

investigated, but also seems applicable to a wide range of real-time simulation

problems.

1.2 History of the Problem

In 1955, the Moore School of Electrical Engineering at the University

of li’ennsylvza,nia.3 completed the design of a digital computer for the simulation of

3
‘ Superscripts refer to numbered items in the Bibliography.

1

a supersonic flghter. The construction of this computer, known as the Uni-
versal Digital Operational Flight Trainer (UDOFT), was completed in 1960

by Sylvania. 2 The UDOFT computer has been programmed to solve a complete
F-100A model at a solution rate of 20 solutions per second.

In August, 1958, work was completed at the M.1.T. Electronic Systems
Lal:u:or.':v.t«::»ry1 on an experimental analog-digital flight simulator. The compu-
tations were entirely digital except for the use of peripheral analog integra-
tors. In this study, which was done on the M.I.T. Whirlwind computer, a
solution rate of 60 solutions per second was achieved for a simplified set of
F-100A equations.

With the exception of these digital studies, all the simulation of aircraft
in real-time has been done on analog machines. The cost of either the UDOFT
computer or the Whirlwind computer would restrict their use as a replacement
for analog computers. However, it is now felt that it would be possible to
produce a digital computer at a price that would be competitive with the analog
computers now being used for large-scale simulation,

Connelly, 4 at the M.1. T. Electronic Systems Laboratory, has investigated
the relationship between cost and computing ability for both digital and analog
computing systems. He has hypothesized that digital techniques are competi-
tive with analog techniques for real-time simulation problems approximately
the size of the F-100A problem and larger. Since the cost of the analog
computer used in the F-100A trainers is known, establishing the size of a
digital computer that would solve this same problem provides a means of
testing this hypothesis.

The Digital Equipment Corporation's PDP-1 ig typical of the commercial
digital computers that are now being offered in a price range that makes them
competitive with analog techniques for the F-100A problem. Since the M.I.T.
TX-0O is practically a prototype of the PDP -1, the present study has investi~
gated the ability of the TX-O to solve the full F-100A problem in real-time.

1.3 Outline

After a brief description of the overall problem, Chapter II presents an
outline of the F-100A mathematical model, including all of the aerodynamic
equations. The order code used to program this model and the results of
the program in tabular form are presented in Chapter III. The tables are

breakdowns of running time and memory requirements for the TX-O program.

The first of the detailed discussions of particular areas is contained in
Chapter IV where the problem of non-linear function generation is analyzed.
A description of the methods used by the TX-O and by UDOFT is given and
comparisona of accuracy, ease of handling, data storage, and speed are
made. Possible revisions for the TX-O order code to speed up non-linear
function generation are included. From the results of this chapter and a
consideration of the results presented in Chapter III, five instructions not
presently included in the TX-O order code, are recommended in Chapter V.
The time and memory saved by these instructions is also given.

Since running time was considered the most difficult specification to
meet, no subroutines were used in the program described in Chapter III.

The use of subroutines is investigated in Chapter VI, and quantitative values
of the trade-off between running time and memory are given.

A description of the integration formula used as well as a discussion of
the various factors affecting word length are presented in Chapter VII. The
word length requirement for the F-100A is derived, and several methods of
using machines with shorter word lengths than required by the dynamic range
of the variables are presented.

Decisions, inputs and ocutputs are grouped together in Chapter VIII because
discrete inputs are a type of decision and the same additional orders would
save time for both. A brief description of the peripheral analog and digital
equipment used for handling inputs and outputs is also presented.

Since multiplication consumes a sizable fraction of the cperating time,
this single order was considered in detail in Chapter IX. A comparison
between the running time and difficulty of implementation for several different
methods of multiplication is given.

A brief summary of the more important results and recommendations

for future work is presented in Chapter X,

CHAPTER II

DESCRIPTION OF THE F -100A MODEL

2.1 Introduction

The mathematical model used for the TX-O simulation program is described
in detail in this chapter. Except for aerodynamic function generation and inte-
gration, the model is essentially that used by Sylv.nia in the UDOFT digital
simulation program. 2 This in turn was largely based on the Melpar model for
the analog OFT, hence is influenced by the rather special limitations of analog
implementation. The Sylvania model was used for two reasons. First, one
objective of the study was to determine whether commercially-available machines
of the TX-O size are adequate for the same problem as that solved by UDCFT.

In order to have a basis of comparison, it seemed reasonable that the same
model be used. The second reason was that a new analysis of the problem or
the analysis of a more modern aircraft would have greatly increased the time
and effort required for the present study without adding in a significant way to
the value of the analvysis.

The model can be divided inioc several parts which will be briefly described

in this chapter:
1} Aerodynamics
2) Altitude
3} Engine
4) Masgs, Moments of Inertia
5} Hydraulic Systems
6) Instruments

7} Land-Air-Crash Decisions

Figure 1 shows the main information flow of the program.

Coutrails

Approved for Public Release
i

DISCRETE INPUTS

START CRANK

START FIRE

EMERGENCY FUEL ON

MAIN FUEL REGULATOR FAILED

AFTERBURNER ON AND NOZZLE FAILED CLOSED
AFTERBURNER OFF AND NOZZLE FAILED OPEN
COCKPIT TEMPERATURE MASTER SWITCH
CANOPY AND WINDSHIELD DEFROST LEVER

WINDSHIELD ANTL-ICE
AFTERBURNER ON

NO FUEL DEPLETION

DROP TANK JETTISON
REFUEL DROFP TANKS

DRCP TANK PRESSURE
MAIN TANK REFUEL

MAIN TANK DUMP

CENTER OF GRAVITY LOCK
LANDING GEAR IN MCTION
SPEED BRAKE DUMP

SPEED BRAKE IN

SPEED BRAKE OQUT

UTILITY HYDRAULIC FAIL
DR AG CHUTE DEPLOYED
TRUE AIRSPEED LOCK
ROLL ANGLE LOCK
AUTCPILOT

NOSE WHEEL STEERING
INCREASE ALTITUDE
DECREASE ALTITUDE
CABIN PRESSURE 2.75 P 5.1
CABIN PRESSURE 5. 00 P 8.1,
ALTITUDE LOCK
HYDRAULIC SYSTEM NO | FAIL
HYDRAULIC SYSTEM NO. 2 FAIL

EMERGENCY HYDRAULIC SYSTEM OPERATING
HYDRAULIC SYSTEM NO. 1 TO ANALQG QUTPUT
HYDRAULIC SYSTEM NO, 2 TO ANALOG QUTPUT

PITOT ICE

ZERO MODE

FREEZE MODE

YAW DAMPER ON
ROUGH AIR

GUIDE YANE ANTI1-ICE

ANALOG INPUTS

RIGHT BRAKE FORCE
LEFT BRAKE FORCE
THROT TLE POSITION
ALLERON POSITION

HORIZONTAL STABILIZER POSITION

RUDDER POSITICN
AIRPORT ELEVATION
BAROMETRIC PRESSURE SETTING

DISCRETE QUTPUTS

DROP TANKS FULL

LANDING GEAR DOWN

LANDING GEAR UP

SPEED BRAKE IN

SPEED BRAKE OUT

SPEED BRAKE IN MOTION

DRAG CHUTE LOST

STALL WARNING

STALL

LAND-AIR

CRASH

HYDRAULIC SYSTEM NO ' FAIL
HYDRAULIC SYSTEM NO. 2 FAIL
STABILIZER FROZEN

AILERON FROZEN

ANALOG OUTPUTS

DROP TANK FUEL QUANTITY
MAIN TANK FUEL QUANTITY
TAILPIPE TEMPERATURE
INDICATED ALTITUDE
ALTITUDE ABOVE GROUND
CABIN ALTITUDE
HYDRAULIC PRESSURE
NORMAL ACCELERATION
INDICATED AIRSPEED
MACH NUMBER

BALL ANGLE

RATFE OF CLIMB

GROUND SPEED

TRUE AIRSPEED

PITCH ANGLE

ROLL ANGLE

TRUE HEADING

RUDDER HINGE MOMENT
ENGINE R.P. M,

TURNING RATE

ROLLING RATE

FUEL FLOW

ANGLE OF ATTACK

ICE QUANTITY

Adopted from Sylvanlo
Final Report FR77-1N

DISCRETE

DISCRETE

DISCRETE DISCRETE ANALOG
OUTRITS TNPUTS INPUTS INPUTS QUTPUTS
Farr Fan
. —
FoL« Fok BL‘ TBR
AJ AERODYNAMIC : R o .
OTAL FORCES REARN YWR A
8o BR | AERODYNAMIC | COEFFICIENTS TOMALFORCES Xtz o, TOTALFORCES [X%, .2, 1y My Ny
COEFFICIENTS |qlt=tlst VALUE OMENTS AND MOMENTS ACCELERATIONS VELOCITIES DIRECTION
STABILITY AXES SIN g BODY AXES n-1}3t VALL {n~1)st VALUH COSINES
DISCRETE CONVERT C0sa 1
DR INPUT |84] FUNCFIONS | OF SiNe| p,q,,r q vr |H DRAG T |d Ml By 2
3 c wm FUNCTION | OF 1,2,3
VARIABLES a |8 |G |a Iy| ms o) 3 12
Mo | gq) Iyl ny UL YW, Py, F {n-1)st VA nl,2,3,
FuncrionsTor BJ |n 8 L 12,3
Mo | q
FUNCTION GENERATOR DISCRETE
Me | = OUTRUTS
C c' 78 FUNCTIONS
<L OF 1 VARLABLE 1
. 3
o L " FUNCTION |OF | mg
]
m 3 “ n BAROMETRIC
—3a7] B4 32 FUNCTIONS FUNCTION My H i PRESSURE
£ ~ *| 8% OF 2 VARIABLES e, a LAND-AIR SETTING
r Y, ¥, %
o F.4 CRASH-STALL AIRPORT
%aFa doren q 9 BECISIOSNS " ALTITUDE ELEVATION
— T, DISCRETE
24 N, 1 FUNCTION £ [AIR DENSITY) p | COMPUTATION OF ¥ %/C [h INPUTS
nly OF 3 VARIABLES DYNAMIC PRESSURE LRAC ANALOG
2 P
=1/2pV. CUTPUTS
a,B¥r A s eV
a uv,w
. vy COMPUTATION .
Moy VT a (SPEED OF SQUND} o | oF MACH NG. COMPUTATION OF:
V.
T
J Mo= < i
— {n=1)or VALUE (S:Igl a ANALOG
OF vy, SINe : Sa T QUTRUT
.
a
A
Vrs 5INg, COSa, a.8, 8
FUNCTION | OF
FUNCTIONS | OF FUNCTIONS [OF FUNCTIONS| OF FUNCTIONS| OF M FuNenEN [F B2
rn :2;_ b F:‘P_M h h FUNCTION | OF ny
n v vi |t RPM h
DRAG, T J T ME ! d Vi my
RPMN, r
DISCRETE % Fn Wy |MASS OF AIRCRAFT CENTER
INFOTS RPM % Fn YHRUST TAILPIPE 1 R
(bt VALLE TeMPeRATURE FUEL FLOW MASS OF FUEL T oF INSTRUMENTS |-
MOMENTS OF INERTIA |, J i GRAVITY A
Ty 'z X Xp:YpZy
HPLL ICING % FnT ICING % FnT I
ICING DISCRETE
INPUTS
FUNCTIONS OF
Hion DISCRETE ANALOG DISCRETE ANALOG
Mo, HCING | CORRECTIONS INPUITS QUTPLTS INPUT QUTPUTS
3a ANALOG ANALOG DISCRETE
Ba HYDRAULIC [OUTPUTS OUTPLT ouTPuTS
Bu.| PRESSLIE DISCRETE ICING
H > = auTPut
b
ANALOG DISCRETE DISCRETE DISCRETE DISCRETE ANALOG N
QuTPUTS INPUTS INPUTS INPUTS INPUTS OUTPUT ANALOG

Fig. 1

Main Information Flow

2.2 The F-100A Model

In the F-100A Simulation Program, it is necessary to employ two moving
axes systems. These are the body or airplane axis system and the stability
axis system, both shown in Figure 2.

The body axis system is a right-handed set of mutually perpendicular axes
whose origin is at the aircraft center of gravity. The orientation of the body
axes is fixed with respect to the aircraft, but the origin translatea slightly in the
x axis direction as the center of gravity shifts, The x and z-body axes lie in
the plane of symmetry of the aircraft.

The stability axis system is a right-handedaset of mutually perpendicular axes
whose origin is fixed with respect to the aircraft at the 35% M. A. C. point in the
plane of symmetry. Aerodynamic forces and moments are given in terms of this
fixed point. The x-stability axis is the projection of the velocity vector of the
aircraft on the plane of symmetry. The angle hetween the velocity vector and the
x-stability axis is defined as the sideslip p. The angle between the x-gtability
axis and the x-body axis is defined a8 the angle of attack a. The z-stability axis
is in the plane of symmetry of the aircraft.

The aircraft manufacturer's aerodynamic data is usually presented in the
stability axis system. This data is in the form of non-gimensional aerodynamic
coefficients. For an excellent discussion of aerodynamic coefficients and the
confusion that results from the lack of standard definitions, see reference 5 in
the Bibliography,

The following six equations for the three forces and three rotational moments

in the stability axis system are used for the simulation program:

Xs - Total Aerodynamic Force Along the Stability X - Axis

X, - pVaS [Cx(cz' Ma) + Cypppy(Ma) + C 510 (Ma,87) + C_ g
N Cx(LG)] (2.1)
Y, - Total Aerodynamic Force Along the Stability Y - Axis
V.. Sh vZs
Y, - P_%"___.._ CYP (a) + (ptr sina)+ f.z__ [cYﬁ {Ma)+p
*Cone (Ma,)+ 3R + cy(DT)] (2. 2)

10

PLANE QF
SYMMETRY

—

VELOCITY
VECTOR

sz

Fig. 2 Definition of Body and Stability Axes

11

Zs - Total Aerodynamic Force Along the Stability Z - Axis

2
P ;
Za = [Cz(W) {a,Ma,q) + Cz(H) {a, Ma, q) + CZ&I {(Ma) » 87

+ cz(DT) {a, Ma.)] {2.3)

Lﬂ - Total Aerodynamic Moment About the Stability X - Axis

2
pVTSb
]_,El = —t— [CI(SA) (a,Ma, q, 3A) + CISR (a,Ma, q) * SR

2
pVTSb
+ C!ﬁ (a,Ma,q) e« ﬁ] + - [Clp {c,Ma, q) ¢« (ptresin a)
+C, (a,Ma) + (r-pesin a)] (2. 4)
T

Ms - Total Aerodynamic Moment About the Stability Y - Axis

pV,%Sc
= —— [cm(cz,Ma, Q)+ Cpiyay Ma,hid) o+ C ey (a, Ma)

)(a)+C

+ CmsJ (a,Ma) « 8J + Cm(DC

m(LG) (@ + Cm(GE)]

2
pVTSc .
+ —_— [cmq (Ma, h)eq, + Con, (Ma, h) » u]
1

2 {2.5)
pV b
""ZTS_‘ Con(rpy Ma)

12

Ns - Total Aerodynamic Moment About the Stability Z - Axis

2
pV.ISb
N = o— [cn[3 (Ma,q) » B + cnaR (Ma,q) * S8R + C_5,(a,34)

2
pVT Sb

+ Cn(WA) (Ma.. hl{). B] + —Z—-——- [Cnp (u) . (P'{'T'Bin u)

(2. 6)

+ Cnr {(Ma,q) * (r-pesin o.)]

These three forces and three moments are then transformed into the body-
axis system by a simple coordinate transformation. At this point the effect of

the engine thrust and windmilling drag are taken into account,

T + X co8 a - Dragy,, - Z_sina (air) (2. 7)

T + Xsco a - DragWM - (FBR+FBL) (1and)

Y, = Y, (2.8)
Zb = (0. 053)eT + Xssin a+ Zacoa a (2.9)
Lb = Lscos a - Nssin a (2.10)
M, = M_- (1. 33)T - Zged (2.11)
Nb = Nscos a4+ Lssin a+ Ys'd {2.12)

The total forces along the body axes can then be used to compute the three

- L J
linear accelerations, u, v, and v:r, and the three rotational accelerations,

D, t‘;, and F:

- W4t vr - gsinf (air) {2.13)
i

-e
I

X

L -Hb— - wq) + vr (land)
i

13

1

(I"b t (IY - Iz]ql T {air)
1
X
p=
0 (land)
(M, + (54, 200)rp
T (air)
Y
;i]_ =
M, + (54,200)rp - (1250)(g + Zb/Mi) + AM
| T (land)
b4

AM ia the pitching moment due to nosewheel contact with

the ground.

(25,000){5 - 0) -Kog g <5°
AM =

0 o> 5°

(N, - (41,300)pqg + (420)v

I ‘ (air)
z

e
1

Ny - (41,300)pq + (6. 21)(Fgp - Fgy) - (1250)ur + (420)v {1and)

I
4

(2.14)

{2.15)

(2.16)

(2.17)

(2.18)

(2.19)

14

These six accelerations can then be integrated to get the corresponding

velocities:
u = f u dt (2. 20)
f\'r dt (air)
v = 1 {2.21)
{ 0 {(land)
fv.v dt (air) (2.22)
W= 4
u 8sin 8 {land)
[]
p = p dt (2. 23)
q = Iql dt (2. 24)
f r dt
r = (2. 25)
£f{8R) VT (nosewheel steering)

To include the effect of gravity, the orientation of the aircraft with respect
to inertial space must be known. A convenient inertia-axis system uses a z-axisa
in the direction of the earth's gravity vector and an x-axis tangent to the local
meridian and peointing in the direction of true north. The orientation of any axis
system with respect to the inertia axes can be deacribed by three angles known as
Fuler angles. The definition of the three Euler angles ia shown in Figure 3.

Ueging the Euler angles for the body axis system, the rate of change of the
Euler angles can be computed from the Euler angles and the components of

angular velocity.

15

PLANE FORMED BY y AND z

PLANE FORMED BY x; AND yy

x1 (NORTH})
_— !

PROJECTION OF x AXIS
ON PLANE FORMED BY

LINE OF
XI AND Y1

INTERSECTION
OF TWO PLANES

41

Fig. 3 Definition of Euler Angles

A=cost
m= COS A
n=Cosy
SUBSCRIPTS I, 2, AND 3 ON THE
1o INERTIAL AXIS
DIRECTION COSINES REFER TO THE X{,¥1 ORZ]

X1y Y1 AND 27 AXES RESPECTIVELY.

\nv
N
!

4

Fig. 4 Definition of Direction Cosines

16

] =q) cos ¢ ~rsind
b = "E']c;Te (p cosg+ 9 singsin ¢ + r sin 6 cos ¢)
y = %Té (ql 8in® + r cos ¢)

(2. 26)

(2.27)

(2. 28)

Theoretically, theae three derivatives could be computed and then integrated

to give the three Euler angles. However, in unrestricted simulation, using point-

. L]
by-point numerical calculation, the equations for ¢ and ¥ become indeterminate

when 0 approaches % 90°,

Consequently, in UDOFT another method is used to describe the orientation

of the body axis system in inertial space, the method of direction cosines.

The direction cosines are the components of a tranaformation matrix trans-

forming the coordinates of a point in one axis system to the coordinates of the

point in another axis system which is rotated with respect to the first:

Xy 4y) n | x
vi | =1 1, m, 2 B 4
I O e £, my "3 L%]

This relationship is also shown in Figure 4.

Direction cosines can be defined in terms of trigonometric functions of
the Euler angles:

.!1 = ¢o8 6 cos Y
m; = sin 6 sin$ cos ¥ - cos ¢ sin
n, = sin & cos ¢ cos ¥ + Bin ¢ sin Y

!2 = cos 9 gin ¢
m, = gin 6 sin ¢ 8in ¥ + cos ¢ cos Y

n, = 8in 9 cosé$sin § -sin¢g cos

(2. 29)

(2.

(2.

(2.

(2.

(2.

(2.

30)

31)

32)

34)

35)

17

!.3 = -gin B (2.36)
m, = cos o sin ¢ (2.37)
n, = cos § cosé (2.38)

Alternatively, nine differential equations may be used to generate the

direction cosines:

El = rmy - qn (2.39)
1.2 = rm, - qjn, {2.40)
1.3 = rm, - qn, (2.41)
r.n1 = pny - r!l (2. 42)
1';12 = pn, - r 2 (2. 43)
1213 = pn, - ©t, (2 44)
1.11 = qf, - pmy (2. 45)
1'12 = qf, - pm, (2. 46)
:'13 = qt, - pm, (2. 47)

There are 21 identitles which can be formed from the nine direction

cosines:
2 2 2
11 + m + ny = 1 (2.48)
2 2 2 _
IZ + m, + n, = 1 (2.49)
2 2 2
13 + my; + ny = 1 (2.50)

2
2

!
it3

2°3

1
1™

(2.

(2.

(2.

(2.

{2.

(2.

(2.

(2.

(2.

{2.

{2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

51)

52)

53)

54}

55)

56)

57)

58)

59)

60)

61)

62)

63)

64)

65)

66)

67)

68)

19

From this myriad of equations the University of Pennsylvan136 has

developed a very interesting scheme to compute the direction cosines.

The University of Pennsylvania method first computes EZ’ n.12, 1:12, 13,
r:‘13, and ;13 from the differential equations 2.40, 2.41, 2. .43, 2.44, 2.46, and

2.47. The {n-1)st values of the direction cosines are used on the right hand

side of these equations.

n,, £

These six derivatives are then integrated to give 12, m 2 g0 My, and

2’

Small drifts in the values of £ 3» M,, and n, are corrected by normalizing
them using the orthogonalization identity 2. 50.

The correction factor, € , is defined by the equation:

6=-1+(132+m32+n2J

3 (2.69)

! 1 '
it 30 My, and n, are the corrected direction cosines, then the corrected

values can be computed from the uncorrected values, £ 3» My, and n,, by the

3 3

equations:

!
' 3
£y = (2.70)

'Jl +€

m, = —a (2. 71)

ng = ——— {2.72)
«J l+¢
Since these equations are difficult to use due to the square root and the division,
the denominator is expanded around € = 0 and truncated to two terms. The

following equations are approximately true for small € :

t, = Q- 51, (2.73)
m'3 = 1-%-)m, (2. 74)

(2.75)

20

If 63 is defined as 2 - € then these equations further reduce to:

' 53

.!3 = .!3 (2.76)
1 63

v 63

T3 T T M (2.78)

The 63 in these equations is computed using the formula:

€,=2-€ =2- | -1+02+m%+n?) (2.79)
3 3 3 i

{2.80)

The procedure used by the University of Pennsylvania is to compute 63

using equation 2.80. This value is then used in equations 2.76, 2.77, and
! 1 1
2.78 to compute values of the corrected direction cosines, 1 3+ Mg, and n,.
| 1 I
Now that 13, m,, and n, are orthogonalized they may be used to ortho-
"
3
identity 2.56. This equation can be solved for either { s My, Or D
1 1

1 r
gonalize £ R and n, with respect to !3, mg, and n This is done using

2" The equa-
I
tion for one of these direction cosines will have either 13, m,, Or n, respec-

tively in the denominator of the right hand side. In order to avoid a zero
1

3
assuming for example that n, is the largest, would be:

1 1
denominator, the largest of 13, m,, orn is chosen. The equation used,
1

2,2 , -m_,m
*
n, = 2222 (2. 81)
2y
*
Next, this set, £ s T, and n,, is orthogonalized using identity 2. 49 in
the same way as 13, mg, and n,:
2 2 *2

62.:3'(12 + m, +nz) (2.82)

21

' EZ
' €y
' EZ s
"z T ™2 (2.85)

Now the last three direction cogines, !1, m,, and n;, are computed making
use of equations 2. 60, 2.63, and 2. 66:

1 1 ! 1

11 = m,n, - mgn, {2.86)
1 1 1]

my = n,!3 - n312 {2.87)
1 1 1 1

n, = 12m3 - 13m2 {2.88)

Since .!1, m,, and n are computed using direction cosines that are ortho-
gonalized, the set 11, m,, and n, is also orthogonalized both with respect to
each other and with respect to the other direction cosines.

This completes the aerodynamic part of the problem. Next, the new values

of the feedback parameters are calculated from their present values and the

velocities:
*
2 2 2
1 u +v o+ w
Voin) = 5 [VT(n-1)+ VoD] (2. 89)
gin o = ‘J— &~ o (rad.) (2.90)
T
u
CO8B @ = re— (2.91)
vl":['
tanp = % & B (rad.) {2.92)

* This is an approximation to the formula VT(n) = ‘Juz + v Wz . Fora
derivation of this square root algorithm see Reference 7 in the Bibliography.

22

v

Mach = T (2.93)
a

¢ - sing(n) -sina {n-) (2. 94)

At

In the next routine, the various altitudes used by the program are computed.
First, the two main altitudes, which are pressure altitude and true altitude
above the ground, are computed. Both of these altitudes are computed by inte-~
grating the rate of climb on each cycle and taking into account original airport
elevation and present ground elevation. The pressure altitude is then modified
by a non-linear function of Mach no. and altitude to give the indicated pressure
altitude, which is then converted to an analog voltage and sent to the pilot's
altimeter.

The engine parameters, which are computed next, are second only to the
aerodynamic equations in complexity. In the engine computations, engine
speed, windmilling drag, thrust, fuel flow, and tailpipe temperature are com-
puted as non-linear functions of Mach no., altitude, and pilot throttle setting.

In addition, all of these parameters are subjected to a first -order time lag
to slmulate the few seconds delay time between pilot action and engine response.

The instructor, through his coneole, is able to specify any one of several
icing rates. The effect of icing is to decrease the thrust and increase the fuel
flow and tailpipe temperature. The icing routine performs the necessary cal-
culations.

Next the mass of fuel in the tanks, total mass of the alrcraft, location of
the center of gravity, and moments of inertia are computed. The moments of
inertia about the x and z axes are functions of the mass of fuel; the moment
of inertia about the y axis iz considered constant.

The F-100A has two independent hydraulic systems as well as an emergency
system. The average hydraulic pressure is computed and compared with the
pressure required to actuate the control surfaces of the alrcraft. If the avail-
able pressure is insufficlent, the pilot's controls, such as the stick and rudder,
are frozen in place. The Instructor can cause either or both systems to fail
in order to test whether the pilot knows the correct emergency procedures.

The instrument calculations are the next routine in the program. This

routine prepares the outputs to the pilot's and Instructor's instruments.

23

Typical instruments are normal acceleration, indicated airspeed, Mach num-
ber, ball angle, rate of climb, ground speed, and gyro-horizon. These cal-
culations are complicated by the fact that most of the instruments are not
linear. The analog voltage necessary to drive the meters in usually a non-
linear function of the variable.

The last routine of the simulation model used is the land-air-crash
decisions. In this routine the program decides whether the aircraft is in the
air, on the ground, about to stall, stalled, or crashed. The proper discrete

cutputs to the instructor are set accordingly.

Coutrails

Approved for Public Release

CHAPTER I
DESCRIPTION OF THE TX.O FLIGHT SIMULATION PROGRAM

A substantial amount of time was spent in programming the full F-100A
problem in a language very similar to the TX-O language. The reasons for
expending this effort are threefold: 1) To galn familiarity with the specific
digital operations that must be carried out to effect a solution of the complete
aircraft model. This information has been analyzed and used as a guide for
recommending improvements in the TX-O capabilities. 2) To verify the
fact that a computer of the TX-O class is adequate to solve the F-100A
problem on a real-time basis. 3) To have a quantitative standard avail-
able againgt which to compare the performance of any proposed logical
alterations.

It is necessary at this point to elaborate on the instructions used for
this all-digital program. With the exception of four orders, the instruc-
tions used are those that are either operating now or are scheduled for
installation on the TX -0 in the late summer or fall of 1961 8 A brief
description of the TX -0, as well as a list of the instructions to be available, is
presented in Appendix I. The four instructions not included in this list are
also scheduled for eventual inclusion in the TX-O order code, although not

with the execution times shown. The instructions are:

mpy fraction multiply the contents execution time
of the accumulator by the con-

multiply tents of the live register, 25 psec.
leaving the product in the
accumulator,
avef fraction divide the contents of execution time
divide the accumulator by the con~ 40 psec,

tents of the live register,
leaving the quotient in the
accumulator.

25

26

ars n shift the contents of the execution time
accumulator right n

accurmulator places. 12 psec.

right shift n

places

als n ghift the contents of the execution time
accumulator left n

accumulator places. 12 psec.

left shift n

places.

The high-speed multiply command is absolutely necessary for an all-
digital simulation program because of the large number of multiply operations.
The sghift right and shift left commmands are required by the type of scaling
used in the problem. The divide command is necessary, but the impor-
tance of the speed of the command is open to question since only a few
divide operations are used.

Since one of the primary purposes of this study was to verify the
ability of the TX-O to golve the same problem as was solved by UDOFT
and since the UDOFT flow charts were avallable, 2 it wag decided to use
the exact UDOFT model for most of the program. The TX-0O procedure
did deviate from the UDOFT procedure in two important aspects. The first,
and most impoertant deviation was in the method of aerodynamic function
generation. The UDOFT model used sums and products of functions of cne
variable to simulate functions of more than one variable. For the TX-O
program the original North American Aviation Data was used. ? Therefore,
if an aerodynamic coefficient appeared as a function of two variables in the
manufacturer's data, then the TX-O program generated that function of two
variables. More will be said about the relative advantages and disadvantages
of both of these methods in Chapter IV on Function Generation. Function
generation was accomplished on the TX-O by linear interpolation between
stored discrete pcints.

The method of Integration used by the TX-O program also differed from
the method used by UDOFT. UDOFT used a quadrature formula developed
at the University of Pennsylvania called Mod Gurk.10 This method uses the

27

past three values of the variable plus the past three values of the derivative.
The TX-O method uses only the past value of the variable plus the last two
values of the derivative. The experimental justification for using this
trapezoidal integration formula is presented in Chapter VII.

The complete TX-O program is too lengthy to incorporate in this
document, but the results of an analysis of the program are summarized
in Tables 1 through IV, Table ! gives the normal and worst-case
timing for each individual routine of the program. The normal timing is
the amount of time that a given rcutine would require on the average with
no aircraft fallures and with none of the variables approaching their maximum
value. The worst-case timing corresponds to that set of conditions which
result in maximizing the amount of time required to go through a particular
routine. The worst-case path of any particular routine is chosen without
consideration for the conditions required for the worst-case path of
another particular routine. In fact, the worst-case paths of two routines
are very often quite contradictory. The worst case of one routine might
require the aircraft to be on the ground with nosewheel steering employed
while the worst case of another routine might require the alrcraft to be
going to a speed greater than Mach 1. 1,

Table II gives the breakdown of worst-case timing by operations.
Table 111 gives the breakdown of memory requirements by routines, Table
IV gives the breakdown of memory requirements by operations.

Note that Table IV often contains more routines of a particular type
than does Table II. For example, Table IV lists 78 functlona of one
variable in memory while Table II 1lists only 48 functions of one variable
in the worst-case timing. This is due to the fact that in many places in the
program there are alternate pathe both of which contain separate functions
of one variable. The number of functions in the worst-case timing includes
only those functions in one path while the total memory requirement includes
all the functions in both paths.

It should also be noted that many operations in Tables I1 and IV are
included in more than one table entry. For example, the multiplication
instructions used for function generation are listed twice, once under func-
tion generation, and once under multiply commands.

The total of the worst-case times for each routine is 53. 915 milli~

gseconds which means that under these rather improbable circumstances the

28

program could not be run on the TX-O at twenty solutions per second. The
various logical improvements suggested by the program are treated in
detail in the following chapters. Estimates of the savings in time and

memory are cited for each Improvement suggested.

29

TABLE

I

Program Timing

Normal Running

Worst-Case

Time Running
Routine in Time
peecs. in psecs.
Convert Input Variables 1797 2163
Aerodynamic Coefficients 15499 15883
Total Forces and Moments -

Stability Axes 1102 1251
Total Forces and Momenta -

Body Axes 1188 1188
Accelarations 2189 2945
Velocity Vectors 1606 1906
Direction Cosines 4074 4074
Mach, Dynamic Pressure, Airspeed,

etc. 1734 1998
Altitude 2808 2988
Engine RPM 1669 1813
Percent Thrust 1000 1431
Thrust 1558 1682
Ieing 479 509
Fuel Flow 2186 2336
Tailpipe Temperature 1069 1247
Mass of Fuel 613 1177
Mass, Center of Gravity, and

Moments of Inertia 1022 1022
Hydraulic System 3206 3398
Inatruments 3545 3758
Decigions 408 714
Governing Contreol 432 432

TOTAL 49184 53915

30

TABLE 1]

Breakdown of Worst«Case Timing by Operations

Type of Operation No Time {(usec) Yoof Worst-
Case Time
Level Select and Slope Generation 13 4420 8.2
Generation of Functions of 1
Variable 48 5232 9.7
Generation of Functions of 2
Variables 31 9031 16.7
Generation of Functions of 3
Variables 1 708 1.3
Miscellaneous Operations 4334 8.0
Total for Function
Generation 23715 44.0
Decisions excluding Discrete
Inputs 130 4422 8.2
Discrete Inputs 51 1680 3.1
Total for Decisions 182 6102 11.3
All Multiply Commanda (25 psec.) 393 9825 18.2
Analog Outputs 29 1392 2.6
All Division Commands (40 usec.) 33 1320 2.4
Integrations 12 1236 2.3
Analog Inputs 576 1.1
Discrete Outputs 432 0.8

31

TABLE 1I1

Memory Requirement

Routine Instructions Data
Convert Input Variables 239 94
Aerodynamic Coefficients 1136 1934
Total Forces and Moments -
Stability Axes 91 13
Total Forces and Moments ~ Body Axes 91 8
Accelerations 226 24
Velocity Vectors 234 45
Direction Cosines 294 38
Mach, Dynamic Pressure, Airspeed, etc. 190 43
Altitude 300 88
Engine RPM 290 94
Percent Thrust 120 61
Thrust 215 102
Icing 42 6
Fuel Flow 356 133
Tallpipe Temperature 128 70
Mass of Fuel 102 15
Mass, Center of Gravity, and Moments
of Inertia 67 29
Hydraulic System 302 112
Instruments 274 85
Decisions 95 32
Governing Control 90 8
4882 3034

Total Instruction and Data

7916

32

TABLE IV

Memory Requirement Breakdown

No. Registers % of Total
Used M
Type of Operation Re;ﬁg:g
by Problem
Instructions 4882 4882 61.7
Function Table Storage 2274 28.7
Breakpoint Table Storage 15 91 1.1
Parameters and Constants 669 8.5
Breakdown of Inatructions by Operationa
Level Select and Slope Generation 15 285 3.6
Generation of Functions of
1 Variable 78 624 7.9
Generation of Functions of
2 Variables 32 672 8.5
Generation of Functions of
3 Variables 1 51 0.6
Migcellaneous Operations 276 3.5
Total Function Generation 1908 24,1
Decisions Excluding Diacrete
Inputs 152 467 5.9
Discrete Inputs 57 171 2.2
Total Decisions 209 638 8.1
Integrations 12 131 1.7
Analog Outputs 29 116 1.5
Diascrete QOutputs 15 91 1.1
Analog Inputs 8 56 0.7

CHAPTER IV

FUNCTION GENERATION

4,1 Introduction

Asg can be seen from Table II function generation is the most time -
consuming operation in the F-100A program, requiring 44% of the unmodified
worst-case running time. The memory used for function generation is sub -
stantial also, 24.1% for function generation instructions and 29. 8% for func-
tion and breakpoint tables.

Non-linear functions occur mainly in four different places in the program:

1) Aerodynamic coefficients.
2) Engine computations.
3) Hydraulic system.

4) Instruments,

The method of handling aerodynamic coefficients on the TX -0 differed
from that used by UDOFT. It is felt that the method used for the TX-O is
more versatile and accurate. In order to make a meaningful comparison,

however, it is necessary to go into detail on both methods.

4.2 Description of the UDOFT Function Generation Method

The analysis of non-linear functions used by UDOFT was actually done
originally by Melpar. Melpar manufactured a number of analog trainers for
the F-100A, and their method of handling function generation was naturally a
method well suited to analog computation. Functions of more than one variable
are difficult to generate on analog computers, so Melpar reduced functions of
more than one variable into products and sums of functions of one variable,

As a specific example, the coefficient of pitch due to speed brake deflection
will be used. In Figure 5 a, b, and ¢, three UDOFT functions, fZO(Ma‘)‘
fZl(Ma), and fz(a), are E:hown.11 UDOFT calculated this coefficient using
the formula:

Cm = fZO(Ma) + le{Ma)-fZ(u) {4.1)

&7

33

aoooa}-

DQ006-

Q0004

34

5 TTdz T da T ';JI}O'I.'Z'I.%'I.'G'I.'B
T Ma) MACH NO, —

~00eo2

00006

=-0.0008

=Q.0010

000

=000

- {b)

s (a)—

- i 4 L o } 4 I
v L T T T T

al

D
a {DEGREES) —=
(c)

Fig. 5 Functions of a Single Variable Used by UDOFT for C'"SJ

35

This computation has been performed for geveral values of Mach No.,
and the results are shown in Figure 6. The function plotted is actually
cms_]'. 8JJ.‘TI:'J.
which on the F-100A is 50°.

By way of comparison, Figure 7 shows the original aircraft manufac-

ax where SJmax is the maximurn speed brake deflection,

turer's data. 7 The function plotted is also C *3J and the scales
Mgy ~ max

3
are the same as in Figure 6.

It can be seen that the UDOFT (originally, Melpar) data in Figure 6
represents a linearized form of the aircraft manufacturer's data in Figure 7.
Whether the UDOFT representation of this ccefficient is adequate or inadequate
is a matter for an aerodynamicist to decide. The only purpose for making the
preceding comparison is to point out the relative advantages and disadvantages
of the UDOFT method.

Certain characteristics of the UDOFT method are apparent from a study
of Figures 5, 6, and 7 First, the component functions of a single
variable bear little relation to the composite function of two variables, parti-
cularly the functions of Mach No. Secondly, it is not at all obvious, using this
method, how one would go about synthesizing the function of two variables to a
higher degree of accuracy. It might be done by increasing the number of
breakpoints of the component functions or it might be necessary to increase the
number of component functions. If additional functions were used, the original
functions of one variable might also have to be changed. Clearly, there is a
considerable amount of data analysis necessary in going from the piecewise-~
linear representation of a function of more than one variable to the component
functions of one variable used to generate it.

Another aspect of the UDOFT analysis is that going from the manufacturer's
aircraft data to the piecewise-linear function of two variables is also difficult.
It is obvious that the allowable aerodynamic approximations have been taken
into account in going from Figure 7 to Figure 6. One such factor might
be the possible range of values of angle of attack corresponding to a given
value of Mach No.

The method of storage and computation of the functions of one variable in
UDOFT differs from that used by the TX-O program. As an example, consider

fzo(Ma) reproduced in Figure 8 for convenience.

36

Ma = 1,20 Mh% ‘\ |

]

r 002 - -
Mo~ .70 Ma =70
L .
T:'
- 2 001+ —
-
2
2
| g _
Ma = 100
=3 —Fr 4 e
- - - DEGREES)—=-
Mg «0.80 ot ! Ma =120
| Maxo20_
T NOTE: -oal 7

FUNCTIONS CONSTANT TO = -40"
FOR ALL VALUES OF MACH NO,

- - 1

Mo - 0.80 & 0.20
i —— N ——— T ———————— T ——

Ma-1.00

Fig. 6 C,_ . Used by UDOFT as a Function of Two Variables

5J

37

T T T [T I T T I I T T

Fig. 7 Aircraft Manufacturer’s Data for C |

5l

38

byle — —
1 SLOPEsm,
=
bz }
Xy
by SLOPE = m, X| Xz X3
X —r

Fig. 8 Notation Used for Describing UDOFT Function Storage

Referring to the notation used in Figure 8 the table storage for fzo(Ma) in
UDOFT would be: .

It can be seen that a function with n breakpoints would require 3n-2

registers of storage.

39

Agsuming that the independent variable x is in the ith zone, i.e.,

X< Xg x; the value of fzo(x) would be computed by the formula:

+1’

fZO(x) = bi+1 + (x - xi) m, {4. 2)

+1

There are two significant points about the UDOFT method of function
storage. First, each individual function of one variable carries its own break-
point table. fZIIMa.} need not have the same breakpoints in Mach No. as does
fZO(Ma.), and, in fact, an investigation of Figures 5a and 5b shows that
the breakpoints are different. This is both an advantage and a disadvantage.
The advantage lies in the versatility of independently specifying the break-
points of each function. The disadvantage lies in the extra table storage and
the extra computation time required. The extra computation time is involved
in an operation, which, for the purpose of this study, will be called level
selecting. Level selecting is the operation of determining between which two
breakpoints the present value of a variable lies. In the UDOFT method, level
selecting must be carried out for each function. More will be gaid about level
selecting later in this chapter, since it is also an important part of the TX-O
method of function generation.

The second significant point about the UDOFT function storage is that the
slopes, my, m,,..., m_, are also stored. The value of any slope represents
redundant information since any particular slope can be computed using other

information that is given in the table:

b, ., -b,
mi - i+l 1 ‘4. 3)
X. - X.
i i-1

The advantage of using additional memory to store slopes lies in the fact
that the computation proceeds more rapidly, The UDOFET computer has a
relatively slow divide instruction (105 psec.),12. and the extra time to calcu~

late the slope for each function would be considerable.

4.3 Description of the TX -O Function Generation Method

In contrast to the UDOFT method, the analysis of the manufacturer's data

required for the TX -0 method for the illustrative coefficient CmS consists
J

simply of selecting breakpoints for o and Mach no. and in reading off and

40

storing the values of C for thease particular points. If, in general, there
m
87
are n breakpoints in a and m breakpoints in Mach no., then the table of values
of the function at these discrete points will be m times n registers long. As an

example, Figure 9 shows a linearized form of Cm «8Jobtained by using eight
AS
breakpoints in a and six breakpoints in Mach no. The encircled points would be

stored in a table which in this example would be 48 registers long.

In computing the value of a function of two variables, level selecting is
first carried out for both variables. The tables of breakpoints are stored
separately from the function table in the form given below, which requires an

additional ntm registers.

o

n breakpoints for the variable x

Yo t m breakpoints for the variable y

Ym "1 P

In the TX-0O method, no slopes are stored. When the level selecting is
completed for a particular variable, x, the output is not only the zone i, such
that x, < xg X1 but also the value of the ratio, (x-xi)/(xiH -xi). This value
is stored for use by the part of the program that actually computes the inter-
polated value of the function.

41

L Y T)

[}

I

/ﬂ Ma= 0.20”

1 \ BREAKPOINTS IN o ,’

/ -40°
\ ~20°
-1g°

-

\ =

+10°
V\ us

FUNCTICNS CONSTANT TO qu—-40"
FOR ALL VALUES OF MACH NO. 3

<
“n —00!
40
2
5
-002+
-0.03¢

4
Ma=i70 J
Ma=1.40 9
Mo« .40 —}
Mar170 *
-20 30
| NOTE:

Ma=080 _‘L

l:ln-l.(}td‘f

Fig. 9 C'“BJ Used by TX-O as a Function of Two Variables

42

The notation to be used in describing functions of two variables for the
TX-O program is that the value of the function at the point x=X, and y=yj is
fi, i The method of generating a function of two variables, x and y, assuming
that x is in zone i1 and y is in zone j, is a linear interpolation in two variables:

¥y-Y:

£y =fx'+(fx'+1-fx')—_—;
’Y ’J !J ’J Yj+1-yj
where
x-X,
f . =1 _+ (f, =1,) ——=—
SRR R R X417 (4. 4)
X=X,
e, i1 = i e T Ui, 50 - 6 50 1o,

+1

This method is shown graphically in Figure 10, Notice no divisions are

required in this computation since (:-:-xi)/(xi+1 -xi) and (y-yj)/(y.

41 -yj) were

computed and stored by the level select routine.
Fitrj+1
Fe, 11

fi i+
fx,y

fitnjt

_f
X, | I
[O, |
h) | | Y-y,
| | I) et)
’ | | ”Hl'yj aj+E T
i | '
| I |
1 t I
Fy 4 'y X
X A 1
—x ZONE 2 | —]

Fig. 10 Two Variakble Linear Interpelation

43

Before discussing memory requirements and program time, some
comments on the accuracy of the TX -0 method of function generation are
in order. It can be seen that for a continuous function of two variables, the
accuracy can be increased by simply increasing the number of breakpoints.
From an examination of Figures 5 and 6 itis clear that with four break-
points in a and seven breakpoints in Mach no. the two different methods would
yield identical results. By taking a few more breakpoints in a, the TX-O
method could be made much more accurate than the UDOFT method.

Thus, as far as accuracy is concerned, the TX-O method is easily
extended in accuracy by the use of additional breakpoints, whereas extending
the accuracy of the UDOFT method involves a much more complicated
analytical procedure.

Another aspect of the accuracy problem is the modification of functions
after the program is running. Often the aircraft manufacturer issues revised
aerodynamic data while the aircraft is under development, and even after the
aircraft is operational, as more reliable information becomes available.
Other changes in aerodynamic data result from major modifications in the air-
craft. The TX-O method minimizes the difficulty in incorporating the modifi-
cations into the program. Usually the same breakpoints can be used so that
all that is necessary is the reading off of new values of the function from the
new data and changing the function table in the program accordingly. Incor-
porating modifications into the UDOFT method is a much more difficult task.
Quite probably all of the original data analysis would have to be repeated for
the particular coefficient altered.

The reason for disassociating the level-selecting routine from the function
generation routine in the TX-O is that the same breakpoint table is used for
more than one function. It is possible, if enough breakpoints are used for a
particular variable, to use only one set of breakpoints for every function that
depends on that variable. For the TX-O program, each of the fifteen independ-
ent variables used in function generation has only one breakpoint table of no
more than eight breakpoints. This method is admittedly less versatile than
the UDOFT method of associating a breakpoint table with each function; how-
ever, there is no inherent reason why the TX-O program could not use more
than one breakpoint table for any particular variable. In the extreme, the
TX-O program could have a breakpoint table for each variable for each func-

tion; however, this extreme should never be necessary. In addition, there is

44

no reason to limit the number of hreakpoints for a particular variable to
eight. However, it should be realized that as the number of breakpoints for
a particular variable increases, the size of all the function tables of the func-
tions that depend on that variable also increase by the same factor. For
example, assume that the function tables of all the functions that depend on a
now require 1000 registers and the number of breakpoints in a is ten, Then if
the numher of breakpoints in a was increased to fifteen, keeping the same
number of breakpoints for the other variables, the function tables would re-
quire 1500 registers.

If the number of breakpoint tables for a particular variable were to
increase, the greater amount of time required by level selecting would be a
factor in considering the advisability of such an increase.

In the TX.-O program, level selecting for a single independent variable
and generating the ratio, (x-xi)/(xi+1-xi), requires a maximum of 340 usec.
This times the thirteen independent variables encountered in the worst-case
timing vields the 4. 420 msec. figure given in Table II. This assumes only
one breakpoint table for each variable. The figure of 340 psec. for level
selecting does not depend on the number of breakpoints in the table for the
assumption is made that the variable lies in the same zone it was in during the
previous solution cycle or in cne of the zones on either side of this zone. If
a method is used that does not depend on a knowledge of the previous zone,
then level selecting by a linear search routine would require, in the worst case,
188 pesec. + 48n psec. where n is the number of breakpoints. If n is equal to 8,
then this method would require a maximum of 572 psec. If n is very much
larger, the time required becomes prohibitive.

¥From the preceding discussion it is apparent that an additional 340 psec.

would be required in the worst case for each additional breakpoint table.

4.4 Comparison of Memory Requirements

In order to compare the relative merits of the UDOFT and TX~O function
generation techniques, the computation time and memory requirement for the
generation of the F-100A aerodynamic coefficients were analyzed for each
approach.

The independent variables used for the TX-O aerodynamic function genera-
tion and the number of breakpoints associated with each variable are listad in
Table V.

45

Variable Number of Breakpoints
a 8
M 8
CL 8
37 6
h 5
5 A 5
q 4

Table V Number of Breakpoints Used in the TX-0O Program for
Variables Used in Aerodynamic Coefficlents

All variables use eight breakpoints except where the form of the manu-
facturer's data makes this impossible.
storage and breakpoint storage requirement for the TX-O approach ie 1675

registers. This is made up of one function of three variables, twenty-eight

The total aercdynamic function

functions of two variables, and fifteen functions of one variable.

number of breakpoints for the TX-O method is 6. 9 breakpoints per function
For the UDOFT method there are 1000 registers required for elghty functions
This infor-

of one variable, with an average of 4. 8 breakpolints per function.

mation is summarized in Tahle V1I.

The average

UDOFT TX-0O
Functions of 1 Variable 80 15
Functicons of 2 Varilables - 28
Functions of 3 Variables - 1
Total Memory Required For
Aerodynamic Functions and
Breakpoints 1000 1675
Average Number of Break-
points per Function 4.8 6.9

Table

V1

UDOFT and TX-~0O Data Storage for Aerodynamic
Function Generation

46

It can be seen that the TX-O uses 67. 5% more storage than UDOFT. How-
ever, the TX-O method uses 44% more breakpoints on the average than does
the UDOFT method. If the number of breakpoints for all variables is increased
by a certain percentage, the total function storage increases by more than that
percentage. Therefore, a much more valid comparison is to compute the
storage requirement for the TX-O method using the UDOFT average of 4. 8
breakpoints per function. On this basls, the TX-O storage requirement is only
859 registers, actually 14.1% less than UDOFT required. This figure assumes
only one breakpoint table per variable which probably would not be sufficient
for this reduced number of breakpoints. However, even with more than one
breakpoint table per variable, the TX -0 method, scaled down to UDOFT
accuracy, still compares favorably with the UDOFT method in memory require-

ment.

4.5 Comparison of Operating Times

Comparisons of actual running time for function generation between the
TX-0O and UDOFT are not particularly meaningful due to differences in order
code and speed of operation between the two machines. Such a comparison
does not afford a valid means of evaluating the two methods of generating
functions. For this purpose, the time required by the TX-0O to carry out the
computations using the UDOFT method of function generation will be compared
to the time required by the TX-O using the TX~0O method of function generation.
In the TX-O program, a function of one variable requires 109 psec. For just
the aerodynamic functions alone, the TX-O would take 8. 720 msec. to cal-
culate the 80 functions of one variable used by UDOFT. The TX-O takes
10. 846 msec. to calculate the non-linear functions used for aerodynamic
coefficlents employing the TX-O method. Thus, the TX-0O method is 24. 4%
slower in just calculating the functions themselves. The times given above do
not constitute the total time for generating aerodynamic coefficlents, however.
For the UDOFT method, it is necessary to add to the above estimate the time
required to multiply and add the functions of one variable to form the composite
aerodynamic coefficients. The time given above is only for the calculation of
each of the individual functions. The additional time required to combine func-
tions would decrease the advantage of the UDOFT method over the TX-0O method

in computation time.

47

4.6 Resgults of Comparisons

The comparison of the two types of function generation reduces to a con-
sideration of four factorse. The first two are running time and memory storage
requirement. The memory storage requirement is approximately similar when
the accuracy of the TX-O method is reduced to the same level as that of the
UDOFT method. The UDOFT running time seems to be slightly less than the
TX-O running time, the difference probably being somewhere under 10% The
other two considerations are slightly more abstract. The accuracy of the TX-.Q
method has been scaled down to the UDOFT level for the storage requirement
comparison, However, the running time is independent of accuracy. If the full
number of breakpoints is used for the TX-O method, thereby increasing the
storage requirement, the running time for the TX-O would still be only about 10%
greater than the UDOFT method running time. The TX-O method accuracy in
this case would be significantly better. The last factor is perhaps the most
abstract, and yet for some applications the most important. The amount of
preliminary data processing required and ease of modification of the existing
program are clearly factors in which the TX-O method excels over the UDOFT
method.

In conclusion, it would appear that for problems where the accuracy require-
ment 1s known in advance and is not stringent, and where preliminary analysis
and ease of modification are definitely not important factors, the UDOFT scheme
would probably be acceptable, especially if running time were a critical factor.
In other problems where the accuracy might have to be increased or where
there was a good chance of future modifications being required, the TX-O

method would be preferred.

4,7 Modification to the Order Code for Function Generation

There are only two baslc operations in function generation, level selecting
and generating a function of one variable by linear interpolation between dis-
crete points. Functions of two and three variables just inveolve repeated appli-
cation of the single function generation procedure.

A convenient instruction for speeding up the level-selecting process is

13 The command recommended

incorporated in the Bendix G-20 order code.
for the TX-O which will be called level select, cxs x, conslsts of a repeated

add and test sequence. First, the contents of the effective address are added
to the accumulator. The effective address is formed by adding the instruction

address, x, to the contents of the index regiaster. If the contents of the accumu-

48

lator after the addition is positive, then the magnitude of the index register

is decreased by one, the live register is placed in the accumulator, and the
instruction is repeated. Of course, on the next cycle the effective address is
different since the index register has changed. This process continues until
the result in the accumulator is negative at which time the instruction following
the cxs x instruction is performed. A block diagram of the operation of the

command is shown in Figure 11.

C{X+C{XR
A ol C{LR)=C(AC)

4

C(ACHC(MBR)
— C{AC})

yes

Dacrease mognitude
of C{XR) by one.

Take naxt
instruction

l

Fig. 11 Operation of the Level-Select Instruction, cxs x

The instruction would take 12 psec, for the first operand, the 6 usec. for
each additional operand until the sequence terminates.

The following sequence of instructions performs the level-select operation
using the zone from the previous sclution so that the iteration goes through
three trials at most. The notation used is that x is the variable on which the
level selecting is performed, i is the zone number from the last solution
cycle, and the zone number for the present solution cycle is k which will differ
from i by at most one. The comment following each instruction refers to the
contents of the registers affected by the instruiction after the instruction has

been performed.

49

Address Instruction Comment
tag
beg, 1dx xir clxr) = 4
aux {1 c{xr) = i+l
llr {x c(lr) = x
lecc clac) = -x [lcc=cla + com +1mb + pad]
alr c{lr) = -x [alr =amb + mbl]
cxs xtb level ~aelect command
when the repeated sequence terminates:
clac) = X -x and c{xr) = k
c{lr)=x; - x and c{ac) ==x;
ladUcom [iad =amb +(mbl +1mb) + pad + cry]
adx xtb+1 c(g.c; T i cae)
cllr) =Xj11 - x%; an clac) =X - X3
1alU it i i
allcom [ial = amb + cla + (mbl +1mb) + pad]
® = -
dvf clac) = (x-xi)/(xﬂl xi)
sto Bx c(sx) = (x-xi)/(xi_l_l-xi)
end, sxa xir c(xir) = k
Address Data Comment
tag
xtb, Xq
x1
*2
x breakpoint table
*7
8x, - storage for ratio (x- 1)/(xi+1-xi)
xir, i x zone from previous solution cycle

* dvi = fraction divide, an assumed order discussed on p. 25

50

This sequence requires 190 pysec. in the worst case where the zone num-
ber has decreased by one from the previous cycle. Compared to the 340 usec.
that level select takes with the present TX-O order code and a 40 psec. divide,
the new command would save 150 usec. for each level select or 1950 pusec. for
the thirteen level selects in the worst case.

If additional breakpoint tables were required, they would add 190 psec.
each to the worst-case running time of the program.

The level select command defined here assumes that the variable lies
within the allowed range. This could be checked elsewhere In the program
when the variable 18 calculated.

The operation of generating a function of one variable after the level
selecting is done appears to be too complicated to consider implementing by
a single instruction. The time presently required for generating a function
of one variable is 109 psec. of which 24 usec. represents Instructions which
would satill be needed even if a single-inatruction function generate were
used. 25 usec. of the remaining 85 psec. is taken up by multiplication which
will be discussed in a later chapter. Additicnal arithmetic instructions, such
as a clear and add instruction and a subtract instruction, also decrease the
amount of time required for this operation. These instructions will be dis-
cussed in the next chapter.

The conclusion is that the part of single function generation that would
adapt to direct implementation by circultry does not seem to be time-consum-

ing enough to warrant the additional controel circultry necessary.

4.8 Summary of Conclusions for Function Generation

The relative advantages and disadvantages of the TX-O method and the
UDOFT method of function generation are summarized below.

Advantages of the TX-O method over the UDOFT method:
1) The TX-O method is more accurate with the number
of breakpoints used for the F-100A problem.

2) The TX-O method requires less prellminary data

processing when the program is written.
3} The TX-O method can be modified more easily.

4) The accuracy of the TX~-O method can be extended

much more easily.

51

Advantages of the UDOFT method over the TX-O method:

1}

2)

3)

The UDOFT method would be about 10% faster than

the TX -0 method on the same machine.

The UDOFT method requires less data storage for the
number of breakpoints used. (If the accuracy of the TX-O
method is scaled down to the accuracy of the UDOFT
method, then the memory storage requirement is approxi-

mately the same.)

Each function has its own breakpoint table in the UDOFT
method.

Esptnadls

Approved for Public Release

CHAPTER V

MODIFICATIONS CF THE TX-O ORDER CODE

5.1 Introduction

From the familiarity gained by completely programming the F-100A
problem on the TX-O, the advantages of making certain modifications
became apparent.

The four modifications discussed in this chapter all save a considerable
amount of running time, and they would therefore be recommended for inclu-
sion in the order code of a computer for real-time simulation. Other possible
modifications that would save a lesser amount of time than the four discussed
in this chapter are discussed in Chapter VIII on Inputs, Outputs, and Decisions.
These other modifications cannot be definitely recommended since the amount
of time they save does not seem to justify the complexity of implementing

them.

5.2 Level-Select Order

One potential modification of the TX~O order code has already been discussed.

It is the level-select order introduced in the last chapter.

CX8 X Find the first operand c(z) which when execution time
added to the accumulator results in a

level-select negative accumulator. Decrease the 6+6bn psec.
magnitude of the index reglster by one
after each unsuccessful iteration. n is the number

of iterations

z = x + c{xr)

The use of thia instruction saves 1. 950 msec. if there are thirteen level selects
and each represents a worst case. If additional breakpoint tables are used,
each additional level select and slope generation would require 190 psec. as
compared to the 340 psec. required for a level select without the special

order. The savings in memory using the level select command would be 105

registers for the fifteen level selects in the entire program. Each additional

53

54

breakpoint table would require an additional twelve instruction sequence as

compared to nineteen Instructions without the level select order.

5.3 Multiply Order

The TX-O has a five bit instruction code. Of the thirty-two possibilities,
the existing operate code structure eliminates eight, thereby leaving a maxi-
mum of twenty-four addressable commands. The future TX-0O order code
described in Appendix I includes eighteen addressable instructions, leaving
only six unused addresgsable commands. The original reason for making the
multiply command non-addressable was to conserve these few remaining
addressable instructions. However, an examination of the TX-O program
reveals that an addressable multiply command is practically imperative.

With few exceptions, every multiply instruction in the present program is
preceded by a load live register instruction. Both factors that are to be
multiplied are practically never in the arithmetic unit (accumulator and live
reglster) when the multiplication is to be performed. As a result, the multiply
is effectively a two-instruction sequence requlring 37 pusec. rather than a
single instruction requiring 25 psec. The multiply command entry in Table II
includes only the non-addressable multiply command itself. If the load live
register instruction were included, then the worst case multiply cperations
would require 14. 54] msec. or 27.0% of the worst case running time.

The multiply command suggested for inclusion in the TX -0 would be:

mpy x Fraction multiply the contents execution time
of register x by the contents ‘
multiply of the accurmulator leaving the 25 psec.

product in the accumulator

The savings in worst case time using the addressable multiply would be
the number of worst case multiplies times the operation time of a load live
register command., For 393 worst-case multiplies this comes to 4. 716 msec.
The memory savings of 453 registers is equal to the total number of multi-

plies in the program.

55

5.4 Load Accumulator Order

There are two other commands that the TX -0 does not pregently have
that would save an appreciable amount of time for this problem: The load
accumulator, or clear and add instruction, described in this section, and
the subtract instruction described in the next section. Both commands
would be indexable. Neither command is particularly unusual and, in fact,

most general purpose machines incorporate them in the basic order code.

lda x ce{x) — c{ac) execution time
load accumulator 12 psec.

lax x cl{xtc{xr)) — clac) execution time
load accumulator 12 psec.
indexed

The operation of a load accumulator instruction is actually simpler
than an add instruction since there is no carry. The accumulator would be
cleared at the beginning of the operand cycle of the instruction and when the
operand is available in the memory buffer repgister it would be partially
added to the accumulator. Since the TX-O is not an asynchronous machine
and the time gained by eliminating the carry could not be utilized, it might
be simpler on the TX-O to have the load accumulator instruction initiate a
full add. The only difference would be that for a load accumulator inatruc-
tion the accumulator is cleared before the memory buffer register is added
to it.

The savings in worst-case time using the unindexed load accumulator
instructions is 2. 352 msec. The memory saved is 230 registers. The
savings due to the indexed load accumulator instruction cannot be specified
independently of the savings due to the subtract instruction and will there-

fore be presented with the subtract instruction in the next section.

5.5 Subtract Instruction

Subtraction on the TX-O is presently accomplished by using an operate
command to complement the accumulator in conjunction with a subsequent

add command. This two-instruction sequence takes 24 usec. The following

56

\

subtract commands would be useful for the alrcraft slmulation problem,

particularly in the function generation routines.

sub x clac) - c(x) — clac) execution time
subtract 12 psec.

sux X clac) - c{x +ec(xr)) — clac) execution time
subtract 12 psec.
indexed

The subtract instruction can be implemented on the TX~C in any one of
three ways. The first 1s to complement the memory buffer reglster before
it is added to the accumulator. This is not a particularly good method, since
the memory buffer register cannot be changed until the operation of reading
the word back into memory i8 completed. This would require waiting until
very late in the cycle to complement and add. A better way might be to
complement the accumulator before the memory buffer register is added and
once again after it is added. This would not he difficult since the circuitry
to complement the accumulator is already there. The third method would be
to modify the add circuit to subtract also. For subtraction the partial add
proceeds as with addition. The subtract carry {called borrow for subtrac-
tion) differs slightly in functional form from the add carry but is propagated
in the same way.

The subtract indexed is used with the load accumulator indexed instruc-
tlon to save time in the function generation routines. The worst-case time
saved by both of these instructions is 2,172 msec. The savings in memory
is 215 registers,

A summary of running time and memory saved by all these instructions
is shown in Table V II.

Incorporating all the modifications proposed in this chapter would result
in a reduction in the total worst-case running time and memory requirements
gtated in Chapter III by the totals shown in Table VII. The new worst~case
running time would be 42. 725 msec. and the program would require a total
of 6913 registers.

57

Instruction Worst-Case Time Memory Saved
Saved (msec.) (registers)

level select 1.950 105
addressable 4.716 453
multiply
load accumulator 2.352 230
load accumulator
Indexed
subtract 2.172 215
subtract indexed

Total 11. 190 msec. 1003

Table VII Time and Memory Saved Using Additional Instructions

CHAPTER VI

THE USE OF SUBROUTINES IN REAL-TIME FLIGHT SIMULATION

6.1 Introduction

All of the modifications discussed so far have decreased both running
time and memory requirements, If, for various reasons, one wishes to
decrease running time, it can be done at the expense of additional memory,
or, conversely, if one wishes to decrease the amount of memory required,
it can be done at the expense of increasing the running time. An excellent
example of this type of trade-off between running time and memory arises

in the use of subroutines.

6.2 Subroutines for Function Generation

For the F-100A simulatipn problem there are only three places where
subroutines could possibly be used to any substantial advantage. The first
of these is function generation.

Since running time was considered the most difficult of the specifica-
tions to meet, no subroutines were used in the initial TX-O program. This
resulted in a fast-running program which was relatively inefficient in memory
utilization. If the problem can be solved in less than the desired solution
cycle time, then it is possible to use some of this surplus time to decrease
the amount of memory required.

As an example of the use of subroutines to decrease memory require-
ments at the expense of time, consider the function generation problem. In
TableVIII the breakdown of non-linear functions i1s shown. The first column
is the number of functions of a particular variable encountered in the worst-
case running time, The second column is the number of functions not en-
countered in the worst-case running time. These latter functions do not
effect worst~case running time, but they do influence the memory require-
ments. The third column is the sum of the first two columns.

Two types of subroutines were investigated for function generation. The
first type used one subroutine for all functions of one variable and one sub-

routine for all functions of two variables. The second type used one subroutine

59

60

Number in Number Total
Worst-Case Skipped Number
Timing in Worst-
Case
Timing
Functions of 1 Variable
h 15 19 34
M 17 2 19
a
VT 3 4 7
a 5 0 5
< 3 1 4
qQ 2 0 2
RPM 0 2 2
N 2 1 0 1
p 1 0 1
SR 0 1 1
% Fn 0 1 1
Mf 1 #] 1
Total 48 30 78
Functiomsof 2 Variables
q and Ma 13 0 13
o and Ma 8 0 8
h and Ma 6 0 6
CL and Ma 2 0 2
8 J and Ma 1 0 1
a and SA 1 0 1
8 A and Ma 0 1 1
Total 31 1 32
Functions of 3 Variables
a, Ma, and SA 1 0 1

TableVII] Breakdown of Non-Linear Functions for TX-O Program

61

for each variable for functions of one variable and one subroutine for each
pair of variables for functions of two variablea. The advantage of the second
type over the first is that the calling sequence is shorter for the second type
since the information that applies to all functions of a particular variable or
pair of variables does not have to be included in the calling sequence. The
disadvantage of the second type is that each additional variable or pair of
variables requires an additional subroutine. It is clear that for variables
used only for one function, such as 3, there 1s no advantage tc writing a
separate subroutine to handle a single function. In fact, due to the length of
the subroutine, the break-even point for functions of one variable is between
two and three functions. Therefore, In analyzing the second type of function
generation, only variables with more than two functions will utilize subroutines.
For functiona of two variables, the break-even point is between one and two
functions so that the second type of subroutine will be used for all pairs of
variables used in two or more functions.

In analyzing the first type of subroutine, it does not matiter how few
functions there are of a particular variable, and therefore all functions of
one and two variables will be computed by subroutine.

In view of the fact that the additional arithmetic Instructions recommended
in the last chapter have a great effect on the amount of time and memory re-
quired by function generation, the use of subroutines was examined both with
and without these additional ingtructions. Table IX presents the results
without the use of the addressable multiply, load accumulator, and subtract
instructions and Table X presents the results obtained with the use of those
additional orders,

It can be seen that in every case the use of the second type of subroutine,
with a subroutine for each variable, is to be preferred. This statement 1a true
for this particular application of subroutines, but it cannot be considered a
general result. For a problem with more variables and fewer functions of
each variable the method of using one subroutine for all functions of all vari-
ables would probably yleld better results.

The reduction of memory in Table IX 1s somewhat hypothetical for the
particular simulation problem at hand. Without the use of the instructions
recommended in Chapter V, the program runs over fifty milliseconds in the
worst case. Therefore, no savings in memory can be effected because there
is no gurplus time available to trade off for that memory. Again it should be

emphasized that subroutines cannot be used to reduce memory requirements

62

PO ISPIN O-XI 982X YIIM Seupnoaqng Suisn jo simsey XI S[qeL

*SSTqEIIBA JO IfRJ
YoRE JO SUOTIDUNT
g'0¢e¢ 716°1 g€6°01 L4 4 052 IV $04 supmnoxqng
suopoum g
0021 44 IR 959721 14 4 6%2 1TV 104 supnoxqng |
- - 120°6 - ZL9 SPUPNOIgNg ON
SP[gRIIRA 7 JO STOTIDUN
S[GBTICA
yory JO sucpoun g
¥°001 BE8 2 0L0°8 98¢ 6te IV <04 supmoaqng |
SUOTIOUN
L9% B9 ¢ 00% '8 3¥1 9L% 1V 104 supnoxqng |
= = 2¢2°9 - ¥29 s3upInOLIqug ON
STQBIIRA 1 JO SUORIUNY
"DesUI Uy
sl], ("oesuwr) ese)
Bupuunyg SUINOIQNG= ON (‘oostu) 1-4- 1y
TSUOTIIPPY Buppuodseszion WL T, SUFIMOIYGNG~ON
Ag pepratd IJAQ SWTL Supuntyg Buppuodsazaon juswasnbey
paireg Bupumy 288eD-1SI0M IAQD) Azowre
Azowen BIIXH TR10 T paArg ATowra 12101,

63

FUOFIONIIBUT DRIV [RUOTIIPPY UIIM Sseupnoaqng Bugsef jo symsey X I[qe]

FAIqRIIeA JO ITRg
Yo'y JO SUOTIOUN T

£°091 99¢°1 £86 "L 192 L6l 11V 204 Supnoxyng |
suopouUn g
£°L9 ¥es e I¥6°6 Le? 112 TV <04 supnoaqng |
- - L1¥ 9 - 8v¥ supnoagng oN
89[qRIIRA 7 JO SUOPOUN T
STqBII®A
YO®y JO SUOCHIOUN T
6°¥%S (A4 4 (411] 132 gi¢ IV 104 supnoxaqng |
suojjoun g
L'81 FPL'E ¥e8 L 0L 86¢ IV s04 supnoxrqug |
- - 080 % - 29% |apnoIqng oN
9TqeLIBA [JO SUOHOUNY
‘D@sux uJ
SWITT, (‘oesur) 982D
Bupuruniyy UM OI NG~ ON (*oesw) 13319
TBUOTIFPDPY Aupuodsexxon WL T, JUPINOIYUG~ ON
Ag pepirld ISAD OWITL Fupmuny guppuocdsazzon) jusuwzaxmbayg
DeARG Bupuunyg 95R) 15I0N I2A0) Azowrey
Azowropy v, =10 L. peAreg Axowrswy B0 L

64

unless the problem is solved with time to spare.. If some means of reducing the
running time were found, other than those mentioned in Chapter V, then it
would be possible by using subroutines for function generation to free 422
registers of memory by increasing the worst case running time 1. 914 msec. or
to free 707 regilsters by increasing the worst case running time 4, 752 msec.
The program with the instructions recommended in Chapter V does have
extra time that could be traded for memory. With the addressable multiply,
the load accumulator and the subtract commands, the worst case time would
be 44,675 meec. and the memory required would be 7018 registers. This
leaves 5. 325 msec. of worst case time available. From Table X it can be
seen that 251 additional registers can be freed at a cost of 1. 566 msec. or
404 registers can be freed at a cost of 3. 888 msec. Using this last strategy,
the alternate worst case running time and memory requirement figures would
be 48. 563 msec. and 6614 registers respectively. Intermediate values of
memory and time can be obtained by doing fewer of the functions by sub-

routine,

6.3 Subroutines for Other Parts of the Program

The other parts of the program where subroutines could be used to advan-
tage are level selecting and integration. The memory saved using subroutines
in either of these parts is less than 100 registers, hence they will not be
examined in detail here. The ratio of the memory saved to additional running
time shown in Tables IX and X 1s a good means of comparing the value of

subroutines in any particular application.
6.4 Conclusions

If the modifications suggested in Chapter V are incorporated into the
TX-O or if the worst case operating time is reduced significantly below
50 msec., then some or all of this extra time may be used to reduce the amount
of memory required. The most memory capacity can be saved by incorporat-
ing subroutines into the function generation routine. If 8till more time is
available, then a modest amount of memory can be gained by using subroutines

for level selecting and integration,

CHAPTER VII

INTEGRATION AND WORD LENGTH

7.1 Introduction

The first part of this chapter discusses the integration methods used by
UDOFT and the TX-O programs. The second part of this chapter discusses

word length requirements and the way in which integration affects word length,

7.2 Integration

UDOFT used a method of integration developed at the University of
10
Pennsylvania called Mod Gurk. Mod Gurk uses the past three values of

the functions and the past three values of the derivative:

x({n) = a x(n-1}) + b x(n-2) + ¢ x(n-3) + h[d :.c(n-l) + e ;c(n-Z)

£ -;c(n-z.)] (7.1)
where:
a = 1. 1462084
b = -0.2010870
¢ = 0.0548788
d = 1.6415880
e = -1.0080120
£ = 0.2750960

The discrete time index is n and h is the golution cycle time, which
for the F-100A must be not greater than 0,05 seconds,

In order to evaluate the accuracy of the Mod Gurk integration formula and
several other more common integration methods, the M.I. T. Electronic
Systemes Laboratory conducted an experimental study of integration methods
on the Whirlwind computer. 1 The equations of motion for the F-100A
were solved on a non-real-time bhasis for several integration methods and

solution rates. One of the results of this study is reproduced in Figure 12,

b5

66

$H91SUDI] {OIdL1y PeID|NWIG B U0 DU uoioiBaju] pun ajoy uounog jo ooy ZL ‘Bry

(SONOI3S) | "INIL
<

9 $ v] t o
1 T 1 L T I ! T __?__.+ sso-
' - ~ ‘ \l o50-
1.. X
/
/
| / \ h
) A .
(SANODIS) IWIL IT1DAD NOILMIOS =Y / / /
— GO+ = YNUMND QOW =——cemvem ! \ 020~
I+ = YNHAD OON ————— \ \/
200+ G'v0+ 20+ =Y 103 ——m— ! by
L = YHYd B 'GZ0"+ = YMNNOD QOW PO+ 120 | dyHl {
TU-YLLAN webrm— | [\)/ /

oro-

oro

oz'0

(SNYIavy) &

67

The other integration methods used are:

Rectangular

x(n) = x(n-1) + h x (n-1) (7.2)
Trapezoidal

x{n) = x{n-1) + }-21- [3;:(n-1) - ;c(n-Z)] (7.3)
Parabolic

x(n) = x(n-1) + 11*_‘2 [23;:(n-1) - 16x(n-2) + 5;(11_3)] (7. 4)

The Kutta-Gill method is8 a complicated, closed-type formula that ia much
too time-consuming to be considered for real-~time simulation. It is included
only for comparison, since, for the purpose of this investigation, it can be
considered as representative of the solution to the problem.

Figure 12 shows the response of §, the sideslip angle, to a moderate
rudder pulse. Notice that Mod Gurk with h = 0. 05 seconds appears to be less
satisfactory than the other methods used with the exception of Mod Gurk with
h = .1 sec. and rectangular with h = 0. 02 seconds. In particular, trapezoidal
integration with h = 0. 04 sec. appears to be a good compromise between
accuracy and computation time.

On the basis of this study the method selected for the TX-O program is

the trapezoidal rule repeated here for convenience.

x(n) = x(n-1) + h [3;:(11-1) - ;c(n-Z)] (7.5)
2

Notice that the only multiplication required is the multiplication by h/2 since
*

3 X1

tion ¢ycle h were an integral power of two, then no multiplication would be

required since the multiplication by h/2 could be accomplished by shifting.

In the TX-O program there are only twelve integrations; six accelera-

can be computed faster by adding than by multiplication. If the solu-

tions, and six direction cosines. Each Integration requires 133 psec. With
an addressable multiply and a subtract instruction each integration would

require 97 psec.

68
7.3 Word Length - Introduction

There are two ways of arriving at the minimum word length required for
a particular problem. The first, to be discussed in the next section, depends
on the number of instructions and the size of directly-addressable memory
required. The second method, which will be discussed in the remaining
sections, depends In a rather complicated way on integration, scallng, the
pilot's ability to introduce small control changes, and the pilot's ability to

perceive small changes on the cockpit instruments.

7.4 Instructions, Addressable Memory, and Word Length

The TX-O presently has eighteen addressable instructions listed in
Appendix I. Of these eighteen, one instruction, the add one to memory
{ado x) instruction, is definitely not used in the TX-0O simulation program.
Three other instructions are useful only if subroutines are incorporated.
These three instructions are: store index in address (sxa x), transfer and
set Index (tsx x), and unconditional indexed transfer (trx x).

The use of filve bits for addressable instructions and the use of the
present operate class structure leaves six unused addressable instructions
on the TX-0O. Without the add one instruction there would be seven, and
without the three instructions useful for subroutines, there would be ten
unused ingtruction codes. There are six addressable instructions definitely
recommended in Chapter V. Incorporating these six would still leave one
to four positions unused if the instructions deemed not useful were deleted.
From the preceding discussion it would seem that five bits of instruction
code are sufficient for the ¥ -100A problem even with the present operate
class structure, which decreases the maximum number of addressable
instructions 32 to 24.

If additional Instructions are needed there are two possibilities. One
is to add additional bits to the instruction code. The other is to decrease
the number of bits used by the operate class commands so that there are
32 usable addressable instructions or actually 31 addressable ingtructions
with the 32nd being used to indicate an operate class instruction. This last
possibility would reduce the versatility of the operate clase structure unless
the total word length were Iincreased proportionately. The usefulness of the
operate class commands on the TX -0 is unquestionable. However, with the
addition of extra instructions such as load accumulator, subtract, and address-

able multiply, the number of operate class instructions used decreases con-

69
siderably. It is possible that with the inclusion of these additional address-

able instructions, the complexity of the operate class structure could be
decreased without losing any program efficlency. It is also possible that if
the complexity of the operate class structure were decreased, operate class
Instructions would require only one cycle time (6 psec.) rather than the
present two cycle times (12 pgec.). This would make the use of the live
register as temporary storage more advantageous than at present.

The second factor in the word length requirement imposed by instruc-
tions and memory is the amount of directly addressable memory required.
It ie quite evident that 8192 words of memory are sufficient for the F-100A
problem, since both the UDOFT and the TX-O programs use somewhat less
than this amount. One approach to the problem 1s to say that 8192 words
require thirteen bits of address section. This may be more bita than are
needed, however. There are two methods of utilizing larger memories
than can be directly addressed,

The first method 1s illustrated by the Digital Equipment Corporation’'s
PDP -1‘14 This computer has a twelve bit memory address section which is
sufficient to address 4096 -word banks of memory; the programmer must
specify which bank of memory the instructions following will refer to. This
is done with a jump field ingtruction {jfd y), where y ig the bank number
selected. All instructions refer to this bank until the next jump field instruc-
tion. This method 18 not as restrictive to prograrnming as it might at first
appear to be. If the entire program is written with a knowledge of this
addressing method, then very little time need be lost due to changing fields.
This is especially true in the TX-O program which uses very few subroutines.
Handling an 8192 word memory by this method will only save one bit of
memory address section, so for the F-100A problem this method does not
seem to be very advantageous.

The other method is that used by Control Data Corporation's 160 and
160A computers. 15 These computers have only a six bit memory address
section, but the six bits can be interpreted in any one of five ways: 1) The
six bits can specify one of the first 64 words of memory. 2) The six bits
can specify one of the first 64 words of memory which contains the address
of the register to be used. 3) The six bits can specify one of the 64 words
of memory directly following the instruction being performed. 4} The six
bits can specify one of the 64 words of memory directly preceding the instruc-
tion being performed. Or 5) The six bits can be used as the operand itself.

70

This method is extremely efficient in word length; but for problems such as
the F-100A, with large tables of data, it could not be used.

Of course, there is no reason why either of these methods could not be
used with memory address sections of other than 4096 or 64 words. For
some problems, some other memory address section size might be better.

The conclusion arrived at in this section ig that for the F-100A problem
elghteen bits 18 just barely sufficlent for instructions and memory. This is
the actual word length requirement for-the problem only if the other factors

effecting word length, such as integration, require a shorter word than this.

7.5 Effect of Integration on Word Length

Before discussing the effect of integration on word length, it is neces-
sary to understand the scaling method used.

A possible method of scaling a variable on a binary computer consists
of setting the maximum value of a varlable equal to the largest binary number
the register will hold. For a variable x with maximum value X ax, this
procedure is illustrated below for an n-bit word including sign bit:

. 1 2 n-2 n-1

TRk is represented by ¢cl111 * = e 1 1

Thia procedure is very difficult to handle since the scaling coefficient k
defined by the variable x and its machine representation X,

x = keX {7.6)

is not usually an integral power of two and therefore multiplication is neces-
sary before X can be added to another variable with a different scale factor.
Another method of scaling that is not quite as efficient in word length
utilization, but is much easier to handle, is the one used for the TX-O pro-
gram. It involves using the actual binary number in the register to represent
the variable with a power of two as the scale factor. The relation between

the variable x and its machine representation X in fraction form is now
x = 2% X where 1>ix|;o (7.7)

where s is a positive or negative integer called the scale factor of the

machine representation X. The scale factor, s, 1a chosen so that X oax

71
is represented by a one in the most significant bit of X. The largest number
that can be reproduced in a register n bits long including the sign and with

scale factor s is

8 -n+l -n+l

28 .2 = 2812 2% if n 5> 1. (7. 8)

The smallest increment that can be represented in the same register is

g8-n+l

2 (7.9}

A procedure for finding the optimum scale factor, s, is to find the solution
of the following inequality:

8 -n+l s~l -n+l
27(1-2) > X ax 2 (1-2). (7.10)
If n >>1 the scale factor usually satisflea the simpler Inequality:
2*sx 257, (7.11)

max

We are now prepared to discuss the effect of integration on word length.
The integration requirement imposed by altitude is, in the case of the
F.-100A, the most demanding in word length. To see how this comes about,
it is necessary to understand a few of the pllot's inatruments and to make an
assumption concerning the pilot's ability to read the instruments.

The altimeter, shown in Figure 13 a, has three pointers: hundreds of
feet, thousands of feet, and tens of thousands of feet. The most sensitive
scale is 1000 feet for a full revolution. If the assumption is made that the
pilot can detect a movement equal to one part in a thousand of the full scale
deflection, then, the pllot would be able to detect a polnter movement of
0.36° or an altitude change of one foot. Thus, the minimum increment of
altitude that must be simulated due to the pilot's ability to read the altimeter
is one foot.

The vertical speed indicator, shown in Figure 13 b, is a much more
sensgitive instrument. Full scale on this meter is +2000 feet per minute.
Usaing 0. 36 as the minimum change the pllot can detect and noticing that the
scale is non-linear, the minimum increment that the pilot can detect around
zero vertical speed is 0. 046 feet per second. We will call this value I.Imin'
The integration formula to be used for this example is the simple rectangular
rule:

72

| /-8 ? 2’

; |'I_\ & 799_
300~ a) AIRCRAFT ALTIMETER

? 7 ~

b) VERTICAL SPEED INDICATOR

\ ROLLEMAM

- —

Do |5 S
~

", 5 10 .
,l];\\

c) GYRO HORIZON

Fig. 13 Aircraft Instruments

73

h{i) = h(i-1) + ;1(1-1) At (7.12)

where 1 is the discrete time index and At is the sclution cycle time, which
for the F-100A program is 0. 05 seconds.

The important factor affecting word length is that the pilot can detect a
vertical speed of ;lmin on the vertical speed meter, and he then expects the
altimeter to change. The altimeter change will admittedly be slow for such a
small vertical speed, but if the pilot maintains a small non-zero vertical
speed then he anticipates that the altimeter will change at a corresponding
rate., Thus, the word length of the register representing altitude, h, must be
long encugh so that h min multiplied by At and shifted to take into account
differences In scaling between h and h will a.dd a non-zero increment to h on
each cycle of the integration. This means that hmin times Af must be greater
than or equal to the smallest increment in altitude that can be represented in
the n bit register:

y At S ZE -ntl

min > (7.13)

where 8 1g the scale factor for altitude. In order to demonstrate this pro-
cedure, the actual numbers for the F-100A will be used. First the scale
factor of h must be found. This is done using equation 7.11. The maximum
altitude for the F-~-100A is 55, 500 feet.

-1

2% > 55,500 3 2° (7.14)

The solution to this inequality is 8 = 16 which is the scale factor for the
altitude register. Using this value in equation 7. 13 we see that the word
length n muset satisfy the inequality:

h « At = {0.046)(0.05) = 6.0023 > 2

16 -n+l _ z1'? -n
min)

(7.15)

Of course the smallest n which satisfles this inequality is the one desired
and this is n = 26. Therefore, under the agsumptions made, altitude requires
a 26 bit word length including sign.

Certain interesting characteristics of the word length can be seen from
equation 7.13. First of all n increases as At decreases. In other words,
the word length requirement increases with the solution rate. Therefocre,

the minimum solution rate that is acceptable due to accuracy and stability

74

requirements will result in the shortest word length required for integration.
Also notice that when hma.x increases, n increases due to an increase in s.
This is obvlcus, since if the maximum value of a variable increases, then
the dynamic range must increase also; and therefore, the variable will re-
quire a longer word length,

If the solution cycle, At, is an integral power of two, then a graphical
method suggested by Conne11y3 shows the relationship between I.lmin and
the altitude word length quite clearly. As an example, take At = 2-3=1/32
second. The word diagram in Figure 14 shows that a 27 bit word length
including the sign bit is the smallest that will satisfy the requirement that
ilmin' At a..dd a non-zero increment into h on every cycle. The scale

factor of h has been assumed to be 5 = 11 as it is in the UDOFT program,

VALUE OF BIT POSITION

T T *

{ |] | ‘mla

: ! i nlﬁ'ﬁ'ﬁ

| ! | -nR-IﬂRir\

v | N O 20-0‘

| !g}ﬂ-—nﬁmw—,g

- ; a8 8[858-8:8:

g (o || O [ed| o] il G| e NI AL A AT = e s B
ASHEHEN G RN 1 !

w el !
: ! |
his]i|2[3]|4|5|4|7|8(9)10]1F 12]3]41516117]819202] 22 23| 24|25 26

il §

[i BITS LOST EN INTEGRATICMN

1
i i
1 i

hat [STT (2 [3 4 |5]617]8]9 1011|1213 (1415116 |17 18119120 121 122 123 124 125 126 |
I : e e i — e T,
x% - ojojoio rfo 1 1 11 0O 11 =hy
/// y
< j0lojoiojt]oli[1]|I[I{0 0 O | i =t
v [s[[23 4] 5[] 78] ool iyiziap1a[is]1e[17[va (19 20] 21 [22]23 | 24] 25] 28]
]

i
BINARY POINT

Fig. 14 Word Length Diagram for Altitude

Notice that increasing the solution rate from 20 to 32 solutions per
second increased the word length requirement by one bit. The word diagram
points out a property that was not obvious from the above discussion,

In Figure 14, bit 16 of }.1 would be the most significant bit of the representa-
tion of ﬂmin' However, bit 16 would not be the only bit equal to one. There-

fore, since only bit 16 is added into h every cycle, there is an error in altitude

caused by the other bits of h
the accumulator. Bit 16 of

in that were shifted off the right hand end of

m
h represents a vertical speed of 0. 03125 feet

At

75

per second rather than the 0. 046 feet per second we wished to add intoc h on
each cycle. This error, although large percentage-wise, is really unimpor-
tant since the pilot could not distinguish between the change in altitude caused
by a vertical speed of 0. 03125 feet per second and the change in altitude caused
by a vertical speed of 0. 046 feet per second.

There is another type of integration that has an even more subtle effect
on the word length. This is the double integration to generate the Euler
angles from the rotational accelerations. In the UDOFT and the TX-O pro-
grams, the Euler angles themselves are never computed. Both these pro-
grams use direction cosines, which were shown In Chapter II to be trigono-
metric functions of the Euler angles. There is an integration involved in
going from the angular velocities to the direction cosines. Even though
Euler angles are not used, double integration is still effectively being per-
formed, The computation of roll will be used as an example. Rectangular
integration and Euler angles will be used in the example for simplicity. The

integration equations used are:
p(i) = p{i-1) + p{i-1) At {7.16)
¢ (i) = ¢{i-1) + p(i-1) At {7.17)

Where i is again the discrete time index and At is the solution cycle time. The
equation used to compute 1.) will be a simplified equation with only the forc-

ing term due to aileron deflection and the damping term due to roll rate
included:

2 2
P= ———-C, .8A+——-—--41; *C, *p. (7.18)
‘?‘Ix 3A b'e

The term C! 8. SA is always positive and the term C! o« p 18 always
A P
negative so that the equation 1s in the form:

I.J = BeSA - A.p where A and B are positive,

For steady state flight the response of the alrcraft to a step input in SA is:

p= B—'Eé— (1-e A% {(7.19)
p=DB+5Ae M (7. 20)

76

where:
2
V..Sh
A=~ f'zr'l}—" Cy
b P
vaZSb
B= —3 C
x SA

At a constant altitude and airspeed, p is building up exponentially
toward the constant value Be+3A/A, 1; is decreasing from B«3A to zero
by subtracting a quantity equal to Ae+pe¢At on each cycle. We have seen from
Figure 14 that when an Integration is done, certain bits and the right hand
end of the quantity integrated do not affect the integration. What would happen
if f) became too small to affect p on a particular cycle. First of all p
would not change on that cycle and, therefore, the next value of ;: computed
by equation 7.18 would be the same as the last value, In other words, as scon
as ;) becomes too small to add into p on a particular cycle, the value of p
is frozen at its present value. There are two possaibilities; either this value
of p is close enough to B*dA/A to yvield an acceptable representation of the
transient or the final value of p 1is not acceptable.

A non-real-time program was written for the TX -0 to simulate the affect
of different word lengths on the final value of p for a small alleron input
on the F-100A. The altitude used was 35, 000 feet and the speed was Mach 1. 4,
The aileron input, 3A, was chosen to give steady-state value of p equal to
1/3o per second, For ease of computation the solution rate used wasg 32
solutions per second. The results of this program are shown in Table XI
If 90% of true value ig arbitrarily chosen as the accuracy requirement for
this minimum input in OA, then eighteen bits including sign is required.

It may seem inconsistent to require that 90%of the true value of p be
reached in response to a minimum input, when, in discussing altitude, it
was stated that the accurate reproduction of amall perturbations was
unimportant. The reason is that at a roll rate of 1/30 per second the pilot
would be able to detect a change on the gyro-horizon, shown in Figure 13c,
in about one second. In altitude, the minimum increment that the pilot could
read on the vertical speed indicator is 0. 046 feet per second. This rate of
climb or descent would require 21.8 seconds to develop a change of one foot

on the altimeter. The pilot could not have any feeling for how much change

77
he should see on the altimeter in 21.8 seconds, although he does know that

it should change; but he would have a feeling for how much change he should

see on the gyro-horizon after only one second.

Word Length Percentage of True

Including Sign Bit Value Reached
15 0
16 56
17 75
18 93.6
19 93.6
20 98.4
21 99.90
22 99.6
23 99.9
24 99.9
25 100,01
26 99.99

Table XI Word Length Required By Roll

On the F-100A, the word length required by roll is longer than that re-
quired by the other Euler angles; but it is atill less than that required by
altitude. In the next section special methoda of handling those variables
that require long word length will be discussed.

7.6 Double Preciaion Methods

It is always possible to design a digital computer with as long a word
length as is required by any variable. This method is uneconomical however,
if only a few variables require a much longer word length than any others.
The cost of the machine increases almost proportionately to the increase in
word length. Therefore, it is profitable toc examine some methods of handling
thege variables, such as altitude, on a computer with insufficient word length

to permit stralghtforward programming.

78

One method requires hardware implementation. It is a form of double
precision arithmetic which is bullt into the Bendix G-20. 13 On this machine
all arithmetic reglsters are double length., There is a tag bit in every instruc-
tion which controls whether the Instruction is performed single precision or
double precision. If the tag bit specifies double precision, then the instruc-
tion refers automatically to two memory registers, the one addressed
directly by the instruction and the memory reglster immediately following.
Thus the only additional time required by a double precision computation is
the extra memory access involved in performing each instruction. This
is an extremely small penalty compared to normal double precision pro-
grams.

Another possibility is to actually program altitude and other variables
that require special handling with double precision methods. This is the
method used on the TX-O for altitude and fuel flow.

7.7 Method of Selecting the Word Length

The method of setting the word length for a computer to be built for a
particular problem would involve making up a table of the maximum word
lengths required by each of the significant variables. This table should also
include the maximum word length determined from the number of instructions
and amount of directly-addressable memory required. After the table is
complete it should be rearranged in order of decreasing word length require-
ment. In this form, it is clear how much smaller a word length would be
required if certain variables were handled by special double-precision
methods. It would be advantageous to handle all variables by special methods
until either the word length decrease for handling an additional variable
were too gmall to justify the extra time or untll the word length dictated by
the number of Instructions and amount of memory were encountered. If the
latter were the case, then the methods discussed in Section 7. 4 of decreasing
the length of the memory addreas section of the instructions could possibly be
used.

For computers such as the TX-0, where the word length 1= fixed, it is
still important to know the word length requirements of certain key variables,

since these variables must be handled by special programming.

CHAPTER VII

DECISIONS, INPUTS AND OUTPUTS

8.1 Introduction

Discrete and analog inputs and outputs account for 7. 6% of the worst-
case running time. Decisions, excluding discrete inputs, account for 8.2%
of the worst-case running time. These areas provide perhaps the widest
choice for the computer designer as far as different instructions and
different methods of implementation are concerned. Decisions are dis-
cussed in the next section and inputs and outputs are discussed in the

following sections.
8.2 Decisions

The decisions used in the TX -0 program can be broken down into nine
types. Table XII gives the classification of decisions, the usual coding,
and the running time for each branch of the decision. Table XIII gives the
number of each type in the worst-case program, the total number of each
type, and the total worst-case time consumed for each type.

It can be seen from Table XII that the load accumulator and the subtract
instructions discussed in Chapter V would reduce the worst-case running time
for decisions.

Another possibility for reducing the running time is the use of a few
standard skip-type instructions. Three such instructions that are also part

of the G-20 order code are defined below:

son x Skip the next instruction execution time
skip on negative If ¢(x) is negative. 12 psec.
storage

80% X Skip the next instruction execution time
skip on zero if c(x) is zero. 12 psec,
storage

sag x Skip the next instruction execution time
skip on accumu~ if clac) > clx) 12 psec.

lator greater

than storage

79

80

e{x) £ 0

cla
add x
trn —= 30 psec.
l ifelx)g 0
36 paec,
if cfx) > 0

6. c{x)=0

cla
add x
trz —e 30 psec.

36 psec.

¢(x) £ constant

cla

add x

add (~constant
trn —» 42 psec.

7. clx) > cly)

Ur x

lcec

add y

trn —= 42 psec.

|

48 psec, 48 psec.
c{ac) < conatant 8. c(x) > constant
add (~constant cla
trn —= 18 usec. add x
trn . +2
com

24 psec.

] c(ac)l > consgtant

trn . +2

com

add (constant
trn —= 42 psec,

48 psec.

add (constant
trn —e 66 psec.

72 psec.

9. clac) g 0

trn —= 6 psec.

!

12 psec.

cac) >c(x)

1r x
led
trn -+ 30 usec,

|

36 psec,

add {constant means add A where
A 18 the address where the constant
is stored.

trn .+2 means transfer to the
second instruction after the trn
instruction if the contents of the
accumulator is negative.

Table XII Classification and Coding of Decisions

81

Number In Total Time Consumed
Worst Case Number In Worst Case
(nusec.)
clx) £ 0 45 51 1524
c(x) € constant 23 29 1038
c¢lac) € constant 26 32 612
Ic(ac)] > constant 12 12 228
clac) > c(x) 7 8 210
c(x)=0 5 6 156
clx) > ely) 3 4 138
Ic(x)l > conatant 2 3 132
clac) € 0 7 7 84
Total 130 152 4422

Table XIII Breakdown of Decisions by Types

82

The coding of the nine types of decisions using the skip instructions
is shown in Table XIV. Notice that each skip instruction ig followed by
an unconditional transfer instruction. This decreases the time saved by
the use of the skip-type instructions. Table XV shows the worst-case
time saved using only the skip instructions, only the load accurmulator and
subtract instructions, and both types of instructions together. It can be
seen that using all three skip-type instructions and both the load accumula-
tor and subtract instructions saves only 747 psec. over the time using just
the load accumulator and subtract instructions alone. Using the skip-type
instructions alone saves 1. 431 msec. over the initial coding shown in Table
¥I1I The three skip ingtructions are not equally valuable. TableXVI gives
the breakdown by instructions of the 1. 431 mgec., saved. None of the three
instructions alone gsave as much as one millisecond, and for this reason,
none of these instructions is considered useful encugh to warrant the cost
of installation on the TX-O for the F-100A problem. Thesge instructions are
also all addressable and require that the instruction code be expanded in
order to include them.

For a problem with many more decisions, these skip-type instructions
may be considered worthwhile enough to be included in the instruction list.
The final choice of whether to include the skip-type instructions would
depend con the cost of implementing them on a particular machine and how
much time they saved.

The skip on negative storage (son x) command is the simplest to
implement. The two possibilities involve making a test on bit zero of the
memory buffer register or interchanging the memory buffer register and
the accumulator, making the test on bit zero of the accumulator and then
bringing the original contenta of the accumulator, which would now be in
the memory buffer register, back to the accumulator. These two methods
are ghown in Figure 15.

The skip on accumulator greater than storage (sag x} command is a
little more complicated to implement. As shown in Figure 14 the differ-
ence between the c{x) and the accumulator must be formed and the sign of
the difference musat be checked. If the sign of c(x) and c(ac) are different,
then overflow after addition is possible. However, the addition is not neces-
sary since in this case an examination of the sign of either register will
suffice to determine whether the condition for skipping the next instruction

is met,

83

C(X)~>C{MBR)
+
C{PCH1-C(PC)
yes
Is MBRO =12 C{PCH1—+~C(PC)
ne |]

{a) With Circuitry to Test the Sign of the MBR

C{X)-+C(MBR)

!
C{PCH 1+ C(PC)

!

Interchange C{AC) and C{MBR)
C(AC)+C(MEBR) and C{MBR)-»C(AC)

C{PCH1-+C{PC)

J

C(MBR)—=C(AC)

{b) With Circuitry to Interchange the AC and MBR

Fig. 15 Two Methods of Implementing the sen x Command

84

c(x) g 0 6. c(x)=0
son x S0Z X
tra —= 18 usec. tra —= 18 psec.
12 psec. 12 psec.
c(x) £ constant 7. ¢lx) > cly)
cla cla
add x add x
gsag (constant sag y
tra —= 42 psec. tra —= 42 psec.
36 psec. 36 psec.
c{ac) £ constant 8. lc(x)l > constant
sag {constant cla
tra — 18 usec. add x
trn . +2
com
12 psec. sag (~-constant
tra —= 66 psec.
Ic(ac)] > constant 60 psec.
trn . +2
com
sag (constant 9. clac) < 0

tra —= 42 psec.

|

36 psec.

trn —»= 6 psec.

12 psec.

clac) 2 c(x)

sag x
tra —=

12 usec,

18 psec.

Table XIV Coding of Decisions Using Skip~Type Instructions

85

Total Worst-Case Time Saved

Using Skip Using lda Using Both Skip
Type Inst. And sub Type And lda And
(psec.) Inst. sub Inst.
(psec.) (psec.)

clx) g 0 810 540 810

¢{x) £ constant 138 276 414

c(ac) € constant 156 0 156

|c(ac)] > constant 72 0 T2

c{ac) > c(x) 126 84 126

c(x)=0 90 60 30

clx) > cly) 27 36 63

Ic(x)l > constant 12 24 36

cf{ac) ¢ 0 0 0 0

Total Time Saved 1431 usec. 1020 usec. 1767 psec.

Table XV Time Saved For Each Type of Decision Using Skip Type

Ingtructions

Worst-Case
Time Saved
(peec.)
gon x 810
gag x 531
5O% X 90

Table XVI Total Time Saved By Each Instruction Using Skip-Type

Instructions

86

C{X}-=>C(MBR)

¥

C(PC+1~+C(PC)

R

Interchange C{AC) und C{MBR)
C{ACY-+C(MBR) and C(MBR)—+C{AC)

S

C{AC)-=C{AC)

CATHC(MBR)=+C(AC)

4
@f 17 CIPCH1~=C(PC)

yes |

C{MBR}-+ C{AC)

Fig. 16 Method of Implementing the sag x Command

The skip on zero storage (soz x) command is identical to the skip on
negative storage command except that the test is for every bit equal to zero
rather than just bit zero. The two methods shown in Figure 15 can be used
providing that the test 1s changed accordingly.

Since the skip on accurnulator greater than storage command requires
the circuitry to interchange the accumulator and memory buffer register,
it would seem that the method shown in Figure 15b for the skip on negative
storage and the skip on zero storage commands would be preferable due to
the additional circuitry that would be required to do the tests on the memory
buffer regiaster. The circuitry to test the accumulator is already there due

to the transfer negative and transfer zero commands.

87

8.3 Analog and Digital Inputs and Outputs

Table XVII shows the number of analog and digital inputs and outputs for
the F-100A simulation program.

Analog Inputs 8
Diacrete Inputs 43
Analog Outputs 37
Discrete Outputs 15

Table XVII Number of Discrete and Analog Inputs and Outputs Used
for the F-100A Simulation

Ag in the case of decisions, individual inputs and outputs do not take
very much time and, therefore, it is not expected that very much time can
be saved by special-purpose instructions. However, in other real-time
gimulation problems or in a general-purpose simulator, they may become
much more important. The method used for the TX-O program and other

possible methods will be discusased in the next four sections.

8.4 Analog Inpuis

For the TX-O program, all analog inputs are assumed to be connected
to the input of an encoder through sample gates. A sample gate is an analog
device whose cutput is either equal to the input or at ground potential, depend-
ing on the control input. When it is desired to bring an analog input into the
computer, it ls necessary to activate the proper sample gate so that the
selected analog voltage appears on the input of the encoder. Then the encoder
converis the analog voltage into a parallel digital number, which is, in the
case of the TX-0O, strobed into the live register. The method assumed here
of controlling the encoder and the sample gates is that used by Binsack. A
full degcription of the control system appears in Reference 22. To convert
an analog variable Into a digital number in the live register is a six-instruc-

tlon sequence requiring 72 psec.

8.5 Discrete Inputs

Discrete inputs are a type of decision since they are only interrogated

with the corresponding program branch is encountered. The method used

88

for the TX=-0 program combines strobing~in the input with the branching
operation., The 43 discrete inputs are assigned to three eighteen-bit
registers. Any one of these three registera can be strobed into the live
register by giving the in-out command associated with that register. The
circuitry used is shown in Figure 17. Actually the final contents of the
live register is the result of an or operation between the eighteen discrete
inputs in the particular bank addressed and the corresponding bits of the
previous contents of the live register. Therefore, if the live register
initially contains all cnes except for a zero in the position corresponding to
the desired discrete input, then after the or cperation between the live regis=-
ter and the bank of discrete inputs, the live register will contain a binary
minus zero if and only if the discrete input of interest was a one. The con-
tents of the live register is then placed in the accumulator in the same
instruction and a transfer zero instruction accomplishes the branching.

Anexplanatory note on the one's complement zero is given in Appendix 1.

COMMAND LEVELS TIME PULSE 8 OF
INITIATED BY TX-0 . CYCLE 1
INPUT-OUTPUT
COMMANDS
105 = opr 15000 r SETS LIVE REGISTER
v ‘4‘;) BANK NO. 1 T "

18 TOGGLE SWITCHES LOGIC 1S SHOWM FOR ONLY ONE

BIT. THERE ARE 18 SUCH BITS,
iob = opr 16000 T
e T"’ BANK MO, 2
n_laa/ I8 TOGGLE SWITCHES

jo7 = 17000 [
o287 N BANK NO. 3

I8 TOGGLE SWITCHES

L
Fig. 17 Method of Handling Discrete Inputs

As an example, the following sequence will branch on bit five of bank one
assuming that the command 105 will '"or'" bank one with the live register:

———

89

llr (767777
iohUlac
trz | —» transfers if bit 5 is a one

does not transfer if hit 5 is a zero

This sequence requires 30 psec. if bit 5 is a one, and 36 psec. if bit 5

is a zero.

UDOFT uses a memory register for each discrete input. Each discrete
input is wired directly into a corresponding memory location; when the discrete
input is off, the reading of the associated word from memory is inhibited, If
this method were used for the TX-0O, then the skip on negative storage (sonx)
command could be used to save about 800 psec. of worst-case time for discrete
inputs. As the number of discrete inputs increases, this method of using one
memory register for each discrete input becomes progressively more ineffi-

cient in memory utilization.

8.6 Analog Qutputs

Asg with analog inputs, the TX-0O program for analog outputs assumes that
the TX-0O is connected to the system designed by Binsack and described in
Reference 22. For analog outputs, the live register is connected directly to
a decoder. The output of the decoder is connected to a number of storage gates.
A storage gate is an analog device whose output is set to the input voltage
level during a charge cycle, During the hold cycle, the ou put of the storage
gate remains fixed at this voltage level independent of the input voltage. The
charge and hold cycles of the storage gate are controlled by a control input.

The systermn designed by Binsack controls the decoder and the storage gates
go that a four~instruction sequence requiring 48 usec. decodes a digital

variable and stores the result on the output of a particular storage gate.

8.7 Discrete Qutputs

The fifteen discrete outputs used in the TX-O program are stored in one
memory register. This register is set to zero at the beginning of every
50 msec, solution cycle, When it is desired to set a particular discrete out-

put to one, the contents of the discrete output memory register are brought

90
into the accumulator, a one is placed in the proper bit, and the revised dis-
crete output word ie stored back in memory. This four-instruction sequence
requires 48 usec. At the end of each 50 msec. cycle, the register contain-
ing the diacrete outputs is placed in the live register and, with the use of an
in-«out command, the discrete ocutput bits are used to set an external flip-flop
register. The indicator lights on this external register are the discrete out-
put indicators that appear on the pilot's and instructor's consoles., This
external circuitry is shown in Figure 18.

r COMMAND PULSE INITIATED BY opr 14000

LR *0* QUTPUTS
BIT O BIT 1 BIT 2 8IT 17
; vz ‘
F.E.
2 1 1 L. TO INDICATOR LIGHT
FOR BIT 0
»(2)- » 0
F.F.
»(2) —»{1 1—#7T0 INDICATOR UGHT
¥ FOR BIT 1
L o
»2)
F.F
»{2) | 4TO INDICATOR LIGHT
FOR BIT 2

e

1

F.F.

» 2 H 1 —TO INDICATOR LIGHT
FOR BIT 17

BIT O BIT1 BIT 2 BIT 17
R "1" CQUTPUTS

Fig. 18 Method of Handling Discrete Outputs

This method is fairly efficient in running time for this particular problem
because of certain characteristics of the method and the problem. Whether a

discrete output is represented by a zeroc or a one in the core memory register

91

is completely arbitrary, since the indicator light can be driven off either the
one output or the zero output of the external flip-flops. When the program
requires that a discrete cutput be set in a worst-case routine, then the con-
vention used is such that the corresponding locaticon in the discrete output
register should be set to a zero. Because every position of the core memory
register 1s initially set to zero every cycle, no action is required by the
program in this case. This procedure will minimize the worst-case running
time with respect to discrete outputs. It is required here that once the
decision is made to set a discrete output to a one, then thexe must be no
other subsequent section in the program that could require the discrete

output tc be zero. This requirement is met in the F-100A problem; but in a

more complicated problem, it might be necessary to actually set discrete

output bits to zero as well as to one.

UDOFT uses a more general method that can be extended easily to larger
and more complicated problems. An addressable command is defined that
examines the sign bit of the accumulator and sets a discrete output to Zero if

the accumulator is positive or to one if the accumulator is negative. The

address section of the instruction addresses the particular discrete output
to be set.

The method used for the TX~O is economical in worst-case running time
and does not require any special-purpose instructions. For a problem where
digcrete outputs are more complicated, then the apeclal instruction used by
UDOFT would be recommended.

8.8 Summary of Conclusions for Declsions and Inputs and Outputs

For the F-100A problem, no individual additional commands save enough
time for decisions, inputs, and outputs to be recommended. The load accumu~
lator and subtract instructions are considered worthwhile and have already
been discussed in Chapter V. It should be pointed out that the 1. 020 msec.
saved in Table XV using these instructions has already been included in the
11.190 msec. saving cited in Table VIIL

For a general-purpose real-time simulation facility or for larger and more

complicated problems, individual special-purpose commands might be justified.

CHAPTER IX

HIGH-SPEED MULTIPLICATION

9.1 Introduction

From the previous chapters, it has been seen that a good order code for
a complex real-time simulation problem is general-purpose with just a few
special -purpose instructions. There is one important aspect of the problem
that has not yet been discussed, the multiply instruction. For the original

TX-0O program, a 25 psec., non-addressable multiply was assumed. This

multiply instruction, with the associated load live register instruction that
accompanied every multiply, accounts for 14. 541 msec. of the running time

In the worst case or 27% of the worst-case running time. In Chapter V

the savings In time and memory using a 25 psec. addressable multiply
command was found to be 4. 716 msec. and 453 registers, respectively. This
multiply was modeled after a 25 psec. addressable multiply available as an
option on the Digital Equipment Corporation’'s PDP-l. Neither of these multi~
ply orders corresponds very closely to the one scheduled for eventual instal-
lation on the TX-O. Present plans for the TX-O call for a non-addressable
multiply command requiring approximately 60 psec. maximum.

In this chapter, a survey of current methods of high-apeed multiplication
will be presented., To provide a quantitative basis on which to select the
multiply logic for a simulation computer, a method of comparing the relative
speed and complexity of varicus multiply techniques is outlined.

9.2 Methods of High-Speed Multiplication

Methods for achleving high-speed multiplication fall into two distinct
categories. The firat category is concerned with the method of multiplication
itself. Thia includes such factors as the multiplication algorithm used, cod-
ing of the multiplier bits, number of muitiplier bits examined at each cycle,
etc, The second category is concerned with the methods of speeding up the
process of addition. Since every multiply method involves some additions,

the time required for multiplication depends quite strongly on the addition time.

93

94

In 1959, l.yon, 16 working at the M.I.T. Electronic Systems L.aboratory,
completed a study of high~speed addition and multiplication methods. The
different methods investipgated by Liyon were:

1) Full add and shift

2) Full add and shift using carry completion detection
3) Half add and shift using carry storage

4) Series-parallel multiplication

5) Ripple multiplication

Ripple multiplication is a form of series -parallel multiplication using
pulse logic. Although ripple multiplication was the fastest method investi-
gated by Lyon, the disadvantages of pulse logic are felt to outweigh the apeed
advantage.

There is another method of multiplication, not included by Liyon, that has
achieved some popularity in the current litttara.tu.iczel.or IsThis method, called
"Recoding of the Multiplier' by the University of Illinois will be described in

detalil in the following section.

9.3 Recoding of the Multiplier

If A is the multiplier and B the multiplicand, a common procedure for
obtaining the product is by successive additions of the multiplicand to 2 run-
ning sum, which is shifted after each step to correspond to the binary bit of
the multiplier controlling the next addition. We have:

1

B A = Bla, 2" + ak_lzk“ to.. tazdag (9.1)

where the coefficients a,j are either one or zero depending on the bit of the
multiplier A.

The method to be described in this section 1s based pm the fact that in
the multiplier A, a string of n adjacent binary ones with numerical value:

nt+i-l1 + an+i-2 .. iv1 , 1

2 +270 42 {9. 2}

can also be written

95

ol i

2 r (9. 3)

In other words, instead of n successive computer additions of the multipii-
cand B to the running sum, the same result can be achieved by one addition
and one subtraction. The process can be further extended to take into account
single included zeros in a string of adjacent binary ones:

nti-1 + 2n+i—2+ R pititl " pJti-l + i

2 + 27 . (9. 4)

Here the 2011 term is missing and this sum can be written as:

nti 2j-H. _ 2.1 . (9. 5)

2
This approach can obviously be extended for any number of zeros within a
string of adjacent binary ones, however, the method to be described here wiil
recognize only single included zeros,

As an example, consider the following multiplier:
00101111010010110

Two bits of the multiplier (starting with the least significant pair) will be
examined on each cycle, and the declsion will be made as to whether the
multiplicand should be added to the partial product, subtracted from the
partial product, or neither. In any case, the multiplier and the partial
product are both shifted to the right one position and the process repeated
until the entire multiplier has been examined. The notation used will be that
a symbol, +, -, ore, written below a multiplier bit will specify the action
to be taken when that particular bit of the multiplier has been shifted into

the least significant position. A plus sign will indicate that the multiplicand
will be added to the partial product; a minus sign will indicate that the multi-
plicand will be subtracted from the partial product, and a dot will indicate
that no action will be taken on that cycle. Using the identities in equations
9.1 through 9.5, the action taken upon each bit of the above multiplie'r
starting with the least significant bit would be:

00101111010010110

¢+ o ms 88 w2 toe +a e o

96

In its most basic form, the method requires that the two least signifi-
cant bits of the multiplier be examined at each cycle. The method also re-
quires both add and subtract logic. Figure 19 shows in schematic form the
logical connections between the various arithmetic registers. The names of
the arithmetic registers used are those on the TX-O. The logic is set up to
multiply the contents of the memory buffer register by the contents of the
live register leaving the result in the accumulator, which is cleared at the
start of multiplication.

M —
MBRS BR, 0 1 PULSE SIGNIFYING
NEITHER ADD NOR
MBR MODE SUBTRACT ON
B R CLOCK PULSE
b 4 »
CLOCK PULSES
ADD PULSE 1100
FULL ADD AND N
Ul aic SPECIAL CONTROL LOGIC
SUBTRACT PULSE

MULTIPLY

CLOﬁErULSE CONVENTIONAL
I I I CONTROL

AC, AC R

0 1Jo

AC > LR R LR

SHIFT PULSE

Fig. 19 Receding of Multiplier Method of Multiplication

In Figure 19 the box called Conventional Multiply Control contains the
logic which is common to practically all multiplicatlon schemes. It includes
a counter to terminate the multiplication after all bits have been multiplied
and it includes the circuitry to distribute the clock and shift pulses. The box
called Special Control Logic contains the circuitry necessary to examine the
last two bits of the live register and the present status of the mode flip-flop
in order to generate the add, subtract, or neither-add-nor-subtract pulse.
The mode flip ~flop is really part of the Special Control Logic and is shown
separately only to emphasize the fact that it is the only extra flip flop needed
in addition to those in the three arithmetic registers and the Conventional
Multiply Control.

In the following discussion, a string of ones will mean a group of binary

ones that are either adjacent or separated at any point by at most one binary

97

rero. A string must have at least two adjacent binary ones at the right-hand
end. With this definition, the sequence, 1010111, is a string, but the
sequence, 1 0 10 1, is not, since there is only one binary one at the right-
hand end.

The two states of the mode flip -flop are defined as:

M=20 Not within a string of ones.

M=1 Within a string of ones.

The mode flip -flop is initially set to Zero at the start of the multiplication
and this setting prevalls during the first step. The truth table relating the
succeeding states of the mode flip-flop and the last two bits of the live regis-~
ter with the resultant action is shown in Table XVIII

LR LR
n-1 n
M 0Q 01 11 10
0 no add subtract no
action leave M = 0 set M =1 action
1 add no no subtract
set M = 0 action action leave M =1

Table XVII Truth Table for Recoded Multiplier Method

After each examination, and the subsequent add or subtract, if any, both
the live register and the accumulator are shifted to the right one position and
the process is repeated,

In order for the multiplication to proceed more rapidly than the conven-
tional full add and shift method, it is necegsary to perform the shift immedia-
tely If neither an add nor subiract are to be performed on a particular cycle,

If a pulse on the add line is called A, a pulse on the subtract line is
called S, and a pulse on the neither-add-nor-subtract line is called N, then
from Table XVIlit can be seen that the Boolean expressions required are:

A= (M 'ERn

. LRn + M- Ef{n . ff{n) » {clock pulse) {9.6)

-1 -1

98

§ = (MeLR__*LR_+ M'LR_ LR }e(clock pulse) (9.7)
N = (ﬁ-i"ﬁn_l + MeLR__j)e(clock pulse) = A + S (9. 8)
M=S5 {9.9)
M=A (9.10)

Figure 20 shows the circuitry required to realize these signals.

0 1
i 1 2 —» N
M CLOCK
. PULSES
aQ 1 1TOn

(%
| s

oo
CRh_; LRa.; LRy LRp

Fig. 20 Special Control Logic for Recoding of Multiplier Method

There are two other special-purpose circuits necessary. One performs
the special handling necessary for the last clock pulse and the other is a
special shift circuit for bit zero of the accumulator.

If the most significant bits of the multiplier are part of a string of ones,
then an add should be performed after the last shift as though the multiplier
had one more bit equal to a zero. This add does not come about due to the
state of bits LRn-—l and LRn’ but rather due to the recognition of the last
clock pulse and the state of the mode flip-flop, M. From the assignment
of the states of flip-flop M, it can be seen that when the last pulse appears

99

on the separate line shown in Figure 19 and M is in state one, then the
memory buffer register should be added to the accumulator after the last
shift. The Boolean function required here is simply:

A = M (last clock pulse) (9.11)

The other special circuit is necessary because bit zero of the accumula-
tor could be in the one state either due to overflow after adding or due to the
accumulator being negative after subtraction. The action required on the
shift pulse 1s different in these two cases. If bit zero of the accumulator 1is
a one due to overflow after adding, then we wish to replace bit zero with a

zero when shifting. If bit zero of the accumulator is a one due to subtrac-

tion, then we wish to keep the accumulator negative by leaving bit zerc in
the one state after shifting. The mode flip-flop again contains the informa-
tion as to whether the accumulator should be positive or negative after the
shift. If M = 0, then the last arithmetic operation was an addition and the
accumulator should be positive. If M =1, then the last arithmetic operation
was a subtraction and the accumulator should be negative. In this last case,
the accumulator already is negative sc that bit zero need not be changed.

The only input to bit zero that is necessary is the set to zero input:
EO = Mo»(shift pulse). (9.12)

A closer investigation into the implications of the partial product in the
accumulator being either positive or negative at various stages of the multipli-
catlon leads to a much more complicated problem. Up to now it has been
tacitly assumed that the number system being used is the 1's complement
representation of negative numbers used on the TX-0O. Using this number
system, almost all multiplication methods require that the multiplier and
the multiplicand be positive. The sign of the product is stored in the Con-
ventional Multiply Control and ie affixed to the product after the multiplication
is completed. If the partial product can be either positive or negative, then
the least significant bit of the accumulator that is shifted into the most signi-
ficant bit of the live register is very difficult to interpret. In general, when
using the 1's complement number system, the less aignificant part of the
product appearing in the live register after the multiplication is completed
is meaningless. In other words, this method of multiplication, when used
with the 1's complement number system, ylelds only a single register product.

100

For the TX-0O simulation program, a single-length product is all that is
necessary. This is true because of the way variables are scaled. When a
variable takes on its maximum value, the machine representation of the
variable contains a one in the most significant bit. After two variables are
multiplied, it 1s possible for the most significant bit of the accumulator to
be a one if both of the variables were close to their maximum value. In
this case, it is not possible to use any of the bits of the less significant half
of the product, since shifting them into the accumulator would cause the loss
of significant bits at the left-hand end of the accumulater., For this reason,
the least significant part of the double-length product after multiplication is
never used in the TX -0 program and a special-purpose multiply that resulted
in only a single -length product would be acceptable.

This does not mean that the contents of the live register before multipli-
cation would not be destroyed by the multiplication procesa. The multiplier
is placed in the live register at the start of the multiplication process thereby
destroying the previous contents of the live register, and the best that can be
done, without providing an additional 18 bit arithmetic register, is to have
the multiplier available in the live register after the multiplication.

The University of Illinois Graduate College Digital Computer La,boratc»rg,r]‘“fr
used this multiplication method in the design of a very high-speed computer.
One of the results of this study was that if the 2's complement representation
of negative numbers is used, then this multiplication method results in a
correct double -length product. It was mainly for this reason that they adopted
the 2's8 complement system for their computer.

Lyon has shown that when the 2's complement system is used, both the
multiplier and the multiplicand can have arbitrary signs and the multiplica-
tion will still be correct.

This property of the 2's complement number system has a very interesting
effect on the total operation time for an addressable multiply instruction. In
a computer using magnetic core memory with a memory cycle time of tmc’
the first two parts of the operation of an addressable multiply command would
be getting the instruction from memory and getting the multiplicand from
memory. Currently-used types of magnetic core memory use destructive
read -out and, therefore, as soon as the memory word is in the memory buffer
register, it must be read back into memory to achieve the non-destructive
read characteristic of most computers. The word from memory is actually

in the memory buffer regigter after only half of the memory cycle time has

10l

elapsed. While the word is being read back into memory, it can be used pro-
vided that the memory buffer register is not changed. If the 2's complement
number system is used, the multiplication could start after only (3/2)tmc hae
elapsed, since there is no need toc change the memory buffer register before
the multiplication begins. If the 1's complement number system or an absolute
magnitude number system is used, however, the actual multiplication cannot
begin until Ztmc has elapsed due to the fact that the sign of the memory
buffer register may have to be changed and this cannot be done before the word
i1s read back Into memory. This advantage of the 2's complement number sys-
tem will be apparent later in the chapter when a comparison of the ocperating
time for a number of different multiplication methods is presented.

The longest multiply time using the recoded multiplier method will result
from a multiplier of the form:

101010...10101
The notation used for multiply time in the remainder of the chapter will be:

t ax maximum multiply time including memory accesses
m for an addressable multiply command.

tavg average multiply time

ta half-add time

c carry propagate and carry addition time for an n bit
P register.

te shift time

t, time required to complement a flip flop

t e memory cycle time

n number of bits excluding sign bit

The maximum and average multiply times for the recoded multiplier
method on a machine using 1's complement or absolute magnitude negative
number representation are given by the University of Illinois as:

n

toax™ T (tha. + tcp) +nt o+ 2t o+ Ztc (9.13}

102

+ tcp) tob 2t o+ 2t (9.14)

The Ztc factor on the end is the time required to set the sign of both factors
positive at the beginning and to correct the sign of the product at the end.

Using the 2's complement system the corresponding times would be:

_n 3
toax =% (t] + tcp) tat + et {9.15)
t Dl 4+t)4nt 4t (9.16)
avg T Wy, cp 8 ' Z mec :

Actual values for the various circuit times will be used later in the chapter
in order to compare these methods to those already discussed by Lyocn,

9.4 Recoding of the Multiplier with Multiple Shift

As pointed out by Smith and \'VeinT::ergrzt:r,l8 the average multiply time
can be decreased by being able to shift the accumulator and live register by
more than one binary position on each cycle. They suggest incorporating
circuitry to shift up to four places, in which case, the four least significant
bits of the multiplier musat be examined. In this section, the prpblem of per-
forming either one or two shifts on each cycle will be examined. This addi-
tional complexity decreases both the average and the maximum multiply time.
Providing the circuitry to shift more than two placea on each cycle decreases
the average multiply time, but does not decrease the maximum multiply time
any further.

Figure 21 shows a few bits of a ragister that can be shifted either one
or two binary positions on each cycle depending on which control line is
pulsed,

103

_ i SHIFT
2 PLACES
2
v\2
-
] '@5
" e
.@5 ' ~®
| -
0 i o] 1 o} 1 ¢] 1
F.F FFE FF F.F.
Q i 0 1 Q 1 0 1
i 0
2 2 2 2
3
2 2 2 .
SHIFT
- - | PLACE
Fig. 21 One or Two Position Shift Register

In order to determine whether to shift one position or two on a particular

cycle, a new truth table is needed.

LR LR
n-1 n
M 00 0l 11 10
0 shift 2 shift 2 shift 2 shift 1
1 ahift 2 shift 1 shift 2 ahift 2

Table XIX Truth Table For Shifting Multiplier

From TableXIX the required signals for the shift lines are:

Shift 1 P

Shift 2 Pulse

ulse

(MsLR
n

-1

*LR_+ MeLR
n n

-1

(M*LR
n=-

1

*LR_ + MeLR
n n

-1

-LRn}-{shift pulse)

-LRn)-{shift pulse)

(9.17)

(9.18)

104
These signals can be formed in the same way as the add and subtract

pulses in Figure 20,
Using this circuitry, the longest multiply time again is caused by alter-

nate ones and zeros in the multiplier:

101010, ..10101.

Now, however, the zeros are skipped and therefore the maximum multiply

time using an addressable multiply with the 1's complement number system is:
_n
toax 2-(tm1 + tcp + ts) + Ztmc + 2t {9.19)
Using 2's complement numhber system the maximum multlply time is:

-0 3
tmax = 7 tha * tep t te) ¥ Ttme (9. 20)

It should be pointed out that this is also the maximum multiply time no
matter how many shifts can be performed on any cycle, since alternate zeros

and ones are always the worst case,

9.5 High-Speed Carry Propagation

Lyon16 describes a number of conventional methods of carry propaga-
tlon. For this study, two methods will be used. The first, which will be
called the conventional carry system, is characterized by the fact that the
carry pulse, in propagating from bit to bit, goes through a flip-flop at each
stage. Because of the delay through the flip-flop, this method is rather slow
For this study tcp will be used to dencte the conventional carry propagate
and process time.

The second method of carry propagation, which will be called the high-
speed carry system, is characterized by the fact that in propagating through
the register, the carry goes through only one transistor per stage, and is
therefore, delayed much less than the conventional carry propagate, which
requires additicnal flip-flop action. Using a form of high-speed carry,
Sa.lter2 lr"at the Argonne National Laboratory reports 2 maximum add time of
0.23 psec. for a 67 bit addition. For this study, t;P will be used to denote
the high speed carry propagate and process time.

105

9.6 Comparison of Multiply Times

In making a comparison between different methods of multiplication, the
two most important factors are speed and cost. In this section the relative
speeds of the methods discussed by Lyon and the methods introduced in this
chapter will be discussed. In the following section, an attempt will be made
to compare the logical complexity of the different methods.

In order to compare multiply times, representative values of the response
times of the various logical elements have been chosen. The circuitry is all
agssumed to be 5 mc. clrcuitry of the TX-O, TX-2, PDP-1 type. The memory
cycle time is that found in the Digital Equipment Corporation's PDP -1,

0.2 psec. half-add time

*ha

t-cp = 0,55 psec. for n = 17 carry propagate and carry addition
time

t' = 0.06 peec. for n = 17 carry propagate and carry addition
P time for high-speed carry

tIl = 0,2 psec. shift tima

LI 0.2 psec. time raquired to complement a flip ~flop

tmc = 5,0 psec. memory cycle time

n = 17 numbex of bits excluding eign bit

kn = 4.4forn=17%¥ average maximum carry length for

an n bit word

Table XX presents the maximum multiplication times for the methods
described by Lyon and those described in this chapter. The methods using
carry completion and recoding of the multiplier with shift of one or two posi-
tion require an asynchronous computer in the sense that when an add i8 com-

pleted or if no add is performed on a particular cycle, then the pulse on the

21

Hendrickson shows that for n > 10 the average maximum carry can be

approximated by the formula, kn = Iogz{.szn.)

106

Number
Multiplication Method System * Maximum Multiply Time [(psec)
1]| full add and ghift 1 n(tha. + tcp + ts) + Ztmc + Ztc 26.55
3
2 full add and shift F n(th.a + tcp + t’) + s tmc 23.65
3 | full add and ghift with carry ' .
completion 1 n(th.a. +k tcp + t!) + Ztmc t Ztc 20,60
4 | full add and shift with high~ !
speed carry 1 n(tha + tcp + ts) + Ztmc + Ztc 20,60
Aok a
5 | recoding of the multiplier 1 > (tha. + tcp) + nt_ + Ztmc + 2t 20,556
6 | recoding of the multiplier ** n
shift 1 or 2 positions per 1 E(tha. + tcp + ts) + Ztmc + 2t 18,75
cycle
7 | carry storage 1 n(tha + ts) + tcp + Ztmc + 2t 17.75
8 | series.parallel 1 2 nt, .+ tcp + 2 tet 2tc 17.75
n 3
9 | recoding of the multiplier 2 Z'(tha + tcp) tat bt 17.65
10 | recoding of the multiplier ** n
with carry completion 1 z (tha. +k tcp) tatg 4 Ztmc + Ztc 17.40
11 | recoding of the multiplier n 3
shift 1 or Z positions per cycle 2 2 (tha. + tcp + ts} +) tmc 15.85
12 | recoding of the multiplier ** n
shift 1 or 2 positions per cycle 1 =t +kt _+t)+2t 4+ 2t 15. 60
with carry completion 2 tha i 8 me ¢
Ripple multiplication 1 {n-1)t,_ + 3(2n-l) + 2t +2t | 14,65
PP ha Zn cp me “c '
(pulse logic)
13 | recoding of the multiplier a 3
shift 1 or 2 positions per cycle 2 =t _+kt +t)+ 3t 12,70
with carry completion 2 "ha cp’ s ¥ mc
14 | recoding of the multiplier n 3
shift 1 or 2 positions per cycle 2 Z'(tha + ts) + tcp + 7t 11.75

with carry storage

* 1 ~1's complement or absolute magnitude number system

*¥ results in a single length product

2 - 2's complement number system

Table XX Maximum Multiply Time

107
shift line must appear immediately. All of the values in Table XX are not
arrived at directly by using the response times for the various logical
elements. The fact that the maximum repetition frequency for the flip-flop
is 5 mc., limits the time between successive operations in some cases. For
example, using full add and shift with carry completion, the maximum multi.
ply time is:

t = n(tha + ktc

nax)42t 42t (9. 21)

P
On the average, the carry after each add will be completed after an elapsed
time of:
_ 4.4 _

ktcp = T {0.55) = 0.14 usec, (9. 22)
Theoretically it would then be possible to shift the accumulator and live
register after this time has elapsed. This is not true for the 5 mec. circuitry
used, however, since this could result in a flip-flop being triggered by two
signals less than 0.2 psec. apart. Therefore, it is necessary to delay any
operation that could effect the same flip -flop within less than 0. 2 psec. In
the example of equation 9. 21, this would mean that 0. 2 usec. was used rather

than 0.14 psec. for kt__.
cp

The information in Table XX will be used with the complexity factor
given in the next section to arrive at a quantitative measure for selecting a
multiplication method.

9.7 Comparison of Complexity

The relative complexity of multiplication methods is8 more difficult to
define than relative operating time. When a computer manufacturer designs
a multiplier for his computer, the additional complexity is reflected only in
the additional total cost. Comparing the total cost of various machines is not
helpful, since the cost takes into account many extraneous factors such as
profit structure and the number of machines that the manufacturer expects to
build.

The only completely valid means of comparison is to design a multiplier
for a particular computer using each type of multiplication method in question.

The measure of logical complexity could be, perhaps, the number of transistors

and dicdes employed.

los

Such a detailed design survey was outside the scope of the present study,
but in order to demonstrate the methodology suggested, an attempt was made
to associate a complexity index with all of the multiplication methods shown
in Table XX except for ripple multiplication. Since ripple multiplication
uses pulse logic, it was felt that the basic arithmetic unit would be so different
from the arithmetic unit used by the other methods that a meaningful compari-
son would be impossible.

The complexity index, in each case, is proportional to the number of
transistors and diodes used for the multiply circuitry. The exact propor-
tionality factor is not known, however. The first assumption made was that
the control circuitry used for the full add and shift method (shown on the top
line of Table XX) is common to all multiplication methods investigated. Under
this agsumption, the complexity index of any multiplication method would be
the complexity index of the full add and shift method plus the complexity index
for any additional eircuitry needed to implement the particular multiply scheme.

Thias additional circuitry is shown in some detail, elther in this chapter
or in Lyon's study, for all the methods of multiplication ghown in Table yxx,
This circultry iz not designed in auch d=tail as to show individual transistors
and diodes, but rather in terms of flip-flops, ''and" gates, and '"or'" gates.

For simplicity, the measure of complexity is taken equal to six times the
number of additional flip-flops plus the number of inputs to "and'" and 'or"
gates. Since the full-add-and-shift multiplier corresponds quite closely to

the high-speed multiplier available as an option on Digital Equipment Corpora-
tion's PDP-]l, and since this computer is representative of the class of machines
for which these multiply methods were designed, the multiply control logic
used by PDP -1 was chosen as the model for the basic contrel logic. On the
basis of discussions with Digital Equipment Corporations's engineers concern-
ing the design of their multiply option, it was decided to assign a complexity
index of 240 to the basic full add and shift circultry. Therefore, with this
rather burdensome number of assumptions, the complexity index, I, used to

compare the different multiplication methods is:

I=240+ N+ 6F {9. 23)

where:

I = Complexity Index

N = Number of imputs to gates in the additional circultry

F= Number of flip-flops in addition to the 3n in the arithmetic
section and those already included in the 240 for basic

multiply control

109
As an indication of the relative magnitude of the complexity index, it has

been estimated that an 18 bit accumulator with the circuitry for full add and
gubtract, the circuitry to shift right or left one position, and the clrcuitry to
perform logical addition and logical multiplication, would have a complexity
index of approximately 360.

Table XXI shows N, F, and I for all the methods of multiplication shown
in Table XX with the exception of ripple multiply. The maximum multiply
time 1s also repeated for convenience.

This same information 1s also plotted in Figure Z22. Notice that a
straight line very nearly goes through all of the points representing the 2's
complement msathod, and that a straight line displaced by 2. 9 psec. to the
right of the 2's complement line fits the 1's complement points fairly well.
This 2.9 psec. is the difference between two identical methods of multiplica-~

tion using the two different number systems.

2000 T T |
N
\ AN
NN
\\ Y
1000 N
i NN A
R N _
|3.\ '20 \ 0 —

I~ AN 100\
o L N\ 26 -
g e To \
Z 500 .9-—-'°5
F L N\ 30\\ .
5 N
| 1
x 1's COMPLEMENT
z i AN \ﬂ:—mo ABSOLUTE _
G MAGNITUDE

o 1's COMPLEMENT AND Va2 \
ABSOLUTE MAGNITUDE N LN
® 2's COMPLEMENT N
200 — 2's COMPLEMENT—/'\\ N
Nt
2.90 uSEC
100 1 L '
0 5 10) 20 25 30

Multiply Time p(sec)

Fig. 22 Complexity Index and Multiply
Time for Various Multiply Methods

110

Number max
Multiplication Method System * N F I {psec.
1 | full add and shift 1 0 240 26.55
2 | full add and shift 2 0 0 240 23,65
3 | full add and shift with 1 180 0 420 20.60
carry completion
4 | full add and shift with 1 144 0 384 20.60
high-speed carry
5 | recoding of the multiplier 1 261 1 507 20.55
6 | recoding of the multiplier 1 333 1 579 18.75
shift 1 or 2 positions per
cycle
7 | carry storage 1 216 18 564 17.75
8 seriesg~parallel 1 144 54 708 17.75
9 recoding of the multiplier 2 261 1 507 17.65
10 | recoding of the multiplier 1 441 1 687 17.40
with carry completion
11 recoding of the multiplier 2 333 1 579 15.85
shift 1 or 2 positions per
cycle
12 | recoding of the multiplier 1 513 1 759 15. 60
shift 1 or 2 positions per
cycle with carry completion
13 | recoding of the multiplier 2 513 1 759 12.70
shift 1 or 2 positions per
cycle with carry completion
14 | recoding of the multiplier 2 549 19 903 11.65

shift 1 or 2 positions per
cycle with carry storage

* 1 -« 1's complement and absolute magnitude number system
2 = 2's complement number system

Table XXI Complexity Index

111
It should be emphasized that these results are only intended to be repre-

sentative; however, certain trends are evident from Figure 22, One is that
methods 4 and 7 perform slightly better than other methods requiring compar-
able time. Method 5, which uses the reccded multiplier with 1's complement
arithmetic, does not show up well due to the fact that the additional circuitry
for high-speed subtraction is included in the complexity index for thig method.
A slow method of subtracting, such as the complementing and adding scheme
discussed in Chapter V, is not satisfactory here. If the high-speed subtract
logic is already built into the computer, then Method 5 becomes much more
attractive. In any case, if much faster multiplication is desired, the recoding-
of -the -multiplier method must be used. The slope of the straight lines in
Figure 22 indicates that the complexity doubles with every decrease of
6.2 psec. in multiply time.

Figure 22 also shows quite clearly the decided advantage in time that
the 2's complement methods have over the 1's complement methods. This ad-
vantage in time must be weighed against the difficulties involved in implement-

ing the arithmetic section for a computer using the 2'sa complement system.

9.8 Selection of a Multiplication Method

A computer designer could use the information in a curve such as Figure
22 to determine which type of multiplication was best sulted to the particular
problem at hand. If most of the other instructions for the computer had been
already specified, then the designer would know for a particular problem
having a certain namber of multiplications to be performed what the maximum
acceptable multiply time would be. If it were desirable to solve that one
problem at the smallest cost, then the least complex multiply logic having an
acceptable multiplication time would be the proper cholce. If, however, some
gpare running time could be utilized effectively, then a curve such as Figure
22 would indicate the trade-off between extra running time and additional
complexity, The curve might be used also to evaluate possible special ~purpose
commands other than multiplication. Suppose, for example, there are two
possible methods of saving a certain amount of running time, a special purpocse
order and a faster multiplication. Figure 2z and the information as to the
additional complexity required for implementing the special-purpose order
could be used to declde which was the more economical method of realizing

the savings in time,

112

It has already been seen that with the addition of a few Instructions, the
TX-0O could solve the F-100A problem at a sufficiently rapid rate using a full
add and shift multiplier such as method 1. If additional spare time were
dezired, then method 4 would save approximately 1. 8 msec. of worst-case
time. But, according to Figure 22 the use of method 4 would increase the
complexity of the mualtiply logic over that required by method 1 by about 60%.

It should be pointed out that the whole discussion in this chapter has been
carried out for maximum multiply time. It is difficult to believe that all the
multiplications for a given solution cycle of a complex nroblem could possibly
require the maximum amount of time. Therefore, when the time required
for many multiplications is desgired, it would probably be safe to use some

value less than the maximum multiply time.

CHAPTER X

SUMMARY AND CONCLUSIONS

10.1 Introduction

The plan of attack followed here in outlining the functional design of a
Special-Purpose Digital Computer for Real-Time Flight Simulation was to
first determine in exact detail the nature of the problem for a specific case,
{the F-100A) then to write a complete program for this model largely employ-
ing the order code of an existing computer, and lastly, on the basis of an
analysis of this program to outline a new functional computer design that
would be suitable for a wide range of real-time simulation problems. Where
possible, the major design alternatives have been put on a quantitative basis,
that is, in terms of such factors as complexity, memeory size, and running
time, From the variety of individual areas investigated in this study, the
general features of a practical simulation computer begin to emerge. In
this chapter, an attempt will be made to summarize the individual results
and put them in proper perspective relative to the overall design problem.
These results fall Into two general areas, the analysis of the problem and

the functional design of the computer.

10.2 Results of the Analysis of the Problem

The areas that were investigated pertaining to the analysis of the problem
were aerodynamic function generation, the use of subroutines, and integra-
tion formulas. A brief summary of the results in each of these areas is

glven below.

Aerodynamic Function Generation

Comparisons between the UDOFT and TX -0 methods of function genera-~
tion indicate: 1) The TX-O method of using the aircraft manufacturer's data
in its original form is superior to the UDOFT method in accuracy for the
number of breakpoints used by the respective studies. 2) The TX-O method
is superior in convenience of setting up and changing non-linear functions.

3) The TX-~O method is comparable to the UDOFT method in data storage

113

114

requirements when the number of breakpoints used for the TX~O method is
reduced to make the accuracy comparable to that of UDOFT. And 4) The
TX -0 methed is a little slower in running time than the UDOFT method, the
difference being approximately 10% of the total time consumed by function
generation. This penalty in running time is independent of the number of
breakpoints used for the TX~-O method, so that the method would still be
only about 10% slower even when the accuracy is made superior to the
UDCFT accuracy.

No corresponding analysis has been made of the method of handling
non-linear functions in the engine, hydraulic system, or instruments. From
the results of the analysis of aerodynamic functions, however, it is felt that
an analysis of these other areas would yleld similar results. The recommen-
dation therefore, is to handle all non-linear functions by the TX-O method,
that i{s by linear interpolation between dlscrete points.

Subroutines

In general, the use of saubroutines decreases the memory requirements
of a given program at the expense of running time. Since memory costs
money, the use of subroutines constitutes just another method of trading
running time for money. Therefore, the extent tc which subroutines are
employed must be decided in the context of the trade-off obtainable by other
means, such as the incorporation of additional general-purpose orders,
speclal-purpose orders, and faster multiplication, For a given machine and
problem, the subroutine decision will be determined by whether one has a
surplus of running time or memory capacity available.

No definite conclusions on the use of subroutines have yet been reached
for running the F-100A problem on the TX-O. Subroutines were not used in
the preliminary TX-O program, and, in fact, their use could not even be
congidered unless some means were found to decrease the running time
below the maximum acceptable ranning time of 50 msec. If orders such as
those suggested in Chapter V were avallable, then subroutines could be used
to advantage to decrease memory requirements. For example, in using sub-
routines for function generation, the trade-off ratio between memory and
running time lies roughly in the range 46 to 220 words saved per extra
one msec., of running time (present TX-O order code). When the order code
is augumented by the instructions recommended in this study, the trade-off
ratio is between 20 and 160.

115

Integration Formula

Integration formulas were not directly investigated in this study, but the
results of an empirical analysis carried out at the M, I.T. Electronic Systems
Laboratory in 1958 have been utilized. They show that a trapezoidal formula
at 25 solutions per second isa comparable in accuracy to UDOFT's Mod Gurk
at 40 solutions per second and is more accurate in reproducing violent
transients than Mod Gurk at 20 solutions per second. On the basis of thia
study, trapezoidal integration was chosen for the TX-O program.

10. 3 Specification of Computer Characteristics

The specification of the important characteristica of a computer well
suited to a particular real-time simulation problem was the other main area
of research of this study. The maln computer characteristics conaidered
are: number representation, order code, and word length. These areas are

discussed briefly below.

Number Representation

The TX-O uses the 1's complement representation of negative numhbers,
and it would not be reasonable to suggest changing it to some other system.
The 1's complement does have many advantages. For example, only add
logic is required to handle both positive and negative numbers and the comple-
ment of a number can be formed easily. The 2's complement system shares
some, but not all, of the advantages of the 1's complement system. The 2's
complement system does have the very important advantage of a faster
multiplication (2. 9 psec. faster in the multiply circuits analyzed in Chapter
IV). In the design of a computer for a specific problem, the importance of
multiplication time would govern whether the 2's complement system was

worth the additional complexity that its implementation entails.

Order Code

For the F-100A problem, which is repreaentative of a wide class of real-
time gimulation problems, the TX-O order code, with a few changes, was
found to be quite satisfactory. The additions to the TX-O order code recom-
mended for the F-100A problem and their proposed operation times are:

1. Addressable multiply order (25 psec.)
2. Non-addressable divide order (40 psec.)
3. Accumulator right shift k places {12 ysec.)

116
Accumulator left shift k places (12 usec.)
Special level-select order (variable)
Load accumulator order (12 psec.)
Indexable load accumulator order (12 psec.)
Subtract order (12 psec.)

(V=T NE B AT T N

Indexable subtract order {12 psec.)

The incorporation of these orders would reduce the worst-case running time
to 42. 725 msec, and the memory requirement to 6913 registers.

The cheapest acceptable multiply for the TX~O would be a full-add-and-
shift multiply similar to the 25 ysec. addressable multiply on the Digital
Equipment Corporation's PDP.]. Multiply logics offering maximum execute
times as low as 11, 65 psec. were investigated in this study, but the complexity
of these faster schemes is substantially greater.

In the area of high-speed multiplication, an investigation of a methed to
yleld a correct double -length product using a 1's complement machine with the
recoded multiplier technique would be quite promising, if the implementation
could be accomplished without the use of an additional register. If a simple
method were found, then it would be possible to combine some of the advan-
tages of the recoded multiplier technique with the advantages of the 1's comple-
ment number system to yleld a very good multiply method.

Various other orders have been suggested and, although they were not
considered useful enough for the F-100A problem to warrant their inclusion
in the TX-O order ccde, they might prove more worthwhile for other problems.
The design method used throughout this study has been to re-program the F-100A
problem using suggested modifications in order to determine the specific sav-
ings in time and memory that result. This data and a knowledge of the cost of
implementating the modification provide a means of comparison with other
suggested modifications.

Word Length

The word length requirement is affected by two different factors:
1. Dynamic range of variables.

2. Number of instructions and the size of the directly-addressable
memory.

Of these factors, the affect of integration on the dynamic range of variables,
particularly altitude, was found to impose the most severe requirement on

word length, However, certain computations can be performed by double-

117

precision methods, at the cost of both time and additional memory. For the
F-100A problem, an 18 bit word length is felt to be just barely acceptable.
Conne11y4conc1udes that a word length of 24 bits would be a good word length
for the simulation of modern fighter aircraft. These 24 bits include addi-
tlonal tag bits that provide more versatile control of the analog-digital con-
version operations. This latter feature would be helpful for problems where
the analog input and cutput are more time conauming than for the F-100A.
Since the cost of a digital simulator is the critical problem at the present
time and since cost is roughly proportional to word length, accepting the
inconvenience and added running time of the 18-bit word length is indicated
for the special-purpose OFT computer,

Other Miscellaneous Characteristics

The use of floating point arithmetic was investigated by Connellgr.4 His
conclusions were that when variables approached thelr maximum values, the
dynamic range considerations imposed by integration would have the same
effect on the word length of the characteristic part of the floating -point
representation as on fixed point numbers. Therefore, when the number of
bits required by the exponent is added to the number of bits required for the
characteristic, the result is an unusually long word length. Floating point
arithmetic would simplify programming, since scaling operations would be
performed automatically by the computer. For a general-purpose simulation
facility, the additional complexity and word length of floating-point implemen-
tation might prove worthwhile,

One other possibility that has not been investigated In this study is the
use of two independent memories to Increase the average instruction rate
while using circuitry of the same basic speed. There are many possibilities,
such as the UDOFT scheme of using separate memoriles for instructions and
data or the use of separate memories for even and odd numhbered memory
locations., Both of these methods would result in faster Instruction access
when the program was not branching. The use of multiple memories, if
designed to place no programming restrictions on the user and to impose no
excessive time penalty for branching, could result in a substantial savings

in time at 2 rather modest cost in equipment.

10.4 Conclusion

The main guestion investigated in this study was the ability of a TX-O

class computer to solve the complete F-100A problem in real-time. This was

118

necessary in order to establish the relative capabilities of analog and digital
techniques for real-time simulation. For the study to be of practical signifi-
cance, the machines compared must alsc be economically competitive.

With the inclusion of a 25 psec. addressable multiply order, a 40 psec.
divide order, and the shift right and shift left k places orders, and employing
a memory slze of 7463 words, the TX-O would be able to solve the F-100A
problem at 20 solutions per second.

The ability of the TX-O to solve more complex real-time simulation
problems would be further enhanced by the inclusion of a load accumulator
order, a subtract order, and a special level-gelect order. Whereas the
emphasis in this study has been on the specific requirements of the F-100A
problem, the design methodology and the various design trade-offs prescribed
should be applicable to the functional analysis of other simulation problems of

greater or lesser complexity.

10.

11.
12,

13.

BIBLIOGRAPHY

Kennedy, O; Moroney, R; and Morse, M., An Experimental
Analog-Digital Flight Simulator, M. I. T. Servomechanisms
Laboratory, Rpt. 45-2, January, 1959. (Also published by
Naval Training Device Center, Port Washington, New York
as NAVTRADEVCEN 45-2.)

UDOFT Simulation Program, Final Report FR77-1N, Sylvania
Electronic Systems, Needham, Mass. May 1960,

Simulation of a Supersonic Fighter Using a Digital Computer
Moore School Rpt. 55-20, University of Pemsylvania, Philaklphia
May, 1955,

Connelly, M. E., Analog-Digital Computers for Real-Time
Simulation, M.I. T. Electronic Systems Laboratory, Final Rpt.

ESL-FR-110, June, 1961. (Also published by Naval Training

Device Center, Port Washington, New York as NAVTRADEVCEN
594-1),

Connelly, M, E., Simulation of Aircraft, M. 1. T. Servomechanisms
Laboratory, Rpt. 759I1-R-1, February, 1958. (Also published by
Naval Training Device Center Port Washington, New York as
NAVTRADEVCEN 75%91-R-1.)

Flight Trainer Digital Computer Study, Moore School Rpt. 51-28,
University of Pennsylvania, Philadelphia, March, 1951.

Dwyer, P.S., Linear Computations, John Wiley, New York, 1951,

A More Powerful QOrder Code for the TX-0Q Memorandum M-5001-22,
Depariment of Electrical Engineering, M. 1. T., Cambridge 39, Mass.
May, 1960.

Aerodynamic Data for the Design of the ¥F-100-A Simulator North
American Aviation Rpt. NAB3-592, North American Aviation, Los
Angles 45, California.

Gurk, H. M., and Rubinoff, M., Numerical Sclutions of Differential
Eguations, Proceedings of the 1954 Eastern Joint Computer Con-
ference, December, 1954,

Aero Equations for the F-100A, Sylvania Electronic Systems, Needham, Mass.

Programming Manual for the UDOFT Computer, Sylvania Electronic
Systems, Needham, Mass. August, 1959.

The Bendix G-20 Central Processor Machine Language, T 23-2,
Bendix Computer Division, Los Angeles 45, Calif. January, 1961,

118

15.

16,

17.

18,

19,

20,

21,

22,

23.

25

26.

27

28,

120

BIBLIOGRAPHY (oontinued }

Programmed Data Processor - 1, F-15A, Digital Equiment Corporation,
Maynard, Mass,, March, 1961,

160 Canputer Programming Manusl, Publication No, 023a, Control
Data Corporation, Minneapolis 15, Minn,, 1960,

Lyon, E.F,, A Study of Arithmetlc Blements for the TX-0, M.S, Thesis,
Department of Elactricel Engineering, M,I,T., Cambridge 39, Mass.,
May 1959.

On the Design of a Very High-Speed Canputer, Report No, 80,
University of Illinois Graduate College Digital Canputer laboratory,
Urbane, Illinois, QOctober, 1957.

Methods of High-Speed Addition and Multiplication, NBS Circular 591,
Netional Bureau of Standards, Washington, D.C., February, 1958,

Ledley, R. S., Digital Computer and Control Engineeringz, McGraw-
Hill Book Campany, New York, 1930.

Salter, F., High-Speed Transistorized Adder for a Digital Com%ter.
IRE Transactions on Electronic Camputers, Vol. EC-9, pp. 461-464,
December, 1960,

Hendrickson, H.C., Fast HigheAccuraey Binary Parallel Addition,
IRE Transactions on Elsctroniec Camputers, Vol, EC-G, pp. 465-469,

December 1960,

Binsack, J., A Pulsed-Analog and Digital Computer for Function
Generation, Elsctronic Systems Laboratory, Scientific Report

8404 -R~2, M,I.T,, Cambridge 39, Mass, October, 1960 (AFCRL TN 60-1111)

Gilmore, J., A Functional Description of the TX~-0 Computer, Memo
éM-4789, Division 6, M,I.T., Lincoln Laboratory, Lexington, Mass,

Hill, J., A Fast DigitaleAnalog Converter and Its Accuracy Limitations,
M.S. Thesis, Department of Electrical EBngineering, Electronic

Systems Laboratory, M.I.T., Cambridge 39, Mass,, November, 1959.

The Future TX-0 Ingtruction Cods, Memorandum M-5001-29, Department
of Electrical Engineering, M.I.T,, Cambridge 39, Mass., Sept, 1960,

Progremming for the TX-0, Memorandum M-5001-13«l, Department of
Electrical Engineering M,I,T., Cambridge 39, Mass, October, 1960,

A Sywbolic Utility Program for TX-0, Memorandum M-5001-23, Depariment
of Electrical Engineering, M.I.T., Cembridge 39, Mass., July 1960,

Marco IIA, Memorandum M-5001-5-1, Department of Electrical
Engineering, M,I.T,, Cambridge 30, Mass,, April, 1961,

APPENDIX I

A BRIEF DESCRIPTION OF THE TX-0O

The TX-OZ3 1s an experimental digital computer utilizing transistor
circuitry, it was designed and built by the M.I. T. Lincoln Lahoratories to
test out a 65,536 ~word core memory. In 1958, it was turned over to the
Electrical Engineering Department at M.I. T. with a smaller, transistor-
driven 4096 ~-word core memory (18 bits), which has since been expanded by
an additional 4096 words. The memory cycle time is 5 psec., a complete
operation taking two memory cycles or 12 usec. The instruction is obtained
in cycle zero and the operand in cycle one. Each memory cycle haa eight
time pulses,

The TX-O input facilities include a photoelectric paper tape reader,
eighteen toggle switch storage registers, a toggle switch accumulator and
buffer register, an on-line Flexowriter, and a light pen used in conjunction
with an oscilloscope output display. The light pen permits logical declsions
based on the manual selection of points plotted on the cscillogcope. An
Epsco Datrac encoder (model B-61l) can be used to convert analog voltages
within the ranges of £1. 000, 10,00, or + 100.0 volts into 11-bit digital
numbers. The unit converts at a rate of 2 paec. per bit. Pulsing the
encoder activates a sample and hold circuit at the input, Approximately
22 usec. later, a digital output of 11 parallel bits 18 available. Anocther TX-O
pulse, under program control, will strobe this number Into the TX-O live
register.

The output facilities consist of the aforementioned oscilloscope
(511 x 511 grid) with a Polaroid camera attachment, a Flexowriter tape punch
and printer and the usual conscle indicator displays. The digital-to-analog
decoder used on the TX-O was designed by Hill.z'4 Fifteen parallel transistor
switches excite a ladder network of precision registers; a complete conver-
slon 18 performed within one microsecond, the digital data being strobed
into the decoder register from the TX-O live register.

121

122

25
The operation code of the TX -0 consists of nineteen orders of which

eighteen are addressable. The nineteenth order, operate, does not refer to

a memory location, but is 2 microprogramming instruction which specifies

a logical or arithmetic operation to be carried out within the arithmetic

registers of the machine. Within a single operate order, a programmer may

build up a wide variety of operation sequences by selecting the appropriate
combinations of individual operations.

The eighteen addressable instructions are:

Instruction Mnemonic Operation Performed

store accumulator sto vy replace c¢(y) with c(ac)

store accumulator indexed stx y replaca c(y+c(xr)) with c(ac)

store index reglster in sxa y replace the address portion of

address c(y) with ¢(xr)

add ons to memory ado vy add one to c(y) and leave the
result in c(y) and c¢lac)

store live reglster slr y replace c(y) with c(lr)

store live register indexed slx y replace c(y+c(xr)} with c(lr)

add to accumulator add y add c(y} to c(ac)}

add to accumulator indexed adx y add c(y+c(xr)) to clac)

load index reglster ldx ¢ replace c{xr) with the sign and
address portion of c(y)

augument index register aux y add the sign and address por-
tion of ¢{y) to c(xr)

load live register ir v replace c{lr) with c(y)

load live register indexed lx vy replace c{lr) with c{y+c{xr))

transfer on negative accumu- trn y take the next instruction from

lator y if c(ac) is negative

transfer on zero accumulator tze v take the next instruction from
y if c(ac) is zero

transfer and set index tsx y replace c(xr} with c(pc) + 1

register

and take the next instruction
from y

123

Instruction

Mnemonic

Operation Performed

transfer and index

unconditional transfer

unconditional transfer
indexed

tix y

tra y

trx y

if c{xr) is not zero, take the
next instruction from y and
decrease magnitude of c{xr)
by one ~ if ¢(xr) is zero,
take the next sequential
instruction

take the next Instruction from
y

take the next instruction from
y+e(xr)

All addressable instructions require 12 psec. with the exception of the

transfers, which require 6 ps2c. when they transfer, and the add one (ado y)}

and store index in address (sxa y) instructions, which require 18 psec.

The micro-orders that can be used with the operate order are:

Cycle No. Time Pulse Mnemonic Operation Performed
0 7 amb replace c{mbr) with c{ac)
0 8 cla clear c(ac) to plus zero

The Memory Buffer Register is Always Cleared at the Beginning of

Cvycle One

1 2 xmb replace c(mbr) with c{xr)

1 2 com complement the accumulator

1 3 anb the logical product (and) of
c{lr) and c(mbr) replaces
c{mbr)

1 3 orb the logical sum {inclusive
or) of the c{lr) and c{mbr,
replaces the c{mbr)

1 4 mbl replace c{lr) with c(mbr)

1 4 Imb repnlace c{mbr) with c(lr)

1 5 pad the exclusive or between the
c({ac) and c{mbr) replaces
cl{ac)

124

Cycle No, Time Pulse Mnemonic Operation Performed

1 6 shr shift the accumulator right
one position leaving the
sign bit unchanged

1 6 cyr cycle the accumulator
right one position replac-
ing bit 0 ‘with »it 17

1 7 cry a partial add {pad) followed
by a carry operation (cry)
will replace c{ac) with the
regult of a full add between
cl{ac) and c(mbr)

1 8 mbx replace c(xr} with ¢{mbr)

With certain restrictions, groups of these instructions may be combined
into a single operate instruction that will still require only 12 psec. Input-
Output instructions, which occur after time pulse 8 of cycle 0, are also part
of the operate class group and can be combined with the micro-orders listed
above.

Additional information about the TX ~O and the assembly and communica-
tions facilities available can be found in References 26 to 28.

In several places in this report, the one's complement system of binary
numbers has been mentioned. Many computers, including the TX-Q use
this system because the arithmetic logic for addition rmay also be used for
subtraction. The negative of a positive binary number is very simply formed

in the one's complement system by interchanging zeros and cnes. One some-

what confusing aspect of the convention, however, is that there are two ver-
sions of zero, one positive and one negative.
+ Zerc = 00DOODOOO0OO000CO0

- Zero 111112111111111111

