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The theory of statistics deals with random variables, that is,
quantities which have to be described by a distribution function F(x)
indicating the probability that the variable takes a value equal to or
less than x. This function involves one parameter of location, one
of scale, and in some cases one or more parameters of shape. The random
variable may equally well be defined by the function f£(x) = dP(x)/dx
which, to avoid confusicn, will here be called the probability denmsity
function,

In the field of material fatigue failure there are three principal
random quantitiess: the fatigue sirength of the object, the load imposed
on the object, and the resulting cycle life. The fatigue strength and
the cycle life are random variables while the load in general is a random
function of time. In conventional fatigue tests, a load pulsating with
a constant stress or strain amplitude until fatigue failure occurs is sub-
stituted for the random load occurring in actual service. The fatigue
damaging effect of one single siress cycle is then uniquely determined by
two stress components, for example, the stress amplitude S and the
mean stress S , the maximum stress S and the stress Fatio
R = Smin/Smax :n or some other pair of cgﬁfonents. A definite distribu-
tion of fatigne 1life is, consequently, associated with any pair of stress
components, which in this simple case, constitutes a necessary and suf-
ficient fatigue damage representation of the load.

Since the effect of the frequency, the speed effect, is, within wide
limits, negligible compared tc the scatter in fatigue life, there is no
necessity of knowing the frequency actually used. An addition of the
frequency to the representation would therefore provide unnecessary in-

formation.

A complete fatigue test is composed of several stress levels, each
level defined by one of the stress components, while some other component
remains the same for all levels. Each observed cycle life N, within a
group of observations belonging to a certain stress level Sjl indicates
a certain percentage point of the distribution function PF(¥) (infected
with a sampling error which can be reduced only by increasing the number
of observations within the group). Furthermore, it can be proved ~ on the
rather gzafe assumption that an increased load results in a decreased
cycle life, and vice versa - that the stress level 3, indicates exactly
the same percentage point as above of the distributiofi function F(3)
corresponding to the assigned cycle life NK,. Consequently, the fatigue
strength distribution can be determined from a suffieiently large number
of properly located data points. It should, however, be noted that the
average (mean or median) S-N curve and the distribution functions F(S)
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depend not only on that stiress component which defines the siress level
but also on that stress component which remains constant throughout the
test. For example, the distribution function F(s ) for a constant

differs from that for a constant R, and the B8fuction of one of
them from the other is impossible without having & complete family of
appropriate S-N ocurves.

In the general and more complicated case when the load is a random
function of time, it has tobe represented by a set of characteristics
(stress components and distribution parameters). This set should be
necessary and sufficient, that is, any given set should define a load

which is uniquely associated with a specific distribution of fatigue life.

Unnecessary information is provided by the representation, if variation
of one of the characteristics does not influence the damaging effect of
the specified load. Insufficient information is presented, if the speci-
fied load corresponds to more than one fatigue 1life distribution.

Various representations of a random time function will now be exa~-
mined. Let y(t) denote this function. The logical extension from the
concept random variable to the random function is performed by regarding
the values t.) as individual values of a random variable Y, where
t] are time po§nts taken at random or at constant time intervals, suf-
chlantly small compared to the period of the highest frequency involved

in the random function.

The probability demsity fumction £(y) of the random variable Y
will be called the probsbility representation of the randem time function
y(t). Two important, statistics of this distTibution are: the mean ¥
and the variance o defined by
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If 7 and o° are independent of the lower limit t  of the
integral, the random function is termed stationary.

Since by experience and in contradiction to the Miner’s law of cu-
mlative damage, the fatigue life is influenced by the sequence of high
and low astress cycles imposed on the test piece, it is obvious that, even
if the random load is stationary, the fatigue life will depend on the
starting point ¢ of the given load y(t).
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If, however, identical test pieces are repeatedly subjected to this
stationary random load y(t), the average of observed cycle lives will
with increasing number of tests tend to a fixed value which defines the
average cycle life corresponding to average random load.

The scatter in cycle life is thms compomed of one portion dus to
the test piece and another porition due to the randomness of the load.
This fact may be mathematically expressed in the following way.

Suppose that the median S-N curve can be put in the form
v W -l - v
S-8 =b (§/B+1)" =b.0 (3)

where U is a funciion of the c¢cycle life, determined by the para-
meters a and B.

The P~S~N diagram may in some cases (which have been called the
P-oases A) be put in the more general form

5-8, =b.0 (4)

where S 1is the random load, Se the random fatigue limit and U
a function of the random life K.

The variances of these random variables are related by
var(s) + va.r(Se) = b2 ver (v) (5)
since S and Se are independent variables.

Another representation of random time function is obtained by
considering the function to be composed of a finite or infinite number
of sinusoidal components with circular frequencies (W between O and
20 . It should, however, be pointed out that this splitting up inte
components is a purely mathematical procedure, in most casss without any
physical sense.

TIn the particular case that y{t) is a periodic function it may be
represented by a Fourier series but in general a Fourier integral is re-
guired being a0

iwt
y(t) = 3 [G(w)e” " aw (6)
where G(ﬁo) is a frequency representation of y(t) which may be com-
puted from y(t) by t%e reciprocal relation
@
=fwT (7)
alw) = Jy(z)e dt
~00
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%gothgrfi;:guz;cy representation is obtained by means of the average
power < (4 ) de
¥y

T
y2(t) = T_J_.}rgo%[ﬁ(tz]zdt (8)

Denoting by (ew) that portion of yz(t) which arises from
components having requenciesqgetween tw and o +dew, we have

(1) = [w) ae (9)

o
The function d;(ad) is called the power spectrum of y(t).
It may be evaluated from obs:rved data by means of the correlation

function R(t) defined by T
R(T) = lim l-.ﬁ(t) .y(t+T)at (10)
T T

o

The functions Qfﬁaﬂ and R(T) are reciprocally related by the
Fourier cosine transformation and azre consequently equivalent repre-
sentations.

The use of frequency representations is an adequate method for
relating the response of a aystem subjected to & random load on two
conditions only:;(1l) that the system is linear, because only then the
response of two similtaneous components is equal t¢ the sum of the res-
ponses of each separate component, {2) that the system responds dif-
ferently to different frequencies, because otherwise there is no use of
knowing how the “power" is distributed over the frequency band. If these
conditions are fulfilled there is a simple relation between the power
spectra of the output and of the input through ihe frequency-response
function, which is a characteristic of the linear system.

An equally simple relation does not exist between the imposed random
load and the fatigue damage which is, in fact, a non-linear, almost fre-
guency-insensitive function of the load. For this reason it is to be =us-
pected that neither the preobability representation nor any frequency re-—
presentation is an appropriate representation of the damaging effect of
a random load.

Searching for a representation, providing necessary and sufficient
information on the damaging effect of a load varying randomly with time,
the following considerations may he useful:

Based on the fact that the stress cycles in Fig.l will produce
equal fatigue damage, it is apparent that there is no use of knowing the
shape of these stress cycles and that the maximim and the minimm stresses
(or the range and the mean stress) will in this particular case provide
necessary and sufficient information on the damaging effect.
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It seems possible to formlate a general law stating that two stress
cycles which can be transformed into each other by a continuous deformation
‘iﬂ of the time scale will have equal damaging effect. As a corollary it follows
that a necessary representation should be invariant with any reasonable de~
formation of the time scale. The word "reasonable™ is added because random
time functions involving very high frequencies (shocks or discontinuities) or
very low frequencies may require a different ireaitment. I+t is apparent that
neither the probability representation nor any frequency representations satis-
fies this condition. On the other hand, it can be proved that they are insuf-
ficient. ©Suppose that we have two random loads producing different fatigue
damage. By a suitable deformation of the time scale - which does not change
the damaging erfect - their probability density functions and by another de-
formation their power spectra can be brought to coincidence. Thus, two random
loads having identical probability density functions or power spectra may
have different fatigue damaging effects which proves their insufficiency.

A representation which satisfies the required qualifications has to be
based on the ordinates of the extremes (peaks and troughs) or some - preferab-
ly linear - combinations of them (since the time coordirnates are, within cer-
tain limits, unnecessary data.)

Denoting the ordinates of the peaks by =S or p and those of the
troughs by Smin or 1, the ascents a and 188 descents b are defined by

a. =p -1t
n ‘n n (11)
=Pt

"’ as demonstrated in FPig.2. These two quantities were initially proposed as
a representation of the damaging effect. It can, however, be proved as fol-
lows that they do not provide sufficient information.

From {(11) it follows that
ta-t1 =3 (e -b ) (12)
Assuming a2 and b to be independent variates we have
- = 1
var(tn+1 tl) nfvar (a) + V&r(bl7 (13)

Since var(a) and var(b) by definition are non-negative,
var(t ~+. ) increases with n and the random load is not stationary.
The sime coiiclusion can be proved to be valid even when a and b are
correlated, the only exception being that for any n

a = bn (14)

From (12) it then follows that t__, =1t = constant and from (11) that

pnf'anf*tl . Thus’any variate an+ efi%es a stationary random load.
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In the same way, the assumption

=b (15)
Py = constant.

a
n+l

corresponds to the condition pn+1 =

Consequently, the distribution of the variate a is a proper re-
presentation for random loads having constant S . , S _,or R=S /Sm.
The distribution of b is in all these very par 16u1aP%%ases uniqugiﬁ
determined by the distribution of a.

A more general representation is based on the standardized ordinates
of the peaks and, for symmetiry reasons, the standardized negative ordinates
of the troughs. It is postulated that the damaging effect is uniquely de-
termined by the two distribution functions

Flﬁsmax --S-ma)/a p7 and F‘2Z--(§min - Smin )/o t7 (17)

where the means

S,.e=P=2p/n 3 5. =t-3It/n (18)

and o_, © are the standard deviations of S5, S . .
P t max min

Alternatively the quantities §a and -S-m defined by

§a= (gmax-_émin )/2 3 gm’= (—gmax"'gmin ) /2 (19)

may be used. Then we have
FIZ(_Smax-Sm-Sa)/ap7 ana  Bf(5 -5 -5.)/c ] (20)

and the load is, for given distribution functions, defined by the four
parameters S , Sm, og_, and Cys the two first of them being stress
components and thé" two fother giving a measure of the irregularity of the
load. The particular case ope ot-O defines the constant-amplitude load.
It is important to note that the mean stress S = (3+'ﬂ€ 2 is prin-

cipally different from the mean of the ;a.ndom time flhction y(t) which is

defined by
F(I) = lim & y(t}) dt
Twoo T

and which should be avoided
when fatigue damage is concerned, since its value is sensitive to deformation
of the time scale.
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A symmetrical load, where the variates (S _~S ) and (3 -5 . )
are identically distributed, is obviously definlenaxby ohe single Finctibn F‘l

and the three parameters Sa’ Sm, and o= csp= oy
It should be noted that Sma.x and S ., are independént variates on
the condition only that min
2z
p,-t =0 (21)

where P, is the lower bound of p and t is the upper bound of +t.
If (21) applies, a line located anywhere between p and + will have
exactly the same number of crossings (no) as the nimber of Sxtremes (ne R

In general the ratio
runo/ne= 1 (22)

Another, necessary and sufficient, representation was during the
conference proposed and examined by H.C.Schjelderup who uses as observed
data the values

5,= (pn-'bn)/2 and S - (pn+tn)/2 (23)

Since
Sa"Spax~55 (24)

the distributions of the standardized variates may be put in the form

F3,(Sa—§a)/ ‘Ja.-7'= F3£Smax— Sm"-s-a )/oa.]

F4[(-Sm—8m)/a.u7
Comparing (20) and (25), it is found that S_ is substituted for

S . Clearly, the function F, differs from F Tnd so do the standard
deviations oy and o, but Tor the case that lsm is constant.

(24)

and

Since by definition the variate S _ is zero-bounded, it cannot be
normally distributed and it is excluded %hat F.=F, even in the symme-—
trical case, where the representation (20) is mdre é‘onvenient due to the
reduction of necessary characteristiecs. In other cases the preference
should be given to that representation which leads to the simpler distri-
tutions.

Pinally, some general remarks on the relation between random-load and
conventional tests seem appropriate. An ascent a and the following de-
scent b constitute a stress cycle which will be termed complete if a=D
and incomplete if a#b. The load of constant-amplitude tests and program
tests are composed of complete stress c¢ycles, while the random load is com-
posed of incomplete cycles.
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The damaging effect of any complete stiress ¢ycle can in principle be
determined by repeating it. This is excluded for an incomplete stress cycls,
since it cannot be repeateds Keeping this in mind and considering the dif- \ia
ficulties of predicting the damaging effect even of known sequences of com-
plete stress cycles from the results of constant-amplitude tests, it seems
to be a rather hopeless task to predict the damaging effect of a random, that
is, an unknown sequence of incomplete stress cycles from the results of con-
ventional fatigue tests.

A more realistic attitude would be to consider a random load of given
structure (given shepes of P, and F, ) as a basic type of load , just as
the constant-amplitude load is another and to establish by proper tests the
average 5-N curves and the fatigue-strength distribution F( 8) correspond-

ing to the random load in question.

Taking for simplicity the symmetrical load of a given struciure (F. )
and choosing S a? 3 ,and o _as the characterisiics, then S =N curves for
properly select8d vBlues of S_ and o (or maybe o/S_) havd to be deter-
mined. The curves obtained in this way will, of course? differ from those
obtained by conventional fatigue tests, and it seems, for the present, ex-
cluded to deduce one from the other due to completely different character of
the damage produced by these two types of load.
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