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ABSTRACT

The equations of motion applicable to the Six-Degree-of-Freedom
Structural Loads Program (SLP) are derived in this report. These equa-
tions are written for the determination of vehicle structural lozds and
response due to aerodynamic lcads, loads due to control surface deflec-
tions, and environmental disturbances. Arbitrary elastic degrees of freedom
(wing bending, wing torsion, body bending, etc.) and fuel slosh equations
are incorporated into the overall analysis.

Newtonian flow theory is used for obtaining idealized serodynamic
pressure distributions since it is the simplest aerodynamic theory that
offers sufficient generality. Accelerations, deflectlions, shear forces
and bending moments at arbitrary stations can be computed.

This technical documentary report has been reviewed and is approved.
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SYMBOLS

\55 static aerodynamic terms. See Equation (195).
am{\ given mode of vibration in degree of freedom x.
;H‘ components of Ekih in the y coordinate system.
"I:’ inertia terms. See Fquation (180).
.": aerodynamic stiffness terms. See Equation (196).
J
E' the dynamically balancing rotation rate with respect to q‘j
J of the vehicle relative to the vehicle axes.
" —
Ld components of bj in the y coordinate system.
(:'K aerodynsmic damping terms. See Fquation (197).
E. the dynamically balancing trenslation rate with respect to
i qJ of* the vehicle relative to the vehicle axes.
C:-; components of Ej in the y coordinate system.
C'ﬂ% permutation symbol. See text preceding Equation (139).
E number of thrust vectoring nozzles (or "engines").
- .
e:i compeonents in the ‘jr system of the j.; vectors.
f.: the sum of the external forces exerted on the vehicle.
Fi.& the external force on the h-th particle of the i-th section.
E,ﬂ,& . the internal force exerted on the h-th particle of the i-th
3’ section by the j-th particle of the k-th section.

F;.g_*a‘, the magnitude of Fypy .
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the sum of the moments about the origin of the vehicle axes
due to the external forces.

the force per unit mass due to gravity.

the coefficient of "structural” damping assoclated with the
j-th degree of freedom.

products of inmertia of structure and fuel about vehicle axes.

the moments and the negatives of the products of inertia of
section i about its own axes. See Equation {138).

inertia coupling terms. See Eguation (173).

modal unbalances. See Equation (150).
subscript used to denote a particle of a section.

the partial linear velocity with respect to qJ of the center
of mass of section 1 relative to the wehicle axes - values
obtained after dynamic balancing.

components of Hji in the y coordinate system.

moments and negatives of products of inertia of structure and
fuel about vehicle axes. See Equation (145).

subscript used to dencte a section of the wvehicle.

three unit vectors pointing respectively in the directions
of the three vehicle axes y'. See Sec. 2 and Fig. 2.

three unit vector; peilnting respectively in the directions of
the three axes "J{ of section i. See Sec. 2 and 3 and Fig. 2.

the partial linear velocity with respect to qk of the center
of mass of section i relative tc the vehicle axes - arbitrary
values given prior to dynamic balancing.

components of Eki in the y coordinate system.

suffix used to denote & degree of freedom.

components of the stiffness tensor. See Equation (90).
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guffix used to denote a degree of freedom.
modsl inertia terms. See Eguation (151).

suffix used to denote a degree of freedom.

components of the inertia temsor. See Equation (32).

the bending moment at a specified location.
components of M in the y coordinate system.
total mass of vehicle and fuel at any instant.
mass of section 1.

masa of the h-th particle of section i.

the number of sections and tanks.

the generalized forces associated with inertia forces. BSee
Equation (46).

modal inertia terms. See Kquation {(172).

number of elastic degrees of freedom.

a unit vector located at a certain peint on the surface,
perpendicular tc the surface at that point, and pointing
outward.

— /
components of n in the™J coordinate system.

the generalized forces associated with conservative internal
forces.

position vector locatlng the origin of the“U{ coordinate
system with respect to the y coordinate system. 3See Fig. 2.

componernts of Si in the y coordinate system and coordinates
of the center of mags of section i.

the number of particles in the i-th section or tank of fuel.
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the generalized forces associated with dissipative internal
forces.

modal moments and negatives of products ¢f inertla of the
vehicle. See Equation (53).

modal moments and negatives of producis of inertla of section
i. See Equation (179).

the generalized forces assoclated with external forces. See
Equation (47}.

generalized coordinate associated with the j-th degree of
freedom.

suffix denoting the r-th coordinate axis in either the y or
the ~v7 system.

the surface of the i-th section.

suffix denoting the s-th coordinate axis in either the y or
the "\): system.

the kinetic energy of the vehicle and fuel.

the magntidue of the thrust force at the i-th nozzle.

time. Also used sometimes as a suffix In the same sense as
r or s.

potential energy due to elastic deformation.

energy dissipated thru damping.

linear velocity of the vehicle at the origin of the wehicle
axes.

components of V in the ¥ coordinate system.
velocity of the h-th particle of the i-th section.

the work done by the external forces,

the “piston speed” (or downwash) at a point on the surface.

position vector of the vehicle in relation to a space-fixed
frame of reference.

position vector of the h-th particle of the i-th section in
relation to the vehicle axes.
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components of :}-ih - ¥ coordinates of the h-th particle of
the 1th section.

position vector of the center of mass of the vehicle.

components of §c: in the y coordinate system.

the partial angular velcocity with respect o q'J of the *u:
coordinates relative to the y system - wvalues obtained
after dynamic balancing.

components of&ji in the ~{ coordinate system.

the partial angular velocity with respect to qY of the vl
coordinates relative to the y system -~ arbitrary values
given prior to dynamic balancing.

components of §.. in the ~yf coordinate system.
gt Vg

products of inertia of section i referred to the sectional
axes.

the distance from particle kj to particle ih. BSee
Equation {77).

inertia coupling terms. See Equation (171}.

the Kronecker delta
Srs =1 when r = s.

Brs = O when r # s.

the logarithmic decrement associated with the j-th degree of

freedom.
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the angle of rotation of Eéi and Eéi about Eii‘ See Sec. 9.

inertia coupling terms. See Eguation (178).

inertia coupling terms. See Equation (169).

modal products of inertia of section i. See Eguation (142).

angle of swivel of nozzle (or the Eii vector ) about an axis
(L3) perpendicular to J; and making an angle¢i with Js.

See Sec. 9.

inertia coupling terms. See Equation (167).

aerodynamic modal term. See Equation (191).

ratic of circumference to diameter of a circle.

the atmospheric density.

the partial linear velocity with respect to qJ

h relative to section i.

of particle

components oféf:jih in the‘1JEcoordinate system.

position vector of the h-th particle of the i-th section
relative to the crigin of the‘\J{coordinate system.

components of ~.p in the "U{ system.
u'e\ L

angle of rotation of the 4xis and plane of swivel about the
vyl axis (ji). See Sec. 9.
angular velocity of the vehicle axes.

components of §L in the y coordinate system.
vibration frequency associated with the j-th degree of
freedom. See Equation (91).

inertia "symbols™. See Equation (59).
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1. INTRODUCTION

This report includes the derivation of the equations to be used in the
Structural Loads Program (SLP). This program is to be used in conjuncticn
with the basic Six-Degree-of-Freedom Flight Path Computer Program (SDF), as
& means to determine the vehicle structural loads and response due to aero-
dynamic loads, loads due to control surface deflections, and environmental
disturbances (i.e., wind profiles and continuocus discrete turbulence profiles).
The program permits the inclusion of up to 17 elastic degrees of freedom and
4O fuel siosh modes. The elastic degrees of freedom are arbitrary, and the
user may incorporate any number of modes such as body bending, wing bending,
wing torsion, etc., so as to total 17. The fuel slosh wodes incorporate 2
Jongitudinal and 2 lateral modes on each tank and the program allows one to
include up to 10 tanks. It 1s recognized that the gross vehicle moticn
(large motions) influences the small motions {elastic deformations and fuel
sloshing) of the vehicle, but it is assumed that these smaller motions have
& negligible effect on the larger motions of the vehicle. Other basic
assumptlons used in this analysis are:

l. Undamped free vibration modes are used to specify the elastic
deformations and fuel slosh.

2. There is no elastic or dampling coupling between the degrees of
freedom.

3. The merodynamic forces can be obtained by Newtonian flow theory.

4. The fuel surface (except for the sloshing) is considered to be
perpendicular to the resultant acceleration at the center of the
tank.

5. The fuel slosh modes of & tank that is not vertical or horizontal
can be represented by those of some hypothetical tank that is
vertical or horizontal. In addition, longitudinal fuel sloshing
in a bhorizontal cylindrical tank is represented by an analogy to
a rectangular tank.

6. The effect of a rocket engine can be represented by & thrust vector,
which is a simplification that assumes the center of mass flow
through the nozzle to bhe exactly alined with the geometric axis
of the nozzle.

The complexities inherent in this type of problem are so great that
certain conventions of the tensor notation are incorporated in the subsequent
development in order to shorten the writing of the equations. These opera-
tions are explicitly explained as they are introduced. The analysis of the
gtructural loads is logicaelly developed in the following sequence:

Manuscript released by author, 1 January 196k, for publicstion as amn RTD
Technical Documentation Report.
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1. The vehicle kinematics sre derived.
2. The force and moment relations are found using Newtonian mechanics.

3. The equations of motion of the elastic deformation are derived (work
and energy concepts are used to check the basic formulations of Items
2 and 3).

4, The maln equations to be used to determine the elastic deformations
are put into teruws suitable for computation.

5. The aserodynamic forces (using Newtonian flow theory) are found.
6. 'The analysis of the fuel slosh problem is included.

T. The thrust forces are introduced.

8. The accelerations at all locations are found.

9. The shear forces and bending moments are calculated.

The generalized forces to be used 1n the program are inertia forces bdj, exter-
nel forces @}, conservative internal forces O; and dissipative internal
forces Pj . These forces are represented by Equations (46) - (49).

To clarify to some degree the subsequent analysis, the representation of
the coordinate system ig pr;sented in Figure 1. The origin of the orthogonal
reference frame (*E '1r :3’ ) is represented by an arbitrary point that would
be fixed in the vehicle if it remained rigid during the wmotion along its
flight path. In conjunction witp this frame of reference, are located relative
coordinate systems (‘IJ”.1J'E.QJ ) positioned at various points on the body
to define the elastic deformaticons and fuel slosh motions. An absolute refe-
rence frame ( *®! , X*#, X? ) is shown for generality with X the position vector
connecting the origins of the reference frames. As a physical insight into
the relative relations of these coordinate systems, consider the case when
the vehicle center of gravity (C.G.) is the origin of thetﬂg ﬂaa, \33 triad;

&

then, the velccity of this point is represented by {%&=§k

-2
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2. KINEMATICS OF THE VEHICLE AND BASIC ASSUMPTIONS

In analyzing the motion of & vehicle in flight, 1t is convenient (perhaps
necessaery) to think in terms of the following types of wotion: (1) the wmotion
of the vehicle as & whole, which characterizes its "flight" and 1s referred to
here as the gross motion of the vehicle, (2) large motions of certain parts,
such a5 control surfaces, relative to the rest of the vehicle end large dis-
placements of the fuel in the tanks, and (3) small elastic deformations and
fuel sloshing. Types of motion (1) end (2) are determined in the basic Six-
Degree-of -Freedom Flight Path Study Generalized Computer Program (SDF) and
the Vehicle Physical Characteristics Subprogram (VPCS). Type (3) is to be
determined in the Structural Loads Program (SLP), which, as its name indlestes,
is alsc to determine the structural loads.

It is assumed here that the relatively small elastic deformations and fuel
sloshing motions have a negligible effect on the other (large) motions of the
vehicle. (Some considerastions associated with this assumption are investigated
in following paragraphs.) It is not assumed that the large motions of the
vehicle have a negligible effect on the small motions. Consequently, the large
moticns - types (1) and (2) - will be employed as part of the input to the
Structursl Loads Program.

An orthogonal right-handed triad of unit vectors J,, Jg,Jas that would
be fixed in the wvehicle if it were perfectly rigid is introduced to provide s
frame of reference (a) to represent the gross motlion of the vehicle and (b)
to facilitate the description of 1'.hel ot"éher3 motions of the vehicle - types (2)
and (3). Rectangglaz_coquinateslt 'y gy are assoclated respectively with
the unit vectors J, 4Jg, Js a5 shown in Pigure 2. These coordinates ere 2 -
seen to be the components of the position vector 4 , which equals J lﬂ"+ Ja\? +J,L3":
The axes of these coordinates are called "vehicle' axes.

— - —

Additional orthogonal right-handed triads of unit vectors U, »daz »4Js
that would be fixed in the varlous parts of the vehicle and in the fuel in
the various tanks 1f they were rigid are introduced as frames of reference
(a) to represent the motions of the parts and the displacements of the fuel
relative to the vehicle and (b) to facilitate the description of the elastic '
deformations and the sloshing of the fuel. Rectangglaglcoo;ginates v iutu
are associsted respectively with the unit vectors J, , Jp Ji and these
coordinates are_the components of the vector 7, , which is the positicn
vector in the U ; coordinate system. The axes of these cocordinates are
called "section’ axes. The vector & locates the origin of the J, coordi-
nate system with respect to the j . system. Consequently, then, ? =& +u.

The gross motion of the vehicle is that of the J, (v= 1,.2,3) _triad,
which has a linear velocity V at its origin and an angular velocity 41 .
These velocities are functions of the time t, , and, together with their
derivatives, completely describe the gross motion of the vehicle.

Generslized coordinates are employed to specify the conflguration of the
vehicle and fuel relative to this frame of reference ~ the Jp triad. 1In so

..
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doing, however, a distinction is made between the large motions of type {(2)
and the swall motions - type (3). Inasmuch as the large motions are foreknown
in the SLP, they can beospecified by means of a single generalized coordinate,
for which the symbol q is chosen here, and which is to be equated to the
time ¥ . The use of ¢° for this purpose rather than T , even though the
two are numerically equivalent, serves to distinguish the motions of type (2)
from the gross motion, type (15, the gross motion being represented as a
function of t but not as a function of 70.

Undamped free vibration modes are used as degrees of freedom for specify-
ing elastic deformetions and fuel sloshing, motions of type (3), =nd are
referred to as elastic degrees of freedom. (Good results can reasonably be
expected if a sufficlent number of the lower frequency modes are used.) These
small motions are specified by the generaslized coordinates ‘?} ?? Ve ?" (n
being the number of elastic degrees of freedom).

At this point, it is convenient to adopt the range and summation conven-
tions of the tensor analysis as follows:

(1) Range Convention - A coordinate suffix that occurs Just onece 1in
e term is understood to represent all the integral values appro-
priate to its range.

(2) Summstion Convention - A coordinate suffix that occurs just twice
in a term implies summation with respect to that suffix over its
range.

These conventions enable us to write

g:J—r 5” (::}-ll-drl 1—53__‘%"2*—35—?%) (1)
=0,y (=T e 35ve T (2)
8=J,¢" (=d6'+J,6 +J, &) (3)
s S - - o —_—

Jr=Js e, (‘—‘-Jje,n +J;_e,r +dJ, eiﬁ) )

The ©" in equation (3) are the coordinates in theLfr.coordinate system of
the origin of the J+ system. The €. in (4) are the components in the s
sygtem of the Jy vectors; for any particular choice of r and 5 ,

€y =Jy-Js , which 1s the cosine of the angle between J. and Jg .
Equations (1), (2), and (3) illustrate the use of the summetion convention;

equation (4) illustrates both conventions.

Unless otherwise noted, the range of the suffix of a unit vector (J,.
or J) ) or of a rectangular coordinate ( ", v, or eF) is 1, 2, 3.
The range of the suffix of a generslized coordinate { §* ) will be understood
tobve /, Z,...n. Zero (as in 70 ) is specifically ‘and deliberately ex-
cluded in the use of the range and summation conventions. Thus, in specifying

basic functional relations, we write

Jr = J_'r E‘f) ) (5)
ol =0, ¥ (6)
e?}-: efr‘(zoz ZK) ) (7)
v"=v""(g") (8)



Since q =& +U , we find by substitution from {1) thru (&) that
<,

- e — or
Jpy=doe"+J, v
—- r — e
=Jdre tdgerv
- r — r /S
= dre +dr e, U (9)
S r roo.5 r‘( o X
S= ey ev= gl oY (10)
The components " of the position vector ¢ are the coordinates of a

particle of the vehicle, and their variation as“the particle moves with respect
to the dr frame of reference is a function of ¢ and the ?‘. Since the
angular velocity of the Jr triad is /1 , and since the Jr are functions of
the time ¥ only, their derivatives are

‘g‘%} = 1l X‘Jr (11)
It is clear from (10) that %: O ; therefore, from (1),

%_z%:%i{_y :ﬂergrﬂ_x5 (12)

and dJ:anr%a?’“—ir?

it 2€
rgf"gggo-+§%§z; (13)

since ?‘D: 49 - / (14)

Y
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? :-é#%r and is unknown until determined in the solution of the

equations of motion, which are to follow. Making use of (13) and the fact that
the linear velocity of the origin of the J triad 1s V y, we find that the
velocity of a particle of the vehicle is

v o=V+9E

(15)

i
=}
-+
S

(Ml
—1..
Ui
fnt
+
@
i
~0.
e

The acceleration of a particle can be found as follows:

S
_dctﬂéﬁ_g_ﬂ =0 _y? +9;$7K7'K' (a7)

Likevwise

Ec e A

The acceleration is now found by differentiation of (15) and substitution
from (13}, (17), and (18), with the result

Fiar ARar SF SRS T e
=4 ) x(ﬂfy)**d? g+ ”Tf +a?:?

.._ - % - . N3+ 'y T uk
w2 {n S 55§ v 1 43



We note that

_— : r
=Jr L1 (20)
because f). X J;. _O_r = ﬁ ¥ _(—)_ =,
The JAL , then, are the components of the angular acceleration. The linear
acceleration at the origin is
V.7 dv ., dIL. "
=0, i
r —
=J V(Y
_ i A, 3 3,,*
=3 (V0P V)
. 3 f f 3
+ L VRV -0V
(21)

—_ + 3 [ FR
+d, (Ve Qv n*v)
The coefficients of the unit vectors are the components of the linear accel-

eration.



3. FORCES, MOMENTS, AND "DYNAMIC BALANCING"

In the application of Newton's second law of motion to the vehicle, 1t
is necessary to have a means of identif'ying the particles. But the vehicle
is divided into various parts (or sections) and various fuel tanks, which
also need to be identifled. Becsuse of 1ts shifty and sloshy nature, the
fuel cannot be regarded as part of the tank that contains it., The tank it-
self is treated as one or more structural sections. Subscripts are employed
to identify masses or mass particles and their rectangular coordinates, a
single subscript or the first of two subscripts denoting the section or the
fuel contained in a certain tank, and the second subscript denoting the
particle of the section or fuel. The absence of such subscripts denotes =2
gquantity pertaining to the entire vehicle.

Thus the mass of the h th particle of the i-th section is 4. and its
coordinates are U} and‘uL + The wass of the i1-th section is m; and its
"coordinates” are & . The mass of the entire vehicle is nv(w1thout a sube
seript). Let 7 be the number of particles in the i-th section or tank of
fuel and N be the number of sections and tanks;

7
h={
¥
and = —>__—! _ZEE mlh = ;LV_ mc (23)
=l hel &7

—_— = r
Let the J,.triad of the i-th section or tank of fuel be designated as the J ri
triad and let its origln be at the center of mass of the i-th system of
particles. Then the:ﬂ'are the coordinates of the center of mass of the i-th
section, and

P .
2 Mip Uin =0
A=l (2k)

Alsg, let é. be the ccordinates of the center of mass of the vehicle. Then,
with the aid of (10), (22), and (24) it is found that

Nop ]
e
my = 2 _ 2 Myl

N P )
_ T‘—' r [ad 5
=S ST om, (ol el v,

(25)
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This can also be expressed in vector notation:

¥ P, ¥
:Zi Zm;EL'
=1 ke 1= {26)

[}cbeing the position vector of the center of mass of the vehicle.

With the ald of Newton's third law of motion, it can be shown that the
sum of all the forces exerted on all the particles of the vehicle egquals the
sum of the external forces only. Let this be designated by ¥; then, by Newton's
second law of motion and (19),

(27)

Likewise, the sum of the moments about the origin of the ;I triad due to
all the forces is equal to the sum of the moments due to the external forces
only. Let this be designated by G; then, by Newton's second law of motion

a (19),

N P
~ONT N - dv;
Y= %%‘ %%} H_h X égch t :
RS 19 A
- S - v A dA
';:r% Mk 3*""[&‘ *ﬂ"(ﬂ'b’th)*dt * Jin

(28)

-11-



Inasmuch as the J' triad provides B frame of reference to represent the

gross motion of the vehicle, its linear and angular velocities and accelerations

V,0, aV/dt, and di/dt are those of the vehicle as & whole. It would be
strictly proper to reguire these velocities and accelerations to satisfy (27)
and (28); but it has been assumed that the elastic deformations and fuel
sloshing, motions of type (3}, have a negligible effect on the large motions
of the vehicle; therefore, V], dV/dt, and. dl/dt are regarded as not be1ng
functions of the generalized coordinates q or their derivetives S*and »~
The fact thet F and G may be significantly affected by the elastic deforma-
tion of aerodynamic surfaces 1s arbitrerily disregarded here, and the porticns
of (27) end (28) involving é"and g are simply ignored in the process of
determining the gross motion of the vehlcle. This leaves us, for the determi-
naticn of the gross motion,

I 7 - -
= & L v = = - d -
SRR RIS ALE

7 3G .
"‘2..(1)‘.% t 3 lh,:] {23)

27 (30)
with none of these terms being regarded as functions of thec?R
Equation (29) contains the summations ?% %é Miw Gon
and éf éE m %?@} . If the terms of (29) are not to be functions of

L)

the q“, the partial derivatives of these summations with respect to the 7“
should be equal to zero. Furthermore, if these same partial derivatives are
equal to zero, the terms of (27) involving the 9‘ and the 7" will vanish,
because they contain these partial derivatives as factors. In fact, it is
sufficient for this purpose for v r:
< 7.
Z “~ M %ﬂ:?‘%

to be zero, because FEY

Af ~ _ N
g =N ) y,
S m, e B, o
if ,¢ ‘ ) /
<
z_g Lhad-a

!
Reference to Equation (26) sheds a little more light on this problem:

[ ol -
o hS#K—':Zm ?E:mgé (31)

Ma

B h-t (?K



From the physical viewpoint 1t is clear that -;_will not change much as a
result of elastic deformation; but that fact does not preclude the possibllity
of its changing rapidly; therefore, it is rash to assume arbitrarily that (31)
will equal zero. Rather, it is desirable to impose its being zerc as a condi-
tion to be satisfled by the elastic degrees of freedom.

The components of the inertia tensor (or elements of the inertia matrix)
of the vehicle are glven by the formula (Reference 7, Equation 2-12)

S o, A

. = P , . 1

%‘ il hes mth 9 g (32)
It 1s known that M. fo -0 vhen the J-th degree of freedom iz a form of motion in
which the vehicle moves as & rigid. body, having a translation rate &, and a

rotation rate b relative to the J, tried, and the k-th degree of freedom is
8 normal free-—free mode of vibration. When such is the case,

ég_%z ej+by x 7, (33)

and from (32)

M.

NTY beya

il
Mk
P
3
-
0
&
[ sy
>
[ 9oy
=
N
oy

N N A —
S . 94 pa 7 x 24in
= % %””*h 'g;j{'"EJ ; 57 Min Gin ¥ Jqk

(34)

Now c—‘:, and BJ » being any translation and rotation rates of the vehicle, are
arbitrary; therefore,

7* (35)

and

(36)
when the k-th degree of freedom is & normel free-free mode of vibration.
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Thus, 1f the elastlc degrees of freedom satisfy the condition that they
are normal free-free modes of vibration, Equation (35) is satisfied, the terms
in (27) involving G*and §* vanish (eliminating the difference between (27)
and (29)), and the terms on the right side of (29) are not functions of the

k. However, the use of normal free-free modes accomplishes more than this.
Equation (36) directly eliminates one term of (28), and differentiation of
{36) leads to the elimination of other terms, as follows:

It
Ma
3
5
e
b=
IV
®
1
+
My
M
j§
i
~D%
e
)
::

=0, ox (37)
N EEE ;f'-, P 3 5 -
; et h Hm K '9_7%': = % Zn:/ m,, j;%‘% % —a\%‘—f‘_—
=0
(38)

because interchanging the superseripts k and 1 does not affect the left side

of (38) whereas it reverses the sign of the right side, and only zero equals
its opposite. Furthermore, the superscript L could be replaced by 0 in the two
equations above; thus, (28) is reduced to

L

G_:Zf %—r Mon Y “Ei!% +N "@".%*‘)Jréf_fflx jzh

59'"f éij, _ - .
+lﬂx—a§f§9+§%¢7br+zﬂx%g;g_7j -
9

which could be used for whatever value it might have in solving for the é‘; it
being recognized thet the terms of this equation are functions of the ?K, in
contrast to the use of equations (29) and (30).

The results thus accomplished by the use of normal free-free wmodes of
vibration can also be brought about by a "dynamic balancing" of each degree
of freedom individually., In order to do this, let

ek ki K

Do = T - -
=dw = a ‘f‘bkx gy, + o)

-1k



the Q_ o being given (not necessarily free-free) modes of vibration, and the
and. €, being as defined in connection with (33) except that, instead of

being arbltrary, they are now unknowns to be determined in such s way that

(35) and (36) will be satisfied. Substitution from (40) into (35) results in

NP -
S m, (m +B x §o + T

= h=1

v B
= 2 m 4‘ m E) ‘9 +mé =0
=l kst K P4
(k1)
and substitution into (36) results in
~ Eff -
; het ™ th X (amh +bK ¥ yéh—fck)
NLAN A —
= Py A + T - =
% AT mth f{ih g (Omh bp{'t(ylh)"!- mﬂc, X C’K
=0
(¥2)

Now let us eliminate C, by forming the vector product oféfcwith (k1) and
subtracting it from (L42). This results in

T Y Z; = 7 in Oin™ MY (b" '{gc’):@ (43)

which can be solved for the B . Once the b are obtained, (41) can be used
to obtain the Cy. When the b andt;K are obtained in this menner, the use
of (40) results in %%%%L that satisfy (35) and (36). These may be called

"dynamically balanced" modes. They have the practical advantage of being
mich more easily obtained than the normal free-free modes.
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L., EQUATIONS OF MOTION FOR THE ELASTIC DEFORMATIONS

In the preceding section, the influence of the internal forces and the
distribution of the merodynemic pressures over the surface of the vehicle were
deliberately disregarded. In this section, It will be necessary to glve them
full consideration, because thelr effect on the elastic deformations cannot be
disregarded and because ‘the purpose of this section is to deduce equations of
motion for the determination of the elastic deformations in the various degrees
of freedom. For the sake of suitable notation, let F; 4 denote the external
force on the h-th particle of the i-th section, and let F.& k., represent the
internal force exerted on the h-th particle of the i-th sectz;n by the j-th
particle of the k-th section. By Rewton's second law of motion, then, the
total force exerted against the h-th particle of the i-th section is

Mg &54 = B, + Fooki . (k)
aH: ;.?- ¢

The equations of motlon in terms of generalized forces are obtained from
(44) by forming the scalar product of j§k}{y with each term and summing over
h and 1. Thus a3

o S dv T " e é"::g: i . T
= ;: 5‘1‘ el ;‘:-—\ q! Foe
b 6%&;4L ,-i .

For convenience, the generalized forces are separated into four types and
designated as follows:

1. Those associated with inertia forces are

ig: YY\Lgy'aﬁk&l~ . iiLEQLJL (46)

2. Those assoclated with external forces are

Q=) Z %‘3““" Foa . (47)

L-l .&—'
3. Those assoclated with conservative internal forces are Oj‘
L. Those associated with dissipative internal forces are Pj'

Since the E‘&,‘}denote the internal forces, we may let

«16-



N P v R Ty
OJ+PJ=—}:‘:££;; %%;‘ Fv&&g— ) (48)

end substitution from these last three equations into (45) leads to
Substitution from (19) into (46) results in
¢ Q
;W\ge\ &[dt«—ﬂ (Q*‘jr.e\)—t-d Qi
Q.. 3* e, O
+20 xg‘t*’»—t- 5—3'3:; + a(mwgt + 'ET QA 0
e 49T+ SRR

If we make use of (32), (35), {36), (38), and some new symbols in an examination
of the individual terme of (50), we obtaln & simpler and more practical ex-
pression for N y» @8 follows:

¥ e gu AT =T P -0

J;&i i=| £}
Z:E:.leu4k ?gt.4~ (S) Ké}u&)

SYLENOR DGR AARE ‘m)(ﬁ-ﬁ)]
L, e[ g e - ﬂ*n* gte 384

-2 ¥ M (4 4 6 i $89 =070 Ry

1 Azl

1]
I\’Izﬁj\’!z

L=

o £z
where
N P r
Prsjz.g;lmi‘&(Srs %:&%k-‘dq;,éq?\) . (53)
N P a5 ﬁ_ — 5 ok — =
ma 4T P48 £ g

(54)

"
O
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gi‘,m‘{%&'ﬁ x%%;azﬁ.i‘glm& %s%:& x%&;ue\ Ots5)
b [ - - oo
P e gt 00 =0 e St
=0
n _ . (57)
Y ) M aqﬁ %E%H = [ox.d )
”nlz Mid %%&& &y ML) 59)
; M - aq‘f\— Mo (€0}
Substitution from (51) through {60) into (50) results in
Ny = —QQF Prej ¥ 00, + afox 3| ae
KL, 3% 8" + Mk q“ (61)

It is also possible to use the familisr legrangean expression for NJ
in terms of the kinetic energy T. To show that this is so, we note from
(15) that

Fep. - 3 62)
%é_K& - 3 it {

and from (15) and (18) that

611" A - Q 3},& -\-6 bq@ %ﬁ“ QK .
=& (sa;é).

The kinetic energy 1s given by the well known formila

[ [ Mt Tp - Than (6k)
|.|.f... )
whence, with the aid of (62) and (63),

ST =% § men Fon - OBl
aq! Ez g;t oq!
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woR _
=L L WM Tre 3 (65)
E] Y
d [Ty, T ¥ 4 e+, A (8
(8T Emal B e meh ], o
and
Tt T
Sl Mg Tie - {8
voB
=5 S M.y T - q. (67)
{El‘ﬂmt&vﬂs ﬁ(g—gﬁ&)

Subtraction of (67) from (66) results in the Lagrangean expression

S ] ~
ﬁ(%i)‘i%ﬁf[ M. -‘%‘i . ﬁ%‘i‘ = N; (68)

Y|

by the defining equation (46). The use of this expression to obtain (61)
leads to the interesting discovery that

QO%rg= £Q°Q° {5%;” (69)

or that .%.;Jj:s = ?'_5} + PSI-j ) (70)
v P

where Iv-s:' ;E,m“(s"s‘ﬁ" td.t-i{- la.tg ia..‘;_.a) {11)

- = moments and negatives of products of inertis of
structure and fuel about vehicle axes.

It is also interesting and useful to observe from (60), (62), (65),
and the fact that dQ:a Aq; is not a function of the qK that

Mix = i’%ﬂm . (12)

This 18 especially useful in treating the inertia effecis of fuel slosh.

Recalling the definition of FL&E‘ , we know by Newton's third law of
motion that a'
(73)

Funkg = = Frgik
and that ﬁ&&j is parallel to _lé-_;.e\——‘l-a-,-&.al )
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so that E%&a‘. X (3’,;&—‘3_&3:) = O ()
Substitution from (73) into (48) results in

OJ+P - '5%'\"1\' F«:Q#rcﬂ.

I.'l :[
ﬁ f 5‘ F-u?. (75)
"" s 3.,-1

If (48) is added to (75) and the sum divided by 2, the result is

N P y X (. Uz \N.T (76)
orvrmk L £2, Unlhe-Po) Tuss
- _ = = A=,
Let }3"‘{“_’3""” = AL—L&} } (77)
which 1s the distance from particle-ﬁi', to particleif ; and
let |F = : (78)
¢ IFZJL&EL\ EZkaz )
positive when it tends to increase Aﬁia{L1%f,and negative when it tends
to decrease AV&'&'&
Then, since FoZ44i 1lel ¢ -y, it be shown that (76) 1
eqﬁ?miezgeto 4is paralle o},{\ ;_‘ can be shown s
TN
0; +PJ-——ZZ£:§ Fma;, ; Dy (79)
csl-bt +f

Iet U be the potential energy due to elastic deformation, and let V
be the energy dissipated through damping. These both represent work done
in overcoming internal forces, therefore,

d_ . N
b t(u V) = t%ﬁzvlz;/ [ T T t.

- 7=
(ot 5_4%;: E?‘£ %

:'Eg;g;;/ E‘Ali; ’ ‘E;_;;
=-sLL LY, oty (T 7
= _ —‘2;}'_";; _ Fithy [r Gia-TFep)
= ' (80)
+ %qo Gn-Fa i) +%ﬁ i (Fe- 'l&%c)qi ]
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because of {15). The term
Fias O % (Fer— Fag)= =L Faanpx (Fh-F44)= O )

because of (74); therefore, because of (7€),

jéc(uw) = 0o+ R +<OJ+PJ)C"3 ) (82)

where Oo + Po =

%i[{ Fiedz - 3qo('b“*= ‘3’“3’)

=l

-3
=537 ;z Fets Aty | @)

o]

Since the 0, are assoclated with conservative internal forces and the
are associate& with dissipative internal forces, it is clear from the
définitions of U and V and from (82) that

g{l o, +OJ (84)

%Jt[ P-\—Po' (85)

Now U is a function of q"and the q'i but not of thelr time derivatives; therefore,

g ey

From (84) and (86), we see that

O, = %‘%—o and Qj = %g _ (87)

Thie can be extremely helpful in the computation of the OJ'

If the F,;,a_‘,_a,‘. are only the dissipative internsl forces, eguation (79)
may be directly useful for the calculation of the P In using equation (47)
to compute the Q,, it 1s not necessary to include tﬂ.e force due to gravity
because such a fgrce can be represented as mi&?’ in which case

-2]-



N P - — N P -
L) MG - %—ng‘*‘ =¥ LE M %{e“-'o (88)

=1 4 =l
when (35) 1s satisfied.
Iet us introduce certain assumptions here and proceed to gome further

treatment of the OJ and Pj' First, let us assume that U is a minimum when
the c'J equal zero;“then

Oy, _ hen t § = - (89)
0 J_S‘cﬁ-l =0 when the q 0 ;
and, as a close and convenient aepproximstion (Reference T, Equation L-44)
. = . K (90)
o Kav&q )
- Q% 3 =
where K:}K_ .a\:_&.\ﬁ evaluated for the C'\ 0.

Inasmich as undamped free vibratlon modes are used as degrees of freedom
for specifying elastic deformations and fuel sloshing, there is a frequency
Wy assoclated with the )-th degree of freedom for all the values of j. For
the first degree of freedom,

— V_Kl_l
u"'I - M“ (1)

or K‘\l: (w‘\?-.mu . (92)

(93)

and so forth for all the degrees of freedom. It is now further assumed, and
this must be carefully noted, that the degrees of freedom will be so chosen
that there will be no elastic coupling, that is, so that

Ki\ﬂ: O when J # XK. (k)

P



(Choosing the degrees of freedom in this fashion is a common practice in the
analysis of flutter stabllity.) A general expression for the E:hkiﬁ

Kic= @ Mgt gt (95)

whence, substitution into (90) ylelds

0; = (wj)® M;,;qi - (%)

These equations (91) through (96) are based on the mathematical relations
expressing the vibratory motion of the system in only one of the given degrees
of freedom et a time. A further pursuit of this line of t},aought, linked with
the association of a coefficient of "structural” damping g . with each degree
of freedom leads to a simple formula, analogous to (96), fo‘l‘ P;. This s

AR
Pi= 9y Wi Mjjq . (97)

The determination of g' from the logarithmic decrement £', is simple, as
follows: J J

So= 263 (98)
J - Jd

7 J4 2 (g3)"

= 6;/1- when b'J ils swall.

-23-



5. WORK AND ENERGY RELATIONS

While it adds nothing to the present formulation of the equations of
motion, 1t is & valuable check on the basic formulation to investigate the
work and energy relations. Using (15), (27), (28), (46}, and (64) gives us

NP — —
gﬁ{::%;: - YT]LﬂL Vb - 2%%?}&.

=l

=z":§m\~e\ d'?ft.{ (V+ﬂ yl_.f\_‘_ X%L&J‘. 6&\:@\ 5)

F+O-G+N -\-qu (99)

yea a.ndaH_. are given by (84) and {85), and, 1if W is work done by the external

V +Q G+Q0+Q‘\q) (100)

use having been made of (47).

By substituting the suffix © for § in Equations (45) thru (49), we find
that

No+ 0, +P = Q, (101)

Because of this and (49)

N, + O,,+P,+(N3+03+P;)ql= Q0+Q3 qj, (102)

)T



whence

VE+XQ -G +N,+0, +p,+ (Nj+0j+ B!
=VF+Q-6+ Qo+ q;§' (103)
Substitution into (103) from (99), (84%), (85), and {100) results in

AT 4 dU . dv- dw

PTEE T a C (104)

 T4U+V=W+ CONSTANT, (105)

vhich simply states the fact that the work done by the external forces must
be either stored in the form of kinetle or potentisl energy or dissipated.
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6. PRACTICAL EXPRESSTON OF THE INERTIAL FORMULAS

Not all of the foregoing eguations are needed in the computational phase
of investigating the elestic deformeticns of a vehicle in flight, but those
that are essentlal for this purpose {in Sections 3 and 4), so far having been
only rather ebstractly expressed, need to be presented in terms that are
suitable for practical use. Among these essential equations are (53), (56),
(58), (59), and (60), and they are full of partial derivatives of Y. (or
its components)} with respect to the generalized coordinates. For the purpose
of computation, these partial derivatives need to be expressed in detail. For
convenlence, the subscripts { and 4 are tenporarily dropped, and the basic
notions of eguations (1) thru (10} are developed and extended.

Let us introduce the vectors ho , AK » & , and &%, having to do with the
linear and angular velocities of the ~“coordinate system relative to the y/
system and defined as follows:

4 (106)
T\K = gg‘ = _r :r = -rh; (r07)
=, =30 4%) + R [0 33) + 15 (15 3%) (108)
S = T (5 3) + Ta (37 38) +35 (%2 3 (109)

k and h are the partial linear velocities with respect to Q° and Q¥ of the
origln of the J'_ coordinate system relative to the J.. system. &£ _and.

TX . are the partial anguler velocities with respect to qoand qKo§ the :f’*_
coordinate system relative to the J,,system.

There should be ne particular difficulty in regard to the linear velo-

cities, but some discussion of the angular velocities is definltely needed.
First, let us note that

Jr'__ Srs—| wWhen =5
= O when ¥#g
Then

ﬁ-o(:ﬁ: T:_;) 3y ‘5"5+J 3—5 (110)

T



-
Also, let us denote the components in the

J.— system of o(o and o( respec-
tively as ¥ and Then, from (108) and (110),
D( K

'\
A VL8~ 35
o = 3-}]0— %‘3_1
a’%ijf'%—%é=*3§'§% > (111)
j;' %%é "Jl bée ;
J
ané likewise, from (109),
O(ll -y Yol <7 a_, )
K=J3.%ﬁ' :'-"—"Jz' q
d’g:j{.g%i = - .%;L‘; & (112)

3
I
[ 2
-~
X1

(113)
and io show that

aox"l'f-:.é_";: and TA g Y\\sr-%;:l_' (11k)

In further anticipation of terms to arise in the equations of motion, we
derive from (111), {112), (113), and {114) the following relatiocns:

o _ ¥k - &7 Lol b5 . &;
S i

’3 -
.-_oc’oao(a-o(oo(f; . (115)
By symmetry, this can be extended and generalized to

Jv (%%‘;5 ~ g?“;ﬁ) = oK, % Ky (116)
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From (113) end {114), it is readily found that

._-7 rd J—— —
=¥ %—o:i + Ky XK, (117)
Flimination of 3510*% ESKK_between (116} and (117) results in
3%o - o &%
SqK° =dr Sqo“ (118)
I K .17 “r
Likewise, %%,u -.-..Jr %%‘RD ) (119)

(120)

The derivation of (115) thru (120) was of such generality that, in any
of them, the suffix zero could be replaced by a letter. In the physical
realm, this means that the relations expressed by these equations are appli-
cable between degrees of freedom involving only small motions (type (3)) as
well as between the large motions of type (2) and the motions of type (3).

¥ r
In accordance with (8), :i"o = O , but %\,—K may or may not be

zero. Let us introduce

_ a'U"-
0—-:1- BT (121)

Then, since
N o= de Vv

o % I, (122)

a_‘—J _ - wlk E‘/ 2r
and Sk~ Jy %ﬁ“ +%{& u
= :]_:, Oﬂ/\{+a“ Xy

= Gy + Ky X . (123)
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(106), (107), (122), and (123) facilitate the writing of the following:

U -~ 0% 4 9%
T
= Ko + XA, (124 )

h &+ x™ (125)
let us ipntroduce the two assumpticns

r s
vy = o and 60" = 0 (126)
qu. q&-
end find expressions for the second partial derivatives of g— with respect
t

to the generalized coordinates. It can be found without mich trouble
that, under these assumptions,

%'q_’-'ﬁq_ ‘W\o Ky K (Fgr) + %%aﬂ LV (127)

_ﬁw = 'aax(&"‘\.. FERT) & -g%; + %%o % =5 )(128)

ét-___ - a s —

3'# - xcr‘-&—oc\_xcr +'t><-,tg * (K t_':!t.’\-i)-’r--sq XNV, (129)

The first important question that rises now is, how do we equate (LO)
with (125)? 1In answer, let us observe that (125) is the general form of

expression for al}/bq“ ; that the Quid are given as possible or tenta-
tive values ofe i Sdak ; and that, therefore, thea\g.',-f\ will be given
in the same f‘orm as (125) Thus, let the given linear velocity
of the center of mass of sec‘tion L beg Ki s and let its given angular velo-
city be Bl-d . Then
Auih = Fri ¥ T + e 2 S0 (130)
end substitution from this inte ( 40 ) results in
Yeik 3-; (,.g\-\-/gm.ﬁ Nede v L’ %‘au.&-k— Cw
ql&

= Fue + T x by AT + Tk + Bui 2Tl
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where hK'L = H«KL 'E‘CK-’;- LKK (9’( (132)
and K = 5,‘;_ + ﬂ_rk (133)
Let us now consider the practical problem of solving (43; for the &,
»

With the use of @&, 4 =y for -8:”" and of Equation (130), the first
term of (43) becomes

NP — —_—
5:‘;; M Fik* Oyt
LR — — A —_—
8B Wi (B en) X oo et B KT
N — —- — 0 S
= E[ma(% X Fwi+ Gex%mL& 0xih
. _ e . -— P -
+ & x (Be xg;lmg{ Uia) — FriX L MOt
[ —_ — —_— —
T3 Mok Vik < (Tt B x Ve)] (134)

From (2), (24), and (121), the following results are obtained:

£ —_—, Py
Mg Uik = e EMmeavis = 0 ) (135)
o 2 ‘h
e L
LMia gy = dee LWk oy
oy & "
=T g ) M Vg = 0. (136)

This eliminates three terms of (134), and its final term is transformed as
follows:

¥ —
EW\L{ Vi * (B » Teq)

o o
= Mt (B (Vg Tie) — Veal By - Vi)
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p:
4 /5 LA /t P ” sS
= i By EJML&(S,,SUL&'\J¢& Nth- WL Vik
_ T 8 Vg
= i ‘8\((- H\PSL ; (137)

/ _ 2 A ~t o 5
where HH;L - Elmm(&,sb.% U A e U.‘.& . (138)

The H:si are easily seen to be the moments and the negatives of the
products of inertiz of section ( =2bout its own axes.

For convenience in treating the remaining terms of (134), we introduce
the permutation symbol (g = ¢ if two suffixes are the same
1 if (rst) is an even permutation of (123)
-1 if (rst) is an odd permutation of (123),
the even permutations of (123) being {123), (231), and (312}, and the odd
permutations veing (321), (213), and (132). Thus

1t

In

——

Jy XES = Crge de (139)
?—_j—,mi@cx Fre = Cest de i‘m( o7 3—5\“, ) (140)
& 13 — <
and Z;‘mw\ Vs X Oid = Crge Yig A’:Zi} (141)
Pi
were Nyl = %W\M\'\Jik& % . (1:2)

Substitution from (135) thru (1k1) into (134)
results in

N Pr_' —_ — N _— v 5
5L Mk JearQeit= I (Cratdeme oy 45
— s — -5 P
+ Crst g A i+ Tt B Riel)
- N ~tu
= drl (Cmmt 0% 4 T Csv € A

ot (143)
+ egi H;u'.B ke ).
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The second term of (43) is

)

Gl MW\L&?L&.#\(ZK xg’”\)
E”LI i L{WK(}L&-?L&)— gaa(fbu-}mﬂ
T, &5 Y_ Z Mk (s btf& ﬁ{“‘ tin ‘ﬁe\\
=J 451

(14}

where

I, ;M i (8vs fin- Fagin)

L,
i [Sns(0F+ € Uf&)(e’f + €%V L'L)

1
&
=

— (el + el V) (eF + &, i)
= f Zé Mg [80g (SFSHH VIR UIR)- (sr ot + el el viEuy)

)’f[m (6, OF &t~ o "of)
+el €5 E Mk (suvUTy LIk Vi UIE)

M
- E; [“\L(S‘_s oiot-oiofirel el Huwdl. (145)

The L are the moments and the negatives of the products of inertia of
the vehicle about its axes.

The third term of (L43) contains

= Jy L M2 ﬂ-‘;‘_,‘ ) (146)
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and the fourth term is
Mg * (A * 3= (B (e Fe) - (B Go))
= T L% (Brs e fom ¥l YE) | (147)
Substitution from (143) thru (14%7) into (43) results in

T & ~t

Jr%, (Crst\'ﬂcﬁfﬁc'\‘c-stq G;LA T xey Hstg Bm)
—— -— N

T 285 1vs - Fe x de Z‘:m': ?.*“

- 5
T Lm(Srsyiyt-giyi)= 0 (1)
Egﬁ:iggr;hat Ecx 3-\-.'_" Chrse I 3{ ) we can put this in

[rs m(&-sa- H—c_ y‘ )]L— = Cree ‘dfc E me 3’;“
- ?‘fi (CP“MCO‘g 3‘1‘:"- +Csee ey A’:-: ¥ eb Haee Bm: . (149)

Let Z m ?“L (150)
and Lﬂ ﬁm G’(_ 3-'“ ] (151)

then (149) becomes
r - t
8?‘53’ a'c_ td"c y’g)]/b\; = c'l-st ?g HK
~t ~t
~Cree U — ):’(Csm el Astvel Wi Bur ) (152)
L:

which can be solved for the *5'& by familiar techniques. With ‘t.he alid of

(41), (146), (150), and the fact that ,bK x3.¢= JrCrge L3 3,‘; s
is easily seen that

C = Cpse 8'5 by - '\‘“ Hy . (153)
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From (130),
J*QKL% = Jraf"uf. T dsi UT.Z:-?\ + deo» Vae Bel Via

Py .

= T, g -5 3. .
- Jr(?ch-\-eEC U—KL-&)'\' 350 Cgta Bei Vi

= T\ + ef (00 + Coan BEE WD),
or

L y
Qrmf\ = ﬁ'Ki. * e;-.’. (TKLS,{\ + Csen KL L‘f\'\ (154)
Similarly (40} is transformed to
— —_ —_ - f —
3, %t';{.:c& = e Qi + 35 x T B5% b + Srcy

= ‘T\‘(Q‘F\«i& + Crse 5% %&. + C:_)
or A -
: - r s t r
3’%‘& = CkF Cose by Yin Y A
/t -
tey; (Quk"'csau oVl ) L @ss)

We now turn our atiention to the evaluation of the F) » 85
defined in (53).

A

N NP
Lh Mo gl §Es = L L ey [T Gk Y

1 4zl

+ﬁ’.jsf. + eia(CT“ n,ﬁr cmg L«s\ﬂ o (156)
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Individually scrutinizing the terms of (156), we find

w P
)3

. - 5 = o 5 .
MMW\M"A a-ua\Cg m }e Cd ) (157)

&1 Ei "'e‘%’#\ Cs-t.u’a't 5’—3\-‘ Cs-tu'b' C'M—u. (158)
he 6 _i P, l" '-k
THere fu — ) ;l W\u& ?’u"f\ 7’&‘3\
:6‘\_:4 11!'-11' /Q- - I.\"K.LJ' (159)
N P r 5 _ Y] v s )
LZ; A ‘d/cik ﬁ’JL - LZ[ ML 6’;, a"jaj (160)
v P¢ v ;
LEHZ: mia U’c—& eiu G:,_;\

Z:Z L‘g\(@' “reu_,_'\J )etu a\_e\-

N
=) e cef.a; W Uth T34
ad ~ut
Z Eu.;.et,, Alu 3 {161)
c & r s - Y .
Z z h\i{ (d’;,.g‘eti Ctur 3 TSI A
el o4
P
= u.v}: eh_ .,u zmv&(@': "\"e‘;("\_}/‘f&)n/‘fe‘.
4=
- C'LQ'V' Z e*_.‘_ B;:L r;o v (162)

f&
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i\

iy
- -
where rfivi g!mt& Y ‘:,&_ vfa-&_

= gf"” Héa.d/Z-— H'éavd . (163)

Substitution from (157) thru (162) into (156) results in
ﬁ Pcm"&'a’t&g—&ii:m i e Xrt Gva (16k )
oo 2] L L q" 3’C J Stu J
¥ . o" 45 - s p-out C g r ol
+5;1 [m: o7 Fiit el ea Aji + Luveg Cpc B f;,v_‘.]_

From this, setting § equal to /- (and summing over p ),

z.m“‘?f" - ?.MW‘ AP S

= h\‘a—g CE '\"C-H:.u_’&'}: Gyu

T~z

L

~ut -
+ 5 st g+ el A 4 Couw @l B85 T

. r N r /tt
= My i+ }_1 (MmO Fic + Ajt), (165)
since GHA: Gur ; e:i, e{" = 8‘,& \ and
/—'3/97’5 =/-'-r:-f»c'.

H—sj is now obtained by substitution from (164) and (165) into (53):
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Ryj = Srs Myt Crlmiot 4% + Al-myr

st

_CStq L’}:Gyu ng(m G’ ml.*-eue et‘,A.

- Y%

+ Cowr €5 €50 Bt [Fw)

= M(6rs Yo Cf ~ #ECJ) ~ Coeutibru

e, 418

"'i[m (S;—se’tml. o] 3’_\\.)*‘6%5]\.“ et\, e.“ 'A‘h"

Lel
- Cowr @t €4 B50 G0 |

= M(Srs 3/:(:: - #’: Cj) -CS-&LL/&';G?'H

M P Tw
+8s L — 17 +1 [en el (s A= i)
~Cevv i €L B3 i ] (166)
C Vil v
Let My = LXIE Min T3ER Gig (167)

and substitute from (155) into (60).

Then, after simplification and making use of (22), (23), (25), (135), (136},
(138), (1k2), (1L4s), (150}, (151), and (159), the result is obtained thet

M = MICT Cht Cranch A+ CH L) Y]
+ Mgk by Ly Trs +CING+ Ch WY

+Crse (65 Dy + b L) + ) M %uﬂ’m

(€3]

_3'?_



+ Crse (4] i ey N + 4% i S A/SSE)

2| Ll

N ~5t
*Cyst ﬂ(BJLA\(L A&\.)
N
+ ,5—: g;l CSLB Hstu""’e"r E eSLBJL HStL

~F
+ Z yn ,5,,“ Hisc - (168)

This equation is confirmed by writing out an expression for the kinetic energy
T and making use of (72).

To provide more compact notation, let

Dix= Lim..ﬁj\: Fi (169)
Ay = stuz en At (170)
AjK = Crs\\,}:(ﬁp "N +8 KK, (171)

= Z €' Bui Hive, ond (172)
H;K -Z 5JL»5|“ Hrst. (173)

Then Mjx = Mleick+ Crey (CIL5 +Cy Li}y»: ]
+ 875 b Leg+ Cf WE + 5 W]
b (Crae e+ A+ N
by (Cose 5 + A%+ NE)

ik T Dje+ Wik + Ajk (174 )
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If the subscript C in (120) is replaced by L and the result applied to
{129), it can be demonstrated that interchanging K and L does not change the
value of (129), which is as it should be. This "symmetry" of (129) depends
on the retention of the last term; butcﬁiKi/’ L , which is a factor in
the last term, is difficult to obtain and fizly to be small; therefore, a
means of dropping it out without destroying the symmetry of the equation is
sought. This is accomplished by & simple averaging, as follows:

SR s A W 2g_
aq c‘L aq?;c‘i( a (éq 6qL quéc\&) (175)

Employing (125) and (175) in (59) results in

N P - . __ o . . _ .
KL= 2 ; Met (Rje + Gl + i 5 Te) - { i X Fra+FurFar (176)
us z]

(X & Uk +—'2[(32K‘; TN RK L (R - UL-&)G-'\KL]])

If this is now expanded, the result is

N
T ~F ~5t - -8t ~F 9 -5
KL, _g[cm(mm Sle-_ + K KSL)"*“XKLO&LC jS

-k ~FrS ~F -5 /.s,
F Rk FLE R ) K JL] ) (77)
e

sks ) r -5
where 3JK{- -'A;‘ mh—f\ OTL{K G_;'u'."a\- ) (178)

- rs (Y

s _ ot Lt . 5
P9 =) M (Brs Wik Gle - Vik G

»¥5

Lt
= S,.SAJ.‘,“AJL ] (179)
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P g]

P 1
and a.']i = '_a{_cxi‘-(cstu E:k +Cviu Eie)
- 70"&? - f‘ ’.is'lr ] ] (180)

/"‘s - . s
If we note that gJKL = 0 when J and/or K equal zero and that ﬁ/\"(’ =0
when iz O , then it follows from (177) that

-~ N Y 45t -
- e f/ /. /""S /.5
OK)l -.ZI (C\".St oL SKJ': -\-Oko,_ﬂwi“ QQJL
L=

P - a"'.s
F ko Q75 ) (181)

1. LJ Vo -5 .
and OgjlE § Kooy, Q7 . (182)
=t

Ty



7. TPRACTICAL EXFRESSION OF THE AERODYNAMIC FORMULAS

The aerodynamic forces, being external, are accounted for by the use of
Equation (47). In this use of (47), however, only those particles lying on
the surface of the vehicle will be involved. In the present formulation, we
have recourse to the simplest available aerodynamic theory that offers suffi-
cient generality, namely, Newtonian flow theory. Let N be & unit vector located
at a certain point on the surface, perpendicular to the surface at that polint,
and pointing outward. The velocity of that point is % , as given in (15).
Letting € be the atmospheric density, then, according to Newtonian flow theory,
the serodynamic force per unit area (F) at the given point on the surface of
the vehicle is as follows:

— —

1. Wren |- = 0, F =0. (183)
2. Wen N-F > 0, F=-he(Rn %>, (184)

The scalar Y\-TF may be called the "piston speed" of the given point (or
the downwash at that point) and is symbolized by#/T thus, when L 27l S IS

Fe-Plwa, (185)

For the purpose of evaluatingdt, it 1s noted that the first and last terms of
4~ as given in (15) are, under normal conditions, much more significant than
the two middle terms. Dropping these less significant terms results in

w=n-(V+3%9Y). (186)

A considerable practical advantage can be realized if wr2in (185) is replaced
by a linear approxlmation (or expansion) about the elastically undeformed
configuration. Regarding w»r as a function of and &% for this purpose, and
using the subscript 0 to denote the undeformed configuration, we obtain

wr= wt OWs K 4 dwy
rauwn(iE v 582 9%) o)
Now w, = 172 n )
MW, -V .0h
3?‘3 =V &% ! 7 (188)
QW - O
L
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In applying (¥7) to the calculation of the generalized aerodynamic forces,
we are impelled to replace the summation over-A. with an integration over the
surface of the i-th section by virtue of the fact that only points on the
surface are involved. Let.S[ be the surfece the i-th section; then

®;=]

1]
s~z

g Mt SN
L3¢
bl

2

tn

+ V'H(V'%qv‘*‘gg&q‘{nds) (190)

W - 9%
where 53 dqo (191)

The following development of formulas serves to make this more practical
for numerical computations:

— -
h:\]y-hk (192)
N —
S RIS
= X Y X1K %“-Tgi- %ﬁ%;r
= &7 S oE 3w’
v (Cree =g 10 55 . (193)
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Inserting this into (190) and transforming it in other ways leads to
@ = - [ €Ty (1 T) B T wt
+2 VTV 3 (T Tudn F(Cumy oy %—“1« Jope
2V (T - T5 ) * 8¢ q* o
= - Qvhv* fl et el f & o ds
—- 20y vs[ ey, CuCurp X f NI EEds
5§ B ) o
—-aev*il e (L W€ &, ds
= -Q(rrvs A2V U BIR QR F2VR 85 ) o
vhere A = )v:\ er et gscgdh’th’u ds, (195)

] etek (Cuns o7 (€0 ds

Lt dn"*
+f5i§.i n o\s) (196)
| . - r /t
and CJK = Z{ etv'. (s(gj gy\‘{\ O\S . {197)
Substitution from (125) into (191} results in

(W + & +R; x0)
ef’hp+0— + Ceaa.gad 3') . (198)
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T4 1s ascwsed {or introduced n wnlienbliity of
this Tormmilztion) that 211 thwust fovee: thoust !

(that is, “dreching) nozzles and thet 221 such nomzle
resnect to the axis {or lire) of thrust. Regarding e
nozzle oz a rigid but movable struchural sectlion iden

per)
€.t
3
,
&
ct
W
I—l-
]
-
=
‘I_F
<t
3

blz ur o suvsceriy

i, e olace therein = triad of unit vectors J;i with J{i noluting in the

dirsction of the thrust and coinciding with the line of thrusgst. Tecouse

of the symmetry of the nozzle, its center of wmass will lie on the thvust axis
and the usual condition that the origin of the jii trisd be at the center of
rass of the section can be complied with.

-%%3&: TN

At the center of mass of a section, ql :ﬁi‘ J

Representation of the thrust force at the i-th rozzle as J', 7. and substitu-
tion into (47) results in the Tolloving expression for the fenfralized forces
associated with the thrust forces:

= v g e T (199)

E being the mumber of thrust vectoring nozzles for "engines”).

k As has already been indicoted in (7), the e:i are functions ofq()amd the
9 . The correct inclusion of the dependence of the el on'mxaqk vould be the
best procedure and would enable the wrogram to reveal The interaction between
thrust and elastie deformation even to the point of detecti-g instabilities it
any existed. IHowever, doing this would ilmpose considerable additional
difficulty and go beyond the scope of thie program; therefore, the dependence

of the eii ol theqk will be disregarded here. Un the other hand, their

denendence on Q° must be and ig included as shown in the following section.
T 2

=L~



. DIRECTION COSINES CF MOVARLE STRUCTURAL SECTIONS

In addition to thrust vectoring nozzles, there are such movable structursl
sections as control surfaces of varicus types. For the sake of simplicity it
is assumed that the large motions of all control surfaces consist of nothing
more than a rotatlion asbout a fixed axis. It is convenilent to place the JJ'_i
vector of such a section parallel to, but not necessarily on, this axis
of rotation. Doing this makes it possible to employ Eulerian angles to define

the orientation of both thrust vectoring nozzles and conbtrol surfaces.
These angles are shown in Tigure 3 and defined as follows:

¢£ = angle of rotation of the plane and exis of swivel about the
vt axis (Jl).

>\L== angle of swivel of nozg_le {or the T .li vector) about an axis
(VU3) perpendicular to J, and making &n angle d)i with Js.

- T T1 1
§;= angle of rotation of T}, and J3; ebout J 11

By familiar processes of vector analysis and classical mechanics, it is known
that the directlon cosines relating the Jr"i vectors to the 55 vectors are the
s .,
followling enst -
)= cos >\i

€= -sind; cos S

€= sin >\.Lsin N

eﬁ-_= cos@, sin AL
Q%= cos cosAy cos§; - sin¢;- sin§¢ > (200)

= —cos¢i cosA( sing; - sin; cos §;
Q)= sin¢,;_ sin AL

eg‘i_: sin ¢£ COB hl. COSS{ + c05¢‘-’ SinB N

e3= —sin¢;_ cos) i sin§i + cos $icosbi

-

Tt is understood that dJ,; 5 hi_ , and Sg_are functions of q° as determined by auto-
pilot or flight programmer commands.
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FORWARD

PLANE OF SWIVEL

3i

-]
SWIVEL AXIS
Sl
l3‘ —
13
DOWN
NOTE:

u)T2 AND T, ARE'L , ROTATE ABOUT AND ARE L TO 5.

b} Il’i AND 'Ez ARE L , ROTATE ABOUT AND ARE L TO ;.
¢} Iia AND J'a‘i ARE 1 , ROTATE ABOUT AND ARE 1. TO I]’i.

Figure 3. Orientation Angles of Movable Sections
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10. FORMULAS FOR THE STRUCTURAL LOADS

The shear force Ef at a specified locatlon on the vehicle is the nega-
tive of the sum of the internsl forces exerted by all the particles of
the vehicle on the particles located on one side of the chosen shear plane.
For the sake of economy, the side of the shear plane selected for this
purpogse will be the side on vwhich the smaller number of particles is found.
This will usually be the side away from {or lying outboard of) the center
of massg. Let the absence of speclfic designation as to which particles
and sections are included in a2 sumwation be understood to mean summation
over the particles on the chosen side of the shear plane. Then, with the
aid of {44),

-_— N Pe
5 = — _- . = ___- . A IE,
TRl Ry DL (R-ma 484)
= Z ; Fia— Z_ %mc-& da—{ﬂ ) (201)

Except for the number of particles included in the summation, the last
term of (201) is the same as the right side of (27). A practical symmet-
ric expression for ézgt is given in (175). This can be used in

L

(27), which in turn is to be used in (201).

The bending momeﬂt ]ﬁ at the specified location is the negative of
the sum of the moments about a point in the shear plane due to the
internal forces exerted by all the particles of the wvehicle on the

particles located on one side of the shear plane. In like manner to
that employed in determining S it is found that

—H. XS, (202)
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Except for the extent of the summation, the next to the last term of
(202) 1s like the right side of (28), which can be used to expand this
term for practical use.

S=3,+S and M= I My ) (203)

The actual numerical quantitles to be computed are the components S

of § and M of M. It is assumed for the purposes of this program
that the selected shear plane will be perpendicular to one of the
vectors. The choice of the shear plane will affect the interpretatron
of the results §,. end M, (r=\,2 3) . For example, if the shear

plane is perpendicular to s then "g is the component of the shear
force in the direction of the a_ axis,3 S, 1s the shear force in the
direction of the W' axis, §;/ 1s the normal force (being perpendicular

to the shear plane), M is the bending moment about an axis parsllel
to 3, M, is the bending moment about an axis parallel to \a_‘ ’
and Y M 2-:I.s the torque.

It is a prerequisite to (27) that the sum of the internal forces exerted
by and on all the particles of the vehicle equals zerc. It is likewise
prerequisite to (28) that the sum of the moments about any point in

the vehicle due to the internal forces exerted by and on all the particles
of the vehicle equals zero. These facts are deduced from Newton’s third
law of motion; and it follows from these and the definitions of 5 and M,
leading to (201) and (202), that determining S and M by summing over the
cpposite side of the shear plane should change their signs but not their
megnitudes.

It has been noted in Section 3 that (27) and (28) are not satisfied in
the SLP because of the assumption that the elastic deformations and fuel
sloshing motions have a negligible effect on the large motions of the
vehicle and on F and G. Furthermore, the aerodynamic theory employed
here (Newtonian flow) is different from that employed in the SDF program.
This difference between the two programs further jeopardizes the agree-
ment between them as to ¥ and G and, hence, the satisfaction of (27)

and (28} in the SLP; therefore, it cannot be expected that summing over
the opposite side of the shear plane will satisfy the theoretical require-
ment of changing only the signg of S and M. This represents a failure to
satisfy Newton's third law of motion and may prove to be a seriocus defect
in the progrem.
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11. INCLUSION OF FUEL SLOSHING EFFECTS

The basic formulations for fuel gloshing as obtained from availsble
literature are presented in Appendix I. Here the concern is how to incor-
porate the effects of fuel sloshing in the Structural Loads Program.

Within each tank, there are two directions of sloshing, designated
somewhat loosely as longitudinal and lateral. We choose the letter U
as an indicator of the sloshing direction, longitudinal sloshing being
indicated by letting u=1 , and lateral sloshing being indicated by
letting U=

For each sloshing direction, there are two possible sloshing modes.
The letter S is the mode Indicator, the first wode belng indicated by
letting 5+ , and the second mode being indicated by letting s=2 .

Since there are two sloshing directions and two possible modes for
each direction, there are four possible sloshing degrees of freedom for
each tank. The number of the tank is designated by the letter i, and the
degree of freedom iz designated by K. The following formula is used to
determine k in terms of i, W, ands:

kK = 4(i-1) +u + 2(s), (204)

The followlng tabulation illustrates these relations.

i I @ 3
) =4 | =) 1 2

! = \ 2 \ e | p=d \ o
\ & 3 4 5 ) ? 8 9 10 ' \2

X | v

The program allows for a maximum of ten tanks; therefore, the largest
possible value of k for a fuel sloshing mode is 40. The number of the
elastic degrees of freedom for structural deformation, control surface
rotation, and so forth, sterts with L1 and proceeds to a maximum of 57,
giving a possibility of 17 "structural" degrees of freedom.

The greatest problem that arises in comnection with the effects of
fuel sloghing in the Sggyctural Loads E;ggram is the couwputation of the
terms MHie; (138), A (142), and S (178).

In Appendix I, formulas are given for the effective moments of
inertia of the fuel about tank axes for rectangular and cylindrical
tanks. The equivalence between these and the Hygi 15 as follows, the
subscript F denoting fuel:



H;ua : J-fmi = Tex

ra 7
MHeeai = J pai =1 3 for a rectangular taunk.
4 I
H F33% J F3j ° ez (205)
rs
Hersi= 0 when ves
3 ’ -
H Fui = Jew =0
’ J ’ for a horizontal
H Fe21 T Y ray < Ie y ., cylindrical tank.
Hezzi = J Fai ’IFyIsi/Isj (206)
Hrrsi = O when r#s J
H' .
F i = J—Pli = Meagz for a vertical
Hpozi = Jeal = Wiza cylindrical tank.
§ Fs
H'eazi=J%as = o (207)
H'rrsi =0 whenn v #65
ALl H"__,.ﬁ=o for & spherical tank. (208)

In rectangular tanksand for longltudinal sloshing in horizontal
cylindrical tanks, & spring-mass mechanical analogy 1s used. Each mass
in this anslogy has motion in one, and cnly one, degree of freedom;
therefore, it can be ldentifled by the subscript k , in accordance with
equation (204). Likewise, the location of m« is given by the coordinates
Xw Yw » 8038 Z, . In the case of longitudinal oscillations, X «=9* and

« = ©; Tor lateral oscillatlons, X «=o and Y. =q" ; in either case,
2,1s simply 2, , & constant.
' rs

For the purpose of evaluating the A\ i anad the Sjv.i s it is necessary
to relate the masses and coordinates Jjust discussed with those appearing
in (142) and (178). An inspection of (204) gquickly discloses that the
particular mess particle within tank 1 is ldentified by

heusr @2(s-1), (209)

so that

k= 4Ci-1}*r W (210)

With this relation between the subscripts i , h , And k established, it
1s c¢lear that

™M = WMy (Ell)

et

Viy = Aw = q"‘ wiaewn, u.=\} (212)
o]



Uiy, = Ye =0 whewn u:l}

=q* when w:=2
Ly, = 2« = congtant
v o K
From (121), O ;3 = OVin /99

Making proper applications now results in the formulas

:dxu/dc"‘ = | whewn uf—l}

O whew u=2

]

Tk = 0 Y //ﬂaq = o6 when usi )

T = 02, faq" = o

Summerizing {212) thru (218) results in
Y w
Vi *q when v=u) r#3
= o whenn vru

=Z, when r=3

t
()'l:lth c 1 whew t=w
= 0 otherwise

Substitution from (211), (219), (220), and (221) into (1L42) and
letting the unknown q“=o© for this purpose results in

rrt
j\ i oMy E whenn ¥=3 and t=w
= O o+hervws.e.

Similar substitution into (178) results in

TS
5, M. when res=u
and 3=k
= o othevrwise

The reader is reminded that (222) and (223) are applicable only to

(213)

(21L)

(215)

(216)

(217)

(218)

(219)

(220)

(221)

(222)

(223)

rectangular tanks and to longitudina.l sloshing in horizontal cylindrical

tanks. For other tanks, the A ; are assumed to be non-existent, and

the 57, are more or less circumvented by arriving at the Adj ix (which
equal i 5';; ) by another process.

i=y
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The formulation presented in Appendlx I for lateral oscilllations in
horizontal cylindrical tanks, for vertical cylindrical tanks, and for
spherical tanks lead toc expressicons for the kinetic and potentilal energies
of fuel sloshing rether than a spring-mass mechanical analogy. Once these
expressions for the kinetic energy are extended to account for the other
motions of the vehicle as well as the sloshing of the fuel, they can be

used as in (72) to obtain expressions for the contribution of the fuel
to the Mj,.

For lateral sloshing in a horizontal cylindrical tank, we affix the
subscript i toT, Mg, € , and & and make the following substitutions
in the final egquation given in Appendix I for the kinetic energy:

(224)

L e

T = U

R = anul

As-t-!.: Asi

Bﬂs = B

2

[-df\sn-s] =7Lsi
In addition to this, we introduce a transformetlon of coordinates. Let

f,’#(l-l)-\'u ’ (225)
then (20L4) can be expressed

k = f’ s 2 (s-1)
and we let

(s-t)
st3 R 1"*‘2
- 22

% A s 9 (227)

This results in
. . . vy 2
2 a2 - i} ‘_&_5_‘ 1¢+2Ls \
—‘—-‘ = éMFi(“I| ) + GQIQy\'\'tR“'\ él ?\s; (q )

. ety . 21{s- )
t2 eiqei L Ra.}.U;a ;Z;-\ B ql‘“ =7 {228)
Differentiation of Vi results in

a.aIl‘+eLg-i\ =aei°u-\ -Qr“( Re‘.u(As-l/Rsi)q.‘;,ﬂre(s-\)
Q

' 22
ra s Cfi JL'u\ f??iaWJ} aE55; (229)
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aaT-‘ - c?.e-lCL“ ,QrmRam As'. /715'1

34 T 213q Frac-u’ (230)

ST 2 2 Y v
6613%;;*3“'? ‘ :aeiq"‘o‘r“"R“iBs'\ ﬁaihbix

_',den?tin% a "structural” (that is, non-fuel 3}9511) degree of freedom,

and §%; & 3i belng demonstrably equel to -3—3’-—!_] vy (62), (125), and

recognition thet here J, and L equal zero.

(231)

From (230), for the case in which J and k denote lateral sloshing
in a horizontal cylindricel tank, we define

U = @ Q; ai bw RS As /)lsi
Wln_e“ J:R = ﬁl-&a LS"'\\
0 whent j¥k (232)

From {231), for the case in which % denotes lateral sloshing in a hori-
zontal cyllindrical tank, we define

y 2
mk = ae' Qai—QTHiR“"Bsi, (233)

For sloshing in a spherical tank, we affix the subscript 1 to
T,Mc,@ ;,a, and R and make the following substitutions in the final
equation given in Appendix I for the kinetic energy:

Ds&; = Dsi (23’4)
[V/‘sn ]a = hlSi

In addition to this, we use (225) and (226) again and introduce the
following transformation of coordinates:

st3 R Pprais-\)

% = X, 9 (235)
This results in

) 2 2 3 M gy . 2is- )2
‘n-éMFi(v{)*éWf’i“iR‘E_ﬁs‘T_{qf )

, _ (236)
t e, a) R’:Uir:Z‘_r: Da gt ret-a



Differentiation of \; results in

aTi = a Cs; , ra L%\
aél +rE sy = e Ri'_n_'“:,"— L
3 3 X'y (23?)
tTe;, o Ry Uy Dy,
2
) 2 o3 238
.a+252547 = TT'?; il F{‘ (:'si//<h,si ( )
. -1 - a -
aq i o bq Fracs-d
DaTa ES 3 t T
— = . . .. 2
aétJéc.‘T.fats"l\ T‘-e“cl-;R‘ Ds\gr;h‘“ } (39)
j denoting a structural degree of freedon.
From (238}, for the case in which j end k denote sloshing in a
spherical tank, we define
a F
My = e, a% Ry Cgy /s
when - K= T2 (s\)
= 0 when jtk (2ko)
From (239), for the case in which k denotes sloshing in a spherical
tank, we define
’ 3 3
mk =1Te|‘ai R"DS'l (ell'l)
Making use of the m’y from either (233) or (24l), we compute for
a spherical tank or for lasteral sloshing in & horizontal c¢ylindrical tank
t
t ’ + i
q‘)jg. =/er(h‘“mh + hk-,m_',), (21"2)
The equivalence of this to (23L) or (239) should be noted.
For sloshing in a vertical cylindricsl tank, we note from the
given equation for 1T in Appendix I that
T L (o13)
94 dq LR 243
5%

Now ¢ and %P need to be related to the coordinates for measurement of
the structural deflections and the sloshing of the fluld in order to
determine expressions for the Mjy. For this purpose, we employ Equation

(2-16) from Reference (7). Putting this equation into the terms that
are appropriate to the present purpose results in
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L L

2 o
M, - 2% 2%

g . 24y
mLP oq ] aqk ( )
In determining the partial derivatives of (2Lkh), we distinguish
between "structural® and "fuel slosh" degrees of freedom as before.
Thus, for structursl degrees of freedom (assuming u=2 , that is, that
the motion 1s in the {,, {, plame),
' L 2 P
_Q_cﬁ' =~Qaihji ) _3__&-_ =O<J‘i )
3¢q? 3qJ
é_ 5 - 1 w\r\m 3 s ve?\nceci \ay J, (2&5)
29’
543
QF. : o
dq’
For f}xel slosning degrees of freedom
2
—-..-a_.‘i’_..._.._._,__.. = Q, —-é-i____.___ = O
6q P20 aq FrEisy)
3
dq T e & S (246)
4+ 3
a(‘b’ o= whew S+3 g rc?\ucécg \o); 34.-19_ (s-—\\
Cacf i (s-i)
The following substitutions are also made:
m = M P = " "
i Bl VL3 7 R im\,s-t—3=U\,a¢-\-aCS-—i\)3
’ " ,
Maa: J e ) Moy T i j M, 543 = L7 2 (s-1)
Wiz = i j W, 803 = ', 2 (s-1)4
ms+3.s+3 = U.’fx 12(s-1} ,ﬁ‘l-fa (S-\). (21*7)
Finally, substitution from (245), (246), and (247) into (24k4) results in
r r s s " 9 r
MjK = MFi‘Qaih_ﬁ ﬂeihni AN Qa'\hh" " ,
’ s ) -\ ) /) #r
+J—Fli°"ji wi t U.'amo‘-j'. “Uliiﬁaihui
o’ PR
+ AL 25 O% ki '\'JU."',K" y (2u48)
re ¥ r ’” /‘I'
Mj, ﬂb*'e (s-1) = .y, .da.fa (s-1) lai lflJ"l t e gt (s-1) o435
+ ij,ﬁ:.i—al,ﬁ-l) =¢3K1 ) (249)



Mf +2 (s-t\, ‘I”a s} = -U.’-r_i-a_ {s-1) ,.dq,*a (s = .LL;‘K
o whew j#k (250)

For all sloshing in spherical and vertical cylindrical tanks, and
lateral sloshing in horizontal tanks, there is no dynamic balancing.



12. PQINT OF ROTATICON AND DYNAMIC BALANCING OF
CERTAIN DATA FOR FLEXIBLE SECTIONS

_.  Within every section is & point i (with sectional position vector

and vehicle position vector ¥%;) wh ch may or may not colncide with the
center of mass of the section. Since & ils the vehicle position vector
of the center of mass of section i,

The point ils fixed in the physical material of the section and moves
with it when and if it moves. Thus, it may correspond with a particle of
the section.

If the section is "movable”, that is, has motion of type (2), then
#iis a polnt of rotation of the section - a point in the section that
does not move relative to the vehlcle but sbout which the section rotates
in a type (2) motion. If the section rotates about & fixed axis, Fi
lies somewhere on this axis.

As for motions of type (3), the unbalanced motion of fi relative to
the vehicle coordinates 1s given prior to that of any other point in the
section. If the degree of freedom deforms the section, and if the section
is movable, idoes not move relative to the vehicle in that degree of
freedom. On the other hand, if the section is "fixed", or if the degree
of freedom does not deform the section, ’P" mey move reiative to the vehicle
coordinates in that degree of freedom.

From (130), (135), (136), and (22},

i L4

El mihak.‘h = Nm;g‘ _a_«u = m.‘%ﬁ , (252)
- P _

ﬂ'm‘ = -"'E'ﬁ' Et Wil A owib (253)

- — - o — 25k
Tuilh = & b - Tki - Bki Wik (254)
Here the Ch x:\m and the R w; are given arbitrarily, and the 4 «; 8nd O wile
are determined from them. This 1s necessary for the satisfaction
of (136) when the degree of freedom ( k) deforms the section (i).
When Uipeqii , then Gig-Xi, G eip-8wis T 37 22t e
en Uiy {+i » taen k=Xl A =iy T = Jdsi 53— = 07
and we introhucr % N dq* *

Ky = Q- §u'. -‘=ajv.'- + By "E‘;—.' (255)



When the degree of freedom () does not deform the e_xsctiong) , then
G is=C » Pu;= © s (136) is still satisfied, and X« = Ay

When the segbion is mova‘bls and is defo‘ljmed by the degree of freedom,
determine the a's;s and the ' . (The B are arbitrary.) Then com-
pute and submit

e

r ¢

ki '{:7\'; 4:—‘\ ik A'eite (256)
e ’ 5 !

crkiL * O-:i.k - d’,:‘\ - Corst B:t: ‘Ui;’\ (257)

'
The Q=0 in this case. This fact affects the location of gi , the
point of rotation. If the sec‘:"?_ion is fixed and deformed, fui can be
arbitrarily located and the & ,; are unimportant.

When the section is movable and 1s deflected but not deformed by
the degree of freedom, determine and submit x%; and P%: (without primes).

The symbols, data to be submitted, computations and egquations used
in the SLP are given in Appendix II.
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AFPPENDIX I

BASIC FORMULATIONS FOR FUEL SLOSHING

INTRODUCTION

For sufficlently small amplitudes of motion, the dynamic effects of the
sloshing of fuel in a partislly filled tank have been analyzed in terms of
the natural modes and frequencies of the small, free-surface osclllations of
the fuel. Formulations for the solution of this problem are presented for
rectangular, cylindrical,, and spherical tanks. In Part I of this Appendix,
natural modes and frequencies are presented for rectangular snd cylindrical
tanks 1in either a vertical or a horizontal position. In Part II, an approxi-
mate procedure is established for dealing with rectangular and cylindrical
tenks that are neither vertical nor horizontal. Part III has to do with the
treatment of the bending mode shape of an equivalent vertical tank. Part IV
of this Appendix concerns the inclusion of fuel damping in the SLP.

PART 1

The formulas presented in this part for rectangular and cylindrical tanks
apply only to vertical or horlzontal positions. Those presented for spherical
tanks deo not need to be qualified as to position.

In order to simplify the problem to & point where convenient, explicit
solutions could be obtalned in most cases, a number of assumptions were wmade
concerning the nature of the fuel, the moticns of the fuel and the shape of
the tank. The fuel was assumed to be non-viscous and incompressible and all
tank wotions, except those normal to the mean free surfece of the fuel, were
restricted to small accelerations and perturbations. Although the non-viscous
assumption hes been made, & damping factor will be included in the final SDF
Structural Loads Program to account for the fuel viscosity and the use of
baffles. It should alsc be noted thet, in the final program, provislons are
made for summing any comblnation of rectangular, cylindrical or spherical
tanks for multiple tank vehicles.

1. Rectangular Tank ~ In the case of a rectangular tank, a spring mass
mechanlcal analogy has been used neglecting tank flexibility. The equations
below are for & system conslsting of a fixed mass M and & set of
undamped spring-masses mg, 50 constrained as to move only parsllel to the
bottom of the tank and, in the case of the horizontal rectangular tank,
parallel to the X7-plane. The origin of the axes is lccated at the center
of gravity of the undisturbed fuel with the fixed mass M located Z, and the
spring-masses at Zg constrained by springs with stiffness Kg for the sth
mode. Shown below 1s the horizontal rectangular tank undergoing lengitudinal
cscillations, or oscillations in the Xi-plane. The motion in the X4-plane 1s
assumed to be the same regardless of the Y location. The following equations
have been developed by Grahaw in Reference {1).
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d
T
S X !
1
Z- ®
b= a - b—f
Definitions:

a = tank length parallel to X-axis

b = tank width parsllel to Y-axis

¢ = tank height parallel to Z~axis

h = fyel helght parallel to vertical axis

Mp = Aabh = total fuel mass

s = fuel mode index = 1, 2, 3, ---®. «rdenotes the number of modes

selected for use.

f’ = fuel density

g = gceeleration of tank normal to mean free surface of fuel
NF = gMF = total fuel weight

r{ = h/a = tank aspect ratio

Isy = moment of inertia about Y-axis if the fuel were solidified
Ify = efTective moment of inertia about the Y-axis

w = frequency of the sth mode of free surface oscillation

=)

Equationg: «

Wy = [%(zs— 1 %;E TANHUas-I)m-,]]y‘g‘
W= M 3TA‘Pﬂ[(25—IJTTY‘,2

S F T (as-1)%,
K, = B¥e TANH*[(25-DFy]

S n2(2s-1)

h
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_ < 8TANH{{2s-)rr]
M= M:—M
F FSZ" 1T3(a_5_|)3h

2 - b _ hTawklree-) T ]

s & 25-NIT
( )ar
,09
Z= ~ﬁz;l M 2,

_ & 768 v TANR[(es-1YZ r
Ipv “Isyg‘_ 1+1~F + Y.‘(IH-"‘)TT@';I (25-1)> 21

% hz
Iy = Me &5~

In the case of a horizontal rectangular tank undergoing lateral oscillations

in the YZ-plane the definitions and equations are unchanged except that the

momeﬂtp of inertia are now Ipy and I, and the tank aspect ratio now hecomes
= h/b with

" wg=[glzs-N L TANRES- DI (]2 and [, 2ich® M

If the tank is now rotated so that the X-axis is vertieal with the fuel
oscillating parallel to the XZ-pleone, the value of My = # cbh and the tank
aspect rotio becomes r4 = h/c. The moments of inertia are still taken about
the gaaxia and the equitions for 2, and Z are the same except they become

{g and X distances and use r3 instead of ry. The equations Tor{yg and ISy
become:

tWg = [y(aS—i)E TANKR [ (2s-1)TY \r3]] Ve.
I, = My £2h°

W:th the X-axis vertical but with the oscillations parallel to the XY-plane,
fr =Fcbh, the tank aspect ratioc 1) = h/b, the moments of inertia are Ipr end
Iﬂz and the equations for@ . and Ig, become:

[?(zs I) TANH[(Z.S~J mq]]
I = MF

Tuls commletes the specification of the equations for the spring-mass analogy
for rectangular tanks in a horizontal or vertical orientation. Therefore,
the angle the ¥-axis nakes with the horizontal determines which set of
equations more nccurately approximates the situation.

2. Cylindrical Pank - The formulations for the cylindrical tank are not
nearly s straight forward as were those for the rectongular tanks. Three
different methods have been used to define the fuel motion Tor the different
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tank orientations. An extensive literature survey indicated that for the case
of longitudinal oscillations in a horizontal cylindrical tank the same approach
could be used as in the case of rectangular tanks although no development of
the equations could be found. Reference (2) suggested that the natural fre-
quencles for the horizontal cylindrical tank are:

/
= [ s h1 72
Ws _[% TANH Sﬂ’] vhere § = 1, 2, 3, ---Ww

Comparing this equatlon with the corresponding frequency equation for
rectangular tanks indicates that the c¢ylindrical tank aspect ratio is r = h/l.
Meking llke comparisons the following development 1s suggested.

Definitions:
ﬂ = tank length parallel to X-axis
R = tank radius
h = fuel height parallel to vertleal axis
MF = total fuel mass
5 =1, 2, 3, --=-Wn
P = /1 = tark aspect ratio
Equations:

W = [Jfﬂ' TAVH (sTrH) ]

M= Me BTAMH(STT ¥}

m3sir
K. = 8We TANHE(STTY)
S nfr*ss
_ & ETAnHETF)
M =Mc-Me Z:‘iﬁ-.:Ls:L}:—'



_ h _ hTANR(
ZS _ _% _ksw(ESTTI")

~ % L E

5zl

_ _a 748 < Aw(ﬁ-srr;«)
IFY'ISY;| WP T Sprg e SZ }

The second method to be used on the cylindrical tank follows the formi-
lations of J. W. Miles found in Reference (3) for an upright circular cylinder.
In this analysis the potential =nd kinetle energy expressions are derived
with allowances made Tor tank flexibility. TFirst the potentizl energy (U)
and the hinetic energy (T) expressions are stated and then the notential

energy coelfficients (kij) and the inertia coefficients !fmj.j) are defined.

'X
| i‘/I\ f

5

o

Definitions:

i, =mims=l, 2, 3 ~=Wr

g~ {t) = generalized coordinates

ql{t) = a translation along € = ™
g=2{t) = a rotation about the centroidal axis © = 5
¢3{£)7(X) = a simple bending displacement along © = o
0®* 3¢ 5+3(r,6) = sloshing disnlacements

FX) = b ending mode shape of tank

(X} = ar{xX)/dx

q;s+3(r,C) = gth _mode shape of fuel
217 R2b = total mass of fuel

—El..



Definitions: {Continued)
8 index indicating fuel slosh modes

b = one half fluild height
R = tank radius
g = sacceleration of tank along X-axis
xﬁ; = gth zero of the first derivative of the Bessel Function of
the first order and the first kind.
(B, = 1.84119, 8, = 5.331b4, §5 = 8.53631, 4), = 11.70600)
4 =118 1=
It soirid
Eguations:

u=i§§ﬁaj%‘?j

Reference (3) defines the potential energy coefficients, kij as shown below:
‘éu: ’k:z" >y '-""éw:"ea::'ﬁzz""&u‘ 'éaz = »&554»3
'-'-f&sn,; =0
Ay = M {’éa[f‘,z{b)-f'lz(-b)]-l--é-s (oxp ey Ay
53 &1%5 . )b
b Xo
~4f oy +4 (7t dr}
+ = M ‘gt‘“
#ois o5 = L2 (85 )

'kz,SH = '&sn‘ﬂ. = %,'%%q“

$
BRI
T= -'2—_2-_2-'/?11;5 g..i?—".

’ka S5+3 T ’és +33

-65-



The inertia coefficlents, myj, are defined belov.

,mu”—M

Myg=amy =0
Mg = 774 = M{E) —g;[f“{b) “ff(—b)]}

MR

Mist3= Mstrz) = 2682

) 9MR3f TAN H(Bb

ML 3 CHOE S
Mae M(—_g‘ ¢ 51 Bs(Bg-/
M3 = M = +Mg'é-5 g,_ XFoods +,%,Q‘._ )s;: %;;‘::‘)2

+HA W+ )[4 - B 22kt L T

Maysiz = Msy3,2 = ’g——"gg aﬁ;’”:“ (—‘5‘) ]

e + 2 L) Yo (b)-F [-b) Ya (=
O N A N

+ BMRE[P10)-Flb)] + 202 }j Lts [P )+ FLa),

s=}

*’L Z%!Z—!’F'): [£/%b)+f"%Cb ]COSH(Z‘QS*’)

~ afcb)f’(-b)}

5t/

Mo, 545 = Mssy 3= TE Y (b — m; {C SCH (ap‘\gsb)][{‘('b)t:osa(%fs.b_f(:b)]
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7”5+5Js+3=£ﬂ{,%; (Bsah!) CoTH g‘%gé)

where: A; - _S_QTT_bE

¥(o)=

Y= yay) =1 [4 (AS)]

Ia_ and 12 are certain Bessel functions or certain forms of functions
of some related kind.

Fs= b)f fx) Cos[sn' )]afx when S>> O

fa --2-55 £ () dAy
k=L 17 [63+ (2787

These equations have been used in the experimental analysis of Reference (4).
In this report, resonant bending freguencies and mode shapes were determined
experimentally and were shown to be generally in agreement with the theoretical
vredictions. The differences were attributed primarily to variations of

actual mode shapes from those assumed in the theory.

The third method to be used on cylindrical tanks was formmlated by
B. Pudiansky in Reference (5). This 1is also the method to be used for
spherical tanks. In this report an integratequaticon approach is used and the
method of soluticn developed for the first three fuel slosh medes, which
as indicated in the literature i1s a sufficlent number of modes for most
practical problems. The tank orientaticn under consideration 1s z horizontal
eylindrical tank undergoing lateral cscillations In this case the gencralized
coordinate denoting motion alony the Y-axis 1s g~ and again the fuel sloshing
generzlized coordinctes are q5’3 The dimensions of the q”+3 in this
develowment, hovever, are (1ength)® rather than length as in the case of the
previcus generalized coordinates. The slosh hesight, S+J ot the side of tha
tank can bc .expressed as a Tunctlon of the G®*3 by the *ollowlng relation;
J’q+ ol JCU %+°/&. It should te roted that in this anslysis {tank bending
is lgnoreu and that with the non-viscous asswption rotation of this
eylindrical tamk and rotation of the spherical tank necd not be considered.
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Deliniticus:

) = a translation alons the Y-azxis
R = tank radius
e = Fuel height parcweter = -1.0 for emty tank
= gin & =0 Tor half full tauk
8 1 = +1.,0 for full tank
sin "¢

ii
]
O
S b
‘Ga‘

o
3 ~

As+3 = frequency paremeter = ;—;w"is+3

S fuel slosh mode index = 1, 2, 3, --- wr

tanlt length

fuel density

tank acceleration along T~axis

total mass of Tuel

2‘3- -&h
R

Zguotions:

= ﬁa%i Z we s+3 Ass3 (3"”;)

U= BFLY () Aes (347)°

$=f

T=s M) BEL | Wi, A ()" + 2R F ] 02,8,

-—
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TN e LR T A (37

.3 2 .
r 2 fasRFA] [VAn) Bus 40

The nondimensional modal parsameters AS+ and Bs+3 along with{?\5+3

are presented in Figures (4), (5), end {6) respectively for the first three
fuel slosh modes as functions of the fuel height parameter e. It should be
noted that for values of e = .8 to e = 1.0, the curves in Figures (6) and
{9) tend to infinity as they approach e = 1.0. To avoid this type of
solution near e = 1.0, the curves have been made to intersect e = 1.0 to
provide for an approximate but finite solution for the full tank. For

this reason the seolution of the equations for the nearly full to full
cylindrical and spherical tanks must be used with caution.

3. _Spherical Tanks - Following the same method and definitions as
used above, the solutions for the spherical tank may be obtained.

Bquations: u= g(QR)z‘;' CU;-_,, Ceas (3'”3)2'
v=f mrgarL [V ] Can(#7)°
T- U @0+ B R T 0t Conn ')
5=

+%f(°-"‘)’z?"f Wes Dars § 7
s2|

3 2 . s43\"
T U () + PR (Vi) Cons ()
+ ﬂ’f“" Ra?” i Lm;—sab 3+3 %ﬂ‘; .
5=

As before, the values of the nondimensional modal parsameters CS+? and Dg43

along with~§A 5+3 are plotted versus e in Figures (7), (8), end (9)
respectively. As discussed previocusly, the solutions of the equations are
only approximaste solutions as the full condition is approached.
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PART II

The computations called for in this part are carried out in the Vehicle
Physical Characteristics Subprogram (VPCS2), which runs with the basic SIF
program rather than the SLP.

The free surface of the fuel 1s parallel to the horizon only when the
tank has no lateral or longitudinal acceleration. Tt is anticipated, however,
that such will not usually be the case. The assumption now being made
concerning the fuel orientation is that the free surface is always
perpendicular to the "resultant tank acceleration," defined as the actual
acceleration at the tank center due to the gross motion of the vehicle minus
the force per unit mass due to gravity. The pertinent angles for the tank
orientation, therefore, are not angles ususlly defined as the tank or
vehicle pitch, roll, and yaw angles; they are the angles between the body
axis system and the resultant acceleration. This means that at any instant
of time the resultant tank acceleration must firat be found and then the
free surface of the fuel set perpendicular to it. Since the fuel slosh
equations presented in Part I are valid for only vertical or horizontal tanks,
the tank walls must be set perpendicular and parallel to the free surface.

As this is done, the real tank dimensions in the body axis system are replaced
by those of a different but "equivalent" tank of the same volume. This
equivalent tank is, therefore, a tank whose dimensions and orientation are

a function of the angles the real tank mskes with the resultant tank
acceleration. As the real tank for example pitches from 0° to 900, the
equivalent tank concept provides a continuous transitdon to classify the

tank ag being either vertical or horizontal. The tank geometrical center

was chosen as being common to both the real tenk and the equivalent tank.

The equivalent tank concept is by no means an exasct representation but
does give an approximation of the real situation. One very significant
parameter to fuel sloshing is the length of the free surface. The equivalent
tank concept permits the free surface length to increase or decrease as it
does in the real situstion, but only approximates the actual free surface
length. This concept also simplifies the computation of the moments and
products of inertia and the C.G. of the fuel, as the fuel changes its gross
position in the tank due to the gross motion of the vehicle.

Consider now the problem of obtaining the equivalent rectangular tank

dimensions and then the moments of inertia and C.G. of the fuel in the equivalent
tank as if the fuel were sclidified. As shown in Figure 10, Aé is the unit
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REAL TANK EQUIVALENT TANK

Figure 10. Real and Equivalent Rectangular Tanks
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acceleration vector of the tank. One corner of the real tank is chosen as the
origin of a right handed triad having unit vectors+#i,, M, and -, ;. bointing along
adjacent edges of the tank and chosen so that the angle between ., and 41, is not
less than the angle between f£3 and either A3 orfn The vertex for the common
origin of these vectors is chosen so that these angles are not greater than /2
The unit vector € is defined as a unit vector perpendicular to ‘> lying in the
plane of 4(3 and 97, , and meking an acute angle withX, + The vectors Z-a

and ,Z" are the vectors defining the real tank size and orientation. The megnitudes
of these vectors (not necessarily respectively) .| , Ay and ,b are the lengths of
the sides of the tank in the direction of the unit vectors-, , fnaandmg respec-
tively, as shown in Figure 10. The unit vector & and the angles e , and ©, can

be defined as:

s . A1, 7)) 7,
3/—(@-4'7:)2

8, = ARC Cos (k- &)

1

ARC €05 VI-(T, m,)"

ARC Cos (77,- €)

2
b

= ARC Co5 [,6-/;;';55592]

vhere @&, and 92- muist be positive acute angles.

The dimensions of the equivalent rectangular tank can now be obteined.
Referring to Figure 10, the equivalent tank may be thought of as the tank
obtained by taking the real tank, with ,f’_; coincident with one of its edges,
and then adjusting the real tank dimensions to the equivalent tank dimensions
as the tank is rotated first through &, , and then through 62 + This then
replaces the real tank, which is actually in the position described by &,
and @, but with its sides not perpendicular to the free surface, by an equiva-
lent tank with the same volume and approximately the same free surface length
with its sides perpendicular to the free surface. Defined below are the equiva-
lent tank dimensions (,, Cs, and C in terms of the real tank dimensions &,

and ,&. The intermediate tank d_'LmensmnC is defined as the length of C.'
after the tank has been rotated through e, but not through 9 .
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= JEF, TAN[8, +(i- 42) ARC TAN VI /L' |

C,= V& c CoT[e,+(I- -4-‘77-,%) ARCTAN VS Tg" ]

1)

C, = VEZL, CoT[e.+(I- %F) ARc TAN VL JL, ]

L]

Cs = Vi'c Tav[6; +Cl-—%"'—) ARC TRV -yc'//,"]

The unlt vectors giving the new directions are:

7 -7 th-7) 1
1-(Z,-77,)*
7, = b X977,
Vi-(l7)°
Equations for the fuel moments of inmertia, dJ, ,J, and J;, as_if the fuel were
solidified, taken about the fuel C.G., and the C G. location ¥, of the fuel,

measured from the eguivalent temk center along the,f axis are shown below.
The total mass of fuel in the tank isA4F and the fuel height along,f ish.

T, = M [+ b’
3= L Me Le) ™ K]

1

s
1

Lz Me [+ €)' ]
Ze =~ A, (c=h)

h= hAF>//f%:|C;a

An approach simllar to that used for the rectangular tank is presented for
the cylindrical tank. There are two major differences between the equivalent
rectangular and cylindrical tanks. The cross section of the equivalent tank,
taken perpendicular to the resultant acceleration, is always rectangular for
the equivelent rectangular tank. This cross section for the equivalent eylin-
drical tank may be rectangular or circular depending on the angle between the
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resultant acceleration and the real tank length vector. If this cross section
is circular the equivalent tenk is considered as being verticel, and if rec-
tangular, the equivalent tank is considered as being horizontal. The second
difference between the equivalent rectangular and cylindrical tank concerns
the angles used to specify their orientation. For the equivalent rectangular
tank, two angles were needed. For the equivalent cylindrical tank, the angle
between the resultant acceleration and the tank length vector § is the only
angle needed to specify the tank orientation.

As shown in Figure 11, ‘K. is the cylindrical tenk length vector, ,{3 is the

resultant acceleration unit vector and € is the angle between them. Defining
as the tank length unit vector then:

£-2/

i

U= A, £

8 = Afccos [y

1r |4} 1s greater than [AZthe equivalent tank is vertical. Defining fLand R
as the real tank length and radius respectively, and 4 and R, as the equiva-
lent tank length and radius respectively, then the relation between them is:

Ay=V2kr TAV[6+(1- 32) ARC TAN VZjsr]
K = VRS Ly

h = Me/mfgs

Equations for the moments of inertia of the fuel, as if the fuel were solidi-
fied, taken about the fuel C.G., J, , J, and J. , and the C.G. location E'_
of the fuel measured along ,(3 from the tank cehter are shown below.

== G TPRIAR} +4%)
T, = 5PR7 A

;-7-F = "%»f’; (‘g'v"}")

if q’-= 1.0, the components of the unit vectors I; a.nd}; giving the new direc-
tlons are:

I

’ 2 3
,P - - .fdz_ ’_:..._ N sy 2 3 - ‘P 2
' s AT V) A Vi- gy "
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Figure 11. Resultant Acceleration and Cylindrical Tank

Figure 12. Horizontal Cylindrical Tank and Spherical Tank
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£, = - s

* = 0 3 _T_p.;_.._
-" ,_(‘?;)z /?'2- ’ea

VI-(e5)*
1) -
If U< 1.0, the components of /?l a.ndj,_are.

4wl e Audl A3 u.i,__
IP 1’, uu‘). j! - l_(u_)t XI

Vi-w)®

2 51 pl g3 4 z_ g2 gl
= R gt Kkl kT o S koA K
Vi-m)® Vi) V-t
If [W] is less than or equal to -1‘,-1-2.- the equivalent cylindricel tank is
horizontal. Defining £ and By as the equivalent horizontal tank length and

radius respectively, ancf' expressing them as functions of the real tank dimen-
sions & and H gives:

dy= VIR CoT[o+(/~£2) ARCT AN VE7 7]

RH = ll??’,&/lvu

In order to obtain the expressions for the wmoments of inertie and C.G. of the
horizontal tank, the angle & , shown in Flgure 12, must be found. The equa-
tion relating4 to the fuel mass /M is:

Mg = ﬁﬂ-m F:(% +8 + SIvNG Cosg)

[(MF -f,&.” Pz)" %] =4 + sivwBLlosg

Now let Cp= [(MF/-f’.& ﬁ‘-)-. %] Newton's method can then be used to find ,@
Defining £'(4) and £¢g) as Y $hown below:

B =B + sivBcCos 8 — c,

F(B)=2 Cos* A

Let ﬁ be the initial estimate of £ and calculate ,6'
o

£o= "'?.CH
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B8, - Fid

The quantities i@‘l and 4, can then be tested to determine if they
F18) £06)

are both less than (1 x 10'7), the arbitrarily chosen degree of accuracy. If
this is true then & = 6, « If the desired degree of accuracy has not been
obtained, £ is used as the next estimate of &, and a ﬁa. must be calculated.
The test is made agein to determine if the desired value ofﬁ has been obtalned,
and if not, the iteration must be continued until the desired conditions are
satisfied. The fuel moments of inertia, C.G. and height can then be obtailned
as funetions of 4.

h=TRy(i+5188)

- _ 2R,cos3g
3[ o+ B+ SINBLOSE]

Ji= Mg [%R:*’ Ze (7 Ru SiNB‘ZF)]

Ta® Me(ERE+5 4% — Z¢ (Z¢ -3 Ru 518 8))]

The spherical tank dimensions do not need adjustment because for any tank
crientation, the free surface length will remain unchanged. The orientation
of the free surface within the tank will, however, change positions in the
tank. The angle B for the spherical tank is defined in Figure 12, and the
same iteration method as described previcusly must be used to solve for p
The following equations must be used for this iteration.

Me= r R (4 + sinB -4 sin?g)

[ - 51 = swe -4 smg
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f(8)= SivB- -é-Sw?e-—C

(8 = Cos’8

B.=C

Using the value of 5 obtained from the iteration, the following equations
for the mowent of inertia, fuel height, and C.G. can be solved.
4
Z.o= — 2RCos4
F a(z+35188- SIAV3B)

h = 'R(I'f‘SI.Uﬂ)
l=1,= é—Mp(&‘E’a+3ZF Rsweg—-§z%)

J3= BMp(R*—~Z . Rs8)
z?i" = Er /P;

The components of ,(, and ,F 2 giving the new directions are:

'=_j:-’wfa '3-.:_]/_ 2\2 >_ -?3471
/?I W'L /f', /(,f_’) /?,‘ —1}'2—:?3—-——!:-15—

,?'2‘ = —_’{;_____‘ /q: - 0 /?: = j’
Vi= (43" Vi- (48)*



PART III

Inasmuch as the length of an “equivalent® vertical cylindrical tank 1s
most likely to be different from that of the real tank, and since the bending
mode shape f (A} 1s given for the length of the real tank but must be applied
along the length of the eguivalent tank, it is necessary to find some way
of adapting the use of J ) to a changing tank length.

To accomplish this, a new argument Xi is introduced which does not vary
with the tank length, and Fois given as F(x{). Separate consideration must
be given to the two cases i » '/V& and u; < - sz, where u; equals
C0% ©; and for a vertical “equivalent” tank |u;|> \/vE » X} is defined
as distance along the axis measured from the center of cylindrical tank v ,
nor}dimensionalized with respect to the tank length. In use with the real tank,
X; 1s positive in the direction so chosen in comnection with the submission
of date to the VPCS2. In use with a vertical equivalent tank, X% is
positive in the direction of the “resultant acceleration" if wi>'/VvZ , and
positive in the direction opposite to the "resultant acceleration” if wu;< -\/va.

For the submission of data, we note that

Ay is the length of the real tank, that £;%Xi is actual distance measured
in feet from the center of the real tank, that - L < %< ‘E , and that

'=c.l§'\i_ igﬂ';_cQP‘l ‘
5 ig)'f]l "Ix_';/'!’"

Axi X
We next consider the mathematical relations connected with the equivalent tank.

L
e

When W; > \/y3 , these are as shown below:

Xi = b xf. *(ﬂrva‘h;)/a
i vi ’ Q’vﬁ"%
Xa L (4axf) -4 N
oq)(i = pJ'vi cﬂ X5 ﬂr,,; \X.\ \\\\\
‘ (Lry; - 1) .
X, = Xi-~ (bvi-W) /e \ /‘3\ hi
ﬂrvi \\g::fz:f\
=%L;-(|—.E:ii)/e \
) ]-;.,,, (é * l‘.) - a'l" "Equivalent Tank"
When X; =- Wi X% =-1
2 ' e
When X; * Wi , X;=hi _ 1 .
=4 v 2
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X "(L'vi'h'l)/a “LVi X’"
oQX;* "ﬂ!'vi CQX';

i -o-l'i ‘ - L
W W Emxi s
x. = (-q?vi -!\:'.?/a-)('. 1’0‘1
= 4 h__g L X3
=4 bvi (e+ h;)
When Xi= -4 X =%
. VP T ¥
When Xi = bé-' » X172 T
- B j,. :
=i --—&i‘f :Pfﬂx J
ol 1 iy r oW
2 2

' \\\\\\\\

s the pertinent relations are as follows:

\\\\\\\\\

(tr VA

"Equivalent Tank"
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PART TV

As indicated in equations (97) and {98), provisions have been made to
include damping in the SLP. Knowledge of what numerical values to use for
75 {or & ) is important to a careful investigation of fuel sloshing in
a vehicle in flight. An extensive literature search found that very little
fuel damping data exists except for upright cylindrical tenks. Reference (6)
did present the equation below, which can be used to obtain the logarithmic
decrement b; for an upright cylindrical tank as a function of the kinematic
viscosity v , the fuel heighth , the acceleration due to gravity g, and the
tank radius R:

§=523Yv Lir2(1-n/R) cseh (3.680W /g )]
[R'%’ tanh (1.84 4 /R)]\“'

This equation is for a tank with no baffles. Most of the other references
found were for upright cylindrical tanks with variocus baffling configuraticns.

Because of the scarcity of data on fuel damping, no equations such as
the one just given (which is of limited applicability) are employed in the
SLP. Rather, it is left to the user to determine in his own way constant
values of y ‘; for submittal as input to the program. As long as the submitted
values of ¢ ‘j are greater than zero, they will at least prevent the infinite
continuation of whatever fuel slosh modes are excited by the motion of the
vehicle.



Symbols

HYSt

APTENDIX IT

SYMBOLS, DATA TO BE SUBMITTED,
COMPUTATIONS AND EQUATIONS USED
IN THE STRUCTURAL LOADS PROGRAM

components in the y coordinate system of the linear acceleration
of the wvehicle at the origin of the wvehicle axes.

STARTT

components in the y coordinate sysztem of the linear acceleration
cf the h-th particle of the i-th section due to elastic deformation.
ADAEHT

components in the y coordinate system of the linear acceleration
of the h-th particle of the i-th section due to rigid motion.
ADARUT

static aerodynamic terms.

nondimensional fuel slosh modal parameters for lateral motion of
horizontal cylindrical tanks.

a quantity used with vertical ceylindrical tanks.
TAAPS

sectional aerodynamic shear force terms for rigid vehicle, referred
to vehicle axes.
SAAPIT

sectional aerodynamic bending moment terms for rigid vehlcele,
referred to vehicle axes.
SAAPPT

r

r
A eih A =ik components in the y coordinate system
of the linear acceleration of the h-th
particle of the i-th section.
ADATHT
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J1
r

kit

rr

KA

ah o}

Clhusi

rs
JK
f‘r‘S‘b

Ki

u rat

i

inertia terms.
SFLAPS

¢
components in the V| coordinate system of the given mode of
vibration in degree of freedom k before balancing.

4
components in the Vi system of the given partial linear velocity
with respect to qk of the point of rotation of movable section ¢
relative to the vehicle before balancing.

modal functions of cylindrical tank aspect ratios.
TAAR

modal functions cf rectangular tank aspect ratios.
TAAR

nondimensionzal fuel slosh modal parameters for latersl motion of
horizontal cylindrical tanks.

aercdynamic stiffness terms.

sectional aerodynamic shear force terms, referred to vehicle axes.
SABPIT

sectional aerodynamic bending moment terms, referred to vehicle axes.
SABPET

lengths of equivalent horizontel cylindrical tanks. Same as in
VECS.

TABHTT
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lengths of equivalent vertical eylindrical tanks. BSame as in
VECS. :
TABVTT

components of the dynamicelly balancing rotetion rate with respect
to q" of the vehicle relative to the vehicle exes.

SEBFTT - STRUCTURE

TABFTT - TANKS

nondimensional fuel slosh modal parameters for lateral motion of
spherical tanks.

r
C:JK aercdynamic damping terms.
' TS .
. sectional aerodynamic shear force terms referred to vehicle axes.
K1 SACPIT
" rse
(: . sectional aerodynamic bending moment terms referred to vehicle axes.
KV saceer
C. C .- lengths of the "horizontal” edges of the (equivalent)
i ) an
rectangular tanks. Same as ln VPCS.
TAC3TT
C r components of the dynamically balancing translatlon rate with
K respect to <1K of the vehicle relative to the vehicle axes.
SECTKT - STRUCTURE
TACTKT - TANKS
]:)'_3,| nendimensional fuel slosh modsl pzrameters for lateral motion of

spherical tanks.
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S

JK

=3

rs

moments and negatives of products of inertia of structure and
el about axes thru the vehicle center of mass and parallel to the
vehicle axes.

SERTTS

Geflections of the A -th particle of the t -th section due to
elastic deformation.
ADDIAT

modal products of inertia of part of the vehicle.
SIDDKS

dynamic balancing Lorme.

SFDJK

numner of thrast vectoring nczzles (or "engines").
N@ENG

nodal inertis terms.

STEKTS

baze of natural log systen.

—

components in the:jr system of the Jei vectors. Same as in VPC3.
TAESRT

moments and negatives of products of inertia of fuel about wehicle
exes.
TAFRTS

certain integrals connected with fuel slosh in vertical cylindrical
tanks.

TAFPS
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bending mode shapes for cylindrical tanks.
FTABLE

)Om slopes of bending mode shapes for cylindrieal tanks.
FPTARL

4

fk; et the bottom of the fluid in tank i.

ke TAFPB
, 4
)Ow Jc:d at the top (or surface) of the fluid in tank 3.
TAFPT

G

products of inertia of structure and fuel about wvehicle axes.
SFGRSS

rs

q}ws products of inertia for part of the vehicle.

SIGLRS
G_ G" G”_ Gf” integrals connected with fuel slosh in
R ! 1 vertical cylindrical tanks.
TAGI, TAGPI, TAGPP, TAG3P
] the magnitude of the "resultant acceleration" at the center of
?/ tank 1. Same as in VPCS.
TAGITT
; components of force per unit mass due to gravity. Same as in
7= vecs.
SGGRAP
4
i the coefficient of “structural" damping associated with the j-th
degree of freedom.
AEGPJ

H.]K inertia coupling terms.
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N

modal unbalances.
SFHTKS

height of fuel in "equivalent" tank ) . Same as in VPCS.
TAHITT

components of the partial linear velocity with respect to 9” of

the center of mass of section ' relative to the vehicle axes -- values
obtained after dynamic balancing.

TAHKT

SFHKI

model unbalances for fuel.
TAHFTS -

inertia coupling terms for fuel.
TAEFJS

inertia coupling terms for structure.
SEHSJS

modal unbalances for structure.
SEHSTS

moments and negatives of products of inertia for part of a section.
SIHHTS

moments and negatives of preducts of inertia of structure and
fuel about vehicle axes.

SFIRSS

moments of inertia of fuel in "equivalent" tanks about axes perallel
to vehicle axes.

merents and negatives of products of inertia for part of the vehicle.
SITIRS
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ui

LF°

moments of inertia of section i about sectional axes. Same as in
VPCS.
TAJRTS

mcments of inertis of fuel as if it were solid in "equivalent" tanks
about tank axes. Same as in VPCS.

TAJFTS

effective moments of inertias of fuel about tank axes.
TAJFPS

components of the partial linear velocity with respect to q“ of
the center of mass of section v relative to the vehicle axes --
arbitrary values given prior tec dynamic balancing.

TAJTI - TANKS

SEJKI -~ STRUCTURE

products of inertia of section 1 referred to sectional axes. Same
as in VPCS.
TAKRTS

modal inertia terms.
SFLSTS

components of orthogonal unit_vectors giving directions of
acceleration oriented axes, Ly and £eai being parallel to the
surface of the fuel in tank i, and £ 4, being perpendicular to the
surface of the fuel. Same as in VP(S.

TATLSRT

¢
modal inertla terms for fuel.

~ K pALFTS

LST

t
modal inertia termc for siructure.
K SELsTs

M e,

total masses of fuel in tanks. Same as in VPCS.
TAMFTS
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MJK components of the inertia tensor.

SFMJKS

M"‘ pending moments at a specified location cn flexible vehicle
without wind (componernts in the y coordinate zystem).
SPMTTT

r
M bending moments on flexible vehicle with wind.
L SPMETT
r
M bending moments on rigid vehiele without wind and without thrust
R .
Torees.
SPMRLT
v
M hendirg moments on rigid vehicle without wind but with thrust
R forces.,
SPMR2T
r
M bending moments on rigld vehicle with wind and with thrust
R & forces.
SPMRET

M A aerodynamic bending moments about the origin due to elastic
v E& deformation, without wind.

SAMAFRT
r . . . s -
M A aercdynamic bending moments sbout the origin due to rigid
~ R®  potion, without wind.
SAMART

r
M A aerodynamic bending moments about the origin due to elastic
~ £00 gerormation, with wind.
SAMRRT

r
M A aerodynamic bending moments about the crigin due to rigid
YR U potion, with wind.

SAMRET



- EO

MI’,

b

Mk

bending moments about the origin due tc gravity.
SGMGRT

inertial bending moments about the origin due to elastic defor-
mation.
SIMIET

inertial bending moments about the origin due to rigid motion.
SIMIRT

bending moments about the origin due to the thrust forces of the
engines.
STMIRT

total mass of wvehicle and fuel at any instant. Same as in VPCS.
AMASS

mass of structural section ). Same as in VFPCS.
TAMTITS

mass of the h -th particle of section ).
SEMIH

effective fuel slosh masses in tank .

mass of part of the vehicle and fuel.
SIMPTS

mass of part of sectioni.
SIMPIS
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Ki

Ni

€ 41

fuel slosh inertia coupling terms for spherical and horizontal

cylindrical tanks.
TAMPKS

nurber of aercdyrnamic parts (or surfaces ) in section 1.

N¢NT

w0dal inertia termsz.

sectional asrodynamic bending moment terms resulting
defcrmation, without -rind.
SANEIP

secticnal serciyraris bending moment
mction, without wind.
SANRIP

terms resulting

gacticnal azrodynamic bending wmoment terms
deformaticon, ith wind.

zectionel aerodyracic bonding mouwert
motion, with wind,
SANREP

resulning

nedal inertiz Yerms Taor fuel.

TAHFXS

nodal incrtin terns for structure.

SFISKS

oy £ 271 e = ey E3e A1 el
oD elastic degrses of freczdon.

from

from

from

o
L

EHi|

elasztic

rigid




r
i

+ TS

s

T

components in the‘U’coordinate syatem of a unit vector atv point
hon the surface of section i, perpendicular to the surface and
pointing cutward.

AENPR

number of particles (or masses} in section i.
NOPI

products of inertia of Tuel in tank i referred to axes parallel
to vehlele axes.

e

rodal mements and negatives of vroducts of inertism of veshicle
and fuel.

SEPJTS - STRUCTURE

TAPJTS - TANKS

gectional coordirates of the peint of rotation of movaktle
sectioni. Same as in VPOS.
SEPPR

-

rmedal moments arnd neggotives cr products of incrtie of szzetion i,

mola.n

- FE R
yohiinle.

SIPPKS
the goneralized Toreos sosceisted w7ith thrunt foress.
WRETJT

of produciz of inertia of part of sac
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R’. vodius of spherical fank . 3Same as in VPCO.

TARIRT

Ru: vadiue of eguivalont horizontal eylindrical tank 1 .
Same as in VPCS.
TARHTT

R\,i ~aing o0 equivalent vertical cylindrical tank [
Same as in VPCS.

TARYTT

R - of dnertia of port of the vehicle relerrod to
L=
I K Rl . | =, [ o . AN J T |
R .- roeticnal acvooyranlu torns Do sigii vehicle.
v
J AFRTUT

R sezvionai oo Jnmar Jorae ternn Ior rigid vehilele.

: SARPTT

wrstu
Ri ceobional ocoroyvnic hending womert termo for rigld vehielo,

SARPIT, ZARP2Y, SARPT

R R\

K ke
Pi o oo " as in VPGS

y 2 & x CToToygalvalans . larmz az in VPCE.

ratios of recizuglar tenz 1.
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]
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rs
5‘ . sectlonal aercdynamic stiffne
KL pmsTUT

r

SDUAE serodynamic shear forces due
SASEAP
r
S_AR aerodynamic shear forces due
SASRAP

"
) A o aerodynamic shear forces due
—
SASEEP
r
5 A aerodynamic shear forces due

— RR& gasnpp

A

forces, without wind.
SASAFP

r
S A ., Tigld contribution of section
~ RU Lithout wind.
SASARP

ss

to

to

to

to

-

terms.

elastic deformation, without wind.

rigid moticn, without wind.

elastic deformation, with wirnd.

rigid motion, with wind.

Ly .
S ﬂ et elastic contribution of secticn + to the aerodynamic shear

to the aerodynamic shear forces,

S A .elastic contribution of section i to the aerodynamic shear forces,

~ "ELith wing.
SASEEP

r
S A
~ R0 wing.
SASREP
| g
5 G: shear forces due to gravity.
-~ SGSGRP

-10z-

. rigid contribution of section ) to the aercéynamic shear forces,



(
o 3

x 1

2 rat

KA

inertial shear forces due to elastic deformation.
SISTEP

inertial shear forces due to rigid motion.
SISIRP

shear forces due to the thrust forces of the engines.
STSTRE

number of tanks. Same as in VPCS.
FgTAN

components 1n the y coordinate system of the thrust force at the
1-th nozzle.
EMTXZP{1)

components in the y coordinate system of the thrust force at the
{ -th nozzle.

EMDXZP{2)

components in the y coordinate system of the thrust force at the
{ -th nozzle.

EMTXZP(3)

sectlonal aerodynamic damping terms.
ARTTIJT

sectional serodynamic shesr force terms.
SATPIT

sectional aercdynamic bending moment terms.
SATPPT
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time.

) .
U aerodynanic terms.
3 Ka BUTRT
rrst
U ) sectional aerodynamic shear force terms.
K SAUPIT
rrresta
sectional aercdynamic bending moment terms.
K1 SAUPLT, SAUPST, SAUP3IT
L cosine of angle between resultant acceleration and axis of

(
£

cylindrical tank 1. Same as in VPCS.
TAUS

components in the y coordinate system of the linear velocity of
the vehicle at the origin of the vehicle axes.
ATVRTT

components of the wvelocity of the wind.
AEVRAT

vi- v, .

AZVRET

components of the wvehicle velocity at the center of mass.
ABVRCT

avlﬁb

SIVDECT

components of the velocity of particle J\of section 1\ relative to
the wvehicle axes.
ADVEHT
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inertia coupling terms for part of the vehicle referred to vehicle

KL axes.
SIWKL3
r r
WKL cne term of W KL -
: . (€ &)
.L»U"; number of fuel slosh modes in each direction for tank 1.\ —

N@WT

AJ; $h the "piston speed" (or dovmwash) at the h-th surface of the i -th
section.
ATWTHT

v v
L,U'E ¢, one term of AEih.
'Y ADWRHT

)(‘L distance along the axis measured from the center of cylindrical
tank | , nondimensionalized with respect to the tank length. In
use with the real tank, Xijis positive in the direction so chosen
in the VPCS data toc, be submitted, number 5. In use with a vertical
equivalent tank, Xjis positive in the direction of the "resultant
acceleration” if wi is positive, and positive in the direction
cpposite to the "resultant acceleration” if wi is negative. ( Wi=
cos ©i and in the case of a vertical "eguivalent™ tank lu;]l > 1 /VE'.)

Y .
7(_ . coordinates of geometric center of tank ' or of the point of
' rotation of movable section 1 . Same as in VPCS.
3 &
r ¥ !
X . Z e'."'\ x wKi o
KA S=\

TAXRK - TANKS
SEXRK - STRUCTURE
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’ 1 3 3 'S e
a":‘ - (3 - Tni t2. 2 Crste’mf’i -

Ki s t

r
one term of A Erh -
ADXEHT

static unbalances of part of the vehicle referred to vehicle

axes.
SIYRTS

static unbalances of part of section } , referred to vehicle

axes.
STYRIS

dynamic unbalances of part of the vehicle referred to vehicle axes.

SIYRKS

inertia coupling terms for part of the wvehicle referred to
vehicle axes.
SIYKLS

certain summations connected with fuel slosh in vertical
cylindrical tanks.
TAYPI, TAYPP

coordinates of the N -th particle of the 1 «th section in
the coordinate system.
ADYTHI, SAYRAET

products of inertias of part of section [ s referred partly to
sectional axes and partly to vehicle axes.
BIYYIS

modal products of inertia of part of section i s referred partly
to sectional axes and partly to vehicle axes.
STYEKS
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Ei\} ) distance in tank V from fuel center of mass to spring
S

mass & , positive up.
TAZITT

distance from geometric center to center of fuel mass,
positive upward, for equivalent tank V. Same as in VPCS.
TAZBAR

coordinates of the center of mass of section 1 » Same as In
VPCS.
SEZST

coordinates of center of mass of fuel in tank \. Same as in
VPCS.
TAZFRT

coordinates of the centerof mass of the vehicle. Same as in
VPCS.
ZCFRT

components of partiml sngular veloclty with respect to q
of the d vi coordinates relative to the Jy system - values
cbtained after dynamic balancing.

SFAPR

TAAPR

fuel height angle for spherical and horizontal cylindrical tanks;
that 1s, the angle between the free surface and a line from the
center of the tank to the intersection of the free surface with
the wall of the tank. Same as in VPCS.

TABETR

components in the Jr system of the partial angular velocity
with respect to q of the r. coordinates relative to the Jr
system -- arbitrary values given prior to dynamic balancing.
SEBKI - STRUCTURE

TABKI - TANKS
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s r
B!
sl

ﬂ_ rsi

Yo, 0.0,

A -

jKi

ik

-}
components in the J r system of the partial angular velocity
with respect to ¥ of the J ; coordinates relative to the
Jy system - arbitrary values given prior to dynamic balancing.
TABRK - TANKS
SEBRK - STRUCTURES

products of inertia of section 1, referred to the sectional

axes.
TACGES - TANKS
SECGRS - STRUCTURE

products of inertiz of part of section 1 ; referred to the
sectional axes.
SICGIS

constants obtained from Bessel functions and used with wvertical
cylindrical tanks.
TAGAL.

inertia coupling terms.

inertia coupling terms for fuel.
TADEIS

irertia coupling terms for structure.
SEDSJS

time increment used in the numericsl intepgration.

modal inertia terms.
SMIPSS

rtiz coupling terms.

et

LY
N @
k!

inertia coupling terms.
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D‘_’F". inertis coupling terms for fuel.
JK TATEFS

9 S. inertia coupling terms for structure.
TJK SETASS
s .
& F. modal inertia terms for fuel,
e TATFJS
rs
QS modal inertia terms for structure.
SET5JS
[& K modal inertia terms.
05 )
/\ ) modal products of inertia of section i.
K1 TACLAM - TANKS

SECLAM - STRUCTURE

TS
) modal. products of inertia of part of section |I.
K SICLLS
r
/S F modal. inertia terms for fuel.
~ K TACLFS
Y
( \ 5 modal inertia terms for structure.

~~ ¥ gpeiss

?L 5 frequency parameters for lateral motion of horizontal
1 :
cylindrical tanks.

A 51 frequency parameters for lateral motion of spherical tanks.
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aJ
ki

Tk

inertia coupling terms for fuel and structure.
TAMUJS - TANKS
SEMUTS - STRUCTURE

fuel slosh inertis ferms for vertical cylindrical tanks.
TAULPS, TAUZSPS, TAR3PS, TAULPS, TAUITS

aerodynamic modal term.
ARXIJT

ratic of circumference to diameter of a circle.
PI

the atmospheric density.

EMRHPS

density of fuel in tank |- Used with spherical and horizontal
cylindrical tanks. Same as in VPCS.

TARHPS

components in the ’U; system of the given partial linear
velocity with respect to q" of the point of rotation of
movable sectlon i relative to the szection,

modal inertia terms for fuel.
TACSFS

modal inertia terms for structure.
SECSSS -

/Y
IV, /aq“
SESPSH, ARSIPT
AN

ani}t/ac'f}

ASTAPT
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Y
ih

qD;s&

| pd
qj) wLi

Ve

A e

static unbalance of part of a section, referred to sectionsgl
axes.
SIGAPS

—_—
coordinates in the J vi system of particle jh-
8SVPRH, AEVPRT, SIVEGT

fuel slosh inertia terms.
SEPJKS - STRUCTURE
TAPJKS - TANKS

kinematic modal coupling term such that

¥ v
ctb:uh * @Lm»‘ = 0 Ta /Oq".
ADPXCT

a function used in connectlon with vertical cylindrical tanks.
TAPST

dynamic unbalance of part of a section, referred to sectional
axes.
3IPSIS

components in the y coordinate system of the angular velocity
of the vehicle axes.

ARGMRR

components in the y coordinate sysiem of the angular accelera-
tion of the vehicle axes.
SIPMDR

fuel slosh frequency in the K-th degree of freedom.
TAWKI

vibration frequency assoclated with the j-th degree of freedom.
SEUY
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j;ih a‘jihAq&

ADGKHT

| KL , J inertia "symbols."
973779
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to e Submitted

s

o 211 cylindr’icnl tani:,

ki varsus xj (_é £ x: é)-Por k> 40.
)OK-‘ versus X i

Tor shructure, including banx: bub not fuel, 10.'1

r

o1 B ’ +h_r ;XK_; andBKi are glven.
s
(m 13,.‘0 h O g ore not given).
v . v

b. If P; » | s, then PMih, Vih and 0., ove glven (/p’l = 1,2,... P(;

i L 61?‘
J‘ # 0, then 7“; md Pwi ave given.

Por aserodynamnic parts of s%ruciural gactions,

i i o e 2 O)
ni}l’o-il.’\‘vt}t's“‘" ’T;ihnN‘-("'l
Wor a

Por structural vibraticn modes, GU).

ror the commutatiorn of structural londs, dezignations of points in the
sbructure, and, «ith each point, associated scctions, tanks, z2nd engineas
(that is, thrugt vectoring no.azln }.  Poinis awz a'*:si-'fnat(;g by giving
the nuibers € of sections and the sectional coordinstes Vegof the points.
Adith sach zectiorn, there must zlso be an indicabtion of which particles
and vhich asrodynamic parts will be included in the summaetions. Tor
come sectionz, -8ll particles and asrodynanmic parts will be used; for such
sections, the user should so indicate, beczusze this results in simplifi-
cation of sowme formulas., Submit values of ?'

'>r the computation of accelerations and deflections, designation of
points in the vehicle. Points are dezignated by giving the numbers 1 of
sections or teanks andh of particles within sections for whichP= |, Ir
i designates a tank or a section for which P = l,}llu not given.
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Jnta Required from the Basic SDF Program

1. MF’i for all tanks.

22,V \,/c:,_Qr,_(‘lrJ Vcr, (r-123)

3. F (= number of engines. Same as in VPCS. )

T, Ty, T (o2 €)

]
These are funtticn:z of time.

.
5. ?rq
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Data Required from the VPC Subprogram

1.

o

10.

For structure, including tanks but not fuel,
Srs )
m; :’)’?16";-. b dei, K (rea=st@25 0= "21"'5)
For the entire vehicle (structure, tanks, and fuel},
m, ‘9/2 ,S.T
‘a’i

v

/eu.i (ru:l.e.3)

For all_tanks,

%’F’;‘Z'\'

Information as to whether or not each equivalent tank is rectangular,
horizental cylindrical, vertical cylindrical, or spherical.

For rectangular tanks,

o ,r‘a; ,C‘-.,Ca-, y g JJ—FT.\

For horizontal cylindrical tanks,

,6-'“ S T B'\ ' RR\,Q'\ )h'._, 3?‘\"1
For vertical cylindricel tanks,

,ﬂf\ri ) Vi y Uiy Ruvi)

For sphericsl tanks,

B, R 'e“
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I

4.

Tomputations ond lguatlons

For restangular tanko,
i o5 Tellozy IF e = Vo oy =
IE Tu < Gy T =2 Py /1y
i Pi' > T2, Cay = Y‘e;/l"u

—

Qhusi = (25-Vry, (u=1,2,3; 9=1.2,...wy)

- ah u el
sinh arws: =3 (€ - e )
\ [ STCRY —Q-"lu..s'\)
cosh ange; - 5 (e + e
fanh ohge = 9N arue
cosln an uwel
tanh onus - sinn an uei
2

} 4+ COSN an gai

Wi = Wasy = \fcaf. Las—\)z—-‘t Yanlh an ¢ Cuw=1,2)

My = Mous, = M 1 8 tonh a;‘ Uy
(ash\) '“'-Zru't

QA usgh
_ hi - 4 tanh 2 =1\,
z =z -%[ 1 w-va)

(u=1,2)

N wss
’ 4 o + " C-'-;l’-asi
Jeo. =Jop <1 — 4+ 768 t tan }
Fli Fli — 5
' e (1)° rei[\ % (ra;}a]ﬂ E'%;l @s-4)

i al 15y
= wi anlh @
Jea JFQ:{I ... , 168 > T 2_ }
IR (@s-1)



i A an i
e - J.r:.ai{\ -~ _4 ¥ 168 Z Tanh a“ }

b+ (0 ) rai[i +((3_‘\a].“-5 Bt (25-1)°

Su‘F‘Pix K= 4G-1)+u +a(s-\) (u=\,a)
e
A Ki = m wi Z Ki When N =3 and t -u
= 0 otherwise (r,t=1,2,3)
A F My when 3tk

= 0 w\r‘le\nj#k

2. For horizontal cylindrical tanks,

ah,, = oMr, (s=t\,a,.. wi)
ahn g5 -an g,
s inhh AR, = 'é— (e L~ )
i an i ~ang;
coslt anei T 3 (e + € )
tanh aNg; = sinh ahs

cosnN  an st
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Aei » Bei) end Ve versus sin P

EinBi Au Aei Aa'\ E)\i Be'. Bs‘\ V?Ln Vﬂa'\ V?\ai
-1.00 .333 .088 145 .333 0 0 1.0000 | 2.4495 | 3.8730
- .90 <343 .139 .175 .338 .002 0 1.0100 | 2.3800 | 3.5400
- .80 .355 192 207 <344 .005 L001 [1l.0222 |2.3195 | 3.2939
- .70 . 367 240 202 .350 +009 .002 ' 1.0400 [2.2750 | 3.1400
- .60 .380 .286 279 .356 .013 .003 [1.0550 |2.2293 | 3.0216
- .50 394 . 325 .31k .362 017 .004 | 1.0650 {2.2000 |2.9400
- .hO .hOB 0362 1352 03& -022 -005 llUT93 2-1771 2-%62
- .20 438 430 1420 .382 .028 .010 {1.1176 [2.1564 [2.8266
.0 475 . 502 1486 .397 L 04O L014 |1.1662 12.1679 |[2.8213
.20 520 .560 +551 .413 048 .019 [1.2300 [2.2158 |2.8688
30 . 54l .592 . 584 Lh22 .053 .022 |1.2700 |2.2500 {2.9200
40 570 .623 .618 432 .059 L026 11.3198 [2.3108 |2.9816
.50 602 .659 .652 43 . 065 .029 |1.3800 |2.3800 {3.0800
.60 .635 .698 .688 453 071 .032 |1.4594 ]2.4940 [3.2062
.TO L6Th LTh1 .T31 JH6T 078 .035 [1.5700 |2.6400 |3.400Q0
.15 .698 LTET .755 7y .082 .037 |1.6500 12.7500 [3.5300
.80 728 .ToL .783 481 +O087 LOBO 1.7435 {2.9017 |3.7202
.85 .T62 .826 .816 493 .093 Lok 11.8900 (3.0800 |3.9500
+90 .808 867 858 .508 .10L LOUT 12,1300 13.4300 |4.3300
.95 875 .919 .919 .528 .110 L053 [2.4800 14.0000 14.9800
1.00 | 1.000 | 1.000 | 1.000 .558 .121 .058 13.5000 |[5.5000 |[7.0000
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ah o; Stﬂh [« ¥ B
Tanh —= = i
e I + cos\ ahg;

Wy = W ~ W“f‘ir tanh ang;

8 1’3!‘1‘1 L XY

Mk = M = M, T i3s3 v,
Yauh o
hi _ 4 YTawn 2
£ " Z, = 2 (1 an o )
/
J-F'n'. =0
. il an 5
J \ ZJ' : - .i—-— _._._._—--—.-“'65 +a.n“\ 2

Fa Fa&i | 1+ (Fy; )2 t re [I . (rli)a 1-!.( 5 ?:\ s—g—

: =1
Jean = Jeai {\ -_4A + 768 ' on 53
mki =ma&i = QQiLu‘(R\\ile AS‘\ QO&B\‘ (&::\laj----wi)

7l i
Wy = Waey = d?i/R“'\ \/ 7\51

’ ‘ N Q ,Q,— ( )E’ B a

m,u = mas'\ = c? \ ™ R\\" g COS B;

. = W+ sinpy

TF v -0, Yhen wm,, CTeri, W, and vy 0.
! ) s
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Suppix k=40i-1) + u + 2{s-1} (u

=1,2)
/Yo
K oM Z when rvr=3 omc\ L= =\
* © otherwise (r,t =1,2,3)
My = My when j-k
= O whewt  §#w,
3. For vertical c}/iimc\\ricﬂ\ tanks |
Y, = 1.84lle ¥, =5.33144 , f < B.53063I
ang = foru (s=1,2,3)
ax g; - AN g
sinh ang = + (e T - e )
e
ang - i,
cosli ang = L ( "y e )
2
cscht an st = \
S on sy
Tovl  on . = o angi
cosW  ahi g,
tavn  ansi = s onsi
a | + cosh astgy
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qui = l{J(A’s\) ac.c.ordiw% to the

IP Y'h = Q LPS\ =0

1)

Ui versus A%,

A i wsi
0 1.0
25 .982
L1 .956

1.00 | .791

1.46 | .66)

1.88 | .569

2.18 | .508

2,49 | 444

3.00| .372

3.77 i 290

4,00 | .268

L4511 .233

5,00 | .203

5.79 | .180

6.82 | ,152

8.60 | .122

10,00 | .101

£ Ars.‘ > lo:l\Usi =0
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When u; > | /N3

Fkoi

-

H

4l

‘ / n
]E‘e\la.\ua.‘\'ed ‘Flor- X \ = ﬁ\"‘ —

hi \
a2 , ,
i % X'.JPHGQX-\
"3
o [T LS AX
...._‘é |
Ry 4
ie I NS /
qui[ ) (ﬂ ) QQX‘
-'!é-h—

1
a

?



When u; < ="' /V&

L
’ Aefvi é ,
Fio‘ . -W;E\J[ﬂ J%ﬁ CQ)(]
3o

s: / JO cos[S'rr—-! ("2—

”

fw’a i} JC:_-\ evaluated {for )(: =€; .

ful-

C:ik ) %%li L i X ; ;El JQ)(I
2 k.
3 n.e
G“‘ ) f.w (-J(:t, )ng\
Go, - A SV Ax
2 Jrui
GK -_l” " X,'.(J[\K,)eoa)(l
2 by
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RViARTe ]

KS\

o
Ml,‘b*3,’|

A . MeiRi [ 2tann ¥ _;]
2,5%+3 6: s 3
’ F] ‘ 4
ALES: NP e & Ve = T Ve
Wi = M I3 B (R 28§ JeTasd
) 1 s=1 rs -
E Ru /0 .0 Vohi &
‘:‘4.r'|-|\‘rl (F\ﬁb" f&ti)+'1ra g KSh 53 [( “-‘"+\¢.b\

senins [(UL) (1) oo 2L L]}

ple vl i S D

o
ey
£
Me
n
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MJK,5+3.1 = ’r\.A_F; x; - E_Sgi (csch QAn .y )[)Cklﬁc,osh (mﬁ" hﬂbi’]}
5

¥

Mers, 13,y = Me: (Ki - \)/+anh ah o
en

R 3
s

2 .
Wz, v = T 85 fanh on g

) the ulmni equal ZEevro.

A
N, ~o0
MJK = ‘ufs-&} ) 43,0 when j =k = 4'(\i‘“) oW ‘\‘a(s-l)
= 0O winen J FK

'u'.ljk o whewv  both 3 avid K » 40 ‘out J F ow
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., TFor spherical tanks,

ng  Dsi, and VAi versus sin Bi

7 7 Fs
sin Bi Cl'. Ce‘c C3’\ D\'\ De‘. Dg," V7\li V7\ai V7\3i
-1.00 2hs51 122 § L080 .251 0 0 |[1.0000 |2.6500 |k.1200
- .90 .250| .16% | .134 .253 . 002 .001|1.0149 {2.5787 |3.7855
- .80 .255| .204 | .18k .256 .003 .0021.0344 12.5080 |3.4900
- .70 2601 242 | .229 .259 . 006 .003|1.0650 |2.4600 |3.2700
- .60 268 .276 | .2T2 .262 .01l .00k 11,0770 [2.3937 |3.1575
- .50 273 30T | 302 .266 . 012 .005 11,0997 |2.3585 |3.0750
- 40 L2811 .350 | .350 .270 .06 .006]1.1225 [2.3238 |2.9983
- .20 .305| 415 | .418 .278 .023 .011 |1.1790 [2.2013 [2.927h
.0 .335| .475 | .485 .290 .032 .015(1.2490 [2.2956 12,9138
.20 .3701 .535 | .545 .301 .039 .018 [1.3379 [2.3452 [2.9648
.30 .392 .565 | .578 .309 . Ol .02011.4000 |2.3973 |3.0259
10 4201 .595 | .612 .318 .050 022 11,4629 [2.4495 |3.0871
.50 453 .632 | .650 .328 .058 .024 |1.5800 |2.5600 |3.2200
.60 bo2 | 672 | L692 .338 . 066 L027 [1.6643 [2.65T1 |3.3377
.70 S4310 718 | .ThO .353 OTh .030[1.8300 |2.8200 {3.5900
T5 5718 .The | L768 .363 . 081 .032 11.9200 |2.9300 |[3.7300
.80 6201 JTTO | .79k .373 . 087 .033{2.0784% {3.1321 {3.9281
.85 .67L] .80k | .826 .388 .09k .037 [2.1800 |[3.3700 {4.1900
.90 .T32| .847 | .868 Yo 104 +040 [2,4200 (3.7700 |k.6400
.95 8181 .907 | .922 .433 117 043 12,7700 |[4.4300 |5.3000
1.00| 1.000 | 1L.000 [1.000 470 134 .07 14.0000 |6.0000 |7.5000
. =
m.,, = mgy., =’n"e;l?? Cf" cos B;(s=1,2,...w)

A

S

Wy ~ Wysi ~ \/rﬁ/i/ﬂl \l)(lsi

4

LI

p E] 3
Ty T "Tei R, Dsi cos B

-




5.

r

Jen = J;at =J_’F3i = O
It B, = i"‘-ai , Ythen

I
M .hn ;0-“& L'y EC\‘J.CL\ ZEexo,

e

K.t

My m . when J=k=4-(i-\\+u.+a(s~ﬂ

O when J* k.

F‘_or c.“ Jrcm.\{s N

IF H BRSO P(-'a;
—PF3'\ I'FQ'\ 'PF LAY
~Peai - Peq Les

I' /Q:. L. ,Q; rJ;:\i O 0 Ql.
,?'i ﬁea. Qi‘ O Jeey © ft ;
5 ?i ﬂz. ﬂ:‘ O O Jes ﬂ

L 4 L
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M = (Tean + Tiwi - Tin) /2
(:;ai =(J-:-z.i + J\-:\\ - j;:a\) /a

l—;aai = (J-;\'\ + J;ai '3;3'\) /a
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_.ED KiAji t BK"A&" (J o W = 4_0)
T 32 v -
O“FJ“ ) \Z:‘ M & ;‘ js‘. jua Lj y K > 40)
J ;li o o ‘W ﬁbuc
T A 2 /3 , )
H‘-—‘Flk N ,Z.._‘ [63'\ 531 5_\'\ ] o JFa\ o B:
| ° e Ingle:

For otructure | ‘mc\u.din% fanks but not Pluid,

i
s . =
:IQ F% =\ ,_[X wi ;?; iih 1Ji;; T wih

=\

(r,2=1,2,3, k=1 ,2,...n5 i-= \,a,..,S)

I.]G P'.= " Afr% =0,

Kt

E;, - ( Jai * Jai - 3\\)/42

/

lai = (T v Jy ‘Sai)/a
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/

‘-53[ = (J—n *Jai‘JBi)/a

I-P P =V or i? O_’r = 0O

ki ]
ra _ 3 s r
6&1 - % esi Bk;_
r s FA
e\\ E)Ki \
v r v e ﬁgfa
j,m =X - Cai Py ﬂﬁi
- 13 s
e3'|. 6\({ ﬂ'@‘

(r‘
n
%

1]
Mo
3

e
.

<
%

" e,i ee; 833 'A' W
AS j} = 3 ey
{ - i=1 8?; e:c easi VAN i
3 3 3 e
e ex es| |\,

- -
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[}
en
S
{NSK - \Z eﬂ
s ~
3
eli
AN
1
en ea.‘- e!
-

Z = Z ea 2 2
=74 = eaa esa
3 > 3
i eaieaij
-

el.i et-’-i e!i

s 2 a2 @

©5; =>; e, & 9,
3 L4 5

e €, s,

.

q)jk = 0.

[}
€ ai
2
€2

k-
€ai

Wi

YT

13\

- N

[, 2 ‘ 3 -r
(Bi'l Ka" -BJ: Kii) (ﬁji i

132

‘Aji

/|I

17 . T
e's: Ju -Kai - Ky
e3, | | - Ksi Jai - Ku
e;- - Kai -Xu  Jsi

3

'!‘5 nea N3
) 'l\ji - A_;',

2l 13% Al R /23
(A_h *AJ‘) A.“

Area)

-el ke (B Ksi = Byt T

A

5&‘.
=4
A wi

13
ﬁ Ki
€
" ' F3 3
eu e\i 1
1 e E
€ €2 €y
] 2 %
€ €,e 33_]

Bl

(B';Ku = B‘,?: ré;'.) (E’J‘? Kai™ B,;i Ku) (E’;: Gai - Bf Ksi)
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For the computation of structural loads due
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MGe =vY'ga - v5ga

14 For the computation of Stvuctural Loads
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