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ABSTRACT 

Internal damping in metal matrix composites (MMC) is of interest to engineers and 
designers of large space structures, in applications where dynamic dimensional stability is 
important, and in the control and damping of vibrations in space structures. Theories of current 
interest used to understand and explain internal damping in MMCs are discussed briefly, and 
experimental data for some fibers and MMC systems are presented. Some general conclusions 
close this paper. 

INTRODUCTION 

Damping of structures has two sources: external and internal. External sources of 
damping include the effects of fluids such as drag in a liquid or in a gas, loss of energy at 
supports or joints due to friction or transmission into supporting structures, and active and 
passive damping control systems. Internal sources of damping include a number of effects. At 
low levels of stress, the damping behavior of metals and metal matrix composites is governed 
by micromechanisms causing anelastic behavior. At high levels of stress [1,2] internal damping 
occurs by mechanisms leading to hysteretic response. Internal damping in metals has been used 
as a method of studying atomic motion at low stress levels. This has provided insight into 
fundamental mechanisms in diffusion, ordering, interstitial and substitutional solid solutions, and 
estimates of dislocation densities. For engineering applications, damping data have been 
obtained at intermediate and high strain levels ( > 50 microstrain) to develop insight into energy 
dissipation mechanisms and fatigue life of metal components. As is well-known , the interface 
between a fiber and the matrix is a unique site of reaction layers, residual stresses, microvoids, 
dislocation structures, impurities, disbonds, and other defects. It has been postulated, and to 
some extent verified, that the interface is also a source of energy dissipation, and considerable 
efforts have been expended in attempting to identify and model these sources [3]. It should be 
borne in mind that selecting materials for effective damping must take account of the space 
environment (zero gravity, high vacuum, and thermal fluctuations between -160 to + l 60°C), and 
candidate materials must exhibit high damping at low frequencies (0. 1 to 10 Hz) [2] and at strain 
levels on the order of 50 microstrain. 

This paper presents a brief discussion of currently used theories of internal damping in 
MM Cs, and presents some of the available data on internal damping of these advanced materials. 
For more details, the reader is referred to reference 4 or 5. 
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THEORY 

The methods for measuring damping in metals and metal matrix composites span some 
seventeen orders of magnitudes in frequency, from about 1()-6 Hz to 100 GHz. There are four 
major categories covering this range: quasi-static methods, subresonance methods, resonance 
methods, and high-frequency wave propagation methods [5]. The quasi-static method is of no 
interest in this paper, and the high-frequency range will not be discussed because it is used 
mainly to measure dynamic moduli and other phenomena [8]. 

The damping properties of a material are variously referred to as specific damping 
capacity, loss factor, loss angle, quality factor, and log decrement. These quantities are all 
related as follows [ 4, 5] 

(1) 

where '1' is the specific damping capacity (SOC), ~ is the damping ratio, Q is the quality factor, 
ri is the loss factor, cJ> is the loss angle and r is the logarithmic decrement. Most of the data 
presented in this paper will be in terms of the specific damping capacity. 

The methods used to measure damping properties are discussed in detail in reference 4. 
Suffice it here to mention that they include the cantilever beam method, free-free flexure 
method, tension-tension method, free fall method, piezoelectric ultrasonic composite oscillator 
technique (PUCOT) [5], and the method of wave propagation. These methods give slightly 
different results; consequently, data must be corrected accordingly (4,5]. Damping factors are 
measured as a function of strain amplitude, temperature or frequency. 

The following summarizes the various damping mechanisms and the theories used to 
explain these mechanisms. Note that some theories predict certain behavior fairly well in a 
particular range of interest, but by and large, theoretical models used to predict damping 
behavior are rather primitive, particularly for MMCs. Little or no theoretical work has been 
done for the fiber/matrix interface. 

Matrix Metal. Damping in the matrix metal can occur from any one or all of the 
following mechanisms: point defect damping, dislocation damping, grain boundary damping, and 
thermoelastic damping. 

A point defect in a crystal can be a vacancy or extra atom either in the crystal lattice or 
as an impurity atom. This alters the crystal, thereby lowering the crystal symmetry, termed a 
defect symmetry. The criterion for the existence of point defect damping is that there must be 
more than one distinguishable orientation of the defect. The elastic distortion surrounding the 
defect causes the point defect to interact with the crystal lattice, behaving as an elastic dipole. 
Different defects will interact differently causing some redistribution of the orientation of the 
point defects. It is this redistribution that is the damping mechanism. For metals with cubic 
crystal lattice, the following types of defects having non-symmetrical strain fields give rise to 
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damping [5]: interstitial impurities, vacancy-impurity pairs, and divacancies. Spherically 
symmetric strain fields do not cause damping. The first of these defects give rise to Snoek 
relaxation, and the second to Zener relaxation. Snoek relaxation is expected to contribute to 
damping in MMCs with bee crystal lattices, and Zener relaxation contributes to internal friction 
in alloys (4,5] of fee, bee, and hep structure. 

Dislocation damping plays an important role in crystalline MMCs. This damping 
mechanism involves the motion of dislocations which lag behind the applied stress. In some 
metals (Cu for example) the application of stress will also cause the generation or multiplication 
of dislocations. Damping occurs when dislocations are hindered in their motion by obstacles 
such as point defects. There are two relevant mechanisms in MMCs; relaxation or resonance 
absorption (Zener), and hysteresis losses. Granato and Lucke [4,5,7] developed a model for 
dislocation damping that is based on the vibrating string model, where the string is the 
dislocation motion while pinned at both ends by defects. This is an important model because 
it has been used to calculate mobile dislocation densities and the spacing between impurity atoms 
on dislocation lines from measurements of strain amplitude dependent damping [5]. 

Zener (6] predicted that grain-boundary relaxation occurs by viscous sliding between 
adjacent grains. Nowick and Berry [7] show that the viscous slip model predicts a relaxation 
that is essentially independent of grain size, as long as the grain size is less than the specimen 
diameter. A satisfactory quantitative theory of grain-boundary relaxation is not yet available [5]. 

Thermoelastic damping is the result of coupling between the conjugate pair stress and 
strain, and the conjugate pair temperature and entropy, as for example during expansion where 
the specimen length can be changed by stretching or by heating. This means that a change in 
entropy with respect to stress (T=const.) is equal to the change in strain with respect to 
temperature (constant stress), and is identical to the coefficient of thermal expansion [5]. When 
a beam, plate, or rod vibrates, relaxation takes place under inhomogeneous stress. Bending of 
isotropic materials induces uniaxial strain which varies linearly with distance from the neutral 
axis. As the beam vibrates, an alternating temperature gradient is set up across the beam, and 
relaxation occurs by heating and heat transfer across the specimen. In the case of longitudinal 
thermal currents induced by vibrations, Nowick and Berry [7] showed that this kind of damping 
is negligibly small at frequencies below 100 MHz. 

Fiber. Only limited experimental results and theoretical modeling have been reported. 
The fiber is usually assumed to be a perfectly elastic material contributing little or no damping 
to MMCs [9]. Internal damping in boron fibers and whiskers was studied experimentally and 
theoretically using torsional oscillations [10-12]; Postnikov et al [13] using bending oscillations 
in the kHz range studied the internal friction in boron fibers. These researchers obtained 
dynamic modulus data as a function of temperature. Internal friction in boron fibers is 
characterized by a peak between 530 and 6300C. Models published so far treat continuous fibers 
as a single material, which clearly is not correct. Continuous fibers are built up on a substrate 
of either tungsten or carbon; the outer surface of the fiber is coated, sometimes with an 
elastically compliant coating and/or a reaction barrier. 
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Fiber/Matrix Interface Dampin~. The presence of an interface and/or a reaction layer 
between fiber and matrix raises the possibility of introducing a controlled source of damping in 
metal matrix composites. Modeling of the effects of damping on MMCs by Nelson and Hancock 
[15] predicted the interface friction slip. Their model consisted of a frictional energy loss at the 
interface and viscoelastic energy dissipation in the matrix when the composite is subjected to 
cyclic tensile loading. Good agreement with experiment was noted for a model consisting of 
discontinuous, aligned fibers, loaded along the fiber direction. Transverse loading of a linearly 
elastic material with rigid cylindrical reinforcement was modeled by Kishore et al. [16,17], in 
which no slip, slip, and interface separation could be introduced; only frictional losses were 
considered. The loss factor, not surprisingly, was found to depend on fiber volume fraction, 
coefficient of friction at the interface, load amplitude and constraint stresses at the interface. 
Whisker or particulate reinforced matrix may exhibit increased specific damping capasity due 
to stress concentrations near the ends of the reinforcement; stress concentration results in 
increased dislocation density. Ledbetter and Datta [ 18] modeled the internal friction for 
scattering of stress waves by elastic particles dispersed in the matrix, and predicted an increase 
in friction with increasing particle concentration, increase in particle characteristic length, 
reduction in aspect ratio, and increases in the difference between particle and elastic stiffness. 
A more recent model proposed by Ledbetter et al [8] suggested an approach followed up by 
Schoutens [14] with a simple model based on the thickness of the reaction layer. No results 
were obtained because of the difficulty in assigning some damping properties and friction 
coefficients for the reaction layer. Modeling of damping caused by the presence of 
discontinuous fiber reinforcement in a metal matrix indicates that damping is increased by an 
increase in the fiber-end gap dimension, for a given fiber volume fraction, and a decreasing fiber 
aspect ratio [19]. Differences in the coefficient of thermal expansion between reinforcement and 
matrix produces residual stresses which produce dislocation substructure. Damping increases 
with increasing dislocation density. The amount of damping produced by these dislocations can 
be calculated with the Granato-Lucke theory [4]. The role of residual stresses at the interface 
has been verified by experiments [2]. These test results show that stress-relieved and T6 stress­
relieved P55/6061 Al specimens exhibit lower specific damping capacity than the as-fabricated 
specimens. However, heat treatment is in the primary recrystallization range, and 
. recrystallization is known to reduce damping by decreasing the dislocation density in the matrix, 
and by increasing the size of grains. Stress-relieved specimens showed nearly strain-amplitude­
inpendent damping response even at intermediate strain amplitudes, while as-fabricated 
specimens showed strain-amplitude-dependent behavior. When stress-relieved specimens were 
reheated to 540°C (close to the consolidation temperature) and slowly cooled to room 
temperature, measurements showed damping values consistent with as-fabricated specimens. 

Combined Mechanisms. In the absence of detailed theories to predict the specific 
damping capacity of MMCs, it is tempting to use the rule of mixtures to predict properties from 
those of the constituents. In this way, the specific damping capacity is predicted from the sum 
of specific damping capacity of constituents weighed by their fraction in the composite. The 
fraction of damping due to the interface reaction layer is also included in this sum. The matrix 
damping, is the sum of contributions from dislocations, point defects, grain boundaries and other 
relevant effects. This approach generally over simplifies the problem considerably, and in 
consequence cannot be considered as reliable. Hashin [20] showed how the correspondence 
principle may be used to relate the effective viscoelastic functions for composites to the effective 
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moduli. This method has resulted in reasonably good predictions of specific damping of MM Cs 
[5]. 

For many MMCs, one or two damping mechanisms usually dominate for a given 
combination of strain amplitude, temperature and frequency. Predictions from dislocation 
damping (Granato-Lucke model) and thermoelastic damping (Zener relaxation) have turned out 
to be useful. For predicting damping from constituent properties, Hashin's correspondence 
principle has been useful [5]. 

INTERNAL DAMPING DATA 

Internal damping data has been reported most often as specific damping capacity 'Y 
(SOC) in percent, and less often as the loss or quality factor. Damping is generally shown as 
a function of strain amplitude, frequency, or temperature. For example in pure aluminum, the 
damping capacity shows very little dependence on strain amplitude until the strain amplitude 
reaches approximately 104

, and beyond this point the damping capacity rises fairly steeply. 
Damping capacity, as we will show, varies also as function of frequency. The damping capacity 
also rises with increasing temperature, sometimes exhibiting a maximum. Table 1 presents the 
damping capacity of unreinforced structural materials. MMCs have a damping capacity in the 
0.1 % to 30% range at frequencies ranging from approximately 1 Hz to a few kHz. 

Table 1 - Specific Damping Capacity (i') for Some Unreinforced Structural Materials 

Material 

403 ss 
Nivco 
NiTi 
Cast iron 
Cast Pure Mg 

2024 T3 
6061 T6 
1020 Steel 

310 ss 
Ti-6Al-4V 

Brass 
MMCs 

'¥(%) 

6-40 

0.4-3 

0.1 - 0.2 

-0.06 
-0.1 - 30 
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Frequency Range 

kHz 

Hz-kHz 

40 kHz 

kHz 
Hz-kHz 
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Damping Capacity of boron fiber and silicon carbide coated 
boron fibers [9] 

Figure 1 shows the damping capacity of boron fiber and of silicon-carbide-coated boron 
fibers, as a function of temperature. Both filaments were produced on a tungsten core. The 
data were obtained at 300 and 1800 Hz for the boron fiber and at 1000 Hz for the SiC-coated 
boron fiber (Borsic). DiCarlo and Williams [9] noted that the damping capacity decreased with 
heat treatment cycles. The damping agrees with measurements on boron fibers made in the 
Soviet Union [10-13]. Borsic exhibits a consistently lower damping capacity over most of the 
temperature range of interest, compared to uncoated boron fibers. At 600°C, the damping of 
both fibers is approximately a factor of 20-23 higher than at room temperature. The prediction 
of the maximum damping capacity made by Postnikov et al. [13] is approximately a factor of 
10 below measured values. 

Figure 2 shows the damping capacity of silicon carbide fiber as a function of frequency, 
and Figure 3 shows the damping capacity of the same fiber as function of temperature. · In 
Figure 3 we see a sharp rise in the damping capacity with a rise in temperature. Figure 2 shows 
that there is a significant effect on the clamping capacity of the fiber due to thermoelastic effects. 
This effect rises above the damping capacity due to the microstructure. The peak damping 
capacity is at about 2500 Hz, where it has increased by a factor of about four above that of due 
to the microstructure. The curve seems to be fairly broad, ranging from approximately 200 Hz 
to 50 kHz. A similar but broader peak as a function of temperature has been reported for 
bromide treated pitch-base carbon fibers [21]. SiC fiber damping capacity is considerably lower 
than for boron fiber, by a factor of 10-12. 
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Figure 4 Damping capacity of P55Gr/6061 Al composites for [0°] and 
[90°] fiber orientation [2]. (Tension-Tension Fatigue Test) 
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Figure 4 shows the damping capacity of P55/6061 aluminum composite as a function of 
strain amplitude and for two ply orientations. Measurements were performed in a tension­
tension fatigue test. These data were obtained at frequencies of 1 Hz and 0.4 Hz. This 
frequency range also corresponds to a frequency range where the damping capacity is a 
minimum. Note that the [G°] orientation gives a fairly fast rising damping capacity with only 
modest increases in strain amplitude. Conversely, the [90°] orientation remains fairly constant 
with strain amplitude. 

Figure 5 shows the damping capacity of P55Gr/6061 aluminum as a function of frequency 
for two ply orientations, [D°] and [90°]; the data were obtained from tension-tension fatigue tests 
at approximately 190 microstrain. Note the minima in these curves at approximately 1 Hz, and 
the fact that the longitudinal data ([G°]) exhibits a higher damping capacity than the transverse 
data ([90°]) by about a factor of two. 

Figure 6 shows the damping capacity of P55Gr/Mg - 0.6 at. % Zr as a function of 
temperature. The material was tested in the as-cast condition, and the result of several indicated 
heat treatments are shown. The measurements were made at 0.1 microstrain. The damping 
capacity exhibits a peak at approximately 200°K, and a minimum at about 300-400°K. As 
indicated, this peak has been attributed by Misra and co-workers [22] to a phase transition in 
the graphite fibers from a rhombohedral phase to a hexagonal close-packed phase. The 
difference in the damping capacity between the maximum and minimum values is approximately 
36%. Overall the damping capacity of this kind of graphite/magnesium composite is not very 
high, only 0.8-0.9%. 

Figure 6 
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Damping capacity of as-cast Gr/Mg-0.6 at. % Zr as a 
function of temperature [22]. 
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Damping capacity of P55Gr/Mg-1 at. % Mn as a function 
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Figure 7 shows the damping capacity of P55Gr/Mg - 1 at. % Mn as a function of strain 
amplitude. The data are for the as-fabricated condition, and for two types of heat treatment. 
Unlike the aluminum matrix, heat treatment causes a modest rise in clamping capacity. For all 
three conditions the damping capacity increases from about one percent to about five percent at 
strain amplitudes greater than 2 x lo-6, and decreases again following the peaks at about 5 x 10-s. 
The Granato-Lucke theory was used to predict the strain amplitude at which the damping capacities 
are a maximum: at 80 microstrain. 

The axial damping capacity of silicon-carbide-fiber-reinforced titanium for the indicated 
values of the fiber volume fraction is shown in Figure 8. The vertical scale was expanded relative 
to the horizontal scale, creating the impression that the clamping capacity undergoes large variations 
with small temperature changes. Predicted values based on a model by DiCarlo et al. [23] are 
plotted on the bottom graph for frequency values of 1200 and 2000 Hz. These predictions are 
quite low, increasing only marginally with increasing frequency and temperature. 

These computed curves testify not only to the inadequacies of current models, but also 
to our lack of fundamental understanding of the damping mechanisms in metal matrix composites. 

The damping properties of SiC particulate- and whisker-reinforced aluminum material 
are shown in Tables 2 and 3. The clamping capacity and the frequency at which these data were 
obtained are shown at the extreme right in these tables. For constant fiber volume concentration, 
both SiC particulate- and whisker-reinforced aluminum exhibit clamping capacity 
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Table 2 Specific damping capacity of SiC/Al and SiC,..Al [24]. 

Fiber Matrix Fiber Elastic Mod. Density Freq. "' Vol. (msi) (g/cm3) (Hz) (%) 
(%) 

Trans. Long. 

SiCP CT90 Al 20 17 .1 17 .1 2.962 62.25 3.98 

SiCP CT90 Al 20 17.8 17.8 2.962 111.00 3.20 

SiC,., 2024 Al 20 15.4 15.4 2.962 53.25 4.72 

Sic,., 2024 Al • 20 16.3 16.3 2.962 110.00 3.05 

Table 3 Specific damping capisity for SiC/6061 and SiC,.,/6061 composites [25]. 

Material Fiber Elastic Ultimate Elonga- Freq. "' Vol. Mod. Strength tion to (Hz) (%) 
(%) (msi) (ksi) Failure 

(%) 

SiC,.,/6061-T6(L)* 17 14.7 73 2.1 32.1 1.571 

SiC/6061-T6(L)* 20 15.2 70 4.5 120.0 2.890 

SiC/6061-T6(L)* 30 17.5 77 3.0 20.1 2.325 
104.7 0.817 

SiC/6061-T6(Tr 30 17.5 77 3.0 105.4 0.942 

• Extended and cross-rolled sheet, L = longitudinal to the extension direction. The 
mechanical properties for the 20 v/o SiC/6061 composites are those for the T6 
condition. However, the damping measurements are given for the composites 
in the F condition. 

•• Rolled sheet. 
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of about 3 to 5 percent which does not appear to depend on matrix type. Table 3 shows a 
significant reduction in damping capacity due to a change in the orientation of the specimens. 
These variations taken collectively may be due to process variations, reinforcement 
concentration , and testing frequency . 

Figure 9 presents axial damping capacity of B/1100 Al and B/6061 Al. Two scales are 
used to show the large change in 'Y with temperature. These measurements were made at less 
than one microstrain and at 2000 Hz. The B/6061 Al material was fabricated by TRW, Inc. 
The solid curve represents the same material after subjecting it to a heat treatment at 4600C. 
The heat treatment is in the primary recrystallization range of aluminum. Recrystallization is 
known to reduce damping (by decreasing the dislocation density in the matrix) , and to increase 
the matrix grain size. No systematic studies of the effects of heat treatment on boron/aluminum 
materials seem to have been carried out. 

1.4 14 
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Figure 10 Axial Damping Capacity of B/6061 Al and Borsic/6061 Al [23]. 

The effects of a SiC coating on boron fiber (Borsic) used in reinforcing 6061 Al is shown 
in Figure 10. This material was fabricated by Avco, now H.R. Textron. Note that the heat 
treatments reduce the damping capacity of the composite: this is caused by a reduction in 
dislocations in the matrix near each fiber by grain growth due to recrystallization. The dashed 
curves labeled c are the curves labeled a in Figure 9. The other dashed curve on the left and 
curve care for damping of Borsic/6061 Al specimens after heat treatment to 550 °C. These data 
were obtained at 2000 Hz and 1 microstrain [4,23]. The duration and cooling mode of these 
specimens were not reported [5]. 
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The transverse damping capacity of B/1100 Al and B/6061 Al are shown in Figure 11. 
The figure shows the results of various heat treatments, which do not appear to affect the 
damping capacity. The calculated transverse damping capacity of B/6061 Al with a fiber volume 
fraction of 0.5 is shown as a dashed line. The difference in the maximum and the minimum of 
the damping capacity exhibited by curve c amounts to only 15 percent. 

Figure 12 summarizes the specific damping capacity of MMCs discussed above, as a 
function of temperature. The dark heavy line is the damping capacity of pure aluminum shown 
for reference. The dashes represent the damping capacity of fibers alone. This shows the strong 
anelastic effect on the damping capacity of boron and Borsic fibers compared to SiC fibers 
shown near the bottom of the graph. The difference in the damping capacity between these two 
types of fibers is approximately a factor of 20-30 at about 600°C. Enhancement in damping 
capacity of pitch-base carbon fiber has been reported elsewhere [21], and has not been added 
to Figure 12. The relatively large damping capacity of boron fiber is responsible for the 
observed large damping capacity of boron-aluminum composites. Note the low damping 
capacity, less than 1 percent, of Gr/Mg and SiC/Ti composites, while that of B/6061 Al is 
almost as high as the boron fiber itself. 
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Figure 13 presents a summary of specific damping capacity as a function of strain 
amplitude of the MMCs previously discussed. The damping capacity of pure aluminum is shown 
for reference. The short dashed lines represent computational predictions made with various 
models [5] for Gr/Mg and Gr/ Al. Some of these computations included the effects of residual 
stresses resulting both from the difference in the coefficient of thermal expansion between fiber 
and matrix, and from the fiber anisotropy. Although some of these predictions agree well with 
measurements, that of the Gr/Mg composite does not. All the data presented in Figures 1 
through 11 are represented as cross-hatched areas. Note the behavior of P55Gr/Mg - 1 at. % 
Mn. The damping capacity exhibits the kind of rise with increasing strain amplitude exhibited 
by pure aluminum, but at approximately 1.5 orders of magnitude lower strain amplitude. 

A comparison of the loss factors of various materials and metal matrix composites is 
shown in Figure 14. Two conclusions are obvious from this figure: the damping capacity of 
MMCs is not better than conventional unreinforced metals, and viscoelastic materials exhibit the 
greatest damping. This suggests that for a material to simultaneously achieve high stiffness, high 
strength, and high damping capacity, the matrial should combine MMCs with viscoelastic 
materials. This is nothing new! 

GENERAL CONCLUSIONS 

As already mentioned, the most striking observation is that the damping capacity of metal 
matrix composites is not very good, certainly no better than unreinforced metals, except perhaps 
at elevated temperatures and high strain amplitudes. Dislocation substructures surrounding 
reinforcements tend to impart strain independent behavior to reinforced aluminum. From 
preliminary work reported elsewhere [21], it appears that the damping capacity of carbon-fiber­
reinforced metals may be improved, but at present it remains in doubt that such improvements 
would raise the composite damping capacity much beyond unreinforced metals. MMCs do 
exhibit a somewhat equal or better damping capacity than low atomic number alloys, such as 
aluminum or titanium, making MMCs attractive for space structures. Nonetheless, significant 
increases in the damping capacity of dimensionally critical space structures must be obtained by 
other methods as is discussed by some other papers in these proceedings. 

An important problem in assessing the state of art is the database; at present it is small 
and this author is unaware of any systematic efforts to compile these data. Thus, one finds ones 
self in the ironic situation of needing a larger database to understand the potential of these 
materials with regards to damping capacity. At the same time the great expectation that MM Cs 
would exhibit high damping capacity having failed to materialize resulted in funding reduction 
to study these material properties. If any recommendation is to be made it is that fundamental 
work in understanding the physics of MMCs subjected to time-varying loads should continue 
with carefully planned experiments. 

The theoretical analysis and model development for describing and predicting the intrinsic 
(or internal) damping behavior of MMCs is at present rather primitive. There are a number of 
microscopic models [5] used to explain and even predict performance, but they exhibit poor 
reliability when fiber and matrix material properties are changed. Model calculations in B/ Al, 
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for example, have predicted damping capacity values much lower than observed, implying a lack 
of fundamental understanding of the damping mechanisms of these complex advanced materials. 
Modeling of fiber damping has been fairly well developed in the Soviet Union relative to the 
US, but even this modeling is not enough. Theoretical analysis must consider the fiber as a 
composite consisting of a core (tungsten or carbon or something else) surrounded by the fiber 
material with an outer surface of a reaction barrier coating and/or a compliant coating. The 
analytical machinery is well developed and there are numerous papers available describing the 
application of linear elastic theory to cylindrical problems of this type. To set the stage for 
systematic theoretical analysis and model development, a review of theoretical work in this area 
should be carried out so others, including newcomers, would have a sensible place to start for 
developing new ideas and approaches. Any new developments in the theoretical analysis of the 
damping capacity of MMCs !Illll include the phenomenology of the interface. 

It is obvious from the small amount of data presented in this paper that boron fibers 
exhibit high damping capacity and appear to dominate the damping capacity in aluminum 
reinforced with boron. The SiC coating on these fibers appears to decrease the damping 
capacity slightly. Damping capacity of boron fibers is distinctly superior to that of SiC fibers. 
Damping capacity of other fibers of interest (Al2O3, TiBi, B4C coated boron), with the possible 
exception of carbon fibers [21], seems not to have received attention. Silicon carbide fiber on 
a tungsten core has a damping capacity well below boron fibers, by as much as a factor of 20-
30. 

Observations of the small database available indicates that the dampin~ capacity of MM Cs 
appears to be dependent on process method, fiber content, frequency, temperature, heat 
treatment, and strain amplitude. Strain amplitude in a certain range of values ( 10-5 

- 10-3
) has 

a strong effect on damping capacity. This is generally believed to be due to the Zener relaxation 
effect, and dislocation structures can be explained to some extent by means of the Granato-Lucke 
theory. 

Heat treatment has an effect on damping capacity in a way that is not understood. 
Theoretical understanding in this case appears difficult and testing various hypotheses could 
prove very expensive as large numbers of specimens would need to be tested and 
microscopically examined. Nevertheless, present observations of the effects of heat treatment 
on damping indicate that heat treatment decreases damping in fibers and aluminum, but increases 
it in carbon-fiber-reinforced magnesium. 

"Someday all will be well" is our hope 

"All is well today" is illusion 

Voltaire, 1722. 
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