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CONSIDERATIONS OF SYNTHESIZED SYSTEM DAMPING
IN DYNAMIC ANALYSIS OF SPACE STRUCTURES

Wan T. Tsai *

ABSTRACT

In considerations of space structures, a great number of degree-of-
freedoms (DOFs) are modelled and thousands of them are retained for
dynamic analysis. Natural frequencies of the structure represented
by the retained DOFs may be very close to each other and the system
is easily over-excited by the applied forcing function when it
contains frequencies in the vicinity of the natural frequencies.

In order to bring the excessive excitement down to a somewhat more
realistic response level, viscous damping is usually applied.

Since the damping coefficient for a flight system can not be
directly obtained from ground tests, no test derived system damping
is available. Damping coefficient for substructure constrained at
the interface DOFs to a rigid base is obtained instead. The
coefficients obtained from this test are applied to appropriate
DOFs of the discrete substructure and the coefficients related to
the interface DOFs are assumed to be zero. The damping matrix so
constructed, upon releasing the constrained DOFs of the discrete
substructure, is then transformed into an equivalent matrix for
flight system analysis. Known as triple-matrix-product (TMP), this
method of constructing a damping matrix by neglecting the off-
diagonal elements has been widely adopted in aerospace industries.
This paper is first to assess the validity of the above stated
damping matrix of a discrete structure and the TMP approach, and
then to propose a new method in constructing the system damping
matrix by using the damping coefficient obtained from ground test.
Specifically, the proposed damping matrix is synthesized by a
diagonal matrix in the free-free system coordinates. Its
corresponding damping elements in the substructural coordinates are
best fitted to the test derived damping by using Gaussian least
square technique. Applicability of the result is illustrated and
assesed.

* Member of Technical Staff, Payload Cargo Loads Analysis, Rockwell
International, Downey, California. Members of ASME, ASCE.
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INTRODUCTION

In dynamic analyses of a large structural system, geometric and
material characteristics are represented by a system of mass and
stiffness matrices. Together with a damging matrix, they
constitute a complete set of governing differential equations for
structural response analyses when applied forcing functions and
appropriate initial conditions are given. Both mass and stiffness
matrices are derived from analytical means. The damping matrix
which can not be determined by analysis is usually obtained in
conjunction with generalized modes.of the structural system.
Specifically, the analytically derived mass and stiffness matrices
are used to establish a transformation matrix. Through this, the
mass matrix can be transformed into an identity matrix and the
stiffness matrix into a diagonal matrix in which the diagonal
elements are the square of circular frequencies. Thus, a damping
matrix, called system damping, is defined by multiplying a set of
coefficients to a diagonal matrix consisting of circular
frequencies. At this point, the set of equations in the
generalized coordinate system consists of many independent
ifferential equations. Each is a single degree-of-freedom (DOF).
This set of equations can be solved by using the TRD module of the
NASTRAN computer program [1l]. Structural responses are then
obtained by inverse transformation of the generalized DOFs.

It is known that coefficients of system damping are different for
each mode. Their magnitudes can be derived from modal survey test
results of the complete structural system. Since a space structure
consists of a great number of DOFs and is actually operated in
space of near zero gravity environment, it is very difficult, if
not impossible, to establish system damping values through testing
of the complete structure on the ground before a flight. 1In order
to estimate the damping coefficients, an alternate method using
modal survey test of the substructures constrained at their
boundary DOFs is usually performed. The damping matrices obtained
from modal survey tests of all the substructures together with
assumed damping values in their boundary DOFs are then coupled into
a Craig-Bampton (C-B) form [2] in the same manner as that for
coupling the mass and stiffness matrices. However, a mathematical
difficulty arises now. This newly coupled damping matrix, the

" discrete damping, can only be transformed into a fully populated
damping matrix in the generalized coordinates. Thus, all
generalized DOFs are still coupled to each other through the
transformed damping matrix. The advantage for reducing
computational time by using the TRD module is lost and the cost to
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solve these equations for a large structural system can not be
saved. In order to take the advantage of using TRD module, an
approximation by removing the off-diagonal elements from the
transformed damping matrix has been commonly practiced. When this
is done, the damping matrix becomes a diagonal, known as the triple
matrix product (TMP) damping [3]. The set of generalized equations
now become independent. The TRD module can then be readily applied
to perform loads analyses with low computer cost.

The TMP damping technigue has been proved to be a good
approximation. Usually, results within an acceptible range of
error can be obtained. Occasionally, unexplainable reponses occur.
In a study of loads analysis for space transportation system
payload, a larger response at a larger damping coefficient has been
seen for a particular DOF when the damping value is within a
particular range. The cause for this type of behavior is yet
unclear. It may be partially induced by the use of TMP damping,
since the practice of neglecting the off-diagonal elements is
arbitrary. A new approach is proposed to refine the damping matrix
used in system analyses. The proposed method applies Gaussian
least square technique to synthesize the system damping. The
condition is that the synthesized damping yields a smallest error
between the converted and the given discrete damping values.

As an introductory development, the paper starts with a brief
review of the TMP method. Derivations for the proposed approach
follows. The goals of this approach are: (1) the synthesized
system damping is a diagonal matrix; (2) the converted values of
the synthesized damping are best fitted to the discrete damping;
and (3) structural responses using the proposed method are at least
as good as the results of TMP method. An example of a uniform beam
is used to illustrate the characteristics of the proposed method.
Results are compared to those obtained from both direct integration
and TMP methods.

BRIEF REVIEW OF TRIPLE MATRIX PRODUCT DAMPING METHOD

To simplify matrix formulations for a structural system, let the
mass, damping, and stiffness matrices of substructures be expressed
in the C-B form. Explicitly, the boundary DOFs are kept in
physical coordinates. The interior DOFs are represented by modal
coordinates while the boundary DOFs are assumed to be completely
constrained for each substructure. Upon coupling several
substructures together to form a complete structural system, the
governing differential equations for the system is given by

My + DYy + Ky = P (1)

where M, D, and K are respectively the mass, damping, and stiffness
matrice, y the displacement vector consisting of physical
components at boundary DOFs and modal components at interior DOFs,
y=dy/dt, and P the forcing vector associated with the y component
coordinates. Explicitly expressed into the C-B form, M, D, and K
appeaar
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Mpp | Mpi | Kb | Kpi
M= v K= |mreecccccco- (2a'b)
L Mip | Mj; | Kip | Kii
Dpo | Dpi |
P - (2¢)
. Dip | Diji .

In these matrices, the subscripts b and i are respectively

associated with boundary and interior DOFs of substructures. The
submatrices with subscripts ii are diagonal. Diji is the diagonal
discrete damping obtained from substructural modal test. Dbi, Dib.,
and Dpp are usually left empty due to the lack of test data. This
assumption is believed to be conservative. Occasionally, Dpi and Dip
are assumed to be empty and Dpp is given by a set of nonzero values
associated with a subsystem damping when boundary DOFs alone are
treated as an independent subsystem [4].

The exact method of transforming Eq.(l) into a generalized
coordinate system is through the use of complex variable modes.
This method of analysis has been shown in many publications, for
instance [5]. However, a real variable transformation appears to
be more popularly accepted even though it is an approximate
approach. The procedure of the approximation is as follows. Let
be the generalized DOFs corresponding to y by

Y = ¢n (3)
where ¢ is the transformation matrix satisfying
$'Mp = I, ¢'K¢p = W : (4a,b)

In Egs.(4a,b), ¢' is the transpose of ¢, I an identity matrix, and
W a diagonal matrix. The diagonal elements of W are the square of
circular frequencies. Introduction of Egs.(3,4) into Eq.(1l) gives
n+Ch+wWy=0Q (5)
where Q=¢'P and
C = ¢'D¢ (4c)

C is a fully populated matrix. Since the off-diagonal elements are
generally smaller than the diagonal elements, the response using
the fully populated matrix, C, makes little difference from that
using the diagonalized TMP damping, Cy=diag(C). Using this matrix,
the generalized DOFs are approximately computed from Eqg.(5) upon
replacing C by C3. Namely,

i"l+ Cde+Wrt=Q (5%)

Effectively, the responses obtained from Eq.(5*) are actually not
associated with the provided discrete damping matrix D, but with a
fully populated equivalent damping matrix, Dy. Namely;
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Dg = (¢1)'Cq(¢-1) (6)

Using the responées determined from Eq.(5*), the physical responses
of structures are then computed from Eq.(3).

SYNTHESIS OF SYSTEM DAMPING

Let B be the diagonal matrix to be synthesized in the generalized
coordinates and F the converted matrix of B in the C-B coordinates.
The correlation between B and F is

F=(¢61)'B(p7]) (7)

By letting bk be the diagonal elements of B and £;i; be the elements
of F, the element correlations in Eq.(7) can be wr{tten by

n
£fij = 3 bk G4 (8)
J K=1 kij

where gy;; is the coefficient associated with f£;: when the kth
element &hone in matrix B is a unity, all other elements are zero.

Now, let dij be the elements of discrete damping matrix D. The sum
of the square of the differences between converted damping fij and
provided discrete damping djj is

n 2 n 2
S = :g. ?é:(f.. -dii) + > (fii - dig) (9)
=S ij ij jeng, +1 J] 1]

where ny, is the number of boundary DOFs. Upon substituting Eq. (8)
into Eq.(9), the sum becomes a function of the diagonal elements
bx. Thus, a set of Gaussian least square functions is formed when
S is minimized by the condition

oS
——— = 0, ms= 1,2,...,1'1 (10)
abm

‘Explicitly, Eqs.(8-10) give a system of linear algebraic equations
for elements b, in the form

n n n
2 (2 ?:,gkijgmij + = 9ijj 9mjj )bk
S RS Ch 1

n

j=ng +
i% nh n
" 2wy P2 s o meliZeeen. (A1)

Using Eq.(11l), the synthesized elements of system damping matrix B
are obtained. The generalized DOFs can then be determined by using
Eq.(5) upon replacing C by the synthesized damping matrix B. The
structural responses can then be evaluated by using Eq.(3).
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It is noted that the best fit shown in Eq.(9) includes only the
specified discrete damping elements, those belonging to the
boundary DOFs and the diagonal elements of internal DOFs. The rest
of elements are not included in the fitting. 1In fact, it is
uncertain if the off-diagonal discrete damping elements are really
zero [6]. Therefore, it may be acceptible for practical
applications to neglect fitting of elements which are not really
obtained from testing but from assumptions.

ILLUSTRATION

To illustrate the performance of TMP method, let us consider a
uniform beam of 25 translational DOFs. The total length is 120
inches and it is equally spaced into 24 segments. The beam
properties are A=.0974 sq. in., I=.0480 in?., E=10° psi, and
p=.0318 lb-sec 2/in?., The boundary nodes are 1, 6, 13, 18, and 25
(Fig. 1). Heavisides step forcing functions are applied to three
points of the beam, 5 lbs at both ends (nodes 1 and 25) and 10 lbs
at the middle point (node 13). A nominal damping coefficient of
10% for the interior modal DOFs of C-B form is assumed in order to
easily illustrate the contribution of damping. Two cases of
damping values at boundary DOFs are considered, b =0 and Dy, %0.
For the case of Dp¥0, a set of damping value equivalent to 10% is
applied when My, and Ky, are assumed to be an independent
subsystem. Explicitly, a transformation is first performed to
generalize the boundary DOFs alone into a subsystem. A subsystem
damping of 10% is then obtained. Inverse transformation of the
subsystem damping, the boundary damping matrix Dy, is thus defined.
To simplify the analysis, no other substructure is coupled to the
beam. Therefore, the problem is simply the transformations between
C-B form and the generalized system,

Based on the material and geometric properties, the matrices of
mass, stiffness, and discrete damping are established. Through the
use of Eqgs.(3-5*), structural responses are obtained. To verify
the damping values actually used in TMP response analysis, Eq.(6)
is applied to transform the TMP damping back to C-B coordinates.
The diagonal elements of the converted matrix are then compared to
the corresponding elements of the discrete damping. The results
shown in Table 1 indicates that the converted damping are
significantly different from the provided discrete damping. The
maximum error is up to 23% in the 6th mode for the case without
boundary damping. When the synthesized damping is applied, the
maximum error of converted diagonal damping are less than 1% in all
modes for both cases of Dy,=0 and Dy,%¥0. Therefore, the
synthesized system damping are much more accurate than TMP damping
when the discrete damping values are compared.

Despite the significant discrepancies between the provided discrete
damping and the damping values actually used in the TMP method, the
responses are in good agreement with the results of direct
integrations of using the discrete damping. As shown in Table 2,
the largest response error which happens to be at the negative
value of node 6 is only over—estimated by 1.6% with respect to the
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peak acceleration 1.672 g, for the case of Dpp®0. The
corresponding maximum error by using the synthesized system damping
method is 2.9% at the negative value of node 18, for the case Dpp=0.
It must be noted that if the errors are computed by using local
values, the maximum errors become very large. They are
respectively 11.2% for TMP and 20.3% for synthesized system damping
methods, both at the negative value of node 18 for the case of Dy
¥0. However, due to ignorance of accumulated numerical error
acquired by using these approximate methods, this way of numerical
comparison may not be fair., Generally, the results obtained from
both TMP and synthesized damping methods are about in the same
degree of accuracy. TMP may be slightly more accurate than the
synthesized damping in this illustration.

Nevertheless, the proposed approach provides room for future
improvement that TMP method does not. One of the possible
improvement in syntheses of system damping is to weigh the
importance of certain particular DOFs by using participation
factors of the associated forcing functions. Although formulations
using the factors are yet to be derived, one can capture the
concept by studying the correlations between system mode shapes and
the distribution of forcing functions. For this purpose, the
damping values at generalized DOFs must be considered. Table 3
shows that the values for both TMP and synthesized damping are
fairly close for some modes, but are significantly different for
others. This indicates that the responses by using TMP damping and
synthesized damping may be significantly different, depending upon
the frequency of the applied forcing function. For a set of three
point loads applied to the beam, the distribution of the forcing
function is close to the 5th mode if it is expanded into mode
shapes of the beam. Explicitly, the forcing function is more
sensitive to frequency 5.2 Hz of the 5th mode. The successive
important frequencies are 23.5 Hz for the 9th mode, 54.4 Hz for the
13th mode, etc., since these mode shapes, as shown in Fig. 1 for
the first 9 modes, are closer to the distribution of the applied
forcing function. Using these modes, it is shown by Table 3 that
the coefficients of both TMP and synthesized damping are fairly
close. Therefore, the responses due to both methods are little
different. It may be expected that structural responses become
significantly different if the distribution of forcing functions
coincides with a mode for which the damping coefficients in TMP and
synthesized approaches are significantly different.

The results between the cases Dppb=0 and Dbb#0 must also be noted.
These results are independent of the methods of analysis. For the
case of Dpp=0, Fig. 2 shows that the amplitude of oscillations are
fairly uniform after the early time spikes. However, Fig. 3 for
the case of Dy,#0 reveals that the responses decay considerably at
later time. Therefore, boundary damping is important to structural
responses. Due to the lack of test data, it may be difficult to
establish a perfect boundary damping. Until a getter approach is -
available, a uniform subsystem damping of 1% or 2% in the form
similar to that illustrated earlier for Dy %0 may be acceptible for
practical applications.
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DISCUSSIONS AND CONCLUSIONS

The purpose of this study is to synthesize a system damping matrix
that may best simulate the true damping behavior of a s ructural
system. Using a given discrete damping matrix, a new approach in
synthesis of system damping by using Gaussian least square is
proposed. The synthesized damping matrix is always a diagonal and
is readily applicable to the TRD module in NASTRAN. As illustrated
by a uniform beam subjected to three point step function forces,
the synthesized damping are in excellent agreement with the
provided discrete damping in C-B coordinates. The structural
responses using the synthesized damping algo correlate very well
with those using direct integration. Therefore, the new approach
is worthy of further investigation for developing an improved
method which can best represent the true system damping.

Many possible syntheses can be made to upgrade the groposed method,
depending upon the goal of an analysis. Specifically, a set of
participation factors can be assigned to weigh a class of interest.
Using the factors as a weighting function, a best fit can be
performed for the interest of certain structural components. For
instance, the damping values can be best estimated for certain DOFs

that are closest to the modes and frequencies of forcing functions
as explained earlier.

In addition to the potential of the proposed method in synthesizing
system damping, several properties found from the illustration may
be useful for future refinement of the method. (1) Variations of
boundary damping may significantly influence structural responses.
The influence is more expressive for late time than for early time
responses. (2) Discrepancies between the provided discrete damping
and the converted values of TMP and synthesized damping appear to
be not an important factor to structural responses. It is known
that this may not be a correct statement. Further study is
required to determine the true correlations. (3) The 10% constant
discrete damping in the C-B coordinates are different from those in
the generalized coordinates. It is particularly significant in the
low frequency modes.
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Table 1. COMPARISONS OF DAMPING VALUES FOR 10% DISCRETE DAMPING

| DISCRETE | Dpp = 0 | Dpp * 0
MODE | = |===ececcccccccccccrc e rm e rr e r e r e e ————
| DAMPING* | TMP | SYN. | TMP | SYN.
1 | (.0423) | .0023 | .0027 | .0405 | .0426
2 | (.1306) | .0104 | 0127 | 1247 | .1316
3 | (.2000) | .0127 | .0146 | .1929 | .1999
4 | (.1518) | .0079 | .0082 | .1486 | 1567
5 | (.0271) | .0006 | .0006 | .0260 | .0272
6 | 7.603 | 5.867 | 7.660 | 7.289 | 7.603
7 | 9.195 | 8.282 | 9.223 | 10.38 | 9.195
8 | 15.91 | 15.15 | 15.92 | 15.57 | 15,91
9 | 19.48 | 19.64 | 19.51 | 20.38 | 19.48
10 | 29.05 | 30.30 | 29.18 | 32.52 | 29,05
11 | 33.21 | 36.55 | 33.25 |  38.14 | 33.21
12 | 52.83 | 56.35 | 52.85 | 57.63 | 52.83
13 | 56.96 | 62.53 | 57.08 | 65.06 | 56.96
14 | 65.10 | 72.69 | 65.13 i 74.51 | 65.10
15 | 72.76 | 80.26 | 72.77 | 82.46 | 72.76
16 | 102.9 | 108.7 | 102.9 | 109.6 | 102,9
17 | 107.6 | 123.1 | 107.7 | 125.9 | 107.6
18 | 120.6 | 131.8 | 120.6 | 133.3 | 120.6
19 | 129.6 | 141.2 | 129.6 | 143.0 | 129.6
20 | 156.2 | 173.6 | 156.2 | 174.5 | 156.2
21 | 161.7 | 182.5 | 161.7 | 183.1 | 161.7
22 | 185.8 | 200.4 | 185.8 | 201.1 | 185.8
23 | 190.1 | 212.1 | 190.1 | 213.2 | 190.1
24 | 200.9 | 230.1 | 200.9 | 231.4 | 200.9
25 | 203.5 | 229.7 | 203.5 | 232.6 | 203.5

* Values in () are for the case Dy, %0.
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Table 2. COMPARISONS OF ACCELERATION RESPONSES FOR 10% DAMPING

| NODAL NUMBER

ITEMS | 1 (END) | 6 | 13 (MIDDLE) | 18

| MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX

D1p=0 | | I I | | | |
DIR. INT. |-.389 [|1.672 |-.374 | .481 |-.259 |1.672 |-.263 | .355
TRD-TMP |-.390 |1.672 |-.399 | .471 |-.260 |1.672 |-.282 | .354
TRD-SYN. I-.387 I1.672 }-.414 I .478 I-.265 I1.672 :-.303 : .354
D
ngR. INT. |-.148 |1.672 |-.343 | .412 |-,174 |1.672 |-.242 | .290
TRD-TMP |-.147 |1.672 |-.370 | .412 |-.174 |1.672 |-.269 | .286
TRD-SYN. |-.153 |1.672 |-.389 | .418 [-.189 |1.672 [|-.291 | .290

Table 3. COMPARISONS OF TMP AND SYNTHESIZED DAMPING COEFFICIENTS (%)
IN GENERALIZED COORDINATES FOR 10% DISCRETE DAMPING

| SYSTEM | Dyp =0 | Dppb *# O
MODE | FREQ, | ====remecceeccc e
| (Hz) | TMP | SYN. | TMP | SYN.
1 |1 0 I - | - | - | -
2 | 0 I - I - | - | -
3 | <9675 | .009 | .,001 | 9.90 | 10.1
4 | 2,657 | .193 | .146 | 9.44 | 1o0.1
5 | 5.191 | .484 | .536 | 9.55 | 9,98
6 | 8.550 | 12.3 | 16.7 | 14.0 | 15.0
7 | 12.73 | 16.5 | 17.5 | 18.3 | 13.9
8 | 17.71 | 14.1 | 15.1 1 14.2 | 15.3
9 | 23.49 | 14,9 | 13.9 | 15.1 | 13.9
10 | 30.06 | 13.5 | 13.2 | 13.9 | 12.2
11 | 37.41 | 14.5 | 12.6 | 14.9 | 12.4
12 | 45.51 | 11.2 | 10.5 | 11.3 | 10.5
13 | 54.36 | 12.5 | 11.4 | 12.9 | 11.1
14 | 63.91 | 12.9 | 11.3 | 13.2 | 11.3
15 | 74.13 | 13.4 | 11.9 | 13.6 | 12.0
16 | 84.94 | 10.6 | 10.1 | 10.7 | 10.1
17 | 96.25 | 12.1 | 10.4 | 12.4 | 10.3
18 | 107.9 | 11.7 | 10.7 | 11.8 | 10.8
19 | 119.7 | 12.1 | 11.3 | 12.2 | 11.3
20 | 131.3 | 11.1 | 9.99 | 11.2 | 9,99
21 | 142.4 | 12.0 | 10.5 | 12.0 | 10.5
22 | 152.4 | 10.5 | 10.1 | 10.5 | 10.0
23 | 161.2 | 11.8 | 10.4 | 11.8 | 10.4
24 | 167.9 | 11.6 | 9.99 | 11.7 | 9.99
25 | 172.1 | 11.1 | 10.2 | 11.8 | 10.2
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