OF SHOCX WAVES PRODUCED BI 60 -CALIBER

AN ROWM PROJBCTILES

F. G. P. Seidl

BORDG AIRPLNE COMPANI

I. Abstract

Projectilos from a 60 -caliber and a 20 -w gun were fired through simulated rain drops of diameters $1.7 \pm 0.3 \mathrm{~mm}$. The projectile velocities were varied from $1900 \mathrm{ft} / \mathrm{sec}$ to $4060 \mathrm{ft} / \mathrm{sec}$ and in certain cases the intensities of the bow shock waves could be eatimated. Motion-picture sequences of the interactions of the projectiles and rain drops were taken by a Fastax high-speed camera setup. Times between successive photographs were approximately 150 microseconds. The impacts of the low shock waves were seen to jar and distort the rain drops which always broke up some 600 to 4000 aicroseconds later. The times required for breakup seemed to depend upon the shock wave intensity. In cases requiring times of the order of 4000 microseconds, blests of debris and gaseous explosion products fram the gun muszle may have contributed to the breakup.
II. Introduction

While evalating the problem of the rain erosion of radomes and leading edges of a supersonic aircraft, the following question arose: What happens to a typical rain drop when struck by the bow shock wave generated by the nose of a supersonic aircraft or by a prong extending out ahead of the nose? The experiment described herein was designed in an attempt to answer this question.

III. Experimental Mathod

A simple expedience for examining the effects of shock waves on rain drops was to photograph progressively the motion of a projectile and its associated shock waves through siralated rain. The production of rain drops of any deaired size was merely a matter of choosing a proper orifice from which water could fall. The intensity of the bow shock waves could be controlled by varying the speed of the projectile and the shape of its nose. A high-speed Fastax motion-picture canera (see Reference l) was available for photographing the rain drops before and after ispact with a bow shook wave. Unfortimately, the camera was not sufficiently fast to stop the motion of the projectiles and to define the shock fronts; although the presence of these can be recognized by their blurred images.

The projectiles were fired from either a $60-\mathrm{caliber}$ or 20 -min gun through the rain drops into a revetment (see Figure 1). For masuring projectile speeds two screens were situated some 8 ft beyond the proint of intersection of the rain-drop stream and the line of fire. Each screen was a one-foot square wooden frase struag with fine copper wires which had to be replaced after each shot. The time required for each projectile to traverse the distance between the successive screens was measured by a crystal-controlled chronometer.

The optical system (see Figure 2) consisted of the following elemants mounted in a line: (1) A Eirconive low-voltage are light (Sylvania C-100) located 60 inches from a first collimating lens, (2) A pair of 6 -inch diameter converging lenses mounted 30 inches apart and (3) A 16-min Fastax high-speed camera (see Reference 1) situated 60 inches from the second lens. The arc was at the focus of the first lens which formed a region of collimated light. The econd lem collected this light and focused it on the camera's iris diaphragm which was set at $1 / 22$. The rain fell through the region of collimated light between the two lenses. Both the drope and the projectiles appeared on the photographs as shadows. Actually, the drops were dark because they refracted light out of the camera. On the other hand, the projectiles formed true shadows by intercepting the light. Moreover, the photographed sizes of the rain drops and the projectiles were independent of their distances fron the camera.

The Fastax camera (see Reforence 1) exposed a continuously moving film. The shutter action was produced by a high-speed rotating parallol-sided prism. The latter was eynchronised by gears with the moving film. Electric power for operating the camera was obtained from a booster circuit (see References 1 and 2). In order to gain a rapid acceleration of both the rotating prism and the film reels, the booster circuit supplied power at 300 volts for the first 100 ailliseconds of operation, at 290 volts during the second 100 milliseconds and at 280 volts for the remainder of a run. In typical operation only the final 20 feet of a 100 -foot reel of film was moving at the maximum speed of 8000 frames per second. The exposure time was equal to the reciprocal of the product of the number of frames per second and 5.6. The firing of the gun was alyays delayed 0.6 seconds after starting the camera in order to allow it to approach full speed. Finally, Super IX $16-\mathrm{mm}$ film or its equivalent was need in all runs.

The artificial rain dropa were produced by the breakup of a fine stream of water emerging from a single 0.035 -inch hole drilled at the end of a pipe which was joined to a $50-g a l l o n$ drum. The latter was supported so that the 0.035 -inch bole was 10 feet directly above the point of intersection of the line of fire and the optical axis of the csmera. In falling the strean broke up into cigar-shaped slugs of water, each of which formed into a spherical drop. This fact and the relstion between droplet diameter and orifice diameter has been explained by Lord Rayleigh (see Reference 3).

The water stream and droplets fell through a 4 -inch tube which acted as a wind shield. The aimulated rain appeared on the photographs as apherical drops about 1.7 ± 0.3 in diameter (see Table I). An indication of the horisontal and vertical separations between drops can be seen in the photographs. Usually, the drope landed within a horisontal circle of 2-inch dianeter. By running the fila through a motion-pictare projector, the
larger drops were seen to fall faster than the mallor ones, as was expected.

Three types of projectiles were used; see Figure 3. Two of the three types were fired in an unrifled 60-caliber gun. The lack of spin pergitted these projectiles to tumble; however, as may be seen from the photographs, when the projectile was traversing the rain, the tumbling had not yet become appreciable. Of the 60 -caliber projectiles, one type was a right circular cylinder of diamater 0.599 inches and of one-inch length, the other type had a conical nose of 60° full apex angle. The 60 -degree cons was chosen because data were available on the shock fronts produced by such projectiles. The third type of projectile was from a standard 20 -mm shell. The 20 -man projectiles were rifled but this did not seen to modify appreciably their bow shock waves; for photographs of 2-pound spinning projectiles in motion see Reference 4.

IV. Experimantal Procedure

Each firing of a projectile trrough simulated rain was carried out according to the following program:
(1) The Fastax canera was loaded with 100 feet of Super XX 16 -min film.
(2) The bearings of the rotating parts of the camera were lubricated with special oil.
(3) The light source and the chronograph were turned on.
(4) The simulated rain was allowed to fall.
(5) The csmera was started simultaneously with a time-delay device, which some 0.6 seconds later, fired the gun.
(6) The reading of the chronometer was recorded and this was the time required for the projectile to traverse the ten feet between the wooden screens.

V. Results

Twentymon motion-picture sequences were obtained each showing the effects of firing a projectile through simulated rain. Of these, ten were taken of 60-caliber conical-nose projectiles whose speeds ranged from $2460 \mathrm{ft} / \mathrm{sec}$ to $4060 \mathrm{ft} / \mathrm{sec}$. Six of the shots were with 20 -mun projectiles which travelled at $2660 \pm 40 \mathrm{ft} / \mathrm{sec}$. Five shots were made using bluff cylindrical 60 -caliber cylinders travelling about $1900 \pm 100 \mathrm{ft} / \mathrm{sec} ;$ chronologically, these were the firet shots fired, but they are mentioned last becusse their speed measurements were unsatisfactory. Finally, one sequence was taken of a conical-nose projectile fired without any rain. Because of an improved setup, there was less horizontal spreading of the rain drops in the shots using the conical-nose projectiles and the $20-m m$ anmunition.

All projectiles were fired at supersonic speeds and any rain drop not having experienced a direct impact with a projectile was subject to a series of effects as follows:
(1) Impact of the bow shock wave that originated from the region near the nose of the supersonic projectile.
(2) The Prandtl-Meyer expansion waves that arose mainly from the shoulder region of the projectile.
(3) Tmpacts from secondary shock waves which originated from the rear of the projectile and from its turbulent wake.
(4) The debris and gases from the propelling explosion can last.

The strength of the bou shock wave can be estimated for the conicalenose projectiles (see Table II). The other effects were relatively weak except for the debris and gases from the propelling blast. The place of entry of this last effect could be seen in the photographs under consideration.

The results which were evident from the motion-picture sequences are given below:
(1) Nowhere was there evidence that rain drope were inemediately broken up by the inpects of the bow shock weves. Apparentiy there were Beveral cases where, through a drect hit with a projectile, rain drops were instantly broken up into a fine spray. Dark saudges or dark clouds in certain pietures can be explained as due to the refraction effects of a great many ting liquid droplets and not by regions of high water vapor contont or of possible air-density changes (see Section V5 C).
(2) The rain drops were jarred and imediately deformed by a bow abock vave. In mang instences the drops broke up before the blast of dobris and gases from the gun musgle swept by. The time required For drop breakup depended upon the etrengti of the shock wewe, but was never leas than gbout 600 micromeconds ($\mu s e c$). Drops Further eway from the line of fire took longer to break up. Those drops which were situsted closest to the line of fire of the bluffnose oylindrical projectiles broke up first (e.g., $600 \mu \mathrm{sec}$ in shot 19); bere each of the bluff-nose projectiles produced a strong local bow shock which may have been stronger in the vicinity of the nose than for other types of projectiles, but whose intensity certainly fell off more rapidly with distance from the lime of fire.
(3) It was found that the exposure times were 20 to $27 \mu \mathrm{sec}$ and the Eimea between euccessive frames were 115 to 160 цsec. The exposBure times and the inter-frame periods were calculated from (a) Blurs in the images of projectiles and their associated shock fronts, and (b) The change in projectile positions between succesaive frames. The operation of the camera was such that the interframe period was equal to 5.6 times the exposure time.

TABLE I CHARACTERISTICS OF NATURALLY OCCURRING PRECIPITATION:
(Air Density as at $0^{\circ} \mathrm{C}$ and 740 mm Press.)

Popular Name	$\begin{gathered} \text { Precil } \\ \text { Inte } \\ \mathrm{mu} / \mathrm{hr} \\ \hline \end{gathered}$	itation nsity in/hr	$\begin{gathered} \text { Droplet } \\ \text { Dian. } \\ \text { mam } \\ \hline \end{gathered}$	Velocity of Fall Rates Meters per sec.	Milligrams of liquid water per cu meter of air	Orains of Liquid Water per cu ft of \qquad air
Clear	0.00	- -	- -	- -	0.00	- -
Fog	Trace	- -	-. 01	0.003	6.0	0.002
Mist	0.05	0.002	0.10	0.25	55.5	0.024
Drizsle	0.25	0.01	0.20	0.75	92.6	0.04
Light Rain	1.00	0.04	0.45	2.00	138.9	0.06
Moderate Rain	4.00	0.16	1.0	4.00	277.8	0.12
Hoavy Rain	15.00	0.59	1.5	5.00	833.3	0.365
Excessive Rain	40.0	1.6	2.1	6.00	1851.9	0.81
Clousburst	$\begin{array}{r} 100 \\ \text { to } \\ 1000 \end{array}$	$\begin{array}{r} 4.0 \\ \text { to } \\ 40.0 \end{array}$	3.0	7.00	$\begin{array}{r} 4000 \\ \text { to } \\ 35000 \end{array}$	$\begin{gathered} 1.75 \\ \text { to } \\ 15.30 \end{gathered}$

* F. A. Berry, Jr., B. Bollay and N. R. Beers, Handbook of Meteorology, McGraw
Hill (1945).

TABLE II SHOCK-FRONT ANGLES AND PRESSURE STEPS IN THE CASE OF 60-DEORERE
APEX ANGLE CONES FIRED AT VARIOUS SPEEDS

Shot Number	Projectile Speed	Mach Number	Angle between conical part of bow shock front \& line of fire*	Pressure ratio across the true conical part of the shock front**
	$\mathrm{ft} / \mathrm{sec}$	M	Degrees	P_{1} / P_{0}
1	4060	3.64	38.0	5.63
2	3690	3.29	38.8	4.76
3	3140	2.80	41.3	3.80
4	2910	2.60	42.3	3.42
6	2730	2.44	43.3	3.14
8	2510	2.24	45.5	2.78

* Cf. Fig. 11, p. 467, J. W. Maccoll, Proc. Roy. Soc. As vol. 159, p. 459 (April 1937).
* Interpolated fron the results of Table II, p. 285, G. I. Taylor and J. W. Maccoll, Proc. Roy. Soc. A, vol. 139, p. 278 (Feb. 1933).
(4) Not later than 2500 to 4000 psec after the passage of a projectile, the rain drope always had broken up if initially they were within about $21 / 2$ inches of the line of flue 8 the moment of firingo The ultimate breakup times were clubtered about 2500 psec in tho cases of $20-\mathrm{mm}$ shots and were nearer to 4000 psec for 60 -caliber conical-nose projectiles. However, belore the lapse of 4000 prec the drops had been overtakicn by the blast of gaseous explosion products and there was some question as to the contribution of the latter to the breakup.
VI. Discussion
A. Shock Waves Produced by tho Projectiles

The three types of projectiles were fired at supersonic speeds and any projectile travelling through arr faster than the speed of sound produces a bow shock wave (see Roference 5). The surface of this shock wave is approximately conical and symatiric relative to the lino of ilre. The apex of the cone lies near the nose of the projectile and may be either just a little abead of the nose or attached to it depending upon both the shape of the latter and the ratio of projectile apeed to the speed of sound. The forward-most portion of the shock wave is its apex; from here the shock front bends beck asay from the direction of motion. In fact, the faster the projectile is moving, the more acutely its shock front bends back.

The shock wave separates one region of constant pressure, P_{0}, density and air velocity lying ahead of it from another region of relatively constant pressure, P_{7}, density and air velocity lying behind. In the cases which concern the projectiles fired against rain, the thicknesses of the trensition regions ware of the order of 10^{-3} to 10^{-4} m (bee Referonces 6 and 7); i.e., the shook-wave thicknesses were much less than the diametere of naturally occurring rain drops (see Table I).

Of the three types of projectiles, the bluff-mose cylindrical ones produced bow shock waves which were the most intense (1.e., $\mathrm{P}_{1} / \mathrm{P}_{0}$ was largest) in regions very close to the nose; but in these cases the intensities fell off more rapidly with distance away from the line of fire (see Reference 8). On the other hand, most was known about the intensities of the shock waves produced by the conical-nose projectiles; values are given in Table II for both the pressure change across a bow shock front and its inclination as a function of projectile speed. These values are good for regions near the nose and had been obtained theoretically and had been checked by messuremonts (see References 9 and 10). Finally, the 20 -man projectiles were available for firing and offered a variation of type of bou shock which might be more comparable to that formed by the nose of a supersonic aircraft.

In the case of actual projectiles (see References 6 and 11), the pressure ratio P_{1} / P_{0} always tands to fall off with incressing distance from the flow sids (i.e., the line of fire). In particular, it was found that (see Reference 11), for a 60° comicalonose projectile, the pressure ratio P_{7} / P_{0} falls to roughiy 0.7 of the values given in Table II at a point distent some $4 R$ from the flow axis; R denotes the
cross-mectional radius of the projectile. A decrease in alope of the shock front relative to the direction of motion is another manifestation of the decrease in shock intensity with increased distance amay from the flow axis. In the case of a full 60° conical-nose projectile, the decrease in shock slope is gradual and does not become very appreeiable at regions closer than 4 R to the flow avis (see References 9 and 11).

Shadow photographs of projectiles and their shock waves have been taken by the Ballistic Research Laboratory, Aberdeen, Md. One such photom graph shows the shock wave produced by a 155 -min projectile travelling at a speed of Mach 2.479 (see Reference 12) and very little decrease in the slope of the bow shook front is evident out to 8 R . Bovever, this photograph is not directly applicable to those projectiles which were fired through the rain drops becuase it shows a more "otreanlined" projectile and the nature of 110w around a supersonic projectile is such that any abrupt changes in shape create secondary effects which cause the bow shock wave to fall off more rapidly.
B. Feriod of Saall Surface-Tension Oscillations

The theory of small surface-tension oscillations of a liquid drop about a spherical form has been worked out by Lord Rayleigh (see Reference 13). The shape of the aurface of the oscillating drop can be expressed as a superposition of several harmonically timemdependent deformations each characterized by a particular Legendre polynomial. The most important mode of oscillation occur for the legendre polynomial of order $n=2 ;$ this means that the drop configuration oscillates between a duabbell shape and a flattened ophere, where the flattened regions are silghtly concave. Values of the period of oscillation for $n=2$ are set out in Table III.

TABLE III SMALL SURFACE-TENSION OSCILLATIONS

Diameter of Water Drop	Period of Onallation In
1.0	29000
1.5	2900
2.0	5300

It is interesting to note that the observed times between a typical impact of a bow shock weve with a rain drop and drop breakup are of the same magnitudes as the tine required by a mall surface-oscillation to change a sphere into either the slightly dumball-type configuration or into a Ilattenad aphere; i.e., for water drops whose sises are the same as in the simulated rain, (1/4)T equals 1000 psec to 4000 Hsec. Moreover, in certain motion-picture sequences rain drops baving been struck by a bow ahock wave appeared to grow into flattened spheres and ultimately into $\%$ issort of doughnut-shaped.objects before breaking up.

In at least one case (see shot lo. 2), a drop of rain having aboorbed energy from the impact of a shock wave changed into a dumbbell shape before breaking up. However, since the theory of surface-tension oscillations only applies to sasall oscillations, it cannot be concluded without further consideration that the shock-wave impacts excited surface oscillations in the rain drops and that these oscillations were of sufficient arplitudes to break up the drops.

The tim of transit of a compression wave through the body of a typical rain drop should have been

$$
(1.7 \mathrm{~mm}) / \nabla=1.2 \text { psec, }
$$

where denotes the velocity of sound in liquid water ($v=4750 \mathrm{ft} / \mathrm{eec}$). The fact that the drop breakup times were some thousands of times greater than 1.2 psec is further evidence that the breakup mechanism is related to a surface effect.
C. Interpretation of Dark Clouds on Some Picturea

In certain photographs a dark cloud suddenly appeared and slowly dissipated. Such clouds always formed adjacent to the blurred image of a projectile and in a region which previously had contained a rain drop. In all cases it was possible to associate the formation of one of these clouds with a direct impact of a projectilo and a rain drop. However, the tranaformation of a rain drop of 1.7 man diameter into a cloud some hundreds of times larger in area was surprising and, consequently, some explanation was sought.

Suppose that in the optical setup depicted in Figure 2, there was a locel anomaly in the refractive index throughout some region of the order of a cubic inch in sise and which was located somewhere between the two collinating lenses. Let the anomalous refractive index be denoted by $n+A n$ compared to an index equal to n everywhere else. Light which passed in and out of the anomalous region would be refracted so that it no longer would be brought to a focus at the center of the iris diaphragm of the camora. According to the laws of refraction, it can be shown that the light which passed through the anomalous region would be focused on a point that is at a distance δ from the optical axds of the camars. The magnitude of δ is given by the following relations

$$
\epsilon^{\delta(\text { inches })} \mathbf{(\Delta n / a) \operatorname { t a n } \epsilon _ { 3 }}
$$

here ϕ denotes the angle between the incident ray and a normal to the surface of the anomalous region. If the diameter of the cemera aperture were 0.1 inohes, then avalu of Δn equal to or greater than $(0.05 / 60)$ cot $\phi=0.000833$ cot ϕ would be necessary to reflect light out of the camera.

The difference between the refractive index of water and air is 0.333. Since this is the equivalent Δn for a rain drop, the latter would refract light out of the camera for all angles of incidence down to $\phi=$ arc $\cot (0.333 / 0.000833)=0.1^{\circ}$ and this effect must have been responsible for making the rain drops appear as little dark circles.

On the other hand, water vapor has a refractive index of 1.00025 compared to $n=1.00029$ for air. In order for water vapor to refract light out of the camora, the folloining relation must be satisfied:

$$
60 \times(1.00029-1.00025) \tan \phi \geqslant 0.05 \text { inches }
$$

or

$$
87^{\circ} \leqslant \phi<90^{\circ}
$$

Physically this means that, even if a region were to be 100% water, only a portion of its periphery corresponding to $87^{\circ} \leqslant \phi<90^{\circ}$ would be able to refract light out of the camera.

Thas, the dark clouda which appeared on certain photographs must be due to iseable variations in refractive index such as can be attributed to liquid water itself. Consequently, these clouds are indications that a rain drop is atomised into liquid spray by impact with a supersonie projectile.

VII. Aclmowledgment

The cooperation of the following persons is gratefully acknowledged. The Fastax camara equipment was supplied and set up by George Hays of the Boeing Airplane Company Power Plant Unit. During most of the rans the canera was operated by aither W. Tribou or H. Tacker. The guns were set up and fired under the direction of Andy Dussik, Boaber Weapons Unit.

HETHERENTCES

(1) Bulletin on Fastax High-Speed Motion Picture Cameras, Wollensak Optical Co., Rochester 21, New York.
(2) Model J-410 Fastax Control Unit (WThe Ooose"); Instruction Book No. 1262, Industrial Ifmer Corporation (Oct. 15, 1948).
(3) J. W. Strutt (Lord Rayleigh), Theory of Sound, Dover (1945) vol. II, p. 362.
(4) J. W. Maccoll, Proc. Roy. Soc. A, Vol. 159, p. 459 (April 1, 1937).
(5) R. Courant and K. O. Friedricks, Supersonic Flow and Shock Waves, Interscience (1948).
(6) H. W. Liepmann, 1. Roshko and S. Dhawan, On Reflection of Shock Waves from Boundary Layers, MACA Report 1100 (1952).
(7) A. E. Puckett and H. J. Stewart, Quar. of Appl. Math., vol. VII, p. 457 (Jan. 1950).
(8) J. H. Giesse and V. E. Bergdolt, Jour. of Appl. Phys., vol. 2h, p. 1389 (Mov. 1953).
(9) G. I. Taylor and J. W. Macooll, Proc. Roy. Soc. Ay Nol. 139, p. 278 (Peb. 1933).
(10) J. W. Maccoll, Proc. Roy. Soc. A, vol. 159, p. 459 (April 1937).
(11) F. D. Bennett, W. C. Carter and V. E. Bergdolt, Jour. Appl. Prys., vol. 23, p. 453 (April 1952).
(12) T. von Karman, Jour. of the Aeronaut. Scies., vol. 14, p. 373 (July 1947). .
(13) See page 373 of Reference (3) or H_{0} Lamb, Hydrodynamics, Dover (1945), p. 475.

Fig 1
ARRANGEMENT FOR STUDYING EFFECTS OF PROJECTILE SHOCK WAVES ON RAIN DROPS
(VIEW ALONG LINE OF FIRE)

Fig. 2
 ARRANGEMENT FOR STUDYING EFFECTS OF PROJECTILE SHOCK WAVES ON RAIN DROPS (VIEW ALONG AXIS OF CAMERA)

Shot No. 1. Conical-Nose Projectile 60-Caliber with 60° Full Apex Angle Speed $4060 \mathrm{ft} / \mathrm{sec}$

Shot No. 3. Conical-Nose Projectile 60-Caliber with 60° Full Apex Angle Speed $3140 \mathrm{ft} / \mathrm{sec}$

Shot No. 6. Conical-kose Projectile 60-Caliber with 60° Full Apex Angle Speed $2730 \mathrm{ft} / \mathrm{sec}$

Shot No. 8. Conical-Nose Projectile 60-Caliber with 60° Full Apex Angle Speed $2510 \mathrm{ft} / \mathrm{sec}$

Shot No. 10. Conical-Nose Projectile 60-Caliber with 60° Full Apex Angle Speed $2680 \mathrm{ft} / \mathrm{sec}$

Shot No. 14. 20-mm Projectile, Speed $2660 \mathrm{ft} / \mathrm{sec}$.

Shot No. 15. 20~nm Projectile, Speed $2720 \mathrm{ft} / \mathrm{sec}$ Vol. I

Shot No. 19. Bluff-Nose Cylindrical 60-Caliber, Speed $1900 \pm 100 \mathrm{ft} / \mathrm{sec}$

Shot No. 20. Bluff-Nose Cylindrical 60-Caliber, Speed $1900 \pm 100 \mathrm{ft} / \mathrm{sec}$

Shot No. 21. Bluff-Nose Cylindfical 60-Caliber, Speed $1900 \pm 100 \mathrm{ft} / \mathrm{sec}$

Shot No. 22. Bluff-Nose Cylindrical 60-Caliber. Speed $1900 \pm 100 \mathrm{ft} / \mathrm{sec}$ WADC TR 56-393, Vol I

