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ABSTRACT

Use of the Modal Strain Energy Method for the optimization of viscoelastic structures requires
extensive modal extraction and modal strain energy distribution analyses. For large structural
systems, this iterative procedure becomes very inefficient and expensive. Based on the Rayleigh-
Ritz principle and engineering assumptions, a method is developed for the optimization a class of
viscoelastic struts. Dimensionless ratios of the system parameters of the modified design and the
baseline design are derived, in closed form algebraic equations, to enable design optimization to be
performed without iterative computer analyses. A finite element substructure analysis method is
also derived for the efficient analysis of complex stiffness matrices due to the presence of
viscoelastic materials in the detailed stress model. The results from simple design predictions and
the dynamic substructuring finite element analysis show excellent correlation.
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INTRODUCTION

Large space structures require efficient structural design with high strength and light weight
materials to reduce the launch weight. Truss type structures are prevalent. High stiffness and
damping are required for on-orbit performance to minimize the dynamic response due to
operational disturbances. However, materials with high strength and stiffness do not normally
process high damping characteristics. Therefore, a combination of different materials must be used
to provide the desired system response. The design of high performance structure must balance
the stiffness and damping characteristics to minimize the weight of the structure.

The Modal Strain Energy (MSE) Method! has been used extensively in the design of passively
damped structures using viscoelastic materials (VEM). Tests on a demonstration article? showed
excellent correlation between predicted results using MSE and measured results. Therefo , within
the limits of its applicability, the MSE method can be used to achieve a design with the desired
damping characteristics.

When designing a large precision structure, large finite element models with high fidelity to
capture the structural behavior is often required. Furthermore, for passive damping design with
VEM, the MSE Method requires a detailed structural model so that the modal strain energy
distribution in the VEM can be computed accurately. The procedure for designing structures with
passive damping is basically an iterative modal extraction and strain energy distribution analysis.
However, this type of iterative computer analysis on a large finite element model to optimize the
design parameters is prohibitively expensive and inefficient. Therefore, improved efficiency of the
analysis is vital to the optimal design of large damped structures.

This paper presents a method, based on the Rayleigh-Ritz principle, such that a class of
viscoelastic struts can be designed and optimized efficiently for large space trusses. This method
provides a desired viscoelastic strut design using the initial baseline design and simple algebraic
equations. A dynamic substructuring procedure is also presented for large finite element models
with complex stiffness matrices due to the presence of viscoelastic materials. This combination of
design procedure and analytical technique enables better design of large space structures with
viscoelastic struts with less effort and better understanding. This method is also applicable to other
large structural systems.

VIBRATION ATTENUATION

For a linear elastic single degree of freedom system, the governing differential equation for
dynamic loading is :

mX + cx + kx = p(t) 1

If the structure is modified to enhance its damping characteristic, the system parameters are
changed to :

M =r1,m )

= rkk (3)

n=ﬂ%g | @)
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where 1y, ryand g represent the ratios of the modified values to the respective baseline values.

The effect of such changes on dynamic response is different for different types of vibration

ggvjronments. The mass, stiffness and damping of the system must be balanced for an optimum
sign.

Random Vibration

If p(t) is described by the power spectral density function S(f) and it is relatively constant

around the natural frequency, f;, the response for a lightly damped system (€ <0.3) can be
expressed as :

s(fn)o.s
Xrms = 575 m0.25 £0.75 £0.5 ©
Therefore, the response of the modified structure can be expressed as :
s('fn)o.s
)]

%
S " 23 #0.25 £0.75 0.5

If S(f) is relatively constant over f, and T,,, then the response attenuation factor, o, can be defined
as: _

o = X
" Xrms
_ 1

Therefore the attenuation factor of the modified structure can be expressed in terms of the
dimensionless ratios of mass, stiffness and damping. The attenuation factor is least sensitive to
mass change and most sensitive to stiffness change. However, the change in stiffness of the
modified structure is normally not very large while the change in damping ratio can be significant.

For a multiple degree of freedom system with negligible modal coupling, the modal

attfeix;luation factors can also be determined in a similar way. The modal attenuation factor can be
defined as :

1
% 0B i
Very often, passive damping mechanisms increase mass and damping but reduce the stiffness.

An optimum design balances the contribution from these three ratios to minimize the attenuation
factor. The objective function for optimization is therefore ;.
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The key to optimization of structural response to a random vibration environment is therefore
the ability to estimate the modal mass, stiffness and damping ratios accurately. The following
design procedure fully exploits these modal ratios to achieve an optimized design.

Other Types of Vibration

A similar approach can be used for other type of dynamic loading. For sinusoidal input, the
attenuation factor can shown to be :

R
%= g (10)

If f(t) is transient in nature, it is best to characterize it by shock spectrum curves. The
maximum modal response is related by the ratios of the shock spectrum values at the system
frequency and damping values.

APPROACH

In order to successfully design passive damping into a large structure to control vibration
response, the behavior of the structural system and disturbance characteristics must be thoroughly
investigated. A finite element model of the baseline elastic structure is analyzed for its frequency
characteristics, modal strain energy characteristics and dynamic response characteristics. The
and extent of the damping treatment must be identified using the baseline model. In order to
accomplish an optimum viscoelastic strut design to control the system level response, the
relationship between the viscoelastic materials, component design parameters and system level
behavior must be understood. To implement any practical design concept, the number of design
parameters must be reduced to a manageable size. Engineering assumptions must be made to
simplify the analytical design process and develop a direct algebraic relationship between the
design parameters and system level response. Optimization can then proceed expeditiously and a
preliminary design can be developed.

Design Optimization Assumptions

To illustrate the design procedure described herein, the following design and analysis
assumptions are made :

1. Analysis Tool - The Modal Strain Energy Method is used as an analysis tool to identify
candidate locations where VEM can be most effectively placed. Uncoupled modal analysis is
used to analyze the performance of the design.

2. Design Parameters - Two assumptions are made to reduce the total number of design
parameters. Firstly, it is desirable to use only one VEM. For a given operating environment
and dominant natural frequency, only two material parameters, G and 1, are required to be
optimized. Secondly, only one viscoelastic strut design is used throughout the structure. This
limits the geometric parameters to only the length and thickness of the VEM.

3. Component/System Behavior Assumption - For the modes of interest, the stiffness of the
system is governed by the axial deformation of truss members. This identifies the most
important behavior of the strut member and allows simplified equations to be developed to
predict the stiffness and strain energy distribution of the struts and the overall system.
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4. System Analysis Assumption - It is assumed that the structural system has already been
optimized for mass and stiffness, and the overall system performance would be acceptable if
higher damping is provided. The purpose of the viscoelastic struts is only to enhance the
damping characteristic of the system. It is therefore further assumed that the modes shapes of
the viscoelastically damped structure are not substantially different from the baseline structure
and the mode shapes of the baseline structure are a good set of generalized coordinates for the

modified structure.

5. Dynamic Loading Assumptions - It is assumed that the dynamic response of the structure is
governed by a random disturbance. Reduction of the modal root mean square response is used
as the objective function for optimization. The same technique can be used for other types of
dynamic loading conditions.

DESIGN AND ANALYSIS PROCEDURE

The procedure to design and analyze the structure with viscoelastic struts, as outlined in Table
1, is comprised of three basic parts. The first part involves the analysis of the baseline model. The
steps are outlined in steps 1 through 4 of Table 1. The modal contributions to the system
responses are identified. A modal strain energy distribution analysis of these modes is performed.
Struts are then ranked according to modal strain energy level. The second part, outlined in steps 5
through 9 of Table 1, involves the use of simplified equations to optimize a viscoelastic strut
design and predict the overall system performance. This bypasses the iterative analysis using the
finite element models. The third part involves finite element verification of the analysis. A detailed
finite element model of the viscoelastic strut is constructed. A reduced mass matrix and complex
stiffness matrix of the strut are computed. These matrices are assembled into the global matrices in
place of the basline strut members. Modal extraction is performed and equivalent viscous damping
is extracted. Response analysis is performed to verify the system performance. This is outlined in
steps 10 through 16 of Table 1.

ANALYSIS OF BASELINE STRUCTURE

The baseline elastic structure system satisfies the following matrix differential equation in the
frequency domain : '

[F02M+ioC+Klu) = F(w) (11)

The structural system has an undamped eigensolution, A and ®. The orthogonality conditions for
the system are :

OTMO =1 (12)

OTK® = A (13)
The modal differential equation of motion is :

2I+ia®TCO+A]QW) = ®TF(w) (14)

The uncoupled modal damping ratio, {;, is often assumed in the computation of dynamic
responses. The uncoupled modal differential equation is :
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Table 1. Summary of Design and Analysis Procedures

| Baseline Model Analysis

1. Construct baseline structural finite element model.
Perform a real eigenvalue analysis.

2. Perform dynamic response analysis.
Identify modes contributing significantly to the responses.
baseline model.

| 4. Selecta group of highly strained elements to be replaced by viscoelastic struts.
Compute the modal strain energy ratio, &;» and modal mass ratio, y;, of the group.

3. For the modes of interest, perform strain energy distribution analysis of the elements in the

Eq. (17), (22)

| Design Procedure
5. Analyze the viscoelastic strut using strength of materials and structural analysis methods.

in terms of design parameters, G,, tyand/,. Eq. (26), (29)

6. Express the modal parameters, K;, ;, T; and &; of the modified structure in terms of the

- design variables. Eq. (34), (36), (37), (42)
Express modal attenuation factor, oy, in term of Tmi» Tki» TEj- Eq. 9)

7. Select a viscoelastic material - NY(w) and G¥(w).

the optimum values of design parameters.

9. Update dynamic responses based on design parameters from steps 7 and 8.
Iterate steps 4, 7 and 8, if necessary, to obtain the desired response level.

Express the strut stiffness ratio, r,, and strain energy ratio in the viscoelastic material, ry,

8. Compute modal attenuation factors for the range of feasible design parameters and obtain

| Finite Element Substructuring Analysis
10. Construct a finite element model of the viscoelastic strut .
11. Using the substructuring method, form the mass matrix and the real part and imagin
12. Assemble the complex global stiffness matrix and mass matrix.

Perform a real eigenvalue analysis of the modified structure,
13. Repeat steps 10 to 12 for as many frequency dependent stiffness matrices as necessary.
14. Extract modal damping ratios from the imaginary part of the stiffness matrix.

15. Compute dynamic response based on modal parameters from finite element results.
16. If results are not satisfactory, use the model of step 12 as the baseline model and iterate.
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[- @2 +i2 § ;@ + 02 ] qi(@) = ¢;T F(o) (15)

A dynamic response analysis is performed to identify the modes contributing significantly to
the response. A modal strain energy analysis of the baseline structural model is performed to
compute the strain energy, (Wj)i , of each element of the i-th mode. The locations with the highest
strain energy density are identified as a group to be replaced by viscoelastic struts. The ratio of the
modal strain energy of the selected group to the strain energy of the entire structure is the modal

strain energy ratio, €;. If the strain energy ratio of the viscoelastic material to the viscoelastic strut
is known, the system level modal loss factor can be estimated readily by Equations (40) and (A8).
The level of damping can be increased by including more viscoelastic struts, higher strain energy
ratio in the VEM and higher material loss factor. A practical level of passive damping can therefore
be estimated once the modal strain energy distribution is known.

In order to analyze and fully understand the effect of viscoelastic struts on the structural
stiffness, strain energy distribution and mass, it is best to separate the structure into two groups,
the unmodified group and the to-be-modified group. Therefore, the global elastic stiffness matrix
can be visualized as being contributed to by two matrices, Ky and K.

K = Kl + Kz (16)

K represents the stiffness matrix of the unmodified elastic elements and K, represents the
stiffness matrix of the to-be-modified elastic elements. Although the modal strain energy ratio of
the to-be-modified members, €;, is computed by the summation of individual elements, it can also
be expressed as :

1
701" K2 ¢
6= ——. an
501" K ¢4
Using the orthogonality condition, 0T K o= ®;2, Equation (17) can be expressed as :
0" Kz ¢; = € 0;2 | (18)
and therefore
T Ky = (1-€) 02 19)

Similarly, an analysis of the effect of viscoelastic struts on the modal mass can be performed if the
mass change is significant. The mass matrix is also separated into two parts.

M= Ml + Mz (20)

M is the mass matrix of the unmodified elastic elements and M, is the mass matrix of the to-be-
modified elastic elements. The modal mass ratio, J;, can also be defined as :

.T
b = .:;_f%zfi 1 @)
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Since ¢; is mass normalized, then

0T Mz ¢; = I (22)
and

6" My = (1-p;) (23)

DERIVATION OF DESIGN EQUATIONS

Based on the stated engineering assumptions, the viscoelastic strut has only four design
parameters. It is necessary to derive approximate closed form equations relating the material
constants to the strut component parameters and then to the system performance parameters.
Consequently, trade studies and optimization of the viscoelastic strut can be performed
expeditiously by using simple tools such as a spreadsheet. This allows a comprehensive design
optimization to be performed in a very short time and without substantial computer cost. It also
offers a better physical insight into the effect of each parameter on the component and system
behavior.

Analysis of Viscoelastic Strut

It is assumed that the stiffness of the truss, for the modes of interest, is governed by the axial
deformation of the truss members. The axial stiffness and strain energy distribution of the damped
strut can be derived based on a strength of materials approach. The ratio of the stiffness of the
damped strut to the baseline strut, ry, and the strain energy ratio of the VEM to the strut, ry,, are
two dimensionless ratios at the strut component level which are important to the optimization
process. The component stiffness ratio, ry, affects the system stiffness and natural frequencies
while the component strain energy ratio, Iy, controls the amount of damping introduced by the
VEM into the system. In addition, the mass ratio, T'm, Of the strut can also be computed if
necessary.

Different viscoelastic strut design concepts have been proposed3 and some were built and
tested2. A simple strut design concept, as show in Figure 1, is used to illustrate the design and
analysis procedure. When the strut is deformed axially, the VEM carries the force in Shear,
Consequently, it provides the strain energy necessary for damping. It is further assumed, for the
sakehof simplicity, that the material constants and cross sectional areas of the inner and outer tubes
are the same.

The axial stiffness of the original strut without viscoelastic material is :

k=T 24)

25)
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b. Conceptual Viscoelastic Strut

Figure 1. Conceptual Strut Design

The ratio of the damped strut stiffness to the original strut stiffness is :
1

Ta = 7 AT (26)
1 - 1 Vl + — A4
0 2xil, Gy I,
The strain energy in the viscoelastic material is :
- @7
V' 4nil, G,
The total strain energy in the damped strut is :
1
= 28
Wt EFV ( )

The ratio of the viscoelastic material strain energy to the total strain energy in the damped strut is :

Ty = Ky (29)

" 2il,G,
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This procedure for component analysis is applicable to one class of viscoelastic strut design.
When a different viscoelastic strut design is used, different expressions for k, and W, are
obtained. However, the design and analysis procedure is the same.

Analysis of Viscoelastic Structures
In order to predict the system level response due to the introduction of viscoelastic struts, the

three important modal ratios of the modified structure must be expressed in terms of the design
parameters. The modified structural system satisfies the following matrix differential equation :

Fo2M+ioC+K]UW) = Fo) (30)

However, using this equation for design purposes in conjunction with large finite element
models is impractical. Simple algebraic equations must be derived for optimization purposes.

The Modal Strain Energy Method uses mode shapes from the real eigenvalue solution and
assumes that the modal equations are uncoupled. In addition, the mode shapes of the modified
structure are assumed to be insignificantly affected by the modification of a small group of truss
members. By the Rayleigh-Ritz principle, using the mode shapes of the baseline structure as the
generalized coordinates, the approximate modal equation of the modified structure can be written
as: ,

[- 02 6TMo; +io¢TC o+ 6,7 K ¢3] Qi(w) = ¢;T F(w) (31)
Assuming C can be diagonalized to &, then

0?2 @ +ial; + o KRy + i ;T KI¢;] Q@) = ¢,T F(w) (32)

If the behavior of the structural system is governed by the axial deformation of the truss
members, the modified global stiffness matrix can be approximated by :

KR =~ K; +1, K, (33)
and the generalized modal stiffness can be written as :

ki = 0T Kq ¢+ 1,07 K3 ¢

Ei =( ol Al Y ] )(l)i2 ‘ (34)
Therefore, the ratio of the generalized stiffness of the modified structure to the baseline structure is:

rwfl%- (1-g+r6) 35)

The corresponding generalized modal mass and the ratio of generalized mass can be written as :

My = Iy = 1- Wi+l (36)
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The (Rayleigh-Ritz) frequency of the modified structure can therefore be expressed as :
K.
= Lafd (37)
2r my

The modal strain energy ratio in the viscoelastic struts is :
1
xTa 017 K3 ¢

- 1 -
5 Ta 0;T KR ¢

. ()2
= &EE‘”_;_ (38)

The modal strain energy ratio in the VEM of the viscoelastic struts is therefore,

&

v. = Wi _
&Y T (39)

The modal loss factor can be expressed as :

ni = n'eYy

Vrw I, €;
- n_rv:,u' ‘ 40)

The;,h %%u}valent viscous damping introduced into the i-th mode based on the modal strain energy
method is :

Ny r,ry €;
= 41

G = (41)
If the inherit damping in the i-th mode is ;, then the modal damping of the modified structure is :

=0+ ‘ 42)
The ratio of the modal damping of the modified structure to the baseline structure is :

g = 5 @3

Gi

Therefore, the modal ratios, r p;, Ty; and rg;, are all expressed in terms of the four design

parameters, 1, G, t, and J,, in simple algebraic form as shown in Equations (35), (36) and (43).

The minimization of the modal attenuation factor, o, is therefore quite simple as shown in the
example.
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SUBSTRUCTURING ANALYSIS OF VISCOELASTIC STRUCTURES

Once a set of optimum design parameters is obtained, a finite element analysis should be
performed to verify the performance of the system. The use of a substructuring method is ideal in
this case since only one strut design is used. Since the model has to contain enough refinement to
compute the stress distribution, substructuring allows a detailed damped strut model to be added to
the large FEM without increasing the size of the model, and in this case without major modification
of the existing model.

Finite Element Analysis Assumptions

1. Modal Strain Energy Method - Since the viscoelastic material is characterized by a complex
modulus, the element stiffness matrix and global stiffness matrix are also complex. Real
eigenvectors of the real part of the stiffness matrix are used to span the solution space. The
eigenvectors are used to extract equivalent modal damping from the complex part of the global
stiffness matrix. Uncoupled modal analysis is then performed.

2. Dynamic Substructuring Method - Dynamic substructuring is used to reduce the total number
of degrees of freedom of the problem. Boundary node static vectors and constrained normal
modes are used to condense the matrices of the substructure. Consistent with the global
analysis, the set of real vectors is used to span the solution space of the complex part of the
substructure stiffness matrix.

Dynamic Substructuring Method for Complex Stiffness Matrix

A detailed finite element model of the optimized viscoelastic strut is used to represent an elastic
strut element. Plate elements are used to model the elastic tube. Solid elements are used to model
the VEM so that the shear energy can be computed. Rigid offset transformations in the computer
code, if available, should be used to model connections between plate elements and solid elements
to reduce the number of degrees of freedom and improve the numerical performance. Stiff spoke
systems are used at both ends of the strut model to allow for boundary connectivity to the beam
elements. The material modulus is chosen at the dominant structural response frequency and
operating temperature but iteration may be necessary. The strut component stiffness matrix, K, is
composed of the real part, kR, and the imaginary part, kI.

k(w) = kR(w) +i kI(w) 44)

The real part of the component stiffness matrix, kR, has stiffness contribution from two types of
clements - kR, from the elastic elements and kR, from the viscoelastic elements.

kR = kR, + kR, (45)
By the definition of the material loss factor, NV, the imaginary part, KI, can be expressed as:

kI(w) = n¥(0) kRy(®) (46)

Since the strut substructure is a structure by itself, consistent with the system level
assumptions, a set of real vectors is used to span the solution. This set of real vectors, v, is
comprised of the static boundary vectors and the constrained normal mode vectors of the mass and

real stiffness matrix. The condensed stiffness matrix, «, also consists of two parts, the real part,
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KR, and the imaginary part, xI. The real part of the condensed element stiffness matrix, ¥R can be
computed in a straightforward way :

R(w) = v(0)T kR(®) V() 47
The imaginary part, I, can be computed in a similar fashion :
(o) = v(o)T kI(0) v(o)

(@) = nV(®) v(®)T kRy(0) v(0) (48)

If only boundary vectors are used, this becomes an extension of the static condensation
(Guyan Reduction) procedure applied to the complex stiffness matrix problem. For the strut
model, a reduced twelve by twelve matrix can be used as the element stiffness matrix in lieu of the
beam stiffness matrix. The global matrix therefore has the same size and connectivities.

For practical implementation, kR may be computed using the static condensation method to

calculate the condensed stiffness matrix of the finite element model. In order to construct nVkR,,
the same model with zero material stiffness for the elastic elements is used. However, v from the

model with both elastic and viscoelastic elements must be used to extract a consistent kI by matrix
triple product or other computational procedure. Then kR and «I are used as element stiffness

matrices to assemble the global KR and K matrices.
K = KR+iKI | | (49)

K1 is quite sparse with nonzero entries only at those degrees of freedom connected to viscoelastic
struts.

The element mass matrix can be assembled using consistent formulation but normally a
lumped mass procedure will suffice and hence it is not elaborated upon here.

2M+ioC+ KR+iKIlu) = F() (50)

By the Modal Strain Energy Method, M and KR matrices are used to extract the real

eigenvectors. However, KR is not a constant coefficient matrix. This makes the solution of the

exact eigenvalue problem extremely difficult. Different methods4 can be used to compute an
approximate solution to this frequency dependent problem. For dynamic response determined by a
single mode or a limited number of modes with no modal interference, this is not a major
difficulty.

If $i is the i-th mode shape vector of the viscoelastic structure, the modal equation is therefore:

o2 §;TM &+ 6, TKR §;+iwdTC ¢;+i 6" K1l gi(o) = ;T F(®) (51)
o2 + &2 + 108 + 16,7 KI§] qi(®) = ¢;T F(w) (52)
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From Equation (A12), the modal loss factor contributed by the VEM can be approximated by :

- _ §TRIG,

ni = 52 (53)
i

So, the equivalent modal viscous damping ratio contributed by the VEM is :

L=3 (54)

and the total equivalent modal viscous damping of the structural system is :
Gi=Ci+§ (55)

Modal dynamic response analysis can then be performed using (G, 3 i ) p as the system modal
quantities.

EXAMPLE

Analysis of Baseline Structure

~ The structure used as an illustrative example is a large truss type structure shown in Figure 2.
The model consists of 2052 nodes and the EALS finite element code was used. To reduce the

comp;xtation required, a selective modal extractionS was performed for the large finite element
model.

Figure 2
Finite Element Model of the Baseline Structure
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The Line of Sight jitter response to a power spectral density input was used to evaluate the
performance of the system. The response power spectral density curve in Figure 3 shows that the
jitter response is dominated by the first truss bending mode of the structure.

Modal strain energy distribution analysis was performed to identify a group of members with
high strain energy. These elements with high modal strain energy are the most efficient locations
for application of VEM for passive damping. In this example, the longerons were found to contain
the largest percentage, 26.9%, of strain energy in the dominant mode. Within this group of
members, the 28 struts selected for replacement contain 54.0% of the strain energy in all of the

longeron struts.
Design and Analysis of Viscoelastic Struts and Structure

The viscoelastic material reduces the stiffness of the strut while increasing the damping. Itis
desirable to concentrate most of the strain energy in the VEM to increase the damping which
demands that the rest of the strut act as rigid links. However, this degrades the strut stiffness
significantly. With these two opposing trends, optimization of the strut design can only be
determined in the system response level and not at the component level.

The derived equations were coded in a spreadsheet. The VEM material with the best modulus
and loss factor at the reference temperature of 25° F and frequency of 10 Hz was chosen. The
effect of the VEM parameters on the component ratios is shown in Figure 4. The effect of the
VEM on the system attenuation factor is shown in Figure 5. These two figures show that the use
of more VEM in some design regions actual degrades the overall system performance. Therefore
an optimization of the design at the system level is absolutely necessary. The predicted system
parameters and attenuation factor for the optimized design are summarized in Table 2.
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Table 2
Results of Derived Equations and Finite Element Method
for Viscoelastic Structure
Structural Derived Finite Element
Parameters Equations Model
Dominate Modes
Frequency (Hz) 117 10.9
Modal Viscous
Damping Ratio 0.100 0.097
Modal Attenuation
Factor 0.24 0.27

Substructuring Analysis of Viscoelastic Structure

A detailed finite element model of the viscoelastic strut is shown in Figure 6. The condensed
matrices of the optimized strut design were assembled into the baseline model as a directly
specified spring matrix. This substructure method reduces the 210 node model of the strut into a
two node element which can replace the existing element in the large finite element model. This
includes the stiffness information in the model without requiring any modification of the geometry
or connectivity of the existing baseline model. The new mode shapes were compared with the
original shapes to verify that there were no significant changes in the mode shapes. The results of
the finite element analysis are summarized in Table 2. The comparison with the design predictions
is extremely favorable.

Figure 6
Finite Element Model of the Viscoelastic Strut
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CONCLUSION

The design procedure presented enables the structural analysts/designers to develop viscoelastic
struts which optimize the global response of very complex structures with a minimum amount of
computer analysis. Information from the baseline design can be used to the maximum extent. The
knowledge of the system overall behavior enables accurate assumptions to be made to optimize the
design. The design optimization is based a set of closed form algebraic equations derived from
Rayligh-Ritz principle. A substructuring method for the viscoelastic materials with complex
stiffness matrices was derived and proven to be very efficient. The excellent comparison of the
results from these two methods reinforces the soundness of the basic approach in both the design
and analysis procedures. This method can easily be extended to the design and analysis of similar
components and structures under different dynamic environments.
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NOMENCLATURE

Symbols

viscous damping coefficient
natural frequency

imaginary unit, V-1

identity matrix

stiffness

mass

ratio

unit boundary displacement vectors
strain energy

attenuation factor

strain energy ratio of selected group, i-th mode

matrix of eigenvectors

c
fn
i
I

K, k
M,m
r
v(w)
W,w

3]
]

loss factor
= condensed stiffness

mass ratio, i-th mode
damping ratio

matrix of eigenvalues
viscous modal damping

frequency, radian/second
denoting modified elements

1 VT >eE A 3 .0

Subscripts

strut axial stiffness

elastic

for the i-th mode

the group selected for modification
stiffness

mass

baseline design

viscoelastic

damping ratio

v <o g R o B
mwwwnnnn

Superscripts
Imaginary
Real

matrix transpose
viscoelastic material constant

<A
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APPENDIX

1. VEM Characteristics

The VEMs are strongly frequency and temperature dependent. Most often the energy

dissipation is through the shear energy in the VEM. The energy dissipation property of the VEMs
is conveniently modelled by the complex modulus of the material. The shear stress and shear
strain constitutive relationship is often measured and expressed as :

T (@) = G*(T, @) Kw) (AD)

G*T,®) = G(T, w)[1 +in(T, ®)] (A2)

This relationship is generalized to the general stress and strain constitutive relationship by :
o = Clijua en , (A3)

C*ix1 = Ciga[1+in(T, @) ] (A4)

2. Finite Element of Viscoelastic Material
Based on the complex modulus material characterization of the viscoelastic material, the

clement stiffness matrix at a constant temperature is therefore also complex with both real and
imaginary parts.

k(@) = kR) +ik(0) | (AS)

k@) = kR(w) + in) kRw) (A6)

Consequently, the global structural stiffness matrix is also complex :

K) = KR©) +i Kl() (A7)

3. Modal Strain Energy Method

The Modal Strain Energy Method provides an efficient alternative to direct frequency response
methods. The MSE method is the first tool which enables. the analyst to design high modal
damping into a structure by using viscoelastic materials. This allows deliberate design of passive
damping into the structure. By using real normal modes of the undamped structure and assuming
that modal coupling is negligible, the viscoelastic system can be characterized by modal equations
of motion with modal hysteretic (structural) damping.. Modal loss factors are used to approximate
the damping contribution from the imaginary part of the complex stiffness. The modal loss factor

for the i-th mode, n; , can be approximated by:
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Z nY; (wpi

i = —

PC

k
n; = modalloss factor
n = material loss factor of the j-th viscoelastic element
@ = strain energy in the j-th viscoelastic element
@ = strainenergy in the k-th element of the structure

If €} is defined as the strain energy ratio of the j-th element of the i-th mode, then

(w3);

Y (wy)i
k

and if the sum of the the viscoelastic elements is g;, then
e, = z e'ji
J
If only one material is used, then
ni =nveY
In matrix form, !
1
5017 Klo;
1
50iT KR¢,

T wl
.2 9 K ¢
i o;T KR ¢,

ni =
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