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ABSTRACT 

Future large space systems (LSS) will possess high modal density at low 
frequencies, and mission performance requirements will necessitate control 
bandwidths encompassing these modal frequencies. This situation has potential for 
adverse controls/structure interaction (CSI) detrimental to system performance. 

The Passive and Active Control of Space Structures (PACOSS) program has 
investigated the design, analysis, and verification of passive and active damping 
strategies applied to LSS. This paper discusses the results of an experiment in which 
a Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/L TR) design 
technique was applied to the PACOSS Dynamic Test Article (OTA) for the purpose of 
high authority vibration suppression. 

In general, the LQG/LTR control demonstrated high sensitivity to design model 
accuracy. Actual performance was significantly less than predicted, even though the 
control design utilized an accurate test-verified model. 

The results of this experiment indicate that analytic LSS models which are quite 
accurate by structural dynamics standards may be insufficient for use as design 
models in modern control algorithms. However, passive damping designed into LSS 
flexible modes will simplify the active control design and implementation in terms of 
sensor/actuator requirements, design model order, real time computing requirements, 
and overall system robustness. 
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INTRODUC.TION 

Future large space systems (LSS) will possess high modal density at low 
frequencies. Some missions envisioned for these systems require rapid retargeting 
and precision pointing which lead to control bandwidths overlapping many closely 
spaced s,ructural modes. Therefore, some means of structural vibration control will be 
necessary to avoid excessive excitation of the flexible modes. Passive/active vibration 
control is1 the most realistic and efficient approach for vibration suppression in such 
dynamically challenging systems 

The Passive and Active Control of Space Structures (PACOSS) program 
investigated the design and implementation of passive and active vibration 
suppression on structures typical of many LSS configurations. This involved design 
and fabrication of the passively damped dynamic test article (OTA) possessing high 
modal density between 1 and 1 O Hz (Fig 1 ). Also, an active vibration control system 
was designed and implemented. A brief description of the OTA hardware and test 
setup is presented in this paper, while a detailed description of the OTA is given in 
Reference 1 . 

Previous investigations with the OTA demonstrated good agreement between 
measured and predicted performance of the passive damping design acting in concert 
with local direct velocity feedback (LOVFB) as discussed in Reference 2. However, the 
LOVFB was a relatively low authority active damping approach which did not 
dramatically improve the OTA line of sight (LOS) performance. Optimal control in the 
form of a Linear Quadratic Regulator (LOR) approach allows for efficient use of 
actuator capability in the design of high authority vibration control. The loop transfer 
recovery (L TR) technique allows for estimator design which recovers the desirable 
characteristics of the LOR full state feedback design. These characteristics make the 
LQG/L TR design algorithm attractive for designing a multi-input multi-output vibration 
controller for the OT A. 

This paper discusses the application of the LQG/L TR control design algorithm to 
the OTA LOS vibration suppression problem. Analytic and measured results are 
presented to show the degree of agreement between analytic predictions and actual 
performance. Conclusions regarding the practical application of LOG control for 
vibration suppression and the role of passive damping are drawn from the test results 
and analytic studies. 

HARDWARE DESCRIPTION AND MODELING 

The PACOSS OTA is a laboratory testbed for passive and active structural 
vibration control implementation and testing. The OTA possesses 23 major structural 
modes between 1 and 1 O Hz, many of which are global in nature. Using the methods 
described in Reference 3, passive damping levels between 5% and 10% (modal 
viscous) were designed Into the flexible modes which contribute to LOS error. The 
analytic model was then verified through a comprehensive modal survey (Reference 
4). The OTA is suspended from three pneumatic suspension devices which have very 
low stiffness and virtually no friction. The suspension arrangement gives the OTA six 
rigid body modes below 0.3 Hz. The overall test setup is shown in Figure 2. 
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Figure 1 PACOSS Dynamic Test Article 
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Figure 2 DT A Test Setup 
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The active control system includes reaction mass actuators (RMA), inertial 
velocity measurements, and a digital control processor. Ten RMAs with collocated 
Sundstrand QA-1400 accelerometers and linear velocity transducers are mounted at 
the locations shown in Figure 3. Also identified in Figure 3 are the locations of three 
additional non-collocated QA-1400 accelerometers. Inertial velocity is obtained from 
the 13 accelerometers by integrating the signals with bi-quad filters as discussed in 
Reference 5. Thus, the control system involves 23 inputs (1 O collocated inertial 
velocities, 1 O collocated relative velocities between the reaction masses and OTA, and 
3 non-collocated inertial velocities),and ·1 O outputs. Control laws are implemented via 
an Optima/3 digital controller capable of handling up to 32 inputs and 32 outputs. In 
the PACOSS experiment, the processor ran the LQG/L TR control law (36 states, 23 
inputs and 1 O outputs) at a 400-Hz sample rate. 

Due to their 1.5-Hz natural frequency, the RMAs cannot control the low 
frequency rigid body dynamics of the OTA. Therefore, a relative LOS was defined to 
exclude rigid body modes from the control system. Thus, the controller acts strictly as 
a vibration suppression system. Figure 3 identifies four disturbance input points on the 
OTA. These disturbances could be from maneuvering thrusters or onboard 
equipment. The relative LOS response to these disturbance inputs was taken as the 
performance metric to be minimized by the controller 
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Figure 3. OTA Control Locations 

Solar Array 1 

X Disturbance Input Points 
• Sensor/ Actuator Pairs 
o Non-Collocated Sensors 
0 Actuator Unit #'s 

In addition to the active control instrumentation, 182 Kistler model 8632 
accelerometers were installed on the OTA for acquiring modal survey data. The large 
number of cables seen in Figure 2 are primarily from these modal accelerometers. 
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Tests with and without the majority of cables attached showed that the instrumentation 
cables had no effect on the flexible modes of the OTA. The LOS measurement was 
synthesized as a linear combination of selected measurements from the Kistler 
accelerometers. 

A detailed finite element model of the OTA with over 10,000 degrees of freedom 
(OOF) was developed and test verified during the first phase of the PACOSS program. 
The detailed model was reduced (via a Guyan reduction) to 357 OOFs, and the modes 
determined from this reduced model. Table 1 compares the analytic and measured 
natural frequencies and damping ratios and lists the diagonal term of the orthogonality 
product between the predicted and identified modes up to 1 O Hz. The modes retained 
in the control design model (COM) were those possessing significant observability or 
controllability when the control points, sensor points, disturbance input points, and 
LOS were considered. Essentially, the COM includes all global modes and a few 
appendage modes with frequencies below 1 O Hz. 

T•b,. 1 Identified and Predicted Modes from DTA Mods/ Survey 3 

Retained in 
Mode# Measured Analytic X-orth control design 

diag. model 
fn (Hz) C (%) fn (Hz) C (%) 

1 1.03 2.9 1.04 4.8 0.97 
2 1.11 3.4 1.06 4.9 0.98 
3 2.59 3.9 2.68 2.8 0.98 X 
4 3.03 7.4 3.17 5.9 0.51 
5 3.13 6.5 3.22 5.0 0.40 
6 3.30 5.1 3.37 5.3 0.71 X 
7 3.45 8.7 3.54 7.4 0.74 X 
8 3.73 6.3 3.75 4.9 0.98 X 
9 4.12 7.4 3.85 10.1 0.98 

10 4.56 5.8 4.43 6.1 0.84 X 
11 4.79 1.7 4.46 3.4 0.89 
12 4.82 1.6 4.46 3.0 0.89 
13 5.08 12.0 4.86 11.9 0.97 X 
14 5.13 5.4 5.02 7.1 1.00 
15 5.78 1.6 5.85 2.6 0.94 X 
16 5.82 2.1 5.85 2.5 0.98 X 
17 6.49 5.0 6.00 3.3 0.96 
18 6.55 9.5 6.25 9.7 0.98 X 
19 8.87 7.2 7.26 6.0 0.67 X 
20 9.20 7.0 9.35 7.2 0.99 X 
21 9.61 6.4 9.55 7.1 0.93 X 
22 10.41 1.5 10.11 1.4 0.96 
23 10.49 1.4 10.11 1.4 0.94 

Note: Analytic damping ratios for modes 1 through 18 computed using VEM properties 
at 4 Hz, modes 19 through 23 computed using VEM properties at 9 Hz. 
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The correlation of the analytic and measured results was excellent in terms of 
frequency and damping ratios. The orthogonality diagonal term indicates agreement 
in terms of mode shape and should be greater than 0.9. As listed in Table 1, the mode 
shape correlation is quite good for most of the flexible modes retained in the COM with 
the exception of modes 6, 7, 10, and 19. Modes 6 and 7 are antisymmetric global 
modes which involve the box truss, tripod, and solar arrays. Modes 10 and 19 are 
more local in nature, mainly involving the antenna. 

Review of component modal surveys (Ref 6) indicated that the fundamental 
constrained interface mode of the box truss was about 6% higher in natural frequency 
than predicted. In an effort to evaluate the effect on the OTA system modes of 
matching the box truss constrained interface fundamental frequency, the 1/8-in. 
diameter x 0.014-in. wall box truss members were stiffened by 20%. This increased 
the box truss constrained interface fundamental frequency by the desired 6% to match 
the component test results. In this case, the fundamental mode shape of the box 
remained essentially unchanged. The OTA model was recoupled with the stiffened 
box model, and the system modes computed. 

Table 2 lists the results for the updated model COM modes. Note the negligible 
differences in natural frequencies and damping ratios between the two analytic 
models for all but modes 6 and 7 (see Table 1 ). These modes show a small shift in 
frequency but a relatively large change in damping ratio. Agreement with the 
measured values, while remaining quite good, improves somewhat for mode 7 but 
degrades slightly for mode 6. The orthogonality product diagonals for modes 6 and 7 
between the measured and updated analytic modes are greatly improved as 
compared with the original OTA model. These results indicate that accurate prediction 
of closely spaced modes can be quite difficult. Here, a 6% change in a substructure 
modal frequency produced a major change in two very closely spaced system mode 
shapes. The task of predicting and identifying closely spaced modes in dynamically 
complex structures indeed requires extremely accurate finite element models. 

Table 2 Measured and Analytic fn and C for OTA Modes Retained In COM 

Mode# Measured Updated X-orth 
fn (Hz) ~ (%) fn (Hz) ~ (%) diagonal 

3 2.59 3.9 2.66 2.8 0.99 
6 3.30 5.1 3.47 4.2 0.93 
7 3.45 8.7 3.51 8.6 0.95 
8 3.73 6.3 3.70 4.8 0.98 

10 4.56 5.8 4.43 6.0 0.82 
13 5.08 12.0 4.86 12.1 0.97 
15 5.78 1.6 5.85 2.6 0.94 
16 5.82 2.1 5.85 2.5 0.98 
18 6.55 9.5 6.41 9.9 0.99 
19 8.87 7.2 7.27 6.0 0.67 
20 9.20 7.0 9.41 7.1 0.99 
21 9.61 6.4 9.58 7.2 0.93 
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These observations indicate that OTA modes in the 3 to 4-Hz range are very 
sensitive to the relative stiffnesses of the box truss, tripod, and solar arrays. Stiffening 
the box truss seems to have improved correlation, but altering the tripod or solar array 
models may have similar effects. The OTA model with the stiffened box truss was used 
as the evaluation model for control performance evaluation. However, the original 
OTA model was used to design the LQG/L TR control since it was the best available 
model before conducting the final open loop modal survey in the 1 o actuator OTA 
configuration. 

LQG/L TR DESIGN APPROACH 

Modern state-space control design techniques allow the analyst to 
conveniently model and analyze high-order, multi-input, multi-output (MIMO) systems. 
One branch of modern control theory well suited to the OT A vibration suppression 
problem is optimal LQG control. The LQG approach provides a framework in which 
LOS jitter suppression may be traded against active control effort to determine the 
most efficient compensator design for the r~quired performance. The complete 
LQG/L TR design algorithm utilizes standard LQG design techniques (optimal regulator 
or estimator design, depending on the problem), and then computes the companion 
estimator or regulator design such that the singular values of the system loop-transfer 
matrix approach those of the full-state design case. This is known as "recovery" of 
loop-transfer functions (L TF). 

The LQG control structure is shown in Figure 4. It consists of a Kalman-Bucy 
filter (KBF) with gains, Kt, designed to estimate the states of a nominal plant model, 
G(s), and a full-state, linear-quadratic regulator, Kc. Figure 4 and the nomenclature 
used here were taken from Reference 7. Referring to Figure 4, the following properties 
for the LQG control structure may be stated: 

1) The L TF obtained by breaking the LQG loop at point (I)' is the KBF L TF 
C<l>Kf. 

2) The LTF obtained by breaking the LQG loop at point (I) is GK. It can be 
made to approach C<l>Kt pointwise in s by designing the LQR in 
accordance with a "sensitivity recovery" procedure due to Kwakernaak 
(Ref 8). This assumes G(s) is minimum phase and that m ~ r. 

3) The LTF obtained by breaking the LQG loop at point (ii)' is the LQR LTF 
Kc<l>B. 

4) The LTF obtained by breaking the LQG loop at point (ii) is KG. It can be 
made to approach Kc<l> B pointwise in s by designing the KBF in 
accordance with a "robustness recovery" procedure due to Doyle and 
Stein (Ref 9). This assumes G(s) is minimum phase and that ms r. 
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G(s) = C<I>(s) B 

with: 

where: 

-1 
<I>(s) = (s In - A) 

n = number of plant states 
m = number of plant inputs 
r = number of plant outputs 
~ = plant noise (white, zero mean, random process) 

Tl = measurement noise (white, zero mean, random process) 

Figure 4. LOG Control Structure 

y 

As stated in Reference 7, "The significance of these four facts is that we can 
design LOG loop-transfer functions on a full-state feedback basis and then 
approximate them adequately with a recovery procedure·." 

The appropriate approach for the OTA is to design Kc via the LOR technique 
and then compute Kf to cause the singular values of the loop-transfer matrix, KG, to 

approach those of the full-state feedback case, Kc<I>B. The procedure for computing 
the KBF gains is described in Reference 7 and summarized below: 

1) Append dummy columns to B and zero rows to Kc to make C<I>B and 
Kc<I>B square (r x r). C<I>B must remain minimum phase. 
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2) Design the KBF with modified noise intensity matrices: 
E(l;l;T) = [M0 + q2BBT]B(t - 't) 

E(1111 T) = No6(t - 't) 
where M0 , N0 are the nominal noise intensity matrices and q is a scalar 
parameter. 

Under these conditions (Ref 9): 
(1/q)Kf • BWN0 • 1l2 as q • oo 

where W is an orthonormal matrix. 

This calculation of Kt results in: 
K(s) G(s) • Kc<l>B as q • oo 

The design procedure for a MIMO system involves calculation of Kf with 
successively increasing values of the fictitious plant noise, q. As q approaches infinity, 
the singular values of KG will approach those of Kc<l>B. However, the gains in Kf will 
become quite large, which is generally undesirable. Thus, a designer will wish to use 
the smallest q for which the L TF of KG acceptably matches that of Kc<l>B in the 
bandwidth of interest. 

An extension of the single-input, single-output Bode plot for MIMO systems is 
the singular value (SV) Bode plot. Comparison of SV Bode plots for KG and Kc<l>B is 
a good indicator of the loop-transfer recovery achieved for a given value of q. 
Therefore, SV Bode plots may be used to determine the convergence of KG to Kc<l>B 
over the bandwidth of interest. 

The design goal of the LOG/L TR control algorithm for the OTA was to 
minimize the LOS response to slew commands and noise disturbances at known input 
points. The approach taken for application to the OTA was to design an optimal 
regulator based on full-state feedback and then recover the loop-transfer functions at 
the disturbance and slew command input points. Thus, as discussed in Reference 1 o, 
the desirable characteristics of the LOR full-state feedback design are recovered by 
the estimator. 

Calculation of the LOR gain matrix involves selection of state and control 
weighting matrices, Q and R. These required matrices were determined as follows: 

where: 

LOS= (LOS-X) = [ph~losx o] {~} = [TLOS] x 
LOS-Y ph1losy O ll 

philosx 
philosy 

11 

= mode shape coefficients defining LOS about X-axis 
= mode shape coefficients defining LOS about Y-axis 
= generalized modal coordinates 
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Minimize: 

Tfn1 T T[ T] fn1 T LOS LQJLOS+u [Ru]=X TLOS LQJ[TLOS]x+u [R]u 

Let: 
R = I (10 x 10) 

a =rTLOS Tlr1Los1a 

The magnitude of the scalar Q is then varied to achieve the desired 
performance. Once the desired LOS response is achieved, representative 
disturbances and maneuvers are input to the full -state feedback closed-loop 
simulation to check if actuator stroke or force constraints are exceeded. If such limits 
are violated, the magnitude of Q must be reduced, and Kc recomputed. 

After an acceptable LOR design is obtained, the KBF gain matrix is 
computed using the L TR method previously described. The input matrix, B, used in 
the loop-transfer recovery procedure includes the control and disturbance input points. 
Note that the number of points used (number of columns in B) must be less than or 
equal to the number of sensor measurements (number of rows in C). After each 
computation with a given value of q, the SV Bode plots of KG and Kc<l>B are 
compared. Once convergence (in a qualitative sense) is apparent, the control design 
is complete. 

Following several iterations, good performance was achieved with a state
weighting parameter, Q, of 109. The L TR procedure was then performed for varying q. 
This process was conducted using the matrix algebra software package, PRO
MATLAB, and the Robust Control Toolbox function "ltru" (Ref 1'1 ). Figure 5 shows the 
convergence of the SV Bode plot for three values of q. The plots show nearly perfect 
agreement for q = 106. Using this value, the largest gain in the KBF matrix was 9600, 
which is large but proved to be acceptable. 

The closed-loop frequencies and damping ratios for the initial LQG/L TR 
design coupled to the OTA COM are listed in Table 3. Note that the LTR procedure 
resulted in several overdamped (real) poles far in the left half plane as well as several 
very low fr6quency real poles. 

It was necessary to remove the high-frequency poles from the design to 
avoid aliasing problems when running the controller at 400 to 500 Hz. Also, since the 
0.05-Hz bi-quad integrator poles were not included in the COM, the low-frequency 
compensator poles could couple with the analog integrators used for the inertial 
velocity measurements and cause stability problems. Therefore, the compensator 
poles less than 0.5 Hz also had to be removed from the controller design. 

In attempting to reduce the controller order, it was found that the low
frequency poles could not be removed from the compensator without causing 
instabilities when coupled with the OTA structural model. Therefore, the LQG/LTR 
design was repeated, but with a spectral shift applied to the Kalman filter design such 
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that the filter poles were required to be greater than 0.5 Hz. This procedure resulted in 
a compensator which indeed possessed no poles below 0.5 Hz, yet t,ad performance 
nearly equivalent to the original design. · 

A reduced-order compensator was then obtained from the full-order design 
by removing compensator modes which had relatively small observability and 
controllability as determined from a balanced realization of the compensator formed 
using the PRO-MATLAB Robust Control Toolbox function, "obalreal" (Ref 11 ). This 
reduction removed most of the high-frequency compensator poles and several other 
relatively unimportant poles. A few remaining poles in the 100 to 400-Hz range were 
removed via a modal truncation, and the final compensator order was cut to 30 states, 
with a maximum frequency near 11 Hz. Figure 6 shows the SV Bode plot for full-state 
feedback, full-order compensator, and reduced-order compensator designs. Note that 
the maximum singular values agree nearly identically across the three cases. 

In addition to the 30-state LQG/L TR compensator, three second-order bi
quad integrators were appended to the controller to derive inertial velocity from the 
non-collocated QA-1400 accelerometer measurements. Thus, the controller 
implemented in the Optima/3 involved 36 states with 23 inputs and 1 O outputs. The 
Optima/3 was able to run the problem at a sample rate of 400 Hz. 

Table 3. Initial OTA LQG/LTR Design Results 

Complex Poles Real Poles 
fn (Hz) ~ (%) Type fn (Hz) ~ (%) Type (rad/s) 

0.12 10.00 s 3.43 7.12 E -1.92 X 10-4 -2.27 X 103 
0.16 10.00 s 3.54 7.38 F -1.97x10-4 -2.67 X 103 
0.17 10.00 s 3.78 6.25 F -2.00 X 10-4 -3.17 X 103 
0.26 1.00 s 3.90 15.40 E -3.22 X 10-4 -3.51 X 103 
0.26 1.00 s 4.44 6.05 E -3.84 X 10-4 -8.85 X 104 
0.29 1.00 s 4.45 6.46 F -9.99 X 10-4 -8.86 X 104 
0.29 1.33 E 4.71 16.99 F -9.99 X 10-4 -8.88 X 104 0.29 1.07 E 4.82 32.12 E -9.99 X 10-4 -8.97 X 104 
0.29 1.00 E 5.25 29.92 F 
0.56 83.90 A 5.84 2.52 F -9.99 X 10-4 -8.97 X 104 

0.73 26.66 A 5.85 2.55 F -9.99 X 10-4 -9.12x104 
1.00 37.09 A 5.85 2.70 E -1.00 X 10-3 -9.43 X 104 
1.38 61.22 A 5.86 2.88 E -1.00 X 10-3 -9.46 X 104 
1.50 5.03 A 6.73 45.26 E -1.00 X 10-3 -9.53 X 104 
1.50 5.03 A 7.34 6.42 F -7.96 X 10-2 -9.63 X 104 
1.50 5.03 A 7.39 6.23 E 
1.51 5.09 A 8.94 13.87 F NOTE: 
1.51 5.03 A 8.98 7.79 E S = Suspension Mode 
1.53 5.02 A 10.06 22.51 F A = Actuator Mode 
2.78 18.60 F 10.43 56.10 F F = OTA Flexible Mode 
3.21 6.99 E 10.61 44.63 E E = Estimator Mode 
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The analytic LOS frequency response function (FRF) for a slew command 
about the Y-axis is shown in Figure 7. The four traces show open-loop, closed-loop 
full-state feedback, closed-loop with the reduced-order state estimator designed using 
L TR coupled to the COM, and the same reduced order compensator coupled to the full 
OTA model. The performance of the reduced-order compensator design on the COM 
is very near that of the full-state feedback case, thereby showing the success of the 
L TR and reduction design process. The FRFs shown in Figure 7 indicate a 70 to 80% 
reduction in the root mean square (RMS) LOS jitter level based on response to white 
noise between 2 and 10 Hz. Another demonstration of the predicted control 
effectiveness is seen in the simulated slew response shown in Figure 8. Note that due 
to the passive damping designed into the OTA, only a few modes are significant in the 
open loop slew response. The active control system serves as a high authority control 
to virtually eliminate the response of these modes. Together, these FRFs and time 
response show the dramatic vibration suppression achieved by the modern optimal 
regulator design approach, and the effectiveness of combined passive/active control. 

A drawback to the LQR method is sensitivity to modeling errors. While the 
design can be evaluated for stability robustness and bandwidth, actual performance 
can be seriously degraded by differences between the analytic design model and the 
actual structure. Recall that two OTA models were used in this study: the pretest model 
from which the COM was created, and the evaluation model, consisting of all modes 
below 20 Hz of the updated (stiffened box truss) model. The following section 
discusses analytic results for both these models and presents corresponding 
measured data. 

LOS-Y /P68Z. LQG/L TR Design 
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RESULTS 

Open and closed loop FRFs were measured using burst random excitatton at 
disturbance input points 682 and 722 (see Figure 3). Measurements were made for all 
the points which participate in the LOS, and the experimental LOS FRFs were 
computed as a linear combination of the actual measurements. Figure 9 shows the 
experimental open and closed loop FRFs for the LOS about the Y-axis due to 
excitation at point 682. The somewhat noisy closed loop response is a result of very 
low amplitude measurements being scaled by relatively large terms in the LOS 
computatiori. The corresponding analytic predictions, based on the original OTA 
model including all modes to 20 Hz, are shown in Figure 10. Note that while there is 
good qualitative agreement between the actual measurement and prediction for the 
open loop OTA, the LQG/LTR closed loop LOS measurement deviates significantly 
from predicted between 3 and 5 Hz. The cause of this error was, in part, due to the box 
truss component model. When the compensator was coupled to the updated OTA 
model, the FRF shown in Figure 11 resulted. This FRF shows a behavior very similar 
to that observed in the 3 to 5-Hz range. However, the overall response suppression is 
still less than predicted A rough calculation of the actual RMS jitter reduction achieved 
by the control gives 63% versus 74% predicted using the updated OTA model. 
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LOS-Y/F68z: LQG/1.-TR vs Open Loop 
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Figure 9 Experimental LOS FRF; LOS-YIF68Z 
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Figure 10 Predicted LOS-YIF68Z; Original OTA Model 
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LOS-Y/F68z : LQG/LTR & Open Loop (analytic) 
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Figure 11 Predicted LOS-Y/F68Z; Updated OTA Model 

The FRFs at selected control points demonstrated additional problems with the 
LQG/LTR design. Figure 12 shows the FRF between 722 and CP2, and Figures 13 
and 14 show the corresponding analytic FRFs using the original and updated OTA 
models respectively. Note the amplification of the closed loop FRF near 6 Hz. 
Apparently, a OTA mode near 6 Hz is being destabilized even though the open loop 
modal survey results indicated that the OTA flexible modes in this frequency range 
were accurate. As shown by the analytic FRFs, this is not predicted by either OTA 
model. Also, the control effectiveness at 3 Hz is much less than predicted. These 
observations indicate that the LQG/L TR design is quite sensitive to small differences 
between the COM and actual structure. 

Finally, Figure 15 shows a measured free decay for open and closed loop 
operation. This trace was produced by purely exciting the 2.6-Hz mode; perhaps the 
most accurately predicted mode of the OTA. The LQG/L TR control law did successfully 
apply a great amount of damping (on the order of 20% modal viscous) to this mode. 
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Figure 12 Mea•ured DTA FRF; CP2/F72Z 
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Figure 13 Predicted DTA FRF; CP2/F72Z, Original DTA Model 
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CONCLUSIONS 

The open and closed loop results discussed above demonstrate that closely 
spaced flexible modes can be very difficult to accurately predict without resorting to 
empirically based model tuning. . It is not surprising that the greatest degree of 
disagreement between predicted and measured results occurs in bands with closely 
spaced modes. While one source of error was identified (box truss frequency 6% low), 
there are undoubtedly many small differences between the OTA model and actual 
structure. While these discrepancies would typically be considered insignificant by a 
structural dynamicist, they lead to somewhat less than predicted performance of a 
sophisticated high authority control design such as LOG/L TR. In fact, the control law 
amplified the response of even well modeled modes, such as those in the 5 to 7-Hz 
range. It must be noted that the correlation between the pretest OTA model and the 
measured modes is probably much better than could be expected with an actual LSS 
which would not be tested until being assembled in orbit. Yet the OTA model still fails 
to predict critical performance problems when coupled to a modern controller. In fact, 
the results indicate that the control would probably have been unstable without the 
passive damping designed into the OTA. 

The qualitative analysis/test agreement demonstrated by Figures 9 through 11 
serves to validate the analysis. A natural question is; what if no passive damping were 
designed into the OTA? To answer this, an LOG/LTR design was performed for the 
original OTA model with only 0.2% modal viscous damping in all modes. As 
demonstrated by the OTA ring truss component modal survey (Ref 5), and the 
PACOSS 0-Strut truss discussed in Reference 12, this level of damping would be 
expected from a tight, precision structure with no intentional damping designed in. 
The results of this design are shown in Figure 16. Note that the full-state feedback 
design achieves performance equivalent to that of the damped OTA closed loop 
performance. However, when the remaining plant modes are included in the plant 
model, a sharp peak near 4.5 Hz is evident. This demonstrates that without passive 
control, more modes must be considered in the control design, leading to higher order 
controllers requiring more control hardware (actuators, sensors) with greater 
capability. Also, a higher order plant makes the entire control design process more 
difficult since it is iterative in nature, requiring much insight from the analyst . 

When coupled to the stiffened box truss OTA model, an unstable pole at 3.5 Hz 
was present. So, with passive damping, the LOG/L TR control was marginally 
successful, and with iterations and empirical tuning, could probably be made very 
effective. But without significant levels of passive damping designed into the 
structure, the sensitivity of LQG/L TR to parameter variations would have lead to closed 
loop instabilities and been very difficult to tune. These problems will b~ present 
whenever the controller bandwidth overlaps closely spaced flexible modes. 

In summary, an LQG/L TR vibration suppression control design was conducted for 
a dynamically complex, passively damped system. Passive damping allowed many 
structural modes to be removed from the plant model in forming the COM, thereby 
greatly simplifying the design process. Although only about 80% of the predicted 
closed loop performance was achieved, the design was stable and did significantly 
suppress LOS vibrations. Some structural modes were amplified, but the relatively 

CAA-20 



high passive damping designed into the structure maintained stability. The results of 
this experiment demonstrate that if high bandwidth, high authority modern control 
algorithms are to be successfully applied to LSS, passive damping must be designed 
into the LSS from the start. 

LQG/L TR Applied to DTA with zeta= 0.002 
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Figure 16 LQGILTR Design with Nominally Damped DTA (zeta = 0.002) 
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