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ABSTRACT

The product moment matrix (PMM) is used for the estimation of linear model order
for flexible space structures from the input-output data. A new automated frequency
domain identification methodology is presented and experimentally verified for on-orbit
determination of transfer functions. The identification process is initiated by applying
stochastic inputs to the system giving rise to a nonparametric spectral estimate of the
structural parameters. The PMM algorithm obtains an initial estimate of the model order
and together with the initial parameter estimates, they provide an initializing transfer
function. The system transfer function is then obtained by curve fitting the spectral
estimates to a rational transfer function. This approach makes efficient use of the actuators
and sensors already available on the system for control applications and also demonstrates
that on-orbit identification capability is a realistic objective for the future space systems.
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1. Introduction

The mathematical modeling and identification of large flexible space systems have
been challenging tasks for several decades. The models for such systems should predict
the behavior of the actual system under restricted experimental conditions. Furthermore,
when correlated and tested against the actual data, they should explain the observed
behavior of the system through post-mission data analysis. In practice, the identification
problem is often separated into two parts: a) determination of the order for a linear model
and b) estimation of the parameter values of the resulting model. Clearly, in a linear
system the model structure is determined by the choice of the order. Hence, an incorrect
structural assumption may manifest itself in biased parameter estimates or may even lead
to erroneous conclusions on the results of the identification process (e.g., a large model order
leads to over parameterizations and identifiability problems; where as a small order may
result in a large bias in parameter estimates). This is of particular interest in the case of
on-orbit identification where model parameters have physical significance and the accuracy
of the parameter estimate is the primary objective of the system identification experiment.
On- orbit system identification enables on-line design of robust, high performance control
systems. This capability has the potential to improve the performance robustness and
control accuracy under operational constraints and environmental uncertainties far beyond
that attainable by using nominal system descriptions obtained from ground testing and
analysis alone.

This paper presents a new frequency domain system identification architecture de-
signed to operate with a high degree of autonomy and to restrict the “human in the loop”
requirements. This includes an automated estimation of model order in the presence of
measurement noise; the main subject for discussion in this paper. Major theoretical and
experimental developments associated with this approach are discussed in [10]. Different
techniques for model order determination have been studied [1-9]. They include fit-error
statistics [1], Akaike’s criterion [2], Kalman filtering [3], likelihood ratio test [4], methods
based on pole-zero cancellation [7], statistical F-test [8], and Parzen’s criteria [9]. These
methods are often estimation based oriented and utilize statistical methods for extracting
information about a system model from the observed data. They often require normality
assumption on the measurement noise and furthermore, they involve processing of large
volumes of data. Here, the product moment matrix [5] approach is chosen for a variety
of reasons and in each case it proves advantageous over alternate methods. For example,
the PMM requires no a priori assumption on the model parameterization and form and it
requires no knowledge of density or distribution functions of unknown parameters or data.
This technique is applicable to both deterministic and stochastic systems. Finally, the
PMM algorithm is robust with respect to uncertainties and it produces meaningful results
even in the presence of significant additive measurement noise. A brief discussion of the

PMM algorithm follows.
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2. The Product Moment Matrix

The idea behind the PMM approach is to analyze the correlation function of the input-
output variables for a linear model of changing structure. This will subsequently lead to a
pronounced dynamic behavior around the "true” order of the system. This behavior may
be observed through the determinants or eigenvalues of the product moment matrix with
elements constructed as follows.

Let {uix} and {yx} be a set of observations of input and output respectively (data)
which are contaminated by measurement noise. Let us also assume that the input signal
is sufficiently rich such that it persistently excites all system modes of interest. A linear
system of order n has a system function which is given by

_Y() _ Yiet f2i-12""
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B =56) T 1~ oy Guin )
letting

OT(n) = [01’ ceey 02n] (2)
and

AT (k,n) = [Uk—1,Yk=1,Uk=2,Yk=21+ - - > Uk—n, Yk—n] (3)

Then in time-domain, the measured system response is given by

yr = 67(n) A (k,n) (4)

For N measurements, the “generalized Hankel matrix” H(N) is as follows.

Yo i ... YN-1
Y1 Y2 .. YN A . .
H(N) = : : =it -2 i,7>0 (5)
YN-1 YN YaN-2

Similarly, the generalized Hankel matrix for the N x N block matrices formed out of the
shifted sequence yi4¢ Will be

H(N) = [yitj+e-2]
If a finite-dimensional realization for the system exists, denoting n* as the rank of its
minimal realization, then [21]

n* = Rank H(N) (6)
Since n* is the dimension of a minimal realization of the system which is unknown, it
will subsequently be referred to as the “true” order of the system. Note also that the
ordering of components in the vectors A(k,n) and 6(n) are such that for a higher-order
model, additional components are simply added to the end of these vectors. The product
moment matrix of the system is defined by:

N
Qln, N = Qu 2 5 3" AGkm) AT (y)
k=1
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where n is an assumed order for the system and N is the number of data points. If the
data is noise free, then @, will become singular for all n > n* [6], and

AR R N )

Hence, @, has the following properties:

det[Q,,]:{i g}forn{f}n* )

For an arbitrary value of N and an assumed value of n, the ratio

__det[@4]
Dn = det[Qn+1] (10)

is calculated for succeeding model orders n+1,...,n*, ..., nnax. If the value of D, exhibits
- a distinct increase compared to Dy,_;, then n corresponds approximately to n*. In the
presence of noise however, the Det[Q,] is usually non-zero for n > n*.

In practice, where the measurement noise is nonwhite, the enhanced PMM given by

@Qn=Qn-) (11)

n

is used. An estimate of ), the measurement noise contributions to the PMM, is obtained

n
by first collecting measurements from the system when the input to the system is identically
zero. Denoting the input measurement noise by n, and the output measurement noise by
ny, then Y is computed as
n

E'_'iny:ny,u:nu

The Q product moment matrix henceforth referred to as enhanced product moment
matrix (EPMM) will reduce to the formulations (7) depending upon the nature of noise
in the data. The EPMM, although computationally less efficient, gives a better estimate
of the system order in the presence of measurement noise.

An alternative representation of PMM is given as follows:

Qn = E[anaf] (12)
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where
= [uc Yo U1 y1-.. un—lyn—1]

and F is the statistical expectation operation. We will refer to Equation (12) as the
stochastic representation of PMM and the Equations (7) and (11) as the deterministic
representations of PMM.

When the underlying dynamical process is stationary, the correlations have the form:
Eluiy;] = Ruy(j — 1)

E[“i“j] = Ruu(j — %) = Ruu(i - 7) (13)
E[yiyj] = Ryy(j —-i)= Ryy(i - 3)

Then by assuming that the process is ergodic, temporal averages are equivalent to ensemble
averages, and the product moment matrix given in (7) has the simple analytical form:

Jim QN,n) = Qu(n) (14)
le,l) . le,n)

Qum)=| : - (15)
o) . Qlmm

Qg,,‘) _ Ruu(j —1) Ryu(j —1) | (16)

R"!l(j —l) Ryy(j - Z)

This explicitly gives the product moment matrix without requiring any additional pro-
cessing of the input and output data. Thus when correlations are available under these
circumstances, the product moment matrix can be constructed with considerable fewer
arithmetric operations than those required by the deterministic algorithms. The key prac-
tical issues are the validity of the assumptions regarding stationarity and ergodicity of
the signals and the means for calculating the correlation functions based on finite-time
data lengths. A brief description of modeling and identification algorithm architecture
and methodology follows.
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3. Functional Architecture, Modeling and Identification Description

The functional architecture is outlined schematically in Fig. 1. The flow of the various
processes is automated and controlled from a single human operator as described below.

a) The plant p(e’“T) is excited by one of a variety of possible input excitations
u(kT) of both stochastic (i.e., wideband or narrowband) or deterministic
(i.e., sine-dwell) types giving rise to plant output y(kT).

The wideband input is simply a random number generator which produces indepen-
dent uniformly distributed variates. The narrowband input is produced by digitally filter-
ing the wideband input according to desired spectral characteristics. The capability for
on-line digital filter design is provided as part of the system software. The sine-dwell inputs
are piecewise constant approximations to true sinusoids, consistent with the sample-and-
hold discretization.

Wideband signals are also constructed artificially using a technique which we call data
composition. This is done by designing a bank of bandpass filters to cover a wideband
portion of the frequency axis, and then running a separate experiment for each bandpass
process. The input and output sequences from all bandpass experiments are then composed
(i.e., added together respectively) to give data for what is effectively a single wideband
experiment. The realization of such a wideband excitation in a single experiment would
otherwise be impossible due to actuator power constraints.

b) The plant transfer function is identified nonparametrically by spectral esti-
mation (in the case of stochastic inputs) and by gain and phase estimation
in the case of sine-dwell inputs. '

For experiments using stochastic input excitation, spectral estimation is invoked to
compute the correlations Ry, Ryy, Ruy and spectral estimates P, Pyy, P,y from the input
and output data, as well as the plant transfer function estimate from the cross-spectral
estimate h = P,y /Py,.

For experiments using sine-dwell input excitation, the gain, phase, real and imaginary
parts of p(e’“T) at sine-dwell frequencies are determined in real-time using a recursive
least squares estimator with exponential forgetting factor. This approach is particularly
well suited to provide accurate estimation using sampled-data sinusoidal responses and to
operate in the presence of low frequency resonances. The time constant for the forgetting
factor is typically chosen to be several cycles of the sine-dwell response. The sine-dwell esti-
mates of plant gain, phase and real and imaginary parts of p(e/“T) over several frequencies
can be stored for later use by the transfer function curve fitting routine.

c) Anticipating parametric curve fitting to follow, the model order is esti-
mated using a product moment matrix (PMM) test.
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To overcome much of the guessing and “human in the loop” efforts typically associated
with model order determination task, an initial estimate of the model order is obtained
by PMM test, and then followed by a search for the optimal order in the vicinity of this
estimate by a sequence of curve fits with varying orders. The quality of each fit is judged
by the output error profile.

The PMMD operates on raw data, and generates the PMM directly from the plant
input and output. The PMMS assumes statistical stationarity for the underlying process
and generates the PMM from the smoothed estimates of the auto and cross covariances
produced from the spectral estimation software.

d) The plant is identified parametrically by fitting transfer function coeffi-
cients to the nonparametric data. Model order is determined by a sequen-
tial search starting at the PMM estimate.

A parametric transfer function estimate p is determined by curve fitting the coefli-
cients of a rational transfer function to the nonparametric frequency domain data. The
data in this case is-specified to be the spectral estimate h = P,;/P,, and/or sine-dwell
estimates. The model order is determined by successively increasing the number of modes
in the curve fit, starting at the PMM estimate, until an adequate output error profile is
observed. The curve fit involves the use of a least squares algorithm with a special iterative
reweighting technique which removes high frequency emphasis (typically associated with
equation error methods), and assures minimum variance estimation of the transfer func-
tion coefficients. Resonant frequencies and damping estimates are automatically found by
robustly factorizing the plant denominator polynomial with a special purpose routine.

e) The output error is determined to characterize the quality of the paramet-
ric transfer function estimate, and for later use in robust control analysis
and design.

The output error e = pu — pu is computed by subtracting the predicted output § = pu
from the measured data y = pu and then the additive uncertainty é,, = p — p is estimated
by the cross-spectral estimate A = P,./Pyy. The nominal plant transfer function estimate
p and the estimate A of the additive uncertainty é,, can then be used directly for robust
control analysis and design. The motivation and usefulness of using the output error
characterization of additive uncertainty, and its role in robust control design is discussed
in [10].

4. Testbed Description

Experimental demonstration and verification of modeling and identification software
performance was conducted on the JPL/AFAL Flexible Structure Testbed. The design of
this 3-D antenna-like structure was adopted as it exhibits many characteristics of a typical
large space structure. These include many low frequency modes, densely packed modes,
low structural damping, and three-dimensional structural interaction among components.
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In this section, a brief description of the testbed facility is given. Detail description can be
found in [10]. The main component of the testbed facility is shown in Figure 2. It consists
of a central rigid hub to which are attached 12 ribs. The ribs are coupled together by two
rings of pretensioned wires.

Functionally, the wires are intended to simulate the coupling effects of a reflective
mesh installed over the rib frame in an actual antenna. The ribs are 2.25 m in length.
The hub is of radius 0.6 m, making the dish structure 5.7 m in diameter. The tensioning
wires are installed in two rings at approximate diameters of 3 m and 4.8 m. As intended
to achieve low modal freqencies, the ribs are very flexible. Stand along, they are unable
to support their own weight without excessive droop. To prevent structural collapse due
to gravity, each rib is supported at two locations along its free length by levitators. Each
levitator is constituted by a counterweight attached to the rib with a wire which passes
over a low-friction pulley. The support locations were calculated to minimize the rms shape
deviation along the rib from the root to tip. The calculations led to supporting the rib at
the 40% and 80% points which are 0.9 m and 1.8 m from the rib root, the same locations for
coupling wire attachments. A flexible boom is attached to the central axis of the hub and
has a mass at its lower end to simulate the feed horn of an antenna of the secondary mirror
assembly or an optical system. The original boom length was 3.6 m, but for the convenience
of conducting experiment at ground level, a second, 1 m long boom is being used for most
of the experiments. The feed mass is 4.5 kg. The hub is mounted to a backup structure
via a two-axis gimbal which allows rotational freedom about two perpendicular axes in the
horizontal plane. The gimbal bearings support roughly one quarter the weight of the ribs,
the entire weight of the hub, boom, and feed, and their respective sensing and actuation
devices. Each of the ribs can be excited dynamically by a single rib-root actuator with a
lever arm of about 0.3 m from the hub attachment point. Each rib-root actuator consists
of a speaker-coil type device which reacts against a mount rigidly attached to the hub. In
addition, two speaker-coil type actuators are mounted on the hub to provide controlled
torquing about the two gimbal axes. These hub torquers apply linear forces to the hub at
its outer circumference to yield the required torques about the axis of rotation. Together,
these 14 actuators are capable of controlling all flexible modes of the structure. Each of the
24 levitators is equipped with an incremental optical encoder which measures the relative
angular rotation of the levitator pulley. These angular measurements are then translated
into the vertical motion of the ribs at the levitator/rib attachment points, relative to the
backup structure. Additional linear variable differential transformers (LVDT) sensors are
provided to determine the rib displacement measurements at four evenly space rib root
actuator locations. Hub angular rotations about the two axes are measured by two rotary
variable differential transformers (RVDT) mounted directly at the gimbal bearings.
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Figure 2. JPL/AFAL Flexible Structure Testbed.
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5. Case Study with Experimental Data

Results of a wideband excitation experiment are shown in Figures 3-A to H. The ex-
periment was performed on one of the two hub axes of the JPL/AFAL Flexible Structure
Testbed utilizing a collocated hub torquer and an RVDT angular sensor for instrumenta-
tion. The sampling frequency was 20 Hz. The experiment run time was 1638.4 sec. Figure
A shows the white noise input excitation u uniformly distributed between the range £1.5
nt-m. The output response y is shown in figure B. Figure C shows the PMM test deter-
minant values as a function of the assumed model order. The test yielded a model order
estimate of 4 for the system. This estimate is based on a threshold used for singularity of
PMM. The particular threshold value used in this experiment was found to consistently
under estimate the final curve fit model order which in this case is 6. Figure D presents
the transfer function spectral estimate h =, /P,,. Transfer function curve fitting on
h was performed giving rise to the identified parametric model of Figure E. The identi-
fied frequencies and damping coefficients are 0.114 Hz, 0.637 Hz, and 2.75 Hz, and 0.4,
0.0364, and 0.00604, respectively. The frequency values agree well with those of the finite
element model of the structure for two axis of rotation as shown in figure 4. Figure F
shows the computed output § of the identified parametric model subjected to the same
excitation input u. Figure G shows the output error e = y — §J, which has a maximum of
2.6 mrad as compared to 10 mrad for y. Finally, the additive uncertainty spectral estimate
A = P,./P,, is shown in figure H. It has a maximum gain value of 11.38 db. Compared
with figure D, the value of A is 10 db less for the more heavily damped lowest mode, and
29 db less for the two lightly damped higher modes. This indicates that identification of
their modal dynamics to within 30% and 10%, respectively, was obtained. Interestingly,
there are two modes, apparent in figure D, that were not fitted. Figure H shows that error
resulted from omitting those modes is even smaller than the fitting error of the identified
modes. This indicates that the curve fitting algorithm has properly determined their omis-
sion and produced a reduced-order plant model which minimizes the additive uncertainty.
The transfer estimate h in figure E, and the additive uncertainty A in figure H are now
directly usable for robust control design.

8. Conclusions

An automated model order determination and frequency domain identification meth-
odology was presented for the identification and control of large flexible space structures.
The product moment matrix approach was used for the estimation of a linear model order
to avoid statistical methods which are estimation based, often require processing of large
volumes of data, and require major assumptions on the nature of measurement noise. The
identification methodology was designed to operate with a high degree of autonomy in an
on-orbit environment, and was experimentally verified on a facility designed for emula-
tion of on-orbit testing and control scenarios. The experimental results indicated a close
agreement with those of the finite element model of the structure. Furthermore, it demon-
strated that the identification algorithm developed produces reduced-order models which
minimize a uniform bound on the additive uncertainty. Although the present investiga-
tion considered identification of single-input single-output transfer functions, multi-input
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Figure 3. Experimental Results using the Autonomous Frequency Domain System
Identification Methodology.
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multi- output system identification would also be accommodated with the present scheme
" by processing each input-output pair separately.
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