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ABSTRACT

Modal damping of flexural oscillation in suspended cable is
investigated through free oscillation experiments with cable model and
through finite element analyses. Relation between modal damping and
dynamic characteristics of cable is discussed with parameters of sag-
to-span ratio, span length, chord inclination, support flexibility and
support damping. It is found that modal damping of cable is closely
related to dynamic strain in normal mode and that internal damping of
cable is a primary cause of modal damping of flexural oscillation. It
is also found that damping at support contributes to modal damping
directly and that the contribution of supporti damping is approximately
proportional to square of modal support amplitude.

KEYWORDS: Cable, Experiment, Finite Element Analysis, Modal Damping.

1. INTRODUCTION

Cable has been widely used as structural member in civil engineering
structures, such as suspension bridges, cable-stayed bridges, transmission lines,
telecommunication lines, and so on. Especially in Japan, there is the big
project; Honshu-Shikoku Bridge Project, of connecting two main islands by many
over-gea bridges, most of which are cable-suspended bridges. Center span lengths
of those suspension bridges are 770m, 876m, 940m, 990m, 1100m and 1990m. With the
increase of span length in suspension bridge, cable becomes more and more
important as structural member. As a matter of fact, it can be seen from Fig. 1
that weight proportion of cable to bridge deck increases almost linearly with
span length. Fig. 1 indicates change of dead load ratio of cable to suspended
structure with respect to center span length for Honshu-Shikoku Bridges and the
Messina Straits Bridge in Italy. For the Akashi Straits Bridge center span of
which will be 1990m, the weight of cable will be heavier and about 50% of the
weight of suspénded structure.

Fig. 2 1is plots of maximum span length in cable-stayed bridge in Japan. As
is shown in Fig. 2, many cable-stayed bridges have been constructed especially in
this decade and the span length becomes longer and longer. This means cable
becomes more and more important also in cable-stayed bridge.

Oscillations of cables, however, occur easily due to wind because of their
light weight and high flexibility. Indeed remarkable oscillations, such as
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galloping and buffeting of cables in transmission lines, telecommunication lines,
and cable-stayed bridges, have been reported frequently (see, for example,
Rawlins [1981]; Fujino et al. [1988]; Hikami and Shiraishi [1988]) and recently
the relatively new problem of rain and wind-induced vibration of cable becomes a
serious engineering issue in cable-stayed bridges (Hikami and Shiraishi [1988]).
Occurrence of wind-induced oscillation is much dependent on modal damping and the
damping mechanism of cable is very important to consider suppression of such kind
of oscillation.

Several studies have been made on damping characteristics of cables and wire
ropes. Most of them deal either the first flexural modal damping of taut cable or
with hysteresis damping of wire rope during axial oscillation (Hara and Ueda
[1966]; Nishimura et al. [1977]; Tsuji and Kanou [1980]; Tanaka et al. [1985];
Kanou and Tsumura [1987]). This means that researches have been conducted mainly
on the material damping of ropes, while there are very few investigations on the
modal damping of flexural oscillation in suspended cables (Ramberg and Griffin
[1977]; Yamaguchi and Fujino [1987,1988]; Yamaguchi [1988]).

The primary objective of the present paper is to investigate modal damping
characteristics of flexural oscillation in suspended cables through model
experiments and finite element analyses. The sag-to-span ratio is chosen as a
primary parameter in the testing and it is studied how the modal damping changes
as the sag ratio changes. In addition, effects of initial tension, chord
inclination, support flexibility and support damping on modal damping of cable
are also discussed and the damping mechanism of cable is clarified.

2. OSCILLATION TEST WITH MODEL CABLE

Model cable employed in the experiment is 7-wire strand rope to which lead
weights (15.0g/weight) are attached at interval of about 9.5cm distances in order
to adjust weight of cable model. The tensile rigidity, tensile strength and mass
per unit length of cable are 2.40x102[kN], 2.74[kN] and 0.17[kg/m], respectively.
The details of cable model are shown in Fig. 3.

As is shown in Fig. 4, the model cable was wound with several turns around a
horizontal bar steel fixed to a thick steel plate which was connected rigidly to
a rigid support, and then mounted in the support through turnbuckle. Sag of cable
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was adjusted by the turnbuckle. The test cable set up with required sag-to-span
ratio was forced to oscillate at each natural frequency by using vibration
exciter which was connected to one point of cable through a thread. The thread
was cut after stationary oscillation was attained, and the subsequent decay of
free oscillation was recorded and analyzed to obtain natural frequency and modal
damping. The excitation point was changed such that the mode concerned was purely
excited. The dynamic displacement was measured by means of an electro-optical
displacement follower (position sensor), a target of which was attached to the
cable at the point of the largest amplitude of mode shape.

The span length and chord inclination were chosen as 7.3m and 0O degree,
respectively. The sag-to-span ratio was changed from 0.005 to 0.1 considering sag
ratios of real cable structures.

3. FINITE ELEMENT ANALYSIS OF CABLE OSCILLATION

Finite element analyses of free oscillation of cables were made in order to
calculate natural frequencies, normal modes and additional dynamic strains. The 3
nodes quadratic element with shape function of quadratic polynomial was used and
the matrices, such as mass and elastogeometric matrices, obtained by Henghold and
Russell [1976] were applied. The static configuration due to dead load was
analyzed first, and next eigenvalue problem was solved for small oscillation
about the nonlinear equilibrium position by evaluating the tangential stiffness
matrix. Using obtained mode vectors which are normalized relative to the maximum
displacement value, additional dynamic strein at the internal node of each
element is then calculated. Since each internal node has different value of
dynamic strain, the root mean square of dynamic strains is taken as a
representative value for each normal mode. Details of analyses are referred to
Yamaguchi and Fujino [1987].

4. CHARACTERISTICS OF MODAL DAMPING

Fig. 5 shows the relation between natural frequency and sag-to-span ratio.
Experimentally measured values are plotted with theoretically estimated curves
for each natural mode. The distinct feature in this figure is in-plane symmetric
mode. That is, there exists so-called modal transition (Yamaguchi and Ito [1979])
in certain region of sag ratio. In this modal transition region, the mode shape
of symmetric mode changes into the one order higher symmetric mode with the
increase of natural frequency, while natural frequencies of other modes decrease
monotonically. Therefore, there exists modal crossover point at which natural
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frequency of symmetric mode coincides with that of asymmetric mode.
The experimentally measured values
represented by logarithmic decrement are shown in Fig. 6. Modal damping of cable
is dependent on amplitude as has been reported by Yamaguchi and Fujino [1987], so
that the damping was measured at the peak amplitude of mode shape nearly equal to
0.24% of span length. The logarithmic decrements shown in Fig. 6 were evaluated
at the reference amplitude. It can be seen in Fig.6 that the damping of in-plane
symmetric mode is larger than other modal damping in the modal transition region,
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especially for the sag-to-span ratio around the modal crossover point. On the
other hand, the damping for in-plane asymmetric modes and for out-of-plane modes
is small and slightly increasing value over a wide range of sag-to-span ratio. It
is concluded here that modal damping of cable for in-plane symmetric mode can be
larger than modal damping for in-plane asymmetric and out-of-plane modes
depending on sag ratio of cable.

The dynamic strain of cable during free oscillation was calculated for each
normal mode in order to investigate the relation between modal damping and
hysteresis energy, because the internal damping due to hysteresis energy is
expected to be one primary source of cable damping. Fig. 7 is a plot of
calculated dynamic strain versus sag ratio. As can be seen from Fig. 7, the
change of dynamic strain with respect to sag ratio is quite similar to that of
modal damping in Fig. 6. That is, the additional dynamic strain of symmetric mode
takes large value in the modal transition region and has a maximum at the modal
crossover point, while the dynamic strain of in-plane asymmetric mode is smaller
in comparison with the symmetric mode and the dynamic strain of out-of-plane mode
equals to zero in the linear theory.

The relation between modal damping and dynamic strain is shown more
directly for in-plane symmetric mode in Fig. 8 where the abscissa is the
calculated dynamic strain and the ordinate is the measured log decrement both in
log scales. The data points plotted lie almost in a straight line of slope 2 in
case of sag ratios less than the modal crossover point (¥ <0.015). This means
that the modal damping is in proportion to the square of dynamic strain, and that
internal damping is primary cause of modal damping of cable.

Correspondence of modal damping to square of dynamic strain is poor for
large sag ratios in Fig. 8 but this may be partly due to accuracy in the
evaluation of dynamic strain. If geometrical nonlinear theory (Yamaguchi and
Fujino [1987]) is applied , the dynamic strain for large sag ratio is calculated
larger than that of linear theory (Fig. 9), and the correspondence of modal
damping to square of dynamic strain for large sag ratio is improved as is shown
in Fig. 10. The analysis based on the nonlinear evaluation of dynamic strain,
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however, is difficult to check its accuracy and is not so reliable because
nonlinear equation was used only for the evaluation of dynamic strain with linear
solution of normal mode vector. The additional dynamic strain calculated by
linear theory, therefore, will be only discussed in the following sections.

5. EFFECTS OF SPAN LENGTH ON DAMPING

Modal damping of shorter spanned cable was also measured and the effect of
span length on modal damping is considered. Fig. 11 is again the relation between
modal damping and dynamic strain with the new data of short cable of 2.05m span.
Only data of the in-plane first symmetric mode are shown in comparison. It can be
seen from Fig. 11 that the data points of short cable also lie in a straight line
of slope 2. The straight line, however, is different for different span length in
spite of same cable. This is supposed to be caused by the effect of initial
tension of cable on internal damping.

The effect of initial tension on the first modal damping of taut cable has
been reported by Hara and Ueda [1966], Nishimura et al. [1977] and Tanaka et al.
[1985]. Those experimental data are arranged in Fig. 12 with the abscissa of
initial tension nondimensionalized by tensile strength. In Fig. 12, the log
decrement is greatly changed up to the order of 10% initiel tension ratio and is
larger for lower initial tension, while the log decrement takes almost constant
value when the initial tension is introduced to a certain degree. This means that
the friction between each wire of cable is changed by the initial tension. It
should be mentioned that this characteristics of initial-tension effect is
independent on what the cable is; strand wire rope, or parallel wire strand, or
locked coil rope, or parallel wire cable.

Fig. 13 shows same plots of the present experimental results but on a log-
log graph paper for the asymmetric and out-of-plane modes. Since modal damping of
asymmetric and out-of-plane modes is not affected very much by the dynamic
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strain, effects of initial tension can be investigated directly from Fig. 13. As
can be seen from Fig. 13, the modal damping becomes larger for shorter cable
because of low initial tension. Consequently, the difference in the first
symmetric modal damping for different span length, shown in Fig. 11, can be due
to this fact.

6. MODAL DAMPING OF INCLINED CABLE

Since cable in real structure such as cable-stayed bridge is sometimes
supported at different level, the damping of inclined cable is also investigated.
Fig. 14 is the plots of natural frequency versus sag ratio for 30 degrees
inclined cable. It can be seen from Fig. 14 that the modal transition is
different from that of horizontally supported cable in Fig. 5. That is, in case
of inclined cable, the in-plane symmetric mode changes into the higher asymmetric
mode and the asymmetric mode into the higher symmetric mode when the sag ratio
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becomes larger (Yamaguchi and Ito [1979]). The comparison between corresponding
modal damping and dynamic strain is presented in Fig. 15. The modal damping is
again large in the modal transition region but the tendency is somewhat different
from that for the horizontally supported cable. Even in the modal transition
region, the modal damping decreases rapidly when the normal mode approaches the
asymmetric mode, while the damping for pseudo-symmetric mode are still large.
Changes of modal damping and dynamic strain with respect to sag ratio, however,
correspond to each other very well also for the inclined cable, and the modal
damping of cable can be again explained by internal damping of cable.

7. EFFECTS OF SUPPORT FLEXTBILITY ON MODAL DAMPING

Modal damping of rigidly supported cable was investigated in the previous
sections and effects of support flexibility on modal damping are discussed next.
Cable is always supported elastically in a sense in real structures and the
condition of support seems to be very important in estimating wind-induced
oscillation. An example can be seen in the wind tunnel study by Fujino et al.
[1984] on galloping of telecommunication cable that the mode during galloping was
different when the different flexibility of end support was used.

The thin steel plate of 2.5mm thickness was used at support in the
experimental set-up, shown in Fig. 4, in order to realize the elastic support
condition. The dynamic characteristics of support were measured directly by
performing static and dynamic tests before suspending cable model. The equivalent
spring constant in horizontal direction at support is 6.0kN/m and the first modal
mass of cantilever plate is 0.55kg.

Fig. 16 shows theoretically estimated natural frequencies for elastic
support and fixed support. There exists modal transition regardless of support
condition but the transition region shifts to larger sag ratio as the support
becomes flexible. The natural frequency of symmetric mode for flexible support,
therefore, decreases for sag ratios in the modal transition region. As for cable
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with sag ratio outside of the modal transition region, there is not so much
difference in the natural frequency of symmetric mode. It should be mentioned
that the natural frequency of asymmetric mode is not influenced by the support
condition. ‘

The corresponding dynamic strain of symmetric mode takes large value in the
modal transition region even for elastic support as is shown in Fig. 17. The
maximum dynamic strain of flexibly supported cable, however, becomes much smaller
than that of rigidly supported cable, while dynamic strains of asymmetric modes
for two support conditions lie on the same curve.

Corresponding to this tendency in dynamic strain, modal damping of the first
symmetric mode is much affected by support flexibility. Fig. 18 shows the
comparison of the first symmetric modal damping versus sag ratio for two support
conditions. As can be seen from Fig. 18, the mutual relation of modal damping in
magnitude for different support condition depends on the sag ratio. That is, the
damping of flexibly supported cable is smaller for small sag ratio but is larger
for large sag ratio, and maximum damping value becomes smaller for flexible
support. On the contrary, modal damping of asymmetric mode is not significantly
influenced by support flexibility (Fig. 19). This is because the asymmetric mode
of elastically supported cable does not include support movement (Yamaguchi and
Fujino [1988]).

Fig. 20 is again the relation between experimentally measured modal damping
and theoretically calculated dynamic strain. In Fig. 20, the data points of
symmetric mode plotted for elastic support also lie roughly in a straight line of
slope 2. This means that the modal damping is in proportion to square of dynamic
strain and that the internal damping is one of the primary causes of modal
damping even for flexibly supported cable. The straight line of slope 2 for each
support condition, however, differs from each other, nevertheless the same cable
was used in all the cases in the experiment; the straight line shifts to the left
for flexible support. This result suggests existence of another cause of modal
damping which could be the result of energy loss at support. That is, the damping
at support might have direct effects upon the total damping of cable. This effect
of energy dissipation from flexible support will be discussed next.
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8. EFFECTS OF SUPPORT DAMPING ON MODAL DAMPING

A damper was set at elastic support and modal damping of cable with support
damping was measured in the same experimental procedure as previous sections.
Details of damper are shown in Fig. 21. Damping value at support can be changed
by changing the depth of water in the tank. Two values of water depth, 9cm and
18cm, were chosen in the experiment and damping of support itself was measured
experimentally. The support damping represented by log decrement is shown in Fig.
22. Damping value of support is about 0.05 for low support-damping (9cm) and 0.15
for high support-damping (18cm) in case of small amplitude of 0O.5mm.

Fig. 23 shows natural frequencies of the first symmetric mode with those of
asymmetric mode which are plotted to indicate the modal crossover point. There is
no significant difference in natural frequency between each support-damping
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condition. This means that the damping at support is sufficiently low.

The corresponding modal damping of the first symmetric mode is large in
modal transition region as is shown in Fig. 24. Modal damping of cable with high
support-damping (18cm) is larger than that with low support-damping, but the
jnerement of modal damping depends on sag ratio. That 1is, the modal damping
increases significantly at the modal crossover point where the modal damping
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takes maximum value, while there is small difference for sag ratio outside of
modal transition region.

This may be due to different amount of support movement for each sag ratio.
The support amplitude was, therefore, checked experimentally and theoretically.
Fig. 25 is the result. The change of support amplitude with respect to sag ratio
is quite similar to the change of damping increment caused by high damping at
support. Fig. 26 shows the relation between damping increment and support
amplitude in log-log graph paper. The damping increment was defined as difference
between modal damping for h=18cm and h=9cm, and was calculated with experimental
values shown in Fig. 24. As can be seen in Fig. 26, the data points plotted 1lie
roughly in a straight line of slope 2. From this experimental fact, it can be
estimated that the contribution of support damping is approximately proportional
to square of modal support-amplitude and this has been estimated theoretically by
Yamaguchi [1988].

9. CONCLUSIONS

Modal damping of flexural oscillation in suspended cable was discussed in
relation to dynamic characteristics of cable. Major conclusions obtained through
the present investigation are summarized as follows.

(1) Modal damping of in-plane symmetric mode is larger than other modal
damping in the modal transition region. ‘

(2) Modal damping is closely related to additional dynamic strain and one of
primary causes of damping is internal damping of cable.

(3) Modal damping is larger for lower initial tension but almost independent
on initial tension when the initial tension exceeds a certain level.

(4) For inclined cable, characteristics of damping are somewhat different
from those for horizontally supported cable.

(5) Flexibility of support has significant effects only upon modal damping
of symmetric mode in the region of modal transition.

(6) Contribution of support damping to modal damping of suspended cable is
approximately proportional to square of modal support-amplitude.

ACKNOWLEDGMENTS

The author would like to acknowledge the collaboration of K. Shimogiku, S.
Sakai, T. Mizumura, T. Nagasako, H. Goto and Y. Ichikawa, formerly undergraduate
students of Saitama University, K. Ishikawa and T. Yokobayashi, technicians of
Saitama University, during the course of the present investigation. Financial
support by Japanese Ministry of Education, Science and Culture under Grant-in-Aid
for Scientific Research is also gratefully acknowledged.

REFERENCES

Fujino, Y., H. Yamaguchi and M. Ito 1984, "Galloping Oscillations of Figure-8
Overhead Telecommunication Cables", Proc. 8th National Symp. Wind Eng., pp.
221-226 (in Japanese).

Fujino, Y., M. Ito and H. Yamaguchi 1988, "Three-Dimensional Behavior of
Galloping in Telecommunication Cables of Figure-8 Section", J. Wind Eng. and
Industrial Aerodynamics, 30, pp. 17-26.

GBC-12

Confirmed public via DTIC Online 02/02/2015
1



From ADA309666 Downloaded from Digitized 02/02/2015

Hara, M. and Ueda, K. 1966, "Study on Damping of Wire Ropes", Proc, 21st Annual
Conf., JSCE, I-37, pp. 37-1-2 (in Japanese).

Henghold, W.M. and J.J. Russell 1976, "Equilibrium and Natural Frequencies of
Cable Structures (a Nonlinear Finite Element Approach)", Computers and
Structures, Vol. 6, pp. 267-271.

Hikami, Y and N. Shiraishi 1988, "Rain-Wind Induced Vibration of Cables in Cable
Stayed Bridges", J. Wind Eng. and Industrial Aerodynamics, 29, pp. 409-418.

Kanou, I. and N. Tsumura 1987, "Damping of Axial Oscillation of Suspended Wire
Ropes", Proc. 42nd Annual Conf., JSCE, I-347, pp. 728-729 (in Japanese).

Nishimura, H., K. Hironaka and T. Shinke 1977, "Experimental Study on Character-
jstics of Rope Oscillation, Proc. 32nd Annual Conf., JSCE, I-177, pp. 334-
335 (in Japanese).

Ramberg, S.E. and O0.M. Griffin 1977, "Free Vibration of Taut and Slack Marine
Cables", Proc. ASCE, Vol. 103, No. ST11, pp. 2079-2092.

Rawlins, C.B. 1981, "Analysis of Conductor Galloping Field Observations - Single
Conductors", Trans, Power Apparatus and System, IEEE, Vol. PAS-100, No. 8,
pp. 3744-3753.

Tanska, Y., K. Tamai and T. Haraguchi 1985, "On Damping of Inclined Cables",

Proc. 40th Annual Conf., JSCE, 1-263, pp. 525-526 (in Japanese).

Tsuji, M. and I. Kanou 1980, "Damping of Wire Ropes", Proc. 13th Annual Conf.,
Japan Construction Consultant Association, pp. 73-86 (in Japanese).

Yamaguchi, H. and M. Ito 1979, "Linear Theory of Free Vibrations of an Inclined
Cable in Three Dimensions", Proc. JSCE, No. 286, pp. 29-36 (in Japanese).

Yamaguchi, H. and Y. Fujino 1987, "Modal Damping of Flexural Oscillation in
Suspended Cable", Structural Eng./Earthquake Eng., JSCE, Vol. 4, No. 2, pp.
4138-421s8.

Yamaguchi, H. and Y. Fujino 1988, "Effects of Support Flexibility on Modal
Damping of Cables", Structural Eng./Earthquake Eng., JSCE, Vol. 5, No. 2,
pp. 303s-311s.

Yamaguchi, H. 1988, "Modal Damping of Cable with Support Damping", Research
Report of Dept. Foundation Eng. and Construction Eng., Saitama Univ., 18,
pp. 31-42 (in Japanese).

GBC-13

Confirmed public via DTIC Online 02/02/2015






