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ABSTRACT

The capability of prediction of the radar echoes {radar cross sections)
of aercspace vehicles 1s necessary for either modifying (reducing) such cross
sections for the purpose of reducing detectability, and/or categorizing such
cross sections for the purpose of identification. Such predictions can be
accomplished by measurements (radar range, unechoic chamber, etc.). The
purpose of the capability of computing radar cross sections {(vis-a-vis
measurements) is to reduce both cost and time. The state-of-the-art of such
computational methods consists of computer sclving the scattering integral
equations by matrix inversion methods. The matrix nature of such formulations
and solutions restricts the size of the targets for which radar cross sections
can be calculated on even the largest and fastest existing computers to no
more than the order of one wave length, and renders the possible solutions
computer-time consuming and costly. The purpose of the k-space method is the
capability of rapid and cost-efficient computer calculations of radar cross
sections of aerospace vehicles, particularly those of much larger size than
one wave length. The technical means by which this purpose is achiewved is
summarized next.

The initial-value problem is solved by means of a k-space formulation
of the field equations, thereby replacing the conventional integral equation
formulation by a set of two simultaneous algebraic eguations in two unknowns
in two spaces (the constitutive boundary condition being an algebraic egquation
in x%-space). These equations are solved by an iterative generalized-
relaxation method with the aid of the Fast Fourier Transform (FFT) algorithm
connecting the two spaces, reguiring trivial initial approximations. Since
algebraic and FFT equations are used, the number of arithmetic multiply-add
operations and storage allocations required for a numerical solution are
reduced from the order of N3 and N2 respectively (for solving the matrix
equations resulting from the conventional integral eguations) to the order
of NlogyM and N respectively (where N is the number of data points required
for the specification of the problem). The convergence rate of the iterative
process is optimized by generalizing the conventional relaxation factors to
a relaxation function and/or its generalized inverse determined by the Eigen
values of the appropriate Green's function. These Eigen values are obtained
numerically in NlogsN coperationsg (vis-a-vis the conventiocnally required N3
cperations) by means of the FFT of the Green's function cast into a circulant
matrix form. The advantage gained in speed and storage is thus of the order
of N?/1ogsN and N respectively. This method is thus considerably more effi-
cient, and permits exact numerical solutions for much larger problems, than
is possible with the conventional integral equation - matrix inversion methed.
Arguments are presented towards the view that the field equations are more
fundamental in k-gpace. The physical and mathematical meaning of both the
continuous and discrete k-space representations are discussed. The details
and some numexrical results of the application of this method to three-dimen-
sional electromagnetic scattering are presented. It is shown that the
scattered far fields are yielded directly in k-space.
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INTRODUCTION

The main subjects of this report are a Generalized Relaration method
and a Gemeraglized Imverse method for iteratively solving large integral
equations. These methods are specifically applicable to the k-space
formulation of such integral equations. This k-space formulation was
developed earlier by this author under a previous contract, and was
specifically addressed to the problem of electromagnetic scattering. The
purpose of the generalized relaxation method and the generalized inverse
method is the acceleration of the convergence rate and the enlargement of the
domain of applicability of the previously developed iterative method of
solution of the k-space formulation. Since the basic k-space formulation
and its method of solution is applicable to all the imitial value problems
of mathematical physics which conventionally lead to integral equations,
this report consists of a brief development of the k-space formulation of
the initial value problem, with brief treatment of the electromagnetic
scattering problem as a special case; and with detailed emphasis on the
development of the generalized relaxation function method and the generalized
inverse method (the reader is referred to the above cited earlier report for
a detailed and tutorial presentation of the k-space formulation of the
electromagnetic scattering problem).

The organization of this report is as follows. In Section 1, the
conventional matrix formulation of the initial value problem is briefly
reviewed. In Section 2, the k-space formulation of the initial value problem

and its conventional iterative relaxation method of solution are formally

Bojarski, N. N., K-Space Formulation of the Electromagnetic Seattering
Problem, Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Technical Report AFAL-TR-71-75, March 1971, Final Report to

USAF Contract F33615-70-C-1345, AD 882 040,



developed. In Section 3, the special case of the k-space formulation of the
general wave scattering problem is formally developed. Section 4 consists
of the detailed development of the matrix theory perspective of the k-space
formulation, necessary for the subsequent development of the generalized
relaxation method and the generalized inverse method. Section 5 consists of
the detailed development of the generalized relaxation method, and Section 6
consists of the detailed development of the genmeralized inverse method.

In Section 7, the special case of the k-space formulation of the electro-
magnetic scattering problem is formally developed, and a brief review of
earlier obtained numerical results in summarized. In Section 8, a summary

of the state-of-development of the method, its present limitations, and
recommendations for future needed research, are presented. The applicability
of the method to the non-monochromatic {wide band) electromagnetic scattering
problem, electromagnetic problems other than scattering, and the general

initial value problems of mathematical physics, are also discussed.

This author is indebted to Dr. Charles H. Krueger, Jr., of the
Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, for
developing the details, programming and verifying, the two-dimensional

k-space formulation of the electromagnetic scattering problem.

This author is also indebted to Messrs. Leslie E. Whitford and
William Hopkins of the Computing and Information Systems Division, Computer
Science Center, Wright-Patterson Air Force Base, Chio, for directing the
programming effort and performing the actual programming respectively, of
the one- and three-dimensional k-space formulations of the electromagnetic

scattering problem, as well as for several important suggestions.
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1. THE CONVENTIONAL MATRIX FORMULATION OF THE INITIAL VALUE PROBLEM

Consider the n-dimensional scalar, vector, or tensor field $(X) and
the source density w(X), governed by the linear m-th order differential
field equation

|_¢ px) = - | wx, (1)

where the n-dimensional linear differential scalar, vector, or tensor

operators L¢ and | are of the form

(2)

Ly

]
[a)]
P N
Qs
X |a»
L
e
-
fl
—
-
a8
-
.
L]
.
-
= ]

L = by ('ggf')‘ » (3)

subject to the n-dimensional scalar, vector, or tensor constitutive equation

wix) = g(x) ¢(x) . (4)

The conventional n-dimensional integral representation of the

generalized initial value problem associated with the field equation (1) is

6 () =fg<x]x') wix) d™' + ¢ (X) {5)
D



subject to the constitutive equation (4} where ¢i(x) is the externally
imposed field (initial value field, the source distribution of which is
external to the problem defined by the constitutive equation (4) ), D is
the domain of non-vanishing o(X), and g{(X) is the appropriate Green's

function, vector, or tensor, satisfying the differential equation

L¢ gtx) = - L, 60x) . (6)

The constitutive equation (4) can also be viewed as the boundary
conditions imposed by a specific physical situation on the differential

field equation (1), which is invariant to the specific physical situation.

The conventional numerical method of solution of this initial value
problem is by means of numerical matrix inversion methods [1], applied to
the Fredholm integral equation of the Second Kind, formed by combining
(4) and (5), Z.e.,

$(x) -fK(x|x') s(x) d™%' = ¢l (x) (7)
D

where the integral transform kernel K(x|x') is given by
Kix|x') = g{x]x') alx") . (8)

(It should be noted that in cartesian coordinates, this kernal Ki{x|x')
is always a compound kernel of the form K(x|x') = g(x-x") o(x"); Z.e.,

composed of a difference kernel and a geparable product kernel).
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Such matrix inversion methods require of the order of N2 computer
storage allocations, and of the order of N3 arithmetic multiply-add
operations (for matrix inversion) for the execution of a numerical solution,
where N is the number of data points required for the numerical specifi-
cation of the constitutive equation (4) (the specification of the non-van-
ishing portion of o(x) ). The practical size limit with state-of-the-art

computers is for N of the order of several hundred.
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2. THE K-SPACE FORMULATION OF THE GENERAL INITIAL VALUE PROBLEM

The k-space representation and solution of the generalized n-

dimensional initial value problem is presented next.

The n-dimensional Fourier Transform of the differential field equation
(1) yields the local algebraie scalar, vector, or tensor k-space field

equation

L¢(k} (k) = - Lw(k) Wik (9)

where

oo

3 (k) =I eik'x $(x) d"x , ete., (10}

-

and where, by virtue of (2) and (3), the quantities L (k) and Lw(k) are

¢
polynomials of the form

m
L (K) = Z a. Gk, (11)
¢ 2 7

j=o

m

- LY

L, k) = Z b, (ik) (12)

J=o



The k-gpace representation of the generaliazed n-dimensional initial
value problem, consistent with the x-space integral representation (5), thus
is the algebraic scalar, vector, or tensor equation (vis-a-vis the conven-

tional integral or differeniial equation representation}
a(k) = Gtk) WCk) + @' (k) , (13)

subject to the algebraic x-space constitutive equation (4), Z.e¢.,

w(X) = olx) ¢(X) , (14)
where,
L (k)
G(k) = - ¥ (15)
L¢(k)

which clearly can be taken as the Green's function (or vector or tensor) in

k-space, Z.e.,

G(k) <« g(x) (16)

The genmeralized n-dimensiomal initial value problem ig thus reduced
to a set of two local algebraie (sealar, vector, or temsor) equations in two
unknowns in two epaces, t.e., (13) and (14).

The k-space representation (13) et seq. also clearly follows from (5)

and the n-dimensional convolution theorem since

- -
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Cgx|x") = glx-x") (17)

in any cartesian coordinate system.

The unique existence [2] of this k-space representation is restricted
to media for which

J-IO(X)[ dMx < w . (18)

If o{x) is in general non-vanishing only in a finite n-dimensional
x~domain, then the pair of algebraic equations (13) and (14) can be solved
numerically with the aid of the n-dimensional Fast Fourier Transform (FFT)
algorithm [3] as the connection between the two spaces, by the following

iterative relaxation method [4]; the recursion relationship for which is

W (k) = Fek|x) w_ (0 (19.1)
o (k) = GO W (k) + 2l (k) (19.2)
b, (x) = Fioxlk) o (k) (19.3)
wn+1<x) = aolx) ¢ (X) + {1-a) W (X3, (19.4)

where a is an appropriately chosen relaxation coefficient (best numerical
results to date were obtained for o=3), and where F(k|x) and F(x|k) designate

the Fast Fourier Transform algorithm operator and its inverse respectively.

The initial approximation we(X) can be taken as any known simply
programmable approximation to the problem, including the trivial case

wo (X) = 0, the computer programming of which consumes virtually no signifi-



cant, much needed for data, core storage allocation (which is not the case
with any other non-trivial initial approximation, which, at best, would

reduce by two the total number of iterations required).

In order to avoid the numerical difficulties arising from alifasing,
i.e., the fietitious pebiodic nature of the FFT {which is a diserete and
finite Fourier transform, vis-g-vig the continuous and infinite Fourier
transform implied by (10)), and the possible singularities in the Green's
function (or vector or tensor) in k-space, it becomes necessary to choose
an n-dimensional hyper-rectangular box of twice the size (in each dimension)
of the smallest hyper-rectangular box in which the non-vanishing o(X) is
imbeddable as the x-domain for the FFT, and take the Green's function, vector,

or tensor as (in conventional FFT notation [5])

Ny Ny N
> =1 = -1 51
2 2 2
Glu,v,+=+,0) = - a'x E : z E e WI:J"B cor WY gla,B, ey, (20)
1 N2 n
Ny N N
=z Bg 2
h
where ZTTT/NJ
WN = g , JEUL, 2,000, 21
J
Ax., Ak, = 2a/N, (22)
J "/ J
a"x = axy Bxp eer AX (23.1)
N=NpNp ees N, ete., (23.2)

and where appropriate use must be made of the n-fold periodicity properties
of the FFT [6] for both (20), as well as the desired placement of o(X) and
¢|(x) in the hyper-rectangular FFT x-domain.

10

(19

s
}
)
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The numerical difficulty arising from the possible singularity of the
Green's function at the origin of the x-space (Z.e., g{0) = «) can be
alleviated by taking advantage of the appropriate prineipal value integral
representation of the field equation (5), (e.g., [7]), Z.e.,

!

$(X) = £ wix) + pjg(x[x') wix") d™%' + ¢ (x) | (24)

D

It thus immediately follows that g(0) for (20) can be taken as

( 2 )
— . (25)
Anx

Since algebraic and FFT equations are used, the number of arithmetic

"

gto)

multiply-add operations required [8] for a solution is reduced from the
order of N3 (required for the numerical matrix inversion needed for solving
the matrix equations resulting from the conventional integral equation
representation of the problem) to the order of N log, N, and the storage
requirement is reduced from the order of N? (required for storing the
matrix associated with the Green's function needed for the matrix method of
solution) to the order of N (required for storing the k- and x-space functions).
The advantage gained in speed and storage is thus of the order of N? Zog, N
and N respectively. This method is thus considerably more efficient, and
permits exact numerical solutions for much larger problems. To date,
acoustic scattering problems of the order of N=10“ have been successfully
solved, and problems of the order of 107 are feasible with state-of-the-art

comput ers.

11
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3. THE X-SPACE FORMULATION OF THE GENERAL WAVE SCATTERING PROBLEM

For the general n-dimensional wave scattering problem, the (range and
phase normalized) scattered far fields in i—space are in general simply and
algebraically related to the n-dimensional Fourier Transform of the induced
(by the incident field ¢I(x) ) source distribution w(x), Z.e., W{k), which
is clearly yielded directly by the iterative solution (18) without addi-
tional computations. Since this is not the case with the conventional
matrix method of solution of the integral equation representation of the
scattering problem, the k-space method of solution presented is particularly

and additionally attractive when applied to scattering problems.

For the special case of the n-dimensional Helmholtz (time-reduced)

wave equations for which

_ Y.
L¢ - Z (ij) + kzo > (26)

Jj=o

['\]
where ko E'E

, and c is the wave velocity in the free space (this deviation
from conventional notation is for the purpose of distinction from k, the
Fourier Transform variable of %), the n-dimensional k-space Green's function,

in the notation of (9), (15), and (16), is clearly

13

6tky = wik) L (k) (27.1)

It

vk . {27.2)

The form of the Green's function ¥(k) in k-space is clearly i{nvariant
to the dimensionality n of the space, which is »not the case for the Green's

function Y(X} in x-space.

13



Thus, by virtue of the previously stated relationship between the
(range and phase normalized) scattered far fields in x-space and the source
distribution W(k) in k-space, and conservation of energy considerations
(mathematically equivalent to Parseval's formula) for passive media of finite
spatial extent (see (18) )}, it follows that the Radiation Condition (the
boundary condition or constitutive equations at infinity) for the Helmholtz

equation Green's function in k-space can be stated as

¢>(ks)

<o LIk ke 28)

vik )
5

where kS is the propagation wave number vector of the scattered far fields.

It can thus be argued that the field equations of mathematical physics
are more fundamental in k-space because of the simple local algebraic nature
of these equations in k-space {(vis-g-vis the global nature of the integral
or differential representation of these field equations in x-space), and
the invariance of the form of the k-space Green's function for the Helmholt:z
equation with respect to the dimensionality of the space; particularly when
bearing in mind that the Fourier Transform is the only transform known for
which a fast algoriihm exists. However, the constitutive equations (or
boundary conditions) are more fundamental in x-space because of their local

algebraic nature in x-space.

14
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4, THE MATRIX THEORY PERSPECTIVE OF THE K-SPACE FORMULATION

The equivalent matrix theory perspective of the k-space formulation can
best be developed from the integral equation (7} for the one-dimensional
problem, with the generalization to n-dimensional integral equations then

becoming obvious; Z.e., by (7) and (8)
a
${x) —J‘g(x|x') olx') ¢(x") dx' = cpl(x) . (29}

e}

If x is discreteized in M equal intervals Ax in the domain (o,a), then
X, T obx a = 0,1,2,s*+,M ; (30)

and (29) yields
M-1
f
$(x) - E g(xu|xu,) olx v) $x_¢) Bx = ¢ (x ) . (31)

a'=c

Introducing the M-dimensional wvectors ¢u and ¢c¥1 as

¢, = o(x) (32)

Feyl 33

¢, = ¢ (xa) , (33)
15



the M-dimensional (square) diagonal matriz G, 3S

0.8 = X 6 g olx ) , (34)
1; a=28

6&5 = (35)
0; a#8,

and the M-dimensional mairix Gug @S

% = 9%, 1xg) (36)

then in cartesian tensor notation (with summation convention implied), (31)
becomes

O ~ a8 By ¢Y = ¢, (37)

which, in conventional matrix notation becomes

¢ - gop = ¢ (38)

(I - gol¢ = ¢i ; (39)

where [ is the {dentity matrix.

16



r— P g P P P P T T e e e

(The conventional matriz inversion solution of the problem is
accomplished by forming a matri% szgo directly, without the separate intro-
duction of the diagonal matriflo; and numerically inverting the matrix (I-s),
yielding the solution ¢=(I-s) ¢ ).

Introducing the M-dimensional generatrixz vector Y (generatrix of

the matrix g)

Yo = 90X, » (40)

and recalling that the Green's function g(x|x'} is always a difference

funetion (see text subsequent to 8) of the form

gix|x") = gl]x-x']) , (41)
yields with the aid of (36)
95 = Ya-8 (42.1)
= Ygoa (42.2)
“ Y)qg] - (42.3)

It thus follows that the (MxM) Green's matrix g is a symmetric matriz

derivable from the M-dimensional Green's generatriz veector y by (42).

Introducing a (2M+1) dimensional space, Z.e., an N-dimensional space
of dimension (2M¥1), Z.e,

17



N=2M+ 1, (43)

for the vectors ¢, ¢', and y in which the first M components are defined as
per (30) through (42), and the remaining components are defined by the

periodic relationships

by = by 3 MSa<SN-1, (44)
b= by s MSa <N, (45)
Vo = Theg 5 MSa<N-1, (46)

and in which the first MxM components of the diagonal of the matrix ¢ are
defined as per (34) and (35), and the remaining components of the diagonal

are defined as zero, 1.e.,

Ax 636 o(xa) ; 0<a,p <M

Sog = (47)
0 s M<a,g SN-1,

clearly leaves the now N-dimensional matrix equation

¢ - god = ¢ (48)

consistent with (31}, (38), and (39).
However, the NxN Green's matrik_ g resulting from the N-dimensional

now pertodie generatrix vector y, still given by (42), is now not only

symmetric, but also has the additional property of being a eirculant matrix [9].

18



Some well known special properties of circulant matricies [10] will now
be recast into a somewhat more convenient notation and general form; for this
purpose, however, it becomes convenient to introduce the NxN Fourier matrix F,

defined as

2n
I
F =-~—e , (49)
Ha N
which clearly is a symmetrie unitary matrix, Z.e.
Fuu = Fau (50)
FFi =1, (51)

It should be noted that this Fourier matrix has only N distinct
elements (thus requiring only N storage allocations). The matrix multiplication
of this matrix by a vector requires only iNlogoN arithmetic multiply-add

operations if the FFT algorithm is used.

The special properties of a circulant matrix can now be stated as

follows:

1. The Fourier matrix is the wunitary transformation matriz which

diagonalizes a eilrculant matrix, Z.e.
FgF =g' (52)

where g' is the diagonal Figen matrix of g. The rationale for choosing
the factor 1//N in (49) is now evident; namely, the conventional

definition without this factor would have lead to merely a

19



similarity transformation matrix, which is clearly far less general..

The Eigen values ) of a circulant matrix g are related to the

generatrix vector y of the incident matrix and the Fourier matrix by
(53)

I.e., The vector formed by the set of Eigen values of a circulant
matrix is the Fourier transform of the generatrik vector of this
circulant matrix. The practical significance of this equation (53)
is that whereas it takes N3 arithmetic multiply-add operations to
compute the complete set of Eigen values of a general matrix, it
takes only zNZog,N arithmetic multiply-add operations to compute
the complete set of Eigen values of a circulant matrix, since (53)
can be computed with the aid of the FFT algorithm (matrix multipli-
cation by the Fourier matrix can always be accomplished with the
FFT algorithm). Furthermore, whereas N? storage allocations are
needed for a general matrix, only N storage allocations are needed
for the generatrix vector completely and uniquely defining a
circulant matrix.

The Eigen vectors eia)

of a eirculant matrix are totally independent
of the (N independent) elements of the circulant matrix (and the
elements of its generatrix vector), and are proportional to the

vectors formed by the rows or colwms of the Fourier Matrix; <i.e.

ol NE (54)
] HO

The practical significance of this equation (54) is that the Eigen
vectors of a circulant matrix can be generated directly by inspection
of the Fourier matrix (49); Z.e., the N N-th roots of unity.

20
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The imverse of a circulant matrixz g is also a eitreculant matriz,

and is given by

o' =F ok (55)

’

where the quantity %- is a diagonal matriz, the diagonal elements

of which consist of the reciprocals of the Eigen values ) of the

circulant matrix g.

An alternative formulation of (55), in terms of the generatrix vy

of the circulant matrix g, as per (53}, in a consistent notation, is

1
-1 _ ot
g =F F o (56
{NFY}

i1.e., the quantity {} in (56) is a diagonal matrix, the diagonal

elements of which consist of the reeiprocals of the elements of
the vector (W Fy).

The practical significance of (55) and (56) is similar to those
stated subsequent to (53).

The proof of (55) and (56) follows directly from (49} et seq.

All the preceding properties of a circulant matrix can be extended to
n-dimensional spaces by the introduction of the n-dimensional NxN Fourier

matrix (see 49) as

n y _ 2mi Ua
.0, I I J
JJ A N,

21



where the matrixz multiplication of this n-dimensional NxN Fourier matrix by
an n-dimensional vector (of N elements) is accomplished numerically with the
aid of the n-dimensional FFT algorithm. (For the limiting case of Now; t.€.,
a Hilbert space, the preceding properties simply revert back to the Fourier
integral transform properties, where it is now clear that the Eigen value
speetrum A(k) of a difference function g{x-x') is the integral Fourier trans-

form of the generatrix function g(x) }.

The iterative solution (19) can now be develuped in matrix theory

perspective form (48) et geq. By (48) and (52)
t oy . .
¢ - Fg'Fop = ¢ , (58)

where now both ¢ and g' are diagonal, where the matrix F has only N distinct
elements requiring stdrage allocations, and where all the implied matrix

multiplications can be executed with the aid of the FFT algorithm,

Choosing any vector ¢n for ¢ clearly yields the gelf consistent vector
¢n by (48) as

~ B [ ’
b= god, + o . (59)

If I, is taken as the n~th approximation of ¢, then clearly ¢, can be

taken as the (n+1)th approximation of ¢; Z.e.

1
gy = 990 T ¢ . (60)

This recursion relationship (60} for the iterative solution of (48) is
equivalent to the Neumann Series ewpansion of (48), the sufficient condition
for the convergence of which is that the norm of the matrix operator go be
less than unity; Z.e.

22
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lgal <1 . (61)
By (53), and the diagonality of o, this norm can clearly be computed
in NlogoN operations.

For those cases for which (61) is not satisfied, the iterative
relaxation method can be developed as follows; let o be a real scalar

relaxation factor such that
bruq = 06, + (1-adp (62)
which, with the aid of (59) yields
by = [ 1~ all-go) Jo, + a' . (63)

An alternative more rigorous derivation of (63) is as follows; (48)

can be written as
(I-godg = ¢ . (64)
thus

all-gald

ad (65)

$ - ¢ + a(l-guld = a¢ (66)

23



b= [T - all-god]e = ad' . 67)

The Neumann series ekpansion of (67) is

b = :E: [1- all-g] (ash) (68)
e

And, consistent with (60), the recursion relationship for the iterative
solution of (67) is

i
¢n+1 =]1I- a(I—gc)]¢n + ag s (69)

which is consistent with the iterative k-space solution (19). The sufficient
condition for the convergence of (69) is

I - all-go) | <1 . (70)

The conventional relaxation method thus reduces to finding the
relaxation factor o which minimizes |I-a{I-go)|, and thus maximizes the
convergence rate of (69).

The essence of the k-space formulation, from a matrix theory
perspective, is in (52), (58), and (63), in which only the diagonal matricies
g' and o need be stored, and all matrix multiplications (executed by the FFT

algorithm) are via the Fourier matriz F. This becomes most evident if (63)
and (52) are combined into
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¢n+1 ={1- a(I-F'fg'FU)]dJn + a¢F R (71)

which is consistent with the iterative k-space solution {19).

The mathematical meaning (vis-a-vis the physical meaning discussed
earlier) of the k-space formulation is thus in having found the trans-
formation matrix (the Fourier matrix) which diagonalizes the discrete field
equations (5) in a new coordinate system (the k-space), and possessing the
means of executing this transformation economically in speed and storage
(t.e., with the FFT algorithm).
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5. THE GENERALIZED RELAXATION METHOD

The difficulty with the conventional relaxation method is the
difficulty of finding a relaxation factor which optimizes convergence rate,
as well as the fasic question of the existence of such a factor which

assures convergence at all.
These difficulties are alleviated if the relaxation factor is not
restricted to being a real scalar, but is generalized to being a complex

matriax.

The trivial and naive such relaxation matrix a clearly is

& = (I-go)™) (72)

for which the iterative recursion relationship (69) and the convergence

condition (70) respectively become

hel = ad {(73)

H)
o
A

I - alI-go) | (74)

namely; the iterative process converges in one iteration to the exact
solution. This trivial and naive choice of o as the solution to the problem

was presented merely for the purpose of making the following argument:
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The best known approximation to the solution of the problem should be
chosen as a relaration matrix, and not as the initial approximation, in the
iterative process (since oconvergence ie determined solely by the relaxatiom
matrix and is independent of the initial approzimation chosen).

However, prior to searching for a practically suitable choice of the
matrix o, certain practical limitations must be imposed on the properties of
this matrix. A completely arbitrary matrix a will negate all the storage an
speed advantages of the k-space method, since such an arbitrary matrix will
require of the order of N? storage allocations and arithmetic multiply-add

operations for the execution of the implied matrix multiplications in (69).

A natural such choice of special properties for the matrix o, which
will preserve the speed and storage advantages of the k-space method, con-
sistent with the matrix theory perspective of the k-space formulation, clear
are that the matrix o be diagonal, eirculant, or compound (the product of
a diagonal and a circulant matrix).

{The conventional sealar relaxation method can now be viewed as the

special case of the gemeralized relavation matrix being fully degemerate).

The general required properties of the relaxation matrix will be
examined next.

The norm implied in the convergence oondition (74) must clearly be
taken as the Euclidean norm or the speetral radius, t.e., the largest
magnitude (absolute value) of the Eigen value of the matrix operator A in
(74) where

AzT1 - all-go)

It now becomes convenient to introduce the matrix B, defined as
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thus
A=1 - a(I-B)
The Eigen values of A are given by the determinental equation

det ( A - lA I1)=20

The convergence condition (74) for optimal convergence rate thus is

ma IAAI <1
>0

If the set of all Eigen values‘{lA} is chosen as exactly zero, then
clearly (74) is satisfied in such a fashion that the resulting a yields an
exact solution at the first iteration (as was the case with the previously
presented naive example of a=(I—gc)_1 }; t.e., a numerically closed form

solution of the form (see 71):

For this choice, the determinental equation (78) thus becomes
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det A=0 , (81)

which, with the aid of (77) becomes

det [I - atI-B) ] =0 , (82)

which can be rewritten as

det (I-a+aB) = 0
det [u(a—T—I+B)] =0
det oo » det [ B - (I-a—1) ]=0 , (83)
which is satisfied by
det [ B - (I—a_T) ] = c . (84)

The determinental equation which determines the Eigen values A of the
matrix B is

det ( B - AB I)=0 , (85)
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It thus follows from (84) and (85) that if the matrix (I—a—]) is

chosen as the diagonal matrix'{AB}, i.e., consistent with the previously
introduced notation {},

—
!

R
1l

{x} . (86)

then (81) is satisfied identiecally. It thus follows from (86) that o« is the

diagonal matrix
{ 1 }
a=4$ T . (87)
I—AB

Examination of (76} thus reveals that knowledge (or a rapid means of
computing) of the Eigen values of the matrix go would yield a numerically closed
form solution of the problem; Z.e., (80). Such knowledge or means are clearly
not available. However, since ¢ is a diagonal matrix, an approximation for
the Eigen values of the matrix go are available; namely, the product of the
Eigen values of the matricies g and o (which, in general, for non-diagonal o,

are not equal to the Eigen values of the product of the matricies), Z.e.,
AB = A A , (88)

where the Eigen values A, are the diagonal elements of the diagonal matrix o,
and the Eigen values lg are given by (53), and are computable easily and
rapidly. To the extent to which (88) is a good approximation, a good choice
for the diagonal matrix o is thus

1
{T—“A—r} (59)
g a
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It can be shown that for d chosen as per (89), the norm of A is

always less than unity.

In the k-space notation of (19), with the aid of (53), (89) yields

1
1 - o(x) Gi{x) (90)

alx) =

where G{x) is G(k} coloeated in x-space; z.e., G{k) evaluated at k=x.

For purposes of computer programming (storage allocations) the
solution (19)-(90) can be simplified by introducing ¢s defined by

s 24 +o° (91)

and B(x) defined by B8(x} = oilx) wix); Z.e., by (90),

- g{x}
BOX) 2 50 800 (92)

The recursion relationship for the generalized relaxation function

iterative solution (19)-(90) thus becomes

W (k) = Ftk]x) W (%) (93.1)
S —
8 (k) = G(k) W (k) (93.2)
4,00 = Fix|k) 8200 (93.3)
1, .
W) = B0 [ ¢i(x) 9 () =60 w )] (93.4)
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An artificial test case of N=8 was programmed, with the following
numerical results. For cases for which the conventional relakation method
succeeded, convergence was accelerated from about 30 iterations by the
conventional method to about 6 iterations by the generalized method. For
cases for which the conventional relaxation method failed, convergence was
reached in about 10 iterations by the generalized method for those cases for
which the magnitude of the largest element of a was less than about 103, and
the generalized method failed for those cases for which the magnitude of the

largest element of o approached about 103.

It thus seems that the generaliaed relazmation function method cannot
overcome the difficulties presented by a norm of A of about 10% and larger
(vis-q-vis a norm A % 1 for the conventional method). Although higher
precision in the computations could undoubtedly overcome this difficulty,
such higher computational precision is totally undesirable since it defeats

the very purpose of the basic method; <.e., economy of speed and storage.

It is to the alleviation of this difficulty that the next section is addressed.
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6. 'THE GENERALIZED INVERSE METHOD

The generalized relaxation function method can now be put in the
following perspective. The Neumann series solution (or the method of

successive approximations) of (48), Z.e.,
o - goo = ¢ (94)
is applicable if
norm {(go} < 1 (95)
The conventional matrix method solution of (48) is applicable if
norm (ga) S 1 , (96)
and possesses the additional property of aceelerating (over the Neumann series
solution) and uniforming convergence if (96) is satisfied.
The generalized relaxation method of solution of (48) is applicable if
norm (go) 5 103, (97)

and further accelerates uniform convergence if (97) is satisfied.
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This section is addressed to the problem of solving (84) subject to

the condition

norm (go) > v (98)

For that purpose let a be chosen as the aompound matrix

o = (-ga)(‘1) , (99)

i.e., the negative of the gemeralized inverse [11] of the product of the

eirculant matrix g and the diagonal matrix o.

The recursion relationship for the iterative solution (69) thus becomes

(-1 !

¢4 = {907 Co - ¢ ), (100)

subject to the norm condition (70), which, due to the choice (99) of a

becomes

| (—goy (D)

| <1 (101)

| go | > 1 , (102)

which is the desired condition (98).
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Equation (100) reduces to

- ¢. ). {103)

Since the determinant of g is in general non-zero, the inverse of g
can be computed economically and efficiently (with N storage allocations and
iNZog,N operations) by (55); the generalized inverse of g can thus be taken
as the conventional inverse g . Since ¢ is a diagonal matrix with one-half
of its diagonal elements consisting of zeros, the determinant of ¢ vanishes;
it is thus necessary to take its generalized inverse. A suitable such
generalized inverse is clearly (in the previously introduced notation) the
diagonal matrix {é&; Z.e., a diagonal matrix, the diagonal elements of which
consist of the reciprocals of the elements of the diagonal matrix o for those
values for which the diagonal elements of o do not vanish, and zero otherwise
(thus yieldind a diagonal generalized inverse with again one-half of its
diagonal elements consisting of zeros). Equation (103) can thus be written

as
-4 ) . (104)

Close examination of the derivation of (48) from (38) reveals that
{105) could also have been derived directly from (38) by a process similar
to the one that lead to (48).

Convergence of (104) under conditions (102) can be further accelerated

by the re-application of the method of Sect. 4; Z.e.,

-1
g (¢, -0

) (105.1)

- .2
¢n+1 = q¢n + (1—u)¢n (105.2)
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where, consistent with the derivation of (90) and its notation, a is chosen as

alx) = 3 (105.3)
T alx) Glx)

For computer programming purposes, (105) can clearly be put into the

simplified concise form of (93).

With the results of this and the previous sections, it is thus always
possible to determine the norm of (go) economically and efficiently, and
choose the appropriate economical and efficient method of solution of (48),

no matter what that norm is.
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7. K-SPACE FORMULATION OF THE ELECTROMAGNETIC SCATTERING PROBLEM

Three-dimensional electromagnetic monochromatic scattering by passive
inhomogeneous media, including perfect conductors, of finite spatial extent

and arbitrary shape, is considered.

The time-reduced electric and magnetic field wave equations, valid for
all linear inhomogeneous media, in terms of the total current density [12],

are respectively

gx9xE(x) - k% E(x)

fwpe JIX) (106)

xyxH(xX) - k2 H{x)

vxd(x) |, (107)

which, with the aid of Maxwell's first and second equations, and the equation

of continuity for the total charge and current density, can be written as

-Twite (d + 12 vved) (108)

2 E - k2
v¢ E - ks E 2

v2 H - k% H

~gxd . (109)

For non-magnetic media and perfectly conducting media, the appropriate
constitutive equations for the total volume and surface current density J(X)

and K(X) respectively are
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Cop = Toxg ) E | (110)
K=nxH | (111)

where oy and Xo are the free charge conductivity and electric susceptibility
of a (non-magnetic) medium respectively, and h is the outward surface unit
vector of a perfectly conducting medium.

The latter (111) is usually regarded as a boundary condition for
perfect conductors, but in the context of this paper, this equation must be
taken as a constitutive equation in the truest sense, particularly if

regarded as a geometrically constraining condition on the flow of all charges.

By the relationship between surface and volume current densities,

consistent with the FFT notation, the volume current density for a perfectly
conducting medium, can be written as

- ds

J=3= K (112)
_ s
= v n x H (113)
= %§; x H (114)

where AS is the finite differential vector surface area in the FFT cell of
volume Av = A3x.

The conventional magnetic [13] and electric [14] field principal value
scattering integral equations
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H-2 %I.Vg x {nxH)ds

1 |
TTwee J - Toue pf( I+

%2 Vv J)g-J dv

(115)

(116)

can thus be re-formulated into a form consistent with the k-space formulation
(13, (14), et seq., i.e.,

where

and

Hk)

il

Jx)

1)

T

og(Xx)

G(k?

2 G(k) x J(k) + 2 H' (k)

o(x) x

AS_
8 3%

H{x)

Ftk|x) vgtx)

[

Tkar
e

47r
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(117.1)

(117.2)

(117.3)

(117.4)

(117.5)

(117.6)



E(k) = Teky+dek) + E' (k) ' (118.1)
Jix) = [ sftx) - the(x) ] Exy (118.2)
where
I'tk) = Ftk]x) v (118.3)
Twde (I + &2 9Vlg ; X #0
yixX) = 1 s (118.4)
;o x =0

Bino

Equations {117) and (118) can now be numerically sclved economically

and efficiently by the methods of the preceding sections.

Defining the range and phase normalized scattered far-field S(ks) as

Stk,) = Limit v Foxy o Ks X (119)

r -

where F°(x) is any scattered field satisfying the relationship F = F' + F° )
which is consistent with the conventional definition [15] of the radar power

cross section ¢ and the relationship

6 = S5 (120)

readily reveals that the range and phase normalized electric and magnetic
scattered far-fields Se and Sm are given directly by the k-space current

density distributions
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ikozo A
S (k) = [ J¢k)y - kked(k) ] (121)
& = Van k=k

i
S (k) = — kxd(k) , (122
ns Vi k=k )

where zo is the impedence of free space. (As dictated by the transversality
of the scattered far-fields in free space, Se’ Sm and KS are indeed all

orthogonal to each other).

It can thus be shown that the conventionally defined [l16] electric

polarization scattering matrix o, is given directly in k-space by

£

TkoZo

nS-J(k) , (123)

p
LS/ k=k_

where, in the conventional notation for spherical coordinates, n are the
Eigen-polarizations (spherical coordinate unit base vectors) ¢S and Bs
associated with the scattered far-field propagation vector k_, and Jik) is
the k-space current density induced by an electric incident plane wave field

of the form and polarization

Elexy =& oKX (124)

where £ are the Eigen polarizations (spherical coordinate unit base vectors)
¢. and @, associated with the incident propagation vector ki'
The solution to the k-space formulation of the three-dimensional

scattering problem (for the electric field equations (118) for non-magnetic

media, and the magnetic field equations (117) for perfect conductors) has been
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numerically computer executed for a limited number of cases by the iterative
method of solution (19), with final results within about one db. of exact
known analytic closed form solutions after about 30 iterations. For example,
see Fig. 1-5 for comparison of this technique with the exact solution of

Mie [17] for the perfectly conducting sphere (of radius a). The failure of
this k-space technique in the near-vicinity of kea = 2.75 (see Fig. 1) is due
to the fact that kea = 2.75 is the occurrence of the first Eigen frequency
(internal resonance of perfectly spherical shell). This difficulty can be
readily and simply alleviated by the appropriate incorporation of the method
of Mitzner [18] into the k-space method. However, since the objective of
this project was to prove the feasibility and merits of the k-space method,
and not the generation of an operaticnal user-library of computer piograms,

such an incorporation was taken as beyond the scope of this project.
For the results of the application of the k-space method to two-

dimensional electromagnetic scattering, the reader is referred to the work
of Krueger [19].
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8. SUMMARY OF CONCLUSIOQNS AND RECOMMENDATIONS

The basic feastbility and merits of the application of the k-space
method to electromagnetic scattering has essentially been demonstrated

sufficiently to warrant the following conclusions and recommendations.

For small scatterers {N<102), the preference of the k-space method
over the conventional integral equation - matrix inversion method camnot yet
be justified. For medium-gized scatterers (N~300), the k-space method is
indeed more efficient than the integral equation - matrix inversion method.
For large scatterers {(N>103), the k-space method is capable of yielding useful
results in realistie computer time; whereas the integral equation - matrix

inversion method eamnot even be computer implemented for such sizes.

For present-day, state-of-the-art computer size and speed, the size
limit for which the k-space method could be implemented is of the order of
N~107 (Z.e., about 10,000 times as many data points than possible with the

conventional integral equation - matrix inversion method).

For the generation of a user-library type computer program of the k-
space method that would utilize a maximum of the basic inherent advantages

and applicabilities of the method, the following effort would be needed.

1. Implement appropriately and efficiently the generalized relazation
function and the generalized inverse methods into the k-space
formulation of the electromagnetic scattering program.

2. Develop a completely general computer program for reading
arbitrary shapes and arbitrary electromagnetic properties into
the k-space method.

3. Conduct a thorough error analysis such that error bounds will be
available to the user of such a system.
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4. Develop (or implement an existing) Fast Fourier Transform (FFT)
program operative on disc-to-core- to—dtsc data, which would be
capable of handllng of the order of 107 data points; Z.e., the
state-of-the-art size limit of discs (vie-a-vis the presently
utilized in-core FFT limited to about 10* data points).

5. Investigate the feasibility and desirability of replacing a disc-
to-core-to-disc soft-wired (software compiled) FFT program (see
item 4 above) with a hard-wired (hardware compiled) Fast Fourier
Analyzer (FFA).

6. Implement a mixed-mode k-space formulation capable of solving
three simultaneous equations in three unknowng (i.e., the electric
and magnetic fields simultaneously with the current densities),
applicable simultaneocusly to volume, surface, and line current
density representations of the electromagnetic scattering problem;
thus realizing solutions for large complex compound scattering
problems (e.g., perfect conductors with absorbing materials and
wire antennas).

The preceding conclusions and recommendations dealt with monochromatic
electromagnetic scattering; the subject to which this report was addressed.
It is now reasonable to conclude that the k-space method is also applicable
with similar advantages to wide band electromagnetic scattering. This can
be accomplished by a four-dimengional k-space formulation of the relativistic
four-dimensional time-dependent Poisson equation; vig-g-vis the presently
implemented k-space formulation of the Helmholtz equation (time-reduced wave
equation}. The additional advantage of such a formulation is that the
relativistically correct Doppler shifted spectrum for arbitrary time-
dependent motion (including time-dependent rotation, acceleration and

deformation) would be yielded directly and efficiently.

Furthermore, the k-space method could similarly be applied with full
advantage to electromagnetic problems other than scattering; e.g., radiation

(antennas) problems, propagation problems, ete.

Since the k-space method does not require the constitutive boundary
equation conditions to be linear algebraic, this method becomes applicable
with full advantage to (electromagnetic) initial value problems resulting
from interactive systemg that conventionally yield several coupled

simultaneous non-linear integro-differential equations (e.g., magneto-ionic
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plasma with acoustic waves and thermodynamic coupling); whereas the
conventional matrix inversion method is not applicable to such non-linear
integral equations.

In conclusion, it is noteworthy that the k-space formulation is appli-
cable with full advantage to all the initial value problems of mathematical
physics that arise from linear field equations subject to linear or non-
linear constitutive boundary condition equations; which conventionally lead
to (linear or non-linear) integral equations, including multiple simultaneous

such equations governing interactive systems.
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size than one wave length. The technical meane by which this purpose if achleved is summarized next.

The initial=value problem is splved by means of a k-~space formulation of the field eguations,
thereby replacing the conventional integral eguation formulation by a sat of two simultaneous algebraic
. equations in two unkhowns in two spaces (the constitutive boundary condition belng an algebraic equation
in x-space) . These eqguations are solved by an iterative generalized-relaxation method with the aid of
the Fast Fourier Transform (FFT) algorithm connecting the two spaces, reguiring trivial initial
approximatiohs. Since algebraic and FFT equations are used, the number of arithmetic multiply-add
operations and storage allocations required for a numerical sclution are reduced from the order of N3
and N? respectively (for solving the matrix equations resulting from the conventional integral equations)
to the order of Niog;N and N respectively (where N is the number of data points required for the speci-
fication of the problem}. The convergence rakte of the iterative process is optimized by generalizing
the conventional relaxation factors to a relaxation function and/or its generalized inverse determined
by the figen values of the appropriate Green's function. These Eigen values are obtained numerically in
NlggsN operations (vis-a-vis the conventiocnally required e operationa) by means of the FFT of the Green's
function cast into a circulant matrix form. The advantage gained in speed and storage is thus of the
ordsr of N?/log,N and N respectively. This method is thus considerably more efficient, and permits exact
numerical solutions for much larger problems, than is possible with the conventicnal integral equation =~
matrix inversien method. Arguments are presented towards the view that the field equations are more
fundamental in k-space. ‘The physical and mathematical meaning of both the continuous and discrete k-space
representations are discussed. The details and some numerical resulte of the application of this method
to three-dimensicnal electromagnetic scattering are presented. It is shown that the scattered far fields
are yielded@ directly in k-space.
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