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for analysis of the initial structural system. Response predictions for
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and the potential energy methods. The approach yields approximate
response predictions with accuracy decreasing directly with the
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SECTION I

INTRODUCTION

A structure with survivability {s defined as one which is fail-safe and invulnerable, A
fall-safe structure continues to perform satisfactorily if any one structural component fails
(Reference 2), No member will be over-stressed and the system does not undergo excessive
deformation nor have unsatisfactory dynamic characteristics. Fail-safe evaluation requires
analysis for the design loading conditions of as many structures as there are structural
elements,

An invulnerable structure performs satisfactorily despite mechanical damage. Satisfactory
performance can involve reduced requirements in the loading conditions or the performance
specifications from those of the undamaged structure, Mechanical damage can be induced by
any source, impact, fatigue, or corrosion, This initial damage can affect any part of the
structural system, Invulnerability i3 distinet from fail safety since the damage progresses
through a number of damage steps. The region of damage grows and may cascade until the
structure becomes a mechanism, Invulnerability analysis requires evaluation of each of the
imposed damage conditions for the invulnerability loading conditions, The performance of
the structure must be compared with the appropriate performance specifications,

Survivability evaluation is warranted whenever human iife or high cost structure is
involved, Fail-safe analysis can be the basis for structural reliability and failure resistance
evaluation, K can also be used to provide a low cost measure of structural invulnerability,
Invulnerability evaluation may be used to assess damage, determine recoverability, or
measure safety, As a basis for identifying structural failure modes, it can lead to safer and
more economical designs,

This paper presents rapid analysis procedures for evaluating structural survivability, It
describes a fail-safe analysis procedure which yields exactpredictions of structural stresses
and displacements. A modification of this process glves approximate invulnerability predictions
with accuracy depending upon the number of damage steps until failure. Applications to the
analysis of truss, frame, and compound systems illustrate the accuracy of the method and
the nature of survivability characterizations,
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The next section of this paper discusses the basic analysis approach for the survivability
evaluation. The third section expounds the use of this approach for fail-safe analysis, The
fourth section describes a medification of this approach for invulnerability studies., The fifth
section discusses the use of fail-safe data for invulnerability studies. The firal section con-
tains the conclusions,
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SECTION II
BASIC ANALYSIS APPROACH

The fundamental problem is tc perform rapid analysis of many structures which are
mutations of the initial configuration., For this paper, analysis consists of the prediction of
stresses and deformations of the structural system, The types of mutations of the initial
gystem include the omission of one member or the condition when several members are acting
with reduced effectiveness and other members are missing.

Reanalysis of each mutation reusing the initial structure analysis process is extremely
costly compared with analysis modification, Methods of exactanalysis of modified structures,
based on modifying an initial analysis, have been described by other authors. Pipes (Ref-
erence 3) describes the matrix manipulations to be employed if the force method is the basis
for the initial configuration analysis. Sack, Carpenter, and Hatch (Reference 4) describe an
equivalent process when the displacement method provides the initial analysis basis. Both
of these procedures are unsatisfactorybecause they require the construction of transformation
matrices based on geomeiry and fopology and the operation with data dependent on the
structural changes not normally saved in the solution process,

Since estimates of response may be satisfacfory for invulnerability studies the economy
of an approximate procedure recommends its use, The method of Melosh and Luik (Reference 1)
is selected as the basis for analysis, This process provides exact estimates of behavior for
fajl~gafe analysis and it guarantees monotonic convergence to the exact answers when applied
to invulnerability studies., The rate of convergence is rapid and is an exponential function
of the number of analysis cycles used (Reference 5). The process is also modular, thus well
suited for implementation on a digital computer.

The four basic concepts of the Melosh and Luik multiple-configuration-analysis approach
are:

1, Develop assumed behavior vectors based onthe initial structure. The initial structure
for survivability analyses is an ‘‘inclusive configuration’’ in that a1l members that will ever
be included in a configuration are contained inthe initial system, Thus, vectors of generalized
forces which are based upon this design implicitly contain all the geometric and topological
information for all the subset structures of interest,
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2. Develop assumed behavior vectors assoclated with the members being changed, This
approach can lead to exact predictions of internal forces and deflections for a fail-safe
analysis because the process can then be regarded as superposition.

3. Use an energy approach for approximate analyses.

4, Base the modified structure response predictions upon considering a few vectors at
a time and cycling through the complete relevant set of vectors until the response predictions
are as exact as desired, The complete relevant set of vectors includes only those vectors
or components associated with the members changed. Cycling through this set using an energy
criterion to select the best behavior estimates is sufficient to insure monotonic convergence
toward the exact behavior predictions for the modified structures, Since only a few vectors
are treated at a time, very large structural systems can be handled despite a limited high-
speed storage capability.

To understand the analytical process, let the stiffness method be considered as the basis
of the initial configuration analysis, This analysis approach produces an element stiffness
matrix and an element stress matrix for each element. When an element stiffness matrix is
multiplied by the system displacements, it defines a set of generalized forces for the element.
When an element stress matrix is multiplied by the joint displacements, it provides a
measure of the mean stresses in the element,

These matrices are norméllyproducedby computer codes based upon the stiffness method,
In addition, these codes can easily yield a set of transformation matrices, one for each
element, which will transform the element stiffness matrices into a set of independent self-
equilibrating loadings for each member, These member self-equilibrating force systems can
also be found by defining constraints on the element corresponding to imposing determinate
support conditions. Alternately, with the known rigid body modes, the Gram-Schmit process
can be used to develop self-equilibrating vectors from the element stiffness matrix, The
analyst could also obtain the same self-equilibrating vectors by obtaining the eigenvectors
of the elements stiffness matrices and discarding those associated with zero eigenvalues,

In the displacement approach the total set of load-deflection equations are formed and
the equations are solved to obtain the deflections. It is common to solve these equations by
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decomposing the stiffness matrix, The recommended procedure, to maximize numerical
accuracy (Reference 6) is to decompose this matrix into three matrices as follows:

kK = LoLT (1
where K ig the square symmetric stiffness matrix
L is a lower triangular matrix
D is with a diagonal matrix

LT is the transpose of 1.,

It is easy to save the L matrix as a representation of the load~deflection equations for the
equations for the initial structural configuration.

To describe the reanalysis process, suppose that all members through e-1 have been
revised. Then in order to reflect the changes in structural response due to the change in
effectiveness of member e, the following steps are performed:

a. Find deflections of the initial structural systems for each of the independent self-
equilibrating loadings associated with the member being changed, Internal forces for the
changed member are evaluated for these loadings. The deflections are developed directly by
forward and backward substitution using the matrices L and D . A complete set of force
vectors could be developed initially, if desired. However, with existing computer hardware,
it is cheaper to develop these as needed usingthe L and D matrices, rather than reading
them because they can be regenerated faster. Solve for the internal forces by multiplying
the element stiffness matrix by the displacements, These forces will satisfy equilibrium if
rigid body states are included in the element stiffness matrix,

b, Assume that the response of the modified structure can be obtained by superimposing
the response of the initial configuration, the initial configuration response to the self-
equilibrating loadings, and the cumulative change in response between the initial configuration
and the response estimate for all the changes through member e-1. This assumption will
lead to a set of simultaneous equations of maximum order J+2 for each loading condition,
where J is the number of self-equilibrating states for the member, These equations are
solved for the superposition scalars,

¢. Superimpose the loadings to obtain an effective external loading for the initial
configuration,
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d. Evaluate deflections, as in step a, using the effective loading.
e. Determine member stresses, using the siress matrices,
The differences in the fail-safe and invulnerability analysis approaches arise in im-

plementing step b, Steps ¢ and d define one of a variety of ways of implementing the
superposition. The procedure described herein minimizes the amount of new data to be stored

in each calculation,
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SECTION III

FAIL-SAFE ANALYSIS

In fail-safe analysis, step b of the general process involves direct application of the re-~
quirement that stresses in the cut member must be zero. Since each member failure is
ireated Independently, the cumulative change vectors are zero, thus the self-equilibrating
internal forces must be superimposed with the initial internal forces such that the internal
forces are zero in the cut member. This requirement is expressed mathematically as

s + ¥ B s° -0 (2)

B  are undefined scalars

$¢ are the internal forces in the cut member due to the jth
self-equilibrating state.

are the internal forces in the cut member predicted
for the initial configuration,

J is the number of self-equilibrating vectors.

Table I provides an {llustration of the calculations for fail-safe analysis of a member of
a continuous beam. The beam consists of finite elements of equal length and uniform stiffness,
The real loads on the structure consist of unit loads applied at the second and fifth Joints
and acting laterally to the beam axis. The system is clamped at the left and has two simple
supports: one at station three and one at station four. The initial structure has two force
redundants and six displacement unknowns,

The data given in Table I show the results when a fail-safe analysis is made for member
2'-3, Columns two, three, and four are results of calculations for step a of the analysis
procedure. The second column defines external loads, joint displacements, and internal
forces for the real loads on the initial configuration, The third and fourth columns display
comparable information for the member self-equilibrating loadings.

The self-equilibrating loadings consist of the first two columns of the stiffness matrix
for element 2' -3, Associlated displacements apply to the initial configuration, The internal
forces must be modified to define an internal self-equilibrating state. Therefore, the cut
member Internal forces obtained by multiplying the element stiffness matrix times the
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TABLE I*

BEAM FAIL-SAFE ANALYSIS

#
l El=Constont [#
1! 212‘ - 3 3 4 4’ sl
l—4 Spans ats = 4s J|
Initial Member 2'3 Self-Equil. Member
Variable Structure Vector | Vector 2 2'-3 cut
P, 1.0 2.0 -3.0 70000’
M, 0 -t.0 2.0  -.36667
Effective Mg 0 -1.0 .o -.23333
Loading Mg 0 0 0 0
P 1.0 0 0 .10000'
| Ms o 0 0 0
W 79167 70833 - .13750° 33333°
8, ~.37500""  -.11250° 26250  —50000°
Displacements™* 85 15000 -.50000" -.50000"  .16667°
(xEL) 8,  —32500° 25000 25000 —33333°
8 - -
W .65833°  —.25000™" -25000"  .66667°
| 8, - 82500° .25000" 25000"  .83333°
- s,/ .215800°  —.17500° .75000 ' 0
pz
Internal o -1 o
Forces Syp! 32500 25000 ~.22500 0
| sys  .50000" 15000° .15000°
[—.|?500° 75000 ' ]{ B, } __f .27500° }
25000 -.22500° 113, —.32500°
B = 10000 B = —.13333,
*Exponents indicate power of ten. i.e. 05" =05x%x 10"

™ pisplocements multiplied by EI /s
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deflection vector are adjusted by adding the external imposed member loads with opposite
sign. This step produces the data in the third group of rows of the table in columns three

and four,

The realization of Equation 2 when member 2' ~3 is cut is given below the table entries.
The total effective loads are given by

J
Pe = Pl’ + j%z ﬁ] Pj (3)

where Pe is the total effective external load

PI is the real Initial configuration load

Pj is the jth external loading for the self-equilibrating load

This ylelds data in the fifth column of Table I The remainder of the data in this column
follows from manipulations with 1,D, and the cut member stiffness matrix. As expected,
these data agree with exact response predictions for the structure remaining when member
2' - 3 is omitted.

The process must produce exact response predictions since the superposition guarantees
satisfaction of equilibrium and compatibility everywhere, within the limitations of the finite-
element representation, Thus, for a plane framework, regardless of the degree of force
redundancy, solution of two simultaneous equations for each external load condition is the
key to the analysis. If a triangular membrane is to be cut from a compound system, three
equations are involved; for a rectangular prism, 18. In general, the number of equations to
be solved is J,

Table II shows the results of similar fail-safe calculations for the cases when member
3' -4 and separately, 4'~5 are cut. In both of these caseg, no set of B can be found to
satisfy the equations. This means that the model reduces to a mechanism if either member is
cut; or in general, if the matrix of 8 coefficients is singular, the reduced model cannot
sustain an arbitrary external loading. The vanishing of all the coefficients when member 4' =5
is cut indicates that the forces in this membei' can be established by equilibrium equations
alone, Similarly, the vanishing of one of the two rows of coefficients when member 3'~-4 is
cut indicates knowledge of a single force redundant (say the vertical shear at joint 4} is
sufficient to define all the internal forces in member 3' ~4,
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TABLE II*

BEAM FAIL~-SAFE ANALYSIS BREAKDOWNS

gl 2‘g‘_ 3;53 X 45:1' X 51

Member 3 -4 Self Member 4-5 Self
’Vutiuble Vector | Vector 2 Vector | Vector 2
P, 0 o} o) 0
M o o} o) 0
. .
Effective M3 0 2.0 0 0
Loading My -1.0 t.0 -1.0 2.0
Ps 0 0 -2.0 3.0
[ Mg 0 0 -1.0 1.0
W, -.25000"  .75000" 0 0
8, .25000"  -.75000' 0 0
Displacements 9 - .10000° .30000° 0 0
EL 3 o 0
(x 53) 0, -. 20000 . 10000 0 0
W 20000°  —-10000° . 16666 .50000°
A -.20000° .10000° o - .50000°
#
internal Su3' .20000 -,60000 0 0
Forces | SM a o 0 0 0

Member 3-4 Cut
20000° -.60000°][B,] . [-.s0000
0 o |18, * ™ |--10000'

Member 4'-5 Cut
0 0 B, 10000
° ° {Bz} {7 }

* £xponents indicole power ot ten. i.e. 5! = Bxi0”!
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The fail-safe analysis procedure was applied to the structure illustrated in Figure 1,
The structure is a four~level tower. The cross section of the tower is a square, four units on
a side, The height of each bay is two units. The tower has a total height of eight units, The
structure consists of 72 elements meeting at 20 joints. It is fixed at the lower four joints.
All members have unit area and are aluminum, Examination of the structure reveals that

there are 24 force redundants and 42 displacement redundants in the gystem,

The tower is subjected to two independent loading systems, All external loads are applied
In the top plane, The first loading system consists of a side loading; a set of 250-pound loads
applied to points 17, 18, 19, 20 in the positive y direction. The second loading condition is a
torsion load: A 1000-pound load applied to joint 17 in the positive x direction, to joint 18 in
the positive y direction, to joint 19 in the negative x direction and to joint 20 in the negative y
direction,

The fajl-safe analysis consists of removing each member in turn and studying the re-
sulting stress distribution in the remaining structure. X the removal of a member causes
no overstress, then that member is termed fail-safe. H the structure is fail-safe, then the
removal of one member cannot cause overstress in any other member. (If a structure i3
not fail-safe, it could be made so in two ways: the existing members can be given larger
areas or more members can be added. Which way results in a more economical fail-safe

design can be decided with an optimum design procedure.)

The results of the fail-safe analysis for the tower are depicted in Table III in matrix form.
The row codes of the matrix denote the members which were removed and the column codes
indicate the resulting member of failures. If a matrix coefficient is blank or zero, no failure
has occurred. A number in the appropriate hox denotes the loading condition under which the
member fails, For instance, the element in row 1-8, column 4-5 i3 a 2, This means that
removal of element 1-8 causes element 4-5 to fail when subjected to loading condition 2,

Some Interesting failure characteristics can be deduced by studying this array, Consider
the first loading. Repeated failures of members 1-5, 2-6,3-7, and 4-8 imply that these
members are highly stressed in this loading in the initial structure. In fact, these members
are fully stressed in this condition. It is observed that though failure of some members can
make some of these members safe, no failure can make them all safe,
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Fail-safe inadequacies under loading 1 arise only in the first two tower levels. Except
at the ground level, failure at any level induces failures only at a lower level. Fallure in the
upper level, however, results in no new element failures,

A failure in loading condition 2 results in overstress only for another member in the
same face and joining the same levels, The symmetry of the fail-safe array in this loading
reflects the symmetry of the structural geometry and internal forces,

No single member failure can induce a kinematic instability, Thus no member stress is
independent of stress in another member or can be determined without considering compat-
ibility requirements. If kinematic failure had occurred, this would have been indicated by a
“K on the diagonal of the fail~safe array.

Even disregarding the fallures in members 1-5,2-6,3=7, and 4-8, the structure is not
fail-safe. Defining the percent of elements for which the gystem is fail-safe as a fall-safe
measure, the tower is 45.8% fail-safe since 33 of the 72 members can fail without causing
any new element failures.

The fail-safe analysis of the wing shown in Figure 2 provides another example, This wing
has been investigated experimentally and analytically., (Reference 7, 8, 9, 10, and 11) The wing
is of uniform depth. X has five parallel spars. Three ribs interlace the spars and lie perpen-
dicular to them. The structure is cantilevered. Two independent tip loadings are considered:
the first composed of equal force at the leading and trailing edges; the second of a single
force at the trailing edge, The firstloading will induce primarily bending; the second twisting.
The total normal load in each condition is 2207.5 pounds (1000 kgm),

The finite element model of the structure is illustrated in Figure 3. It consists of 60 joints,
132 axial force members, 8 triangular cover skin elements near the root and 77 rectangular
panels for the webs and remaining cover skins. A summary of the geometric and material
properties of the elements appears in Table IV. The caps and cover skins are agsumed to have
no hending stiffness,

Table V shows a diagonal submatrix of the fail-safe matrix. Failure for this assessment
is based on overstress (20,000 psi). The structural elements involved consist of a group near
the root and the tralling edge. of the wing. The region is shown shaded in Figure 2, Two’s
indicate an element failing under loading 2. Three's indicate elements failing with either
conditions 1 or 2. No failures occur due to loadingl only which do not also occur when

loading 2 only is applied.
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Figure 2, Swept Wing Model



AFFDL-TR~68-150

ndexing is given by
+ 1

face i

=n
LOWER UPPER

NOTE; Lower sur

911
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The fail-safe submatrix indicates that an increase inthickness in members 50 and 49 will
make a big improvement in fail-safety. Examining the rest of the row partitions of the
diagonal submatrix confirms this. Only failure of element 25 induces fallures for elements
not listed in Table V. The part of the structure involved in the submatrix has a fail~safety

of only 6.3 percent without redesign of 50 and 49, Redesign will bring fail-safety to at least
58 percent.

These computer assessments of fail-safety take about the same amount of computer
time as required for the stress and displacement analysis of the initial structure. Response
predictions are exact. The economy is attributed to avoidance of repeated triangularizations
of the matrix of coefficients of the load-deflection equations. The economy of the approach

decreases as the number of elastic degrees of freedom of an element is increased.

TABLE V

WING FAIL-SAFE MATRIX

Subsequent Element Faiilure

41 N — ool N -
T O O T T O O MM
2
3

25R
24R

Failed 42 2
Etement 4 2

3
2
2
63R3 2
62R2 3 3 3
32 2 2
32 2
25R 3 3
| 24R 3

R designates o rectanguler panel. Unmodified numbers refer to bars
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SECTION 1V

INVULNERABILITY ANALYSES

For invulnerability analyses, step b of the general process uses energy approaches. In
treating a particular member change, the complementary energy method is tried first, Jf
this fails, the potential energy method is used,

The complementary energy method is used first because when approximate analyses are
made in this context it ylelds more accurate response predictions than the potential approach
(Reference 1), Because the complementary approach also involves somewhat less calculation
effort, it is the clear choice over the potential, This process, however, will not reflect dis-
placement changes when the structure becomes statically determinate. Then the potential

energy method is evoked to define displacements,

Consider the development of the generalized load-deflection equations when the com-
plementary energy method is used, These equations are given by

cB =y (4}
C is a square symmetric array with coefficients
B is a vector of the Bj

b is a vector with ] componerits

Then the complementary energy evaluates the coefficients as

M
ms|,2 -

M
mz), 2,

where M is the number of members

Am is the flexibility of element m

S. 1is the vector of internal forces due to the real loads on the initial
I configuration

Si and 8. defines the internal forces for the self-equilibrating load on the
initial ‘configuration
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To simplify the calculation of the 8, each self-equilibrating vector is written as the
sum of prestress internal forces and the forces induced by deformation,

Si . +S—I. (7)

where s. is vector of prestress internal forces involving only contributions to the
' member being changed

§i is the vector of internal forces induced in the initial configuration by"s'i

suhstituting Equation 7 in Equation 5 gives

M —
(‘.:ij = L L8 An s+ % Ay §;
m=l12|”-
+ sj A s +8 A, Sj) (8)

But, the first right-hand term contains the external work in magnitude., As a consequence of
the Maxwell reciprocity theorem, the second and third terms are equal. Furthermore, energy
can be calculated by adding to the energy in the initial configuration the change in energy due
to the change in flexibility, i.e. let

A m - A mT + a m (9 )
where Ay is the initial flexibility of member m

a is the change in flexibility of member m

Then since $ is zero except for member e, Equation 8 can be rewrliiten as

E —
C.:=—§, 8J + z (2?5 Anr Sj
m:t'z‘...

$ ) (10}

where 8. are the displacements associated with the jth equilibrating loading; and the
gummation of m extends only those members whose flexibility has changed.

E is the number of elements changed.

Calculation of the coefficients of bj can be facilitated by recognizing that the b must vanish
when A = Ampl. Therefore, using Equation 9, Equation 6 can be written

E
bj = — Z S
m;lz...

kR |

1 @ si (n
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The calculation of C i and b i by Equations 10 and 11 requires only displacements for
the initial configuration and the stiffness matrix for the elements changed. The element
stiffness matrices can be transformed to flexibility matrices by imposing determinant
houndary conditions and inverting,

When the potential energy method is used, the displacements are given by

J u
e,
where &8 is a vector of joint displacements

The coefficients of the generalized load-deflection equations are given by

M
=y 8 Kk_ 8 (13)

B

where the K m 2T the element stiffness matrices

"
H'U
(]

i (14}

Again the B coefficients can be evaluated using only displacements of the initial con-
figuration and the stiffnesses of the changed elements. Development of the equation in the

appropriate form follows lines similar to development of Equation 10. The coefficients are
recast as

E
Cij= P 8 + X 3 « 8 (15)
m= 1,2, -

¥ 1

where k m is the change in stiffness for element m

Then, Equations 14 and 15 define the coefficients in the generalized load-deflection equations
using the potential energy method.

It is seen that the complementary approach requires the solution of J+1 simultaneous
equations while the potential requires J+2. If a group of members are changed, the energy
estimates will approach the exact energy with the error reducing monotonically in successive
steps for repeated cyclic treatment of the members, Since the set of self~equilibrating
vectors assoclated with the members being changed is complete, the convergence will be
toward the exact answersg, barring truncation errors,
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To illustrate the invulnerability calculations for a structure, consider again the con-
tinuous beam. It will be assumed that the fiexibility of members 1~2 and 2-3 are doubled
due to the initial damage condition., The analysis steps for treating initial damage are no
different than those for treating progressive damage., The only distinction between initial
damage and progressive damage is that the sequence of member treatment is known ab initio
for the initial damage. For progressive damage, however, the e+1$t member to treat i3
selected based on member stresses after representing damage to member 1 through e. Thus

evaluation of the initial damage effects is sufficient to {1lustrate all the calculation steps.

Table VI shows the complementary energy calculation results, developed in evaluating
response, when the flexibility of member 2' - 3 is doubled. In the case of the first member
change, the cumulative change vector is zero. The basic data required for the analysis is
contained in the first two groups of rows (shown as related to vector 1 and 2) of the table
and the element 2~ 3 flexibility, This is given by

o 2 -1
fos ™ (EL), L. ) e

This is referenced to the internal moment at 2' and 3,

The third group of rows in Table VI shows the components formed to evaluate the coefficients
in the generalized load-deflection equation given below this group. The effective load Pe is
formed using the 3 ; and Equation 3, The predicted responses given are exact and would be
regardless of the number of force redundants.

The next step in the calculations involves applying the complementary energy method to
predict response predictions with the flexibility of member 1 -2 doubled. In this case, the
cumulative change vector is nonzero. The three simultaneous equations involved are singular
because the structure involves only two force redundants, Despite this singularity, a unique
solution exists for the /3 because the set is consistent. For this particular problem, pre-
dictions of response are also exact for the second member change with lteration because

force redundacy is less than J+1,

Table VII shows the calculation data when representation of the second member damage
is based on the potential energy method, In this case, four simultaneous equations are
involved. The b coefficients are generated in the development of the Cij coefficients, The
change in the C i due to reductions in stiffness of members 1-2 and 2'-3 are given in
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TABLE VI*

FIRST MEMBER DAMAGE ANALYSIS

| # |#
&I 292’ 3 3 4 4’ 1
Ver Ya A e A g
El -
Variable Displ. x_'s% _S s 5 + 3
P, .70833"" -17500°  -2.0 18250
Vector | M -.11250° 25000 1.0 -,97500°
L M, -.50000™ .15000° 1.0 -.85000°
4 -l
P; -.13750° 75000 3.0 -.29250'
Vector 2 M, .26250" -.22500° -2.0 . 17750
L My ~.50000 ' . 15000° -1.0 .11500'
o -5,9; 5 Ap-3S)  SiAza¥ 5 Aesd S 0,5 L
Cii .30416°  -.30416° -.30416° ,33333° .64583°2 35625 !
Ciz -.48750°  .48750° .48750° -.50000°  .10625" -.18750 2
Cas .88750°  -.88750°  -.88750° .10000' .35625~" 148125
b, -—_ S — ——  +.,77083°2 + 770832
be _— —_— _ —  +.36875"' + 36875
. 35625 -.18750™2 {B; } . { - .77033"}
~. 1875072 .148i25 B, -.36875""
5 B = -.2296 B, = -.25T8
P, M, My M, Ps M,
Pe 12963 - 27407° - 22222" 0 1.0 0
W, 6, 8y &, Wy A
5 9753”7 — 77777 . 17407 -.33703 67037 -.83703
* Exponents Indicate power of ten. i.e. .5' = 5x10"
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TABLE VII*

SECOND MEMBER DAMAGE ANALYSIS

14 |#
2l 212’ 3 3’ 4 4 51,
4
(;— El C'?EI e Ceyp A g
[ni tial Cum.Change Member {I-2) Self-equilibrium
Variable Vector Vector Vector | Vector 2
Py 1.0 . 296337 -2.0 3.0
M2 o -.27407° -1.0 1.0
Effective M 0 22227 0 0
Load Mg 0 0 0 o
Ps 1.0 0 0 0
Ms 0 0 0 0
W, 79167 .18364"' —.95833" . 15000°
8. -.37500™" -.40277"  -.11250° .10000°
Displacements 8, .15000° 24074 -.50000"' . 10000°
o] - - -
X3 6, -.32500 -.12037"" . 25000 -.50000 '
We .65833° 120377 -.25000" .50000™"
8, -.82500° — 12037 .25000™" -.50000"'
T Cii Cy2 e Cia Cze
P8  73750° .30400"' -.12083 20000° no4as™!
8TkS  .04330° 9781472 49167 " —. 77500 .22078™%
Total 69420° .20620™ -. 714477 12250 .8840372
Cos Czq C33 C3a Caq
P& .35500° .14815° .30416° -.40000° .55000°
S kS -35500° - 13714° —.14836° .19250° —.26000°
Total ) o 15588 ~.20750° .29000°
Then, B, = 1.0000 fB,=2.7793 B, =-2.1092 B, =-1.3467
*Exponents indicate power of ten, ie. 51 5% 107
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the table., These are developed using the element stiffnesses and the assumed displacements,
The displacements (and internal forces) associated with the B are exact because the force
redundancy is les2 than J+1. The exactnezs is reflected by the fact that [3 is exactly one,

This problem illustrates some important characteristics of the approach, In particular,
response predictions for the first member change are exact. Whenever one of the two energy
methods will yield exact predictions, the other will. When the results are approximate, the
complementary energy approach fakes less calculation effort than the potential.

Figure 4 exhibits the accuracy of the analysis technique in applying it to the four-level
tower. The figure shows the error in element force as a function of the number of iteration
cycles for an initlal damage condition. The assumed damage involves the mechanical de~
struction of elements 4-8, 5-9, 12-16, 14-18, and 2-~6. In the analysis,elements were cut
one-by-one in the given sequence, The set of self-equilibrating vectors was cycled through
gix times after all members changes were made.

The element curves show an exponential diminution of the error in element forces after
the first iteration. The total strain energy must decrease monotonically in each cycle of
iteration, This fact could be used to tailor the number of iterations to the desired accuracy.

Since the exact solution involves zero forces for each of the members, the application
shows that the complementary energy process does not degenerate despite the theoretical
singularity, Since the exact forces are zero, the relative error is defined as the error in
element force divided by the maximum element force, With this definition, the maximum
error diminishes from 19,3 percent in member 14~18 after all changes have been introduced
to 10.5 percent in member 4-8 at the end of the first iteration cycle, After six cycles the
maximum relative error is less than 0.1 percent,

These data pertain to Internal loads under loading condition 1. The initial damage results
In an increase in iInternal strain energy from 156 to 671 inch-pounds. Thus the average
deflections Increases by a factor of about five. When the invulnerability analysis involving
cascading failure is executed, the analysis predicts immediate collapse ag a mechanism due
to first step fallures in the first level support system, Since only a small increase in energy
can be absorbed before collapse the system can be expected to fail rapidly. The failure mode
will appear like the deaththroes of the leaning tower of Pisa, Most of the members will remain
Intact as the system rotates to its destruction,
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Figure 4, Member Force Error Variation

Table VIII summarizes results of an invulnerability analysis of the wing. Initial damage
was assumed to occur in element 50, The cascading fallure was explored through six steps
with the indicated associated failures. At each step, the element which had the maximum
overstress in the previous step was removed, This table shows that removal of more than one

element in a step would lead to erroneous results,

Failures arise in loading condition 2 which is assumed to act with unreduced magnitude

when the initial damage is incurred. The structure stabilizes after the gixth member failure.
Thus the static analysis confirm that the wing will survive this particular damage condition.
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Table IX summarizes results of an invulnerability analysis when initial damage destroys
elements 50,49, and 64R and loading condition 1 is acting, This analyses shows that the wing
fajls due to excessive deflections after six element failures, Examination of the faflure
sequence shows that it is progressing across the wing root, Even if excessive deflection were
not experienced, collapse due to overstress would be expected with this bending loading,

Figure 5 shows the wing-tip deflections for the initial damage and the cascade step 5.
The large increases in deflection for the twist loading occur when a cover skin element falls,
The first large increase for the bending loading occurs when a cover skin element fails, The
second occurs when the trailing edge web fails, The monotonic increase in deflection is a
symptom of the monotonic strain energy increase that is associated with successive failure
gteps,
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TABLE VIII

WING-TWISTING INVULNERABILITY ANALYSIS

Cascade Element Subsequent
Step Destroyed Failures
1 50 49
2 50,49 65R
3 40,49,65R 42,44 ,63R,8T
4 50,49,65R,42, 63R
5 50,49,65R,42,63R 32,25R,61R
6 50,49,65R,42,63R,32 None

TABLE IX

WING-BENDING INVULNERABILITY ANALYSIS

Cascade Element Subsequent
Step Destroyed Failures
1 50, 49,64 41,43,7T,62R
2 50,49,64,41, 62,77
3 50,49,64,41,62 31,33,35,5T, 25R,60R
4 50,49,64,41,62,31 25,33,5T, €0R
5 50,49,64,41,62,31,25  34,36,6T,21R,61R
69R,71R,75R
6 Deflections Excessive
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SECTION V

COMBINED ANALYSES

Use of fail-safe analysis data for invulnerability analyses can result in improving
calculation economy, One process of achieving this consists of super-imposing the internal
force distributions of the fail~safe analysis to reflect progressive member damage.

The process is like the fail-safe analysis procedure described, Self-equilibrating force
vectors are formed by subtracting the internal force vectors for a failed member analysis
from the force vector for the initial configuration, Corresponding displacements are developed
with a similar subtraction of displacement vectors. The B’s are then found by equations
of the form of Equation 2. With the B °s known, internal forces and deflections are obtained
by superposition,

The results of a combined analysis of the swept wing are described. Using this method
for invulnerability analysis of the swept wing gives excelient predictions of deflections,
The maximum error in any of the sixsteps is only three parts in the third significant decimal
digit,

The combined method also yield good stress predictions for the wing. Table X cites the
maximum relative error in stress estimates for the failure cascade steps, Most element
stress predictions are accurate to two or more significant decimal digits, Indication of the
next element to remove was always the same as for the exact analysis.

In these calculations, the maximum stress was selected as the representative stress
for a panel. For cover skins, this stress was the spanwise normal stress, For the spar and

rib webs, this stress was the shear stress,

This combined analysis method offers an economical way of identifying eritical damage
conditions, For example, in a membrane problem, analysis effort is reduced by at least a
factor of three using the combined approach. I the failure does not cascade through many
steps, excellent accuracy can be anticipatedfor deflection predictions, good predictions of the
sequence of member overstressing, and fair to good predictions of element stresses, Since
accuracy will deteriorate as the number of damage steps increases a check on compatibility
should be included in the analysis to identify spurious results.
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TABLE X

COMBINED ANALYSES STRESS ERROR*

Cascade Elements
Step Destroyed
1 50
2 50, 49
3 50, 49, 65R
4 50, 49, 65R, 42
5 50, 49, 65R, 42, 63R
6 50, 49, 65R, 42, 63R, 32

*Twist Loading
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SECTION VI

CONCLUSIONS

Study of survivability analysis reveals the following:

1. Fail-safe analysis can be performed at a cost comparable to the cost of analysis of
the nitial configuration by extending the approach of Melosh and Luik (Reference 1), This
approach yields exact predictions of static response without reference to initial geometry.
It uses instead element stiffness matrices in a modular process,

2. Exhibiting fall-safe data in a matrix array leads to rapid recognition of elements
and loadings which are critical to obtaining a fail-safe design. This array can also be used
to provide an indication of fallure cascade when the initial damage consists of the destruction
of structural elements.

3. Extension of the fail-safe analysis procedure to invulnérability studies can be done
by providing for analysis iteration. With this process, good estimates of failure progression
are expected with a single iterative cycle. By repeated iterations, responses can be evaluated
as exactly as deaired,

4. Use of fall-safe response predictions for approximate invulnerability analyses is
satisfactory and economtcal for large order systems involving elements with multipie elastic
degrees of freedom when few fallure cascade steps are considered. For truss systems, where
exact behavior predictions would result, the method is superior to the iterative approach,
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