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ABSTRACT

The impressive potential of Stand-Off-Damping (SOD) systems (historically re-
ferred to as “spaced” damping treatments) to control structural resonant response
levels has long been recognized. However, the inability to identify materials that store
virtually no bending energy while transferring significant shear loads has essentially
rendered this concept an academic novelty.

This paper presents analytical and experimental results of a study conducted to
investigate a practical SOD system. The analysis for a simply supported four layer
beam system, consisting of: 1) a base structure; 2) a stand-off layer; 3) a dissipative
viscoelastic layer; and 4) a constraining layer are presented. The numerical results of
a limited parametric study to investigate the relationship between the Stand-Off layer,
damping layer, and constraining layer geometries and modulus values are presented.
Computer generated plots of modal loss factor, RMS response ratio, peak response
ratios, and frequency ratios as a function of temperature for a damped and undamped
test case are reviewed. Finally, experimental test results of modal loss factor for a
conventional three layer damping system and a SOD system are compared to the
predicted values for a generic test article.

1.0 INTRODUCTION

Of the many critical design criteria by which modern military and civilian aircraft
are designed and manufactured, those related to the dynamic behaviors of the structure
are the most difficult to quantify prior to actual use of the aircraft. Specifically, fatigue
failure from high-frequency vibration and acoustic noise can occur at many locations in
the secondary structure; yet the determination of location and magnitude of structural
response is usually obtained from component or full-scale tests. The usual consequence
of finding undesirable dynamic behavior is either to redesign the structure, which is
expensive, or modify it with additional structural stiffeners.

Another acceptable remedy to reduce the damaging effects of high-frequency vi-
bration is to provide a local damping treatment of suitable density and distribution
to reduce the overall amplitude. Because damping materials add weight they must, of
necessity, be properly designed to achieve the required level of damping at a minimum
increase in vehicle weight.

The use of viscoelastic damping materials (VEM) in constrained layers is an es-
tablished technique for reducing resonant structural vibration (1,2,7,8]. However, the
proper design of viscoelastic damped structures requires proven methods and tech-
niques that have application to both new and existing aircraft structures. Some of
these methods have been developed by the Wright Research and Development Center
(WRDC), the Aerospace Structures Information and Analysis Center (ASIAC), and
Anatrol Corporation.

The objective of any constrained-layer damping treatment is to dissipate vibration
energy by deforming viscoelastic materials. In the deformation process, the tempera-
tures of the damping materials increase because they remove kinetic energy from the
total system. For structural systems which experience relatively large bending strains
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without large deflections, the use of constrained layers which dissipate energy through
the shearing of the viscoelastic layer is an accepted design approach.

Although there are two types of distributed damping systems, namely free layer and
constrained layer, this paper is limited to an analysis of a variation on the conventional
three (3) layer system illustrated in Figure la. The particular system considered is
shown in Figure 1b and consists of a base structure, a Stand-Off layer, a dissipative
viscoelastic layer, and a stiff constraining layer.

The advantage of a four layer system that employs a Stand-Off layer is illustrated
in Figure 2. The Stand-Off layer provides a greater separation between the neutral
axis of the base structure and that of the overall system. This Stand-Off configuration
increases the shear deformation introduced into the viscoelastic layer via a kinematic
amplifier technique which significantly increases the damping efficiency of the treat-
ment. By selecting a lightweight /shear stiff material for the Stand-Off layer and then
configuring it to minimize its bending stiffness and overall weight, an effective and
practical Stand-Off layer was conceived.

2.0 DERIVATION OF GOVERNING EQUATIONS FOR FOUR-
LAYER CONSTRAINED LAYER DAMPING SYSTEM

The four-layer simply supported beam model is depicted in Figure 3 with appro-
priate notations to be used in the derivation of the governing equations. The principal
assumptions to be used are as follows:

1. Only bending and shear deformations are considered- in-plane extensional strains
are assumed small and negligible.

2. Bending deformations, strains, and stresses are governed by classical Euler-Bernoul-
li beam theory [3].

3. Shear deformations (@) of the base structure and constraining layer (k=1,4 in Figure
3) are the same. The principal shearing-energy dissipation mechanism occurs in
the viscoelastic damping layer (k=3), since the shear stiffness of this layer is much
less when compared to the other components’ shear moduli.

Note, it is implicitly assumed that the structural and constraining layers are made
of metallic materials, whereas the spacing and damping layers are made of polymeric
compounds.

Additiona] assumptions required to complete the development will be presented as
required.

The simple, one-dimensional analysis described below requires the determination of
typical section properties; namely, centroid location, Z , and equivalent section stiffness,
EI. From Figure 3, :

Z. = £I2"1' + Z4 (1)
where Z; is the distance from the mid-plane of the structural layer to the section
centroid. The strains in each layer are found from:

& = Zgd' (2)
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&= 2 - 2y (3)

! t3 ! t3 !
€3 = 2Z3¢' — (ta + 7)% -3V (4)
€4 = 249" — (t2 + t3) Y] — tay) (5)

where the prime represents differentiation with respect to x. The corresponding forces
in each layer are:

Fy = Byeyty = X,Z48' (6)
F, = Eyesty = Xg(Z26' - -tzl'/’i) (7)
F3 = }Xs(Za¢' —(t2+ %3)'/){ - %3'/15) (8)
Fy = Xy(24¢' — (ta + t3)9] — tavy) (9)
where
Xy=Ey k=14 (10)

and the strains ¢; are found from Equations (2)-(5). Applying the requirement for equi-
librium of in-plane forces (and noting that the structural layer force, F, is compressive,
whereas the other layers are in tension), i.e.,

Y F=0 (11)

then
- (X1 + X3 + X3 + X)) Z24¢'
+ (X2(2; + Z4) + X3(23 + Z4) + X4(24 + 24))¢'
X. X
= (ta(F + Xs + X) +13(3 + X))o

~ 1552 4 Xy =0 (12)

From classical theory the centroidal location Z, would normally be computed from
Equation (12); however, the presence of 1| and ¢ precludes this. In other words,
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the section centroidal location depends on the shear that occurs in the spacing and

damping layers.
To compute ¢} and ¥} the classical approach for computing shear stress is used [4],
namely, based on equilibrium of the X-direction force and shear

F{ = -G3 (13)
and
F3 + Fy = -Gy (14)

The quantities F} and F} are easily found from Equations (8) and (9).
At this point it is necessary to assume a sinusoidal mode shape in order to determine
¥, and y, consistent with the definition of loss factor presented in [5]. Assuming

w=sinKz (15)
for simplicity, then
¢=w'=KcosKz (16)
¢ =w"=-KlsinKz (17)
and
¢" = w" = —K3cosKz (18)

Assuming that ¢, and ¢, have the same distribution as w, then t¢; and ¥y, are
related to ¢; that is '

V1= a9 (19)
and
V) = g¢ (20)

Through subsequent differentiations of Equations (19) and (20)

W o
ay = E%' = ¢—,l, (21)
and
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! "
Qy = ’:‘/;% = % (22)

Returning to equations (13) and (14) and using the relations in Equations (16)-(22),
Equation (13) can be written

Sg1yy + Spayy = Sp3d” (23)
Sp1 = X4(ta +t3) (24)
G
Sp = (K—i + Xyt3) (25)
and
Sps = X424 (26)

Similarly, Equation (14) is written

Sal + Sax¥y = Sa30” (27) -
Sa1 = X3(ta + %) + Xy(tz + t3) + % (28)
where
Saz = 232 4 Xty (20)
and
Sas = XsZs + X424 (30)

Equations (23) and (27) can be solved to provide

S5p3S42 — Spa 543}
" — " 31
1= 1881542 — SB25a1 ¢ (31)

and

581543 — Sa1 383]
(/] = " 32
= [, (82)
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Observing Equations (21) and (22) and returning to Equation (12),

—PAZd+PB—PCal—PDag=0 (33)
where
PA=X1+X2+X3+X4 (34)
Pg = Xy(Z + Za) + X3(Zs + Za) + Xa(24 + Za) (35)
X X
P = ty(52 + X3 + Xy) + ta( 5 + X4) (36)
PD = }'2—3' + X4 (37)

Also, from Equations (31) and (32), with (21) and (22)

/
o) = %}- =Y,— 24YpB (38)
and
!
ay = %% =Yc - Z3Yp (39)
where
Y. = SaaXs(Zs + Z3) — Spa(X3(Z3 + Zp) + Xu(Zs + Z3)) 0
A~ § (4 )
S X4 — Spa(X3 + X
YB - A2 4 %2( 3 4) (41)
Sar(XalZa + 29) + X4(24 + 24)) — Sa1(Xu(Zs + Z
Yo = B1(X3(Zs d) o 43'_ d)) A1(X4(Z4 D) (42)
Sp1( X3+ X4) - SaX
YD = Bl( 3 _5_4) Al<*4 (43)
and
S = 851542 — Sa15B2 (44)
noting that
51+ 24 = ';‘(tl +13) (45)
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and
1
23+ 2=t + §(t1 + t3) (46)
1
Z4 + Zd = tz + t3 + §(t1 + t4) (47)

then Zd can be found from Equations (33)-(47) as

PcY, 4+ PpYe — Pp

= PYa T PpYp— Fy )

If the section deformed with constant angle then the equation for the deflection
curve can be represented in the following form:

EI¢' =M (49)

where ET is the flexural rigidity and M is the bending moment of the beam. The total
bending moment can be expressed as follows:

4 4
M= z: My + }: F.Z, (50)
k=1 k=1

where M}, is the bending moment of the kt* layer

My = ¢'ExI; (51)

Equations (49) and (50) define the flexural rigidity as follows,

ﬁ = Elll + EzIz + E313 + E4I4
+ X123 + X323 + X323 + X, 2}

taZ 4
- [Ezfz + E3l; + Xzzz 2 Xty + %3)23 + Xy(t3 + t3)24] %
X3tz Z !
- [Esla + 205 4 Xz, | B2 (52)

To compute the loss factor for the four-layer system it is necessary to consider
material properties to consist of real and imaginary parts. Thus,
E3 = E5(1 + ing) (53)
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Gz = G3(1 + 1,173) (54)
where

=y

Using Equations (53) and (54) in Equation (52) results in

EI = Eleq + EIimaga (55)

The intermediate manipulations required to determine El,.q and Elpnqg are
straightforward but very lengthy; consequently, they are not included. The system
modal loss factor,n,,, is found from

E Iimag
= 56
m E Ircal ( )
The modal frequency for Nth mode of vibration, is calculated by:
f N = 717? X KIZV _EM_ (57)

2
3. Hypi
k=1

where: ,

K? = wave number; = K} = &%

H; = kt* layer thickness;

pi = kP layer density, mass/limit volume;
N = mode number; and

g = acceleration of gravity.

In practice the complex modulus is evaluated for the given temperature and an esti-
mated modal frequency, f.. The modal frequency is calculated from fn and compared
to the convergence criteria.

< errEq = 0.01 (58)

Je
‘1 IN
If this condition is not met, the new estimated frequency is taken as the old
calculated frequency and the process repeated.
3.0 Comparison of Response
The peak amplitude response for a one degree of freedom system undergoing sinu-
soidal excitation of amplitude fp is
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fO fO (59)

ook = by = mian [0
and the ratio

S = T () < *

The root-mean-square amplitude response W,,,,, (equivalently, of a SS beam where
the force is spatially sinusoidal and temporally random) is obtained by using the
equation derived in [6]; that is

7F(w) [ 1+ n?
Wims 2\/-,,,1/4}{3/4,71/2 \/1 + ] (61)
Noting that
m(w)? = k = m(2n f)? (62)

Then the ratio between the responses of the damped and undamped (with and
without the damping treatment) is found from

(Woma/ (1)) Vit+ng [“‘V””"] \/' < (H

RMS = = M4 fu)s (63)

(Wems /[ F(w))a \/1+’7u [1+\/1+'7]

where the subscript “u” refers to the base structure by itself and “d” represents
the response with the damping treatment.

4.0 CALCULATIONS

Figure 4 presents the flow of the computations. The characteristics of the un-
damped baseline beam and the characteristics of the candidate damping treatment,
including parameters used to described the viscoelastic damping material, are input.
The frequency of the baseline beam is calculated. For a specified temperature, the value
of temperature shift function is calculated. The reduced frequency is calculated using
an estimated frequency; then, the shear modulus of the viscoelastic layer is calculated.
The equations derived above are used to calculate modal damping and frequency; if the
calculated frequency is identical to the one used to calculate the VEM shear modulus,
the results are consistent. If the convergence criteria is not met, the calculation is
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iterated for a an improved value of estimated frequency. Once convergence is achieved
for a temperature, the RMS and PEAK values are calculated.

To obtain a better understanding of the important parameters for an SOD system,
sensitivity studies were run in which the base beam was held constant while the
thickness of the Stand-Off layer, viscoelastic layer, and constraining layer were varied
by 20 percent. In addition, the modulus of the constraining layer was also varied by 20
percent. Each variation was made independent of the other three. The initial model
used for this study is shown in Figure 5 and consists of a .080 inch thick stand-off
layer, a .005 inch layer of 3M Co. Y- 966 viscoelastic, and a .010 inch thick aluminum
constraining layer. The results of the sensitivity study are presented in Table 1 and
indicate that the most important parameter for increased performance is the spacer
thickness. To a lesser extent, the thickness and modulus of the constraining layer also
provide an increase in performance. The least sensitive parameter in this study is the
thickness of the damping layer. In addition, the temperature for optimum performance
is only slightly influenced by these parameters.

A second analytical study was conducted to determine the performance sensitivity
of the SOD system to variations of the shear modulus of the Stand- Off layer. This
was carried out using the configuration shown in Figure 5 and the results are presented
in Table 2 and Figure 6. This study indicates that the SOD system investigated is
relatively insensitive to large changes in the shear modulus of the Stand-Off layers. In
addition, the temperature for optimum performance is shifted up as the shear modulus
of the stand-off layer is decreased (Table 2).

5.0 HARDWARE DEMONSTRATION

To verify the Stand-Off damping treatment analysis and concept, a practical demon-
stration was undertaken. The single span generic aircraft skin-stringer- frame panel,
illustrated in Figure 7, was selected as the test article.

A dynamic survey was performed on the undamped test article to characterize the
important modal parameters required to design a damping system. This was done by
applying a known excitation load to the panel and measuring its response. For this
case, an impact load was used to excite the panel at specific locations and its response
was measured using a accelerometer located at a second point. These signals were input
to a two channel digital signal analyzer in order to generate the inertance frequency
response function between the test points. Figure 8 illustrates a typical driving point
frequency response function for the undamped test article. It can be seen from the
FRF that a number of resonant modes with low damping values are present in the 200
Hz to 800 Hz frequency range.

In order to effectively design a damping treatment for the test article, it was
necessary to determine the deformation patterns for those modes of interest. This
was accomplished by comparing the FRF between 336 different points on the panel.
The relative magnitude and phase angle between all points for each resonant mode
was then used to determine the deformation patterns for specific resonant models, as
illustrated in Figure 9.
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Based on the modal study, the fundamental panel bending model (236 Hz) was
selected as the target model for correlation. An equivalent beam model compatible
with the input requirements of the program was developed. The model maintained the
thickness and mass distribution of the skin component but altered the Young’s modulus
to account for Poisson’s stiffening. An equivalent simply supported beam length of five
(5) inches was determined using fourth order beam and plate theory.

Two damping configurations, shown in Figure 10, were analyzed, fabricated, applied
to the test panel, and tested. The first treatment was a conventional constrained layer
viscoelastic material system consisting of a .005 inch damping layer and a 0.010 inch
aluminum constraining layer applied to the base. The second treatment was a partial
coverage SOD system with a .080 inch spacer introduced between the base structure
and the viscoelastic damping layer. The predicted performance for these treatments is
shown in Figures 11 and 12,

Figures 13 and 14 compare the measured driving point FRF for the test article
with and without the indicated configuration at 74 degrees F. These graphs illustrate
the overall vibratory reduction obtained for each of the damping designs. The same
measurements were made at different temperatures and the loss factor for the target
mode was determined using the half power band width technique. The measured modal
loss factors at each test temperature are included in Figures 11 and 12 for the respective
treatments.

These test results show excellent correlation between the predicted and measured
modal loss factor over the test temperature range. Further, the experimental results
confirm that modal loss factors in excess of 0.10 are achieved from approximately 60
degrees F. up to the maximum test temperature.

6.0 CONCLUSIONS ,

The analytical and experimental results presented clearly demonstrate the impres-
sive vibratory suppression benefits a properly configured Stand-Off-Damping system
can provide when compared to a conventional distributed damping systems. This per-
formance is achieved with an add-on system that imposes only modest space and weight
requirements to the overall system.

The analytical model provides a good first approximation for predicting the modal
loss factor for the fundamental mode over a wide temperature range. Additional devel-
opment to expand the analytical model to accommodate different boundary conditions
and multiple damping/constraining layers would greatly increase its utility.
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SENSITIVITY
" H2 | Hs "7 Ha T Ea | XRMSU/XRMSD “;‘Ti:‘lvfﬁ ““““ % ]
(in.) | (in.) i (in.) é(psi] (MAX) ! (OF) |CHANGE
o o e e e e e s e s e s e S e e o o i e o e f
________ I I I A A
0.080 [ 0.005} 0.010 | 10E6 21.68 | 100 1BASE ~
0.096 { 0.005 { 0.010 ' 10E6 25.92 100 19.56
0.080 |0.006 | 0.010 |10E6 21.96 95 1.29
0.080 | 0.005 | 0.012 ;10E6 24.61 95 13.51
0.080 | 0.005 |0.010 J12E6 24.16 95 11.44
__________________________ R W
TABLE 1
SENSITIVITY
Ga XRMSu/XRMs> TEMP
(psi) (MAX) (OF)
200,000 21.68 100
160,000 21.64 100
83,000 21.45 100
64,000 21.34 100
32,000 20.85 100
16,000 19.95 100
8,000 18.41 100
4,000 16.08 105
2,000 13.06 110
1,000 9.88 120
TABLE 2
IBA - 14
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Figure 1 - Conventional and Stand-0ff Constrained Layer Damping Systems
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Figure 2 - Deformed Stand-Off System
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Figure '12 - Comparison of Predicted
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FOUR-LAYER BEAM, MODE 1
(MODAL L0SS FACTOR)MAX= 0.41, AT T=125. Deg F
(YRMSu/YRUSA)MAX= 19.21, AT T=100. Deg F
(PEAXu/YPEAKA)MAX= 14929, AT T=105. Deg F
(MASSd/MASSu)= 126
(1) BASE BEAM  H1-0.060 in, RO1=.098 Ib/in3, E=0.119+08 psi
1=500 in, Freq= 236. bz
(2) SPACER H2=0.080 in, R02=.005 Ib/in3, G=0200€406 psi

(3) veu H3=0.005 in, R0O3=035 ib/in3, 3IN-468
(4) CONST. LAYER H4=0.010 in, RO4=.098 Ib/in3, E=0.960E+07 psi
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and Measured Loss Factor for 1st Bending Mode of Test Panel with SOD System
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Figure 13- Driving Point Frequency Response for Test Article With Conventional
Constrained Layer Treatment at 74 Degrees F.

Confirmed public via DTIC Online 02/03/2015



g2 - val

ADA309666

Downloaded from

Digitized 02/03/2015

100 |

Inertance [dB)

Lt 1 1

L

Frequency [Hz)

700

Figure 14 - Frequency Response For Test Panel With Stand-Off Damping System at 74 Degrees F.
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