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ABSTRACT

The notched fatigue behavior of 13 alloys has been investigated in the temperature
range room temperature to -423 F and in the lifetime range 104 to 106 cycles. The
alloys studied were chosen on the basis of actual or potential application in missile and
spacecraft cryogenic systems, The materials were in sheet form and were fatigued in
fully reversed bending experiments., V-notches in the edges of the specimens had
theoretical stress concentration factors of about 3, 1 and 6.4, The results are presented
as 5-N plots and comparisons with unnotched fatigue strengths are made in tables of
notch sensitivity values. S-N plots of the unnotched fatigue data obtained in the previous
year are included for convenience,
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INTRODUCTION

The primary objective of the work reported here has been the investigation of the
fatigue behavior of certain alloys in the temperature range room temperature to -423 F,

The development of intercontinental missiles and other spacecraft using cryogenic
liquids as fuels or coolants precipitated an urgent need for data on the mechanical prop-
erties of engineering materials. In response to this need, a pProgram was initiated by
the Air Force at the Cryogenic Engineering Laboratory of NBS and at Battelle to gen-
erate such data and to incorporate them in a loose-leaf Cryogenic Materials Data
Handbook. * The work being reported here on the investigation of the fatigue behavior
of 13 alloys was conducted under Contract No. AF 33(616)-6888. In the first year of
this contract, the unnotched fatigue behavior of these alloys was studied and reported in
WADD TR 61-132. (1)** 1p the second year, the notched fatigue behavior of the same
alloys has been studied using medium and sharp notches. All of the data included in the
two reports has been submitted to Aeronautical Systems Division for inclusion in the
Cryogenic Materials Data Handbook. During the first year of the fatigue program, a
survey of the literature on cryogenic fatigue was made; the very limited data found in
that survey were also included in the Handbook.-

The effort in this investigation of cryogenic fatigue behavior of engineering mate-
rials has concentrated on 13 metallic alloys. The choice of alloys and conditions for
study in this program was based mainly on experience in the development of the Atlas
and Titan missiles, and in particular involved component parts such as valves, dia-
phragms, and switches. Although fatigue problems had also been encountered in cryo-
genic pressure vessels (tanks and piping), the special aspects of these problems were
not investigated in this program.

The experimental program was carried out on sheet specimens with medium and
with sharp edge notches. The specimens were fatigued in fully reversed bending ex-
periments in which the specimens were driven by means of a cam and connecting rod
{constant deflection experiments). The experiments were conducted at room tempera-
ture, -110 F, -320 F, and -423 ¥, with the specimens in contact with the coolants. It
was recognized that experiments in which specimens and coolants were in contact might
give results different from experiments in which such contact was prevented. However,
in many of the applications of current interest, contact between the metal part and the
cryogenic liquid would often be a condition of operation.

The results are presented as stress-lifetime and strain-lifetime plots in the life-
time range 104 to 10 cycles. Comparisons of the notched fatigue strengths with un-
notched fatigue strengths obtained in the previous work are made in terms of notch
sensitivity values. S5-N plots of the unnotched data are included for convenience.

*Quarterly or semniannuat additions to the Handbook are available from the Office of Technical Services (OTS), United States
Department of Commerce, Washingron 25, D, C.
*Numbers in parentheses refer to the references listed at the end of the report.

Manuscript released by authors March 14, 1962, for publication as an ASD Technical Report.
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MATERIALS

The materials and material conditions selected for investigation in the program
were based on specific applications such as valves, diaphragms, and switches in mis-
sile applications which were subjected to cyclic stresses. The choices were modified
to some extent to include a broader range of materials and material conditions. Thus,
in addition to providing engineering data for specific applications the program has been
useful in examining the general area of cryogenic behavior of engineering materials.

The material-condition combinations evaluated in this program included:

(1) 6Al-4V titanium alloy — annealed

{2) 2800 (9 per cent Ni) steel ~ normalized and aged

{3} 347 austenitic stainless steel — annealed

(4) 301 austenitic stainless steel -~ cold rolled

{5) "A' Nickel ~ annealed

{6) "K" Monel nickel alloy — cold rolled and age hardened

{7) Inconel nickel alloy -~ cold rolled

(8) Berylco 25 beryllium copper - annealed and age hardened
(9) Berylco 25 beryllium copper — cold rolled and age hardened

(10) 70/30 brass cold rolled and stress relieved

(11) Ni-Span C iron — nickel alloy - annealed and age hardened

{12) 1075 plain carbon steel — quenched and tempered

(13) 17-7PH precipitation hardenable stainless steel — TH 1050 Condition

{14) 17-7PH precipitation hardenable stainless steel — RH 950 Condition

{15} Inconel "X" nickel alloy — annealed and age hardened.

It was desired to obtain as complete a metallurgical processing history as possi-
ble for the materials; therefore the materials were ordered from the suppliers with
this in mind. In several cases chemical analysis, tensile yield strength, and ultimate
tensile strength were furnished, and the condition of the materials as shipped was also
specified. Chemical analyses and tensile tests at room temperature were conducted on
those materials for which this information was not supplied. Table 1 shows the chemi-
cal analyses of the materials and Tables 2 and 3 show the condition and room-tempera-
ture properties of the rhaterials in the condition in which they were tested. In the
second year of the contract it appeared desirable to identify the tensile properties of

the materials at -423 F. For some of the materials, reliable data from the literature
were already available. Some additional tests were conducted at Battelle.

2
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Table 4 summarizes available properties of the 15 material-condition combina-
tions investigated in this program.

Figures 1 through 15 are the stress-strain characteristics obtained at room tem-
perature and at -423 F where available for the tested materials. *

EXPERIMENTAL WORK

The equipment and the procedures us ed in this notch fatigue program were essen-
tially the same as were used in the unnotched program. However, for completeness, a
full description of the specimens, the equipment, and the procedures for both notched
and unnotched experiments is detailed in the following sections.

Design of the Notched Fatigue Specimens

The notched fatigue specimens used in this program were similar in size and
shape to the unnotched specimens used earlier. The unnotched and the notched speci-
mens were designed with small over-all dimensions in order that the cryostats could be
small, thus minimizing the volume requirements of liquid hydrogen.

The unnotched and notched specimen geometries are shown in Figure 16. In the
notched specimens a 60-degree V-notch has been imposed on a continuous radius which
approximates the constant stress section of the unnotched specimens. The nearly-
constant stress section minimizes the longitudinal stress gradient near the notch. The
same basic notch was used for both the medium and the sharp notches, with the root
radii for the medium notches (K = 3) being approximately 0. 005 inch and for the sharp
notches (K = 6) being nearly 0.0025 inch. The dimensions and the shapes of the
notched specimens were chosen so that the notches could be fabricated reproducibly
without unusual difficulties. Since the notched and unnotched fatigue specimens were
made from the same lots of sheet materials, the thicknesses were the same, ranging
from approximately 0.02 to 0.08 inch for all of the materials. The exact thicknesses
of all materials are indicated in Tables 2 and 3.

Discussion of Theoretical Stress Concentration
Factors {Kp) for Bending(3)

Probably the most widely used theoretical stress concentration factors for
notched plates in transverse bending are based on a solution by Leel#) and are presented
by Petersen{®) as plots of KT versus the ratio of notch root radius r to net width d.
lee's solution was derived for hyperbolic notches in an infinitely wide plate using
classical thin-plate theory. The notched specimens used in this fatigue program do
not satisfy the assumptions inherent in Lee's solution because of their finite width
(finite notch depth) and finite thickness. Determination of the effects of finite width and
finite thickness on the value of Ky would require experimental measurement using pos-
sibly a photoelastic model or mathematical analysis for a notched plate of finite width
and thickness, a large task.
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A gualitative idea of the effect of finite plate width is suggested by a series solu-
tion of a plate with finite-depth notches recently accomplished by Tamate and Shroya(f’}.
Their results, modified for easier comparison with Lee's results, are shown in Fig-
ure 17. Inspection of the curve for semicircular notches shows that as the n/d ratio is
increased {withn/r = 1), the K factor increases nearly linearly. This would indicate
.11

that for the n/d ratio of interest (8 = 0. 16) ; the K value would be about 2.6, con-

siderably less than the Peterson-Lee value for the same r/d ratio. However, the range
of n/r of interest is from approximately 18 to 36. An estimate of the effect of increas-
ing n/r from 1 to 18 or 36 is given by Figure 120 in Petersen's book. (This is strictly
applicable only to tension or in-plane bending, but the K for the tension case is the
upper limit for the transverse-bending K, since it represents the Ky for transverse
bending for an infinitely thick plate). Figure 120(5) shows that for n/r values of 18 and
36, K has values greater than for nfr = 1. It is not known whether or not the effects
of a small n/d and a large n/r cancel each other in the range of interest, but qualita-
tively they are opposite in effect.

The effect of plate thickness on K values is equally difficult to assess. The most
widely used theory for moderately thick plates is Reissner's{7) which takes into account
the effects of transverse shear deformation and the transverse normal stress. Another
approach would be to consider the problem as one in three-dimensional elasticity. How-
ever, there is no known theoretical solution for transverse bending of an appreciably
thick notched plate. Also, there are no experimental data for this case. In view of the
paucity of information on this problem, the relation between plate thickness and K can
only be inferred by consideration of analogous problems. Apparently the only available
literature on this problem is that of Reissner{?) and of Naghdi(s), who applied Reissner's
theory to an infinite plate with an elliptic hole. On this basis, it is estimated, for the
range of thicknesses of interest (0.02 to 0.08 inch), the true values of Ky are only 0.05
and 0. 10 (or about 1 to 3 per cent), respectively, higher than the thin-plate values.

The appropriate plots in Petersen's book for determination of K values for trans-
verse bending are Figures 37 and 123 for K  values equal to or less than 3 and greater
than 3, respectively. The discussion above suggests that Ky values determined from
Figures 37 and 123 may deviate somewhat from the true values. However, means of
determining more exact values are not available, and use of these figures has the ad-
vantage that they are well known and generally accepted.

Fabrication of Specimens

The machining of the sheet specimens was done by clamping some 10 to 20 blanks
between 1/4-inch-thick steel plates. Then, the holes for the grip section and the hole
in the small end (which was cut off after machining, see Figure 16) were located and
drilled. Allen head machine screws were installed in these holes to clamp the stacks
of specimen blanks together for the entire machining process. The stacks were then
squared to final over-all size by milling. In the case of the unnotched specimens, mill-
ing cutters with the appropriate radius and special jigs were used to produce the final
shape.

In the case of the notched specimens, the notches were next roughed in within

about 0,020 inch of the final value of d (d20.70 inch) using a milling cutter before mill-
ing the 1.5-inch radius. The final cuts in the notches were made with carbide tools
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used as fly cutters. These tools had been precision ground to a sharp 60-degree V and
the tips hand-honed to appropriate radii measured on a 50X shadowgraph. In order to
achieve nearly the same values of K (either 3 or 6.3) for all the materials, minor
variations in tool dimensions were taken into account during machining in arriving at
the final exact values of net widths d.

Finally, after the notches were finished, the radii of 1.50 inches were formed by
milling, using cutters with 3.00 inches diameter. The center of a cutter was moved
during cutting toward the stack of specimens along the dashed line shown in Figure 16,
so as to achieve the desired gross width D = 0. 81 inch on the notch line.

Procedure for Determining the Values of K

After machining (and heat treatment, when appropriate) the stacks of specimens
were opened and all specimens numbered consecutively according to their positions in
the stacks. The value of the theoretical stress concentration factor for each material
was then determined by measuring accurately the actual final dimensions. A number
of specimens were selected from each stack, generally one from each end and one from
the center. The notches of these specimens were then photographed on a Bausch and
Lomb Research Metallograph at magnifications of 50X and 100X for the medium and the
sharp notches, respectively. Figure 18 shows such photographs of notches in three
different stacks. An average root radius and an average notch depth were then obtained
from measurements made on all the photographs obtained for the material. The net
width d of the specimens was measured on a shadowgraph at 50X by micrometric trans-
lation of a specimen from each stack. The gross width D of the specimens at the notch
line was then obtained as the sum of the net width d and twice the notch depth. The

ratio % , root radius to net width, and the ratio -?- , the gross width to the net width,

were then used to find the value of Ky from Figure 37 or Figure 123 in Petersen's(5)
book, for Ky values near 3 or 6, respectively. The medium notch factors, which were
mostly in the range slightly above 3, were determined by extrapolating the curves in
Petersen's Figure 37.

Description of Experimental Equipment

The specimens were tested at a stress ratio R = -1 {fully reversed bending) in
three modified Krouse-type plate and sheet fatigue machines. Figure 19 is a view of
the specimen support and drive mechanism of one of the two identical machines used
at -320 F, -110 F, and at room temperature. Although the same specimens were used
at -423 F as at the other temperatures and were mounted and driven in the same way,
the design of the -423 F fatigue machine, shown schematically in Figure 20, resulted
from an effort to minimize the heat capacity of the supporting structure and the heat
transfer into the working space.

The specimens were clamped to the base in each machine with four machine
screws (two screws for the unnotched specimens) through a 1/4-inch-thick steel plate.
Double V-block or knife edge arrangements, which are attached to the drive rods of the
machines, deflected the specimens. The separation of the knife edges was adjusted for
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FIGURE 19. CLOSE-UP VIEW OF MACHINE FOR USE TO -320 F
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each maserial so that their total separation was about 0. 005 inch greater than the fatigue
specimen thickness. Thus, only one knife edge was in contact with the specimens at a
time, allowing free sliding between knife edges and the specimens during the deflections.
Each of the drive shafts, restricted to movement on its own axis by ball bushings, is
attached through a yoke and pin to a crank and in turn to an adjustable cam.

The cycling rate in the two machines used at ~320 F and above was 1725 cpm. The
third machine was adjustable to one of three rates: 1725, 3450, and 5175 cpm. This
latter machine was run mostly at the higher rate of 3450 cpm rather than at 1725 cpm in
order to minimize liquid-hydrogen consumption. In the development of S-N curves over
the range from 104 to 100 cycles, the initial cooling and heat input during cycling were
such that about 15 experiments could be completed with 150 liters of liquid hydrogen.

After clamping a specimen into a machine, a Dewar containing the appropriate
liquid for the desired temperature (methanol and Dry Ice for -110 F and liquid nitrogen
for -320 F) was raised around the specimen. In the liquid-hydrogen tests, two Dewars
{one within the other, each double walled and evacuated) with a close fitting foamed
polystyrene lid enclosed the specimen. Both Dewars were first precooled with liquid
nitrogen; the outer Dewar was kept full and the smaller inner Dewar after being pre-
cooled was emptied by purging with warm hydrogen gas. This inner Dewar was then
filled with liquid hydrogen.

In order to monitor the level of liquid hydrogen {or sometimes nitrogen) around
the specimen, a liquid-level device was constructed, based on the change of resistance
with temperature of carbon resistors. A Wheatstone bridge circuit was built similar to
one described by Scott{?). Three 1000-ohm Allen Bradley carbon resistors were
mounted with their axes horizontal on the outside surface of the 2-inch tube, the lowest
one level with the specimen and the others about 3/4 inch and 1-1/2 inches above the
first. The three resistors could, in turn, be connected to the circuit by means of a
switch. When one of the three resistors was immersed in liquid hydrogen and was
switched into the circuit, the circuit meter read near zero; if the resistor was above
the liquid surface, the meter read above half-scale. When liquid nitrogen was used
around the specimen, the corresponding meter indications were about 0.6 full scale and
greater than full scale, respectively.

The shutoff mechanism of each of the machines used at -320 ¥ and above, part of
which is visible in Figure 19, consists of a rod in light, spring-loaded contact with the
specimen on its axis and about 1/8 inch outside of the failure zone. The rod is driven
up and down by the specimen until the specimen breaks, at which time the broken speci-
men stub comes to rest in its neutral position. The upper end of the driven rod op-
erates an electrical switch. When a specimen breaks, the switch stands open and an
electronic circuit shuts off the motor by means of a relay. This shutoff mechanism was
designed after various attempts to set up a switch with the specimen itself an element
in a circuit. Such switches were unsuccessful mainly because of too great an electrical
conductivity of liquids usable with Dry Ice. No shutoff mechanism was incorporated in
the liquid-hydrogen machine.

Procedure in Fatigue Experiments

After mounting a notched specimen in its grip and adjusting the separation of the
knife edges as described above, the load-deflection characteristic of the specimen was
measured.
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Figure 21 shows a schematic diagram of the arrangements used to obtain deflection
measurements by handing weights on each specimen. After a specimen had reached the
desired test temperature the pin was removed from the clevis and a beam set on the
clevis. Positions of the specimen were read on a micrometer before and after incre-
ments of load. For convenience, the first specimen of a material to be tested at each
temperature was usually loaded in some 8 to 10 increments up to the estimated maxi-
mum load required. Succeeding specimens were then loaded with only that load giving
the desired maximum stress level for that experiment. The cam was then adjusted in
each experiment so that the specimen deflection, measured by the micrometer, agreed
with the value just obtained in static loading. The motor was then run until failure of
the specimen.

After completion of an $-N curve, the static load-deflection data were combined to
obtain an average load/deflection ratic for use in calculating the stresses. The maxi-
mum stress in each experiment was calculated in terms of the actual maximum deflec-
tion, the load/deflection ratio, and the geometry of the specimen by means of the
formula § = MIS’ where S is the stress, M is the moment at the notch line, and I/c is
the section modulus of the specimen at the notch line. This method of calculation of
stresses for constant-deflection experiments does not, of course, account for possible
changes in the stress-strain characteristic of a material during fatigue experiments.
However, for materials which are strengthened by strain cycling the calculated stresses
should be conservative from a fatigue ~design viewpoint.

Figure 22 shows typical notched specimens before and after fatigue failure.

In the first year's work with unnotched specimens, it had been planned to calcu-
late stresses from measured strains and modulus values obtained at the Cryogenic
Engineering Laboratory at Boulder. Accordingly, calibration experiments were car-
ried out with two specimens of each of the materials, one specimnen being used in the
liquid-hydrogen fatigue machine and the other specimen in one of the two other identical
fatigue machines.

Two Type A-7 SR-4 bonded wire strain gages were applied to each of the calibra-
tion specimens. The gages were cemented on opposite faces of the specimen at points
centrally located on the axis in the constant-stress section. In use, the two gages were
connected in adjacent arms of a bridge to a Type N strain-gage indicator. The speci-
mens were mounted in the usual way, but for calibration, the drive shaft was discon-
nected from the crank and cam. The dial indicator was mounted under the knife-edge
grip to measure deflections as it was for fatigue experiments. The drive shaft was
pushed downward against the specimen and dial indicator by a micrometer screw, which
permitted accurate increments of deflection and a check on dial-gage readings. Strain
readings were taken at small deflection increments up to the maximum deflection used
for each material in fatigue experiments. The resulting calibration curves were used
to convert deflections in fatigue experiments into strains.

The calibration procedure described above had the advantages that each material
was calibrated with a specimen identical in geometry and in metallurgical condition to
the fatigue specimens, and that deviations from ideal rigidity of the mounts for the
specimens of different stiffness were automatically accounted for in the calibration.
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In addition to the static calibration carried out as described above, experiments
were conducted to verify that the deflections with the machine running were close to the
statically measured values. Several experiments of this kind were performed which in-
cluded the most extreme conditions of specimen thickness and cycling rate {in the case
of the liquid-hydrogen apparatus). Deflections of the knife-edge grips were measured
by means of a micrometer screw. With the machine running, the micrometer screw
was slowly advanced until it was touched by a point of the knife-edge grip upon each
downward excursion. The touching of the grip and the micrometer was detected by
means of a very sensitive electronic ohmmeter device which gave indications on an
electric ""eye™. This device permits easy detection of deflections of less than 0.001
inch. It was found from these experiments that dynamic and static deflections did not
differ by more than about 0. 001 inch.

RESULTS

The results of the fatigue experiments are shown in S-N (stress or strain versus
number of cycles to failure) plots.

The notched data are all presented in terms of stress. The stress values were
calculated from measured load-deflection data as described above. In the first year's
work on unnotched specimens only strain-deflection data were obtained (using SR-4
strain gages). It was intended to convert these data from strain to stress by means of
stress-strain plots. However, stress-strain data for all the materials at each of the
four temperatures did not become available from the Cryogenic Materials Data Hand-
book program. Consequently, some of the fatigue results are plotted in terms of strain.

The unnotched data (K = 1) are shown in Figures 23 through 37. The medium
notched (Kyp = 3.1) data are shown in Figures 38 through 51. The sharp notched (Kp =
6. 3) data are shown in Figures 52 through 56.

DISCUSSION

Beahvior of Metals at Cryogenic Temperatures

The behavior of metals at cryogenic temperatures has generally been measured
in terms of tensile strength, notched tensile strength, yield strength, and reduction of
area at fracture or impact.

In more recent years the problem of brittle fracture has been identified as com-
prising two questions: (1} what is involved in initiating a crack, and {2) what is involved
in propagating a crack? The separate aspects of initiation and propagation have been
recognized in fatigue and work is now being carried cut in a number of laboratories on
these aspects. QCurrent fracture mechanics analyses that have been undertaken to gen-
erate design data have usually made the basic assumption that cyclic loading is not
involved (10), Research efforts are being carried out on fatigue damage and fracture,
with the aim of providing design data{ll}.
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The generalities, trends, and interpretations of research that have been con-
ducted on materials at cryogenic temperatures should be a useful background in attempt-
ing to understand how a metal behaves under cyclic loading at these low temperatures.

In general, the ultimate tensile strength and tensile yield strength of metals in-
crease with decreasing temperature. Along with the increased strength a reduction in
ductility occurs. For some metals it has been found that below a certain temperature
range (termed the brittle-ductile transition temperature range) little or no ductility
remains.

This brittle-ductile transition-temperature range is dependent not only on the
metal and its condition but also on the type of test and how it is conducted. For exam-
Ple, an increased strain rate or increased triaxiality of stress raises the transition
temperature. Also, metallurgical structure affects fracture toughness and the factors
of crystal structure, interstitial elements, impurities, grain size, and microstructure
have been studied.

The transition from ductile-to-brittle behavior is very pronounced for body -
centered cubic metals such as alpha iron and beta titanium. Other crystal structures
which undergo transition are the hexagonal close-packed structure, which includes
alpha titanium, zinc, and cadmium; the body-centered tetragonal structure (tin), and
the body-centered rhombohedral structure (bismuth). Face-centered cubic metals such
as gamma iron, nickel, copper, and aluminum do not exhibit transition behavior. The
situation is complicated by the fact that engineering alloys may contain combinations of
crystal structures, interstitial or impurity elements, and may undergo phase changes
or phase rearrangements as a result of heat treatment or cold working. Consequently
the chemistry and condition of an alloy may greatly affect its performance at cryogenic
temperatures.

A fairly representative group of engineering alloys has been evaluated in this

fatigue program and it will be shown that many of the factors mentioned above influence
fatigue strength.

Effect of Notches and Low Temperatures on Fatigue Behavior

The unnotched fatigue strength of metals at room temperature generally increases
with the tensile strength of the metal and, within a given alloy system and set of test
conditions, the fatigue strength can be estimated to be some fraction of the tensile
strength. While a notch often raises the tensile strength of a metal the fatigue strength
is reduced. The effect of a notch on the fatigue strength of a metal is described by its
notch sensitivity, g:

q_KN-l
- I a2
KT—I

where Ky is the ratio of unnotched to notched fatigue strength, and Kt is the theoretical
stress concentration factor for the notch. Numerical values of the notch sensitivity g
of a material normally vary from zero for complete insensitivity to unity for a material
whose fatigue strength reduction is equal to that predicted by the theoretical stress con-
centration factor. The few cases in which Kn appears slightly greater than KT may be
ascribed to experimental error.
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As temperature is decreased the notch sensitivity, q, approaches 1.0 for a brittle
material and rises slowly, if at all, for a ductile material. Table 5 lists the notch
sensitivities at Kp = 3.1 for the metals studied in this program. It is noted that the
body -centered cubic metal, plain carbon 1075 steel, has a q value approaching 1.0 at
-320 F and below. At -110 F the 1075 alloy has such a low notch sensitivity that it
bears further investigation. Low-temperaiure fatigue behavior is so poorly understood
that apparent anomalies will have to be investigated by testing at intervening tempera-
tures and with additional heats or lots of material. At -320 F and below brittle behavior
can apparently be expected from 1075 steel.

The heavily cold-worked 301 austenitic stainless steel does not exhibit high notch
sensitivity until the lower temperatures are reached. This pattern is in accord with
published tensile data on cold-worked 301 in which investigators have attributed low-
temperature brittleness to the formation of martensite from the unstable cold-worked
austenite. The 347 austenitic stainless steel which was not cold worked did not exhibit

_high notch sensitivity.

An isolated case of high notch sensitivity was obtained for the alpha-beta titanium
alloy at -320 F. Here again, as in the case of the 1075 steel, the data suggest that
more research effort is needed to confirm or explain the results.

A comparison of the materials should not be based on notch sensitivity alone,
however, as the fatigue strengths themselves present an interesting story. Tables 6
through 9 summarize the fatigue results at. each of the four temperatures.

In the notched experiments the nickel alloys showed up well in comparison with
the other alloys investigated. Inconel "X!' was outstanding among the nickel alloys. At
the lower test temperatures the notched annealed Type 347 stainless steel moved up in
ranking until it matched the K1 = 3 notched strength of Inconel "X" at -423 F. In con-
sidering Type 347 for its high notch fatigue strength at -423 F, however, one must keep
in mind its low static yield strength at room temperature.

It is interesting to note that for the two material conditions of beryllium copper
evaluated (annealed and age hardened, and cold work and age hardened), there was
little difference in the fatigue strengths, compared with the difference in their static
tensile strengths.

The 70/30 brass alloy was not the highest nor the lowest strength material for
any temperature or notch condition. However, the cryogenic fatigue behavior of this
material appears remarkably regular in comparison with many of the other materials.

As might be suspected, the titanium alloy 6A1-4V compares well with the other
materials on a strength/weight basis. The 6Al1-4V alloy is compared on a strength/
weight basis with outstanding alloys at each temperature and stress concentration con-
dition in Table 10. It would be interesting to investigate an alpha titanium alloy such
as B5Al-2.5Sn which has been shown to have good notched tensile strength at -423 F.
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TABLE 5. NOTCH SENSITIVITIES WITH Kr=3.1

Nortch Sensitivity Factor, q, at Indicated Numbers of Cycles

) Room Temp -110 F =320 F -423 F

Material 108 108 10° 10° 10° 108 10° 108
301 88 0,41 0.88 0.33 0. 52 0,50 0.76 - -
T70/30 brass 0,21 0,11 0.29 0,23 0,42 0.38 0.53 0,52
1075 steel 0,35 0.30 - - -— - - -
2800 steel 0,17 0,43 - - - . - - -
Ti-6Al-4V 0,25 0.48 0,18 0,34 0,61 0.93 0,46 0,51
347 8§ 0,03 ' 0.15 - - - -- -- 0.02
"A” Nickel -- -- .- -- -- -- -- --
"K" Monel 0.16 0,19 0.17 0.27 0.13 0,18 0,25 0,52
Inconel 0.27 0.20 - -- - - - P
Inconel "X" 0.11 0,08 -- - - - - -
Berylco 25, AT 0,42 0,48 0.28 0.53 0,36 0,44 0,45 0,77
Berylco 25, 1/2 HT 0.39 0,39 0,35 0.43 0,28 0,34 0.25 0,41
Ni-Span G 0.29 0,52 0.25 0, 66 0.28 0.58 0.15 0.54
17-TPH (RH 950) 0,95 0.82 -- -- - -- - --
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TABLE 6. SUMMARY OF FATIGUE RESULTS AT ROOM TEMPERATURE
FORKT= 1, KT= 3.1, AND KT= 6.4

Fatigue Strength, ksi, atIndicated Lifetimes

109 Cycles 108 Cycles
Matezial Kr=1 Kr=3,1 Kr=6.4 Kr=1 KT=3.1 KT = 6.4
301 104 56 - 72 25 --
70/30 _ 617 46 44 34 26 25
1075 91 51 -- 50 30 --
2800 " 59 - 703 37 -
6AL-4V 63 41 a1 50 25 25
347 3a(® 36 39 342 26 26
“A" Nickel @ 18 -- {2) 16 -
K" Monel . 90 66 - 55 39 -
Inconel 96 61 -- 56 39 -
Inconel "X" 108(2) 86 79 ) 74 62 51
Berylco 25-AT 94 50 - 60 30 -
Berylco 25-1/2 HT 78 43 4z 56 31 28
Ni-Span C 112 70 - 82 39 -
17-7PH (RH 950) 115(2) 39 - 85 % -
17~7PH(TH 1050) 114 - - 86 - --

.(a) Unnotched fatigue data for these materials are in the plastic range and reported in strain. These stress values are estimated
from available uniaxial stress-strain data. :
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TABLE 7. SUMMARY OF FATIGUE RESULTS AT -110 F

FORKy =1, Kp = 3.1, AND Kp= 6.4

Fatigue Strength, ksi, at Indicated Lifetimes

105 Cycles 106 Cycles
Material Kp=1 Kr=48,1 Kr=6.4 KT=1 KT = 3.1 Ky= 6,4
301 115 68 ~- 65 31 —-
76/30 90 54 51 o4 as 34
1075 (a) 62 -- (a) 44 --
2800 () 65 - (a) --
6A1-4V 72 52 43 55 32 27
347 (a) 58 58 (2) 417 46
"A" Nickel (a) 22 -- (2) 18 -
“K" Monel 100 4 -- 67 43 --
Inconel (a) 70 - (a) 40 -
Inconel "X” (2) 92 83 (a) 60 54
Berylco 25-AT 100 63 -- 70 33 --
Berylco 25-1/2 HT 81 50 49 67 35 35
Ni-Span C 119 8 -- 100 46 -
17-7PH (RH 950) - 47 -- - a2 -
17-TPH{TH 1050% 137 -- - 112 - -

(2) Unnotched fatigue data for these materials are in the plastic range and reported in strain,
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TABLE 8. SUMMARY OF FATIGUE RESULTS AT -320 F
FORKT = 1, Kp = 3.1, AND KT = 6.4

Fatigue Strength, ksi, at Indicated Lifetimes

10% Cycles 108 Cycles
Material Kr=1 KT+=3.1 KT = 6.4 Kt=1 Kr=23,1 KT=6.4
301 37 €6 == 115 44 ==
70/30 125 64 66 72 39 41
1075 (a) ag -- () 29 -
2800 (a) 65 -- (&) a7 --
BAL-4V 97 49 43 80 27 27
347 (8) 65 76 (a) 50 58
A" Nickel {3) 24 .- (ay 21 --
"K* Monel 105 82 - 69 48 --
Inconel (a) T2 -- {a) 40 -~
Inconel *X* (a) 101 97 (a) 4 59
Berylco 25-AT 114 65 -- 75 39 --
Berylco 25-1/2 HT 106 €7 57 81 47 33
Ni-Span C 129 80 -- 100 45 --
17~7PH (RH 950) - 63 -- - 45 -
17-TPH {TH 10a0) 160 -- -- 140 -- =

{a) Unnotched fatigue data for these materials are in the plastic range and reported in strain,
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TABLE 9. SUMMARY OF FATIGUE RESULTS AT -423 F
FORKT = 1, KT = 3.1, AND KT = 6.4

Fatigue Strength, ksi, at Indicated Lifetimes

105 Cycles 108 Cyeles
Material Kp=1 Kr=3,1 Ky = 6.4 Kp=1 Kp=3,1 K= 6,4

301 107 50 -- 97 -- -
70/30 172 79 7 102 49 47
1075 (a) 38 -- (a) 30 --
2800 (a) 58 -- (a) 37 -
6A1-4V 102 52 54 m 37 29
347 (2 82 174 7t® 67 48
"A" Nickel {a) 41 -- {2) a7 --
"K" Monel 142 95 -~ 101 48 -
Inconel (2) 98 - (a) 47 --
Inconel " X" {2) 101 {a) 67

Berylco 25-AT 156 80 -- 113 43 --
Berylco 25-1/2 HT 120 9 72 84 45 36
Ni-Span C 145 110 -- 122 57 --
17-TPH (RH 950) -- 8 -- -- 57 --
17-TPH (TH 1050) 129 -- -- 112 - --

(2) Unnotched fatigue data for these materials are in the plastic range and reported in strain. These stress values are estimated
from available uniaxial stress-strain data,
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TABLE 10, FATIGUE STRENGTH/DENSITY COMPARISON OF 6A1-4V TITANIUM WITH OTHER ALLOYS S

Fatigue Strength at 106 Cycles/Density, 10° in,, at Indicated Temperatures and Stress Concentrations

Material RT/1  RT/3 RT/6 -110 F/1 -110 E/3 -320 F/1 =320F/3 -423 F/1 =423 E/3 ~423 F/8

6AL-4V 312 156 156 . 344 200 500 169 481 233 181
Inconel "X~ ' 246 207 -- . 200 - 213 - 203 -
70/30 110 084 081 175 117 934 127 332 159 153
347 <117 090 090 - 162 - 172 241 231 165
Be 25 ~ 188 104 094 296 118 273 158 282 151 121
1/2 HT :
Ni-SpanC 278 132 - 340 156 340 153 415 194 -
CONCLUSIONS

This report has presented data describing the effects of notches and of low tem-~
peratures on the fatigue behavior of 13 alloys. In choosing materials for specific appli-
cations, many material factors other than fatigue behvaior must often be taken into
account, such as thermal or electrical conductivity, corrosion resistance, density,
fabricability, magnetic properties, mechanical hysteresis and related properties, static
mechanical strength properties, etc. Since fatigue strength and notch sensitivity are
only two among several factors which the designer must account for, attempts to order
materials in some order of merit are practically of little value. When the principal
requirements of a specific application have been determined, however, usually the
choice of a material will be reduced to a few materials with a suitable combination of
properties. In this light, the following conclusions pertain to the specific materials
studied and are based only on data in this report:

(1) For most conditions of temperature and notch sharpness, the 6Al-4V
titanium alloy is better than the other alloys on a fatigue strength/density
basis.

{2} In the unnotched condition and at the three highest temperatures, the
17-7 alloy has the highest fatigue strength; at -423 F the N1 Span C alloy
has the highest fatigue strength.

{3} In the notched conditions, the nickel alloys compare favorably with the
other alloys, Inconel X being ocutstanding among the nickel alloys.

(4) The notch sensitivities of the face-centered cubic metals increase only

slightly with decreasing temperature; for Berylco 25, 1/2 HT, no 51g-
nificant change in notch sensitivity occurs.
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(5) For the two conditions of Berylco 25 evaluated the differences in fatigue
strengths are small compared with the difference in their static tensile
strengths.

(6) The 301 stainless steel XFH apparently develops high notch sensitivity
only below -320 F. In spite of its high-notch sensitivity at -423 F,
however, it does have measurable fatigue strengths.

{(7) The hardened 1075 steel also has a relatively high notch sensitivity at
cryogenic temperatures, but its measurable fatigue strengths, plus its
recognized spring qualities, would qualify this alloy for some cryogenic
applications.

(8) The Type 347 stainless steel and the "A" Nickel exhibited very good

fatigue behavior in relation to the very low static tensile strengths of
these alloys in the annealed condition.

RECOMMENDATIONS FOR FUTURE WORK

This study has provided preliminary engineering data on the fatigue strengths of a
variety of metals at cryogenic temperatures. Some trends and apparent anomalies were
noted, and as a result of this work questions concerning the fundamental fatigue behavior
of metals at cryogenic temperatures have appeared. In this section some possible
directions of future fatigue work at room temperature and below are suggested:

(1) In considering the fatigue strength and tensile strengths of alloys in the
same metals classification, particularly with respect to cold-worked
versus heat-treated conditions, it is apparent that increased tensile
strengths (and in some cases also increased notched tensile strengths)
do not always result in corresponding increases in fatigue strength.
This trend became more pronounced as the temperature decreased.

A suggested approach for tackling this unexplained phenomenon is to
include in future programs a study of the stress field around the notch,
before, during, and after fatigue cycling.

(2) Although many cryogenic applications involve biaxial stress conditions B
very little has been done on the effect of biaxiality on fatigue at room
temperature. To Battelle's knowledge no data are available on the
effect of biaxiality on cryogenic fatigue behavior.

(3) A slightly different picture of the relative fatigue behavior of the alloys
is obtained by looking at the 105 rather than the 100 lifetime strengths.
From the 5-N plots it can be predicted that, if a low cycle (1000 cycles
or less) fatigue investigation were carried out, a vastly different ma-
terial rating might be obtained.

(4) A study correlating cryogenic fatigue behavior with basic structural

elements should be made. Christianf{l2) is carrying out a program to
evaluate the resistance of complex welded joints to repeated axial
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(1)

(2)

(3)
(4)

(5)

(6)

(7

loading at cryogenic temperaturés. The emphasis in Christian's work
is in the high stress, finite life range. Other possible areas of study
would include structural elements other than welded joints and the low
stress, long-lifetime portion of the 5-N curve.

(5) In addition to establishing the basic fatigue behavior of a number of
engineering metals some effort should go into an evaluation of such
factors as the following:

® Effect of testing in contact with liquid cryogent
@ Effect of melting practice (vacuum, air, etc.)
® Effect of higher notch factors than 6

® Effect of other factors such as surface finish oxides,
coatings, etc., known to be important at higher
temperatures.

(6) Understanding of fatigue behavior will probably be furthered most effi-
ciently by careful choice of experimental materials and objectives.
For example, a clearer picture of the role of crystal structure may be
obtained by evaluating relatively pure metals. Other techniques for
uncovering possible clues might include the measurement of micro-
stresses by X-ray diffraction techniques and the ocbservation of crack
initiation and propagation using the electron microscope.
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