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ABSTRACT

A brief summary of the various methods of damping analysis |
is presented. Data are procured on the frictional properties of mild
steel in reciprocating sliding motion. The variation of the kinetic coefficient
of friction as a function of normal load, lubrication, and number of cycles of
motion is studied. The friction testing apparafus is considered as a
vibrating system with Coulomb damping and its frequency response and

damping. energy are analysed.
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SECTION 1.  INTRODUCTION

Near-resonant vibration is generally considered to be a common cause for
fatigue and other types of service failures in many fields of engineering. - Even if actual
failure can be avoided, the rough and noisy operation associated with the near-resonant
condition frequently necessitates correction. Current trends, especially in the aircraft
industry, have increased the importance of resonant vibrations as a factor in design.

The dangers of resonance can usually be minimized through one of three
approaches:

(a) decreasing the exciting force,

(b) changing the natural frequency of the system, or

(c) increasing the damping in the system.

It is frequently difficult in many applications such as turbines or compressors to decrease
the exciting force beyond the point which causes serious vibrations. Also, it is not always
feasible to change the natural frequency of the system; design oftentimes will not permit
changes, or operation must be over a wide frequency range. For these reasons designers
are often forced to consider the various methods of increasing damping as a means of re-
ducing vibration amplitudes near resonance.

The damping of a vibrating system may be increased in one of the following
WOYS:

(a) by use of tuned mechanical absorbers which are attached to the

vibrating structure,

(b) by more effective use of hysteresis or internal damping in the material,

or

(c) by use of built-up members or similar structural units which dissipate

energy through sliding friction.
Method (a) has been rather carefully studied, but comparatively little is known about
(b) and (c).

The problems of energy dissipation in engineering materials and structures
are most generally solved only in approximate or simplified form since the exact mechanism
of damping in any specific case is usually not understood, (1 ,2,3,4,5)]—/“ If the entire

resonant region is of interest, practical considerations dictate the use of dissipation functions

1/ Numbers in parentheses refer to references in the bibliography.
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or damping terms so chosen that the equation of motion can be solved. It is also usually
assumed, with justification in most instances, that the solution obtained in this manner
offers a "good" approximation to physical reality.

However, if a reasonable choice of damping terms leads to an unmanageable
equation or where such a choice does not exist, one must rely solely on measurements of
energy dissipated per cycle (4) as a basis for the prediction of system behavior, and in many
such cases the solution of the response exactly at resonance can be determined.

The study of energy losses in built-up structures has been largely neglected
until recently (6,7,8). In order to reduce aircraft flutter or to increase shock and impact
resistance, it is often desirable to incorporate spliced joints or similar members which will
dissipate significant energy. In many cases, of course, a combination of material damping
and frictional damping exists in varying proportions; some deliberately included and some
accidentally. The contribution of each to the total can usually only be estimated. It is
evident from the above that an increased knowledge of structural (connection) damping is
highly desirable.

In the past the terms "structural” or "connection" damping have been used to
describe energy dissipation in built-up assemblies. These terms include all sources of energy
loss, both internal and external, but are usually understood to mean only frictional losses.
This paper will use the term "slip" damping to describe those losses in an assembly which
arise through friction caused by the slip of component parts on one another.

~In the interest of a better understanding of damping due primarily to frictional
phenomena, this report deals first with a brief investigation of the frictional properties of a
material under reciprocating sliding motion. Secondly, the test setup for determining the
above mentioned friction properties was treated as an axial motion lap joint and its damp-

ing and response characteristics were investigated.

SECTION II. CLASSIFICATION OF TYPES OF DAMPING
AND REVIEW OF PRIOR WORK ON DAMPING ANALYSIS

Damping in any given system can usually be classified as one of the following,
(see also Table I):
(a) Viscous. Damping force varies as velocity.
Characteristic of low velocity
motion in a high viscosity fluid:

dashpots, shock absorbers.
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{(b) Coulomb.

(c} Air.

(d) Hysteresis.

(e) Complex.

(f) Negative.

(g) Relaxation.

(h) Magnetic.

WADC TR 54-64

Damping force is kinetic frictional
force. Characteristic of dry sliding
surfaces: brakes, clutches, Lan-

chester Damper.

Damping force varies as the square
of the velocity. Characteristic of
high velocity motion in low viscosity
fluid: body in turbulent air at less
than 0.6 Mach.

Damping energy varies as function of
maximum stress, usually a power
function.  Energy loss results from

internal friction in solid bodies.

Damping force is proportional to
displacement and in phase with velocity,
Included as complex stiffness co-
efficient. An artifice to cover all

cases of small damping.

Damping force feeds energy into the
system. Always results in system
instability: oscillator with positive

feedback.

Damping force with both positive and
negative characteristics. Results in
the existence of a limit cycle: Prony

brake, Froude pendulum, multivibrators.

Hysteresis energy loss varies as the product
of frequency and maximum flux density to
1.6 power, Eddy current energy loss varies
as the product of frequency squared and the
maximum flux density squared. Used for
damping of servo motors and electrical

measuring instruments,



(i) Slip. Essentially Coulomb damping except
that slip distribution gives an energy
dissipation which does not, in general,
vary as the first power of the amplitude

of motion: built-up structures, joints.

In all practical vibrating systems a combination of two or more of the above
types of damping will be present, usually in unknown proportions. The usual case is that in
which one type is greatly predominant and analysis proceeds on that basis. Frequency and
phase angle response characteristics for a single degree of freedom system with either viscous
or complex damping are easily obtained and well known (9). The response characteristics of
a system with Coulomb or combined Coulomb and viscous damping are more difficult to obtain
and rather awkward to use (10). Systems with damping other than viscous, Coulomb, or
complex are extremely difficult to handle even if an exact expression for the damping func-
tion is known (11,12),

In a good many mathematical treatments therefore, damping is introduced as
a force proportional to the velocity with the constant of proportionality regarded as a measure
of the equivalent viscous damping (3). Another common technique is the method of complex
damping (13). Here the spring constant or stiffness coefficient is replaced by a complex
constant, as k(1 + ig) in the ordinary simple spring-mass equation of motion. The damp-
ing force, as introduced in this way, is a force proportional to the displacement and in
phase with the velocity. A major drawback in using this type of damping is that the damped
natural frequency increases with increasing damping, a phenomena contrary to experience.

Reference 14 presents complex damping in a slightly different and somewhat
more logical manner. Here the damping is also introduced in the form of a complex spring
constant k = k eZbi , where 2b is called the complex damping factor. For all
practical cases of small damping either form of complex damping leads to the same result.
However, the method of Myklestad is based on a consideration of hysteresis loop of
elliptical shape and is thus satisfactory from both a mathematical and a physical standpoint.
The method of complex damping is most commonly used in flutter analysis and similar fields.

Damping in vibrating built-up structures is generally a complex mixture of:

(a) Coulomb damping (dry friction),

(b) hysteresis damping (internal friction), and

(c}) aerodynamic damping (air friction).

Energy dissipation in a connection which is not too tight is due primarily to

sliding friction, and secondarily to hysteresis damping. In riveted connections the situation
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may be reversed. Thus, almost any combination of internal and external (slip) damping
may occur in practice. With a few important exceptions, connections are designed for
maximum rigidity and the damping is small enough so that a linear analysis is possible.

For connections where a certain amount of looseness is permitted, the ever-present dangers
of mechanical wear and seizure exclude this means of energy dissipation except in rare
instances. The development of excellent dry and silicone lubricants has lessened some of
this difficulty, but unknown resonance response characteristics still block most of the
development in this field.

If, for any reason, the damping in a structure can be reduced to that due to
Coulomb friction, or to a combination of Coulomb and equivalent viscous friction; the
amplitude and phase angle response characteristics of a linear, single degree of freedom
sysfem with this type of damping is given in Reference 10. However, the analytical
expressions for the response curves are quite involved, see Table I, and for small damping
the results do not differ markedly from those obtained by using either an equivalent viscous
damping term or a complex spring constant in the equations of motion.

In view of the situation indicated above . H. H. Pian and F. C. Hallowell, Jr.
have developed an expression for the energy dissipation per cycle for simple built-up beams (6).
This expression is given in terms of the beam dimensions, elastic constants and loading in-
volved, and agrees well with their experimental results. Reference 6 appears to provide the
best approach thus far available to a basic understanding of the phenomena of structural
damping in a simple jointed structure at low frequencies. Reference 8 describes work on
damping of turbine and compressor blades by friction at the connection of blade to wheel
and illustrates some of the difficulties in separating the various types of damping.

The problem of expressing analytically the exact damping properties of any
specific material or structure under all conditions of stress and temperature and all manner
of loadings is to date almost completely unsolved (4). It is well known that in practical
cases the damping must be small and the motion nearly sinusoidal in order to make use of
the approximations necessary to solve the equations of motion. In other words, the damping
and motion must be such that an equivalent viscous damping does not differ appreciably
from the actual damping. The behavior of the approximating viscous damped system will
then oftentimes follow closely the behavior of the actual system. That this does not always
hold true is evidenced by the infinite amplitudes at resonance in a simple spring -mass
system with only pure Coulomb damping.

Frequently, however, the damping is not small and one of the following

complications may be encountered,
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{(a) The nonlinearity may be such that the linear approximation to the damp-

ing is largely invalid.

(b) The hysteresis loop may not resemble an ellipse. 4

(c) The damping may vary as an unknown function of frequency, amplitude,

and velocity.

Of these possibilities we may separate out those cases where the type of
damping is known and an exact expression, or close approximation, for the damping can be
used in the equations of motion. These differential equations are nonlinear and can be
solved approximately by means of a phase-plane method, numerical iteration procedure,
and sometimes even analytically by classical methods. Reference 15 provides a powerful
practical method for dealing with nonautonomous systems of differential equations, both
of linear and nonlinear type.

If an approximate expression for the damping cannot be determined for inclu-
sions into the equations of motion, or if the equations obtained cannot be solved satisfac-
torily, then we are forced to fall back on empirically derived expressions for energy loss
per cycle; each expression possibly being confined to a given system, stress level, temperature
or similar particular set of conditions. Since in all practical cases damping is one of the
more elusive variables that the designer has to deal with, it is imperative that the extent of
approximation be thoroughly investigated for each system in which energy dissipation is to
be considered. A brief summary of some of the methods for expressing damping will be
found in Table I.

It is perhaps necessary at this point to clarify the concept of "resonance," or
at least to define what is meant in this paper by the terms resonance and resonant response
characteristics. When speaking of the forced vibration of a linear, single degree of freedom
system without damping, resonance is always clearly defined as that case in which the
forcing frequency is the same os the natural frequency of the system. With undamped multi-
degree of freedom systems, resonance is considered only as it affects the various modes of
vibration and is again defined for any particular mode as the case for which the forcing
frequency is equal to the natural frequency of that mode.

For damped systems the situation becomes slightly more involved. The damped
natural frequency is lower than the undamped natural frequency and decreases with increasing
damping, except for the artifice of complex damping. [n addition, the frequency of maximum
amplitude is different from either of the above, see Figure 1, and is sometimes called the
"resonant frequency". For small damping all three of the above frequencies are very close
to one another and no real distinction need be made. For this reason the frequency at which

a 90 degree phase angle exists between the vectors representing input force and the displacement

WADC TR 54-64 6



is here utilized as a definition of resonance with very little error in most cases. This
frequency coincides with that determined as the undamped natural frequency.

-For damping that can be approximated as viscous damping, the 90 degree
phase angle definition is convenient from the viewpoint of energy relations. At this point
the work done per cycle by the external force must be equal to the energy dissipated per
cycle by damping. Hence, by equating these two quantities a very good approximation to
the maximum amplitude can be obtained for any system with small damping. This scheme
will oftentimes work surprisingly well for systems with rather large damping.

it is sometimes convenient to describe the severity of a resonant condition by
using the resonance amplification factor as a measure of these conditions. The resonance
amplification factor, Ar ; V or Q of an electrical circuit, has been defined as:

(a) the ratio of the maximum amplitude to the statical deflection or

amplitude as the frequency of the exciting force approaches zero,
(b) 2 7 times the ratio of the elastic energy stored at maximum stress
to the energy dissipated per cycle by damping, and

(¢) the ratic of the amplitude of the system when the forcing frequency
equals the undamped natural frequency to the amplitude when the
forcing frequency equals zero.

There is negligible difference between the above definitions providing the
system is linear and the damping is smail. For systems in which the damping is not small,
definition (a) will give larger numerical results than either definition (b) or {c). In
nonlinear systems none of the above definitions are valid (11). In nenlinear oscillations
the natural frequency of oscillation is dependent on the amplitude and hence the frequency
of the impressed force must be changed in order to continue to build up the amplitude of
oscitlation for a resonant condition. In addition, phase angle relationships are greatly
changed for a nonlinear system and may even be double valued at some frequencies.

The relations involving A, in Table | are all derived in accordance with
the definition of resonance as that condition where the impressed frequency is the same as
that of the undamped natural frequency of the system. The exciting force is 180 degrees
out of phase with the velocity of motion. Appendix Il and Figure 11 indicate the extent

of approximation involved in using the above definition of resonance.

1/

~ Refer to Appendix | for definition of symbols and terms.
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SECTION 1ll. STATEMENT OF THE PROBLEM

Two types of problems concerning resonance are encountered in engineering
practice. In the more comprehensive type, the response of a system over a large frequency
range is desired. However, as discussed previously the dynamic equations for the entire
resonant region can become extremely involved. Therefore, in this paper the second type
of problem is considered: the determination of the vibration amplitude exactly at resonance .
This second type of problem, although less general, is the primary concern in most engineer-
ing applications in which resonant vibrations are critical from a noise and fatigue viewpoint,

As indicated previously, damping is a critical factor in defining Al
This report is therefore concerned with that important facet of structural damping which
involves frictional or slip effects.

In the interest of a better understanding of damping due primarily to frictional
phenomena, this report deals first with a brief investigation of the frictional properties of a
material under reciprocating sliding motion. Secondly, the test setup and its damping and
resonant response were investigated. Mild steel was used in this first investigation because
of the great abundance of published data on this material .

Since, as indicated previously, the systems involved may be greatly nonlinear,

the reliability of a simple linear system equation was partially determined.

SECTION IV, TEST EQUIPMENT

A measure of the amount of damping in any given system is usually arrived
at experimentally by one of the following five methods:

(a) rate of decay of a structure in free vibration (16},

(b) measurements of the shape of a resonance curve (m,

(c) measurements of the area of a hysteresis loop (16,17},

(d) measurements of the energy input by an oscillator at or near resonance

(18,19), or

(¢) measurements of the lateral deflection of a rotating beam (20, 21).

Experimental results are expressable as either energy loss per cycle or in terms
of a calculated equivalent viscous damping coefficient. It is often more convenient to use
the energy loss per cycle as o measure of damping and its affect on Ar . Unfortunately,

an expression of this nature cannot be included in the dynamic equations of motion (12).
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It is generally accepted that a reliable measure of the damping in a structure
can be obtained from the shape of the resonance curve and the use of a one degree of freedom
analysis providing:

(a) the domping is small,

(b) points of force application and omplitude measurements are appropriate

from the standpoint of normal mode considerations, and

(c) only amplitudes close to the resonant peak are used to determine the

damping parameters.

To obtain values of damping energy and resonance amplification factor in the
present investigation, a resonant vibration excitor and controller was used. This machine
will automatically maintain vibration amplitude at any predetermined value at or near
resonance regardless of changes in specimen stiffness or damping properties. Such changes
can be evaluated from instrument readings while the test is in operation. Control is
acquired by maintaining the phase angle between the vector representing force and the vector
representing displacement at the desired value (90 degrees at resonance). A complete de-
scription of the machine operation and its capabilities can be found in reference 19.

The test setup for the work of Sections V and VI is shown in Figures 2 and 3.
The sliding block is cylindrical with the contact area of 0.50 square inch. The lower block
is rectangular and fixed in a grip by means of two set screws. For each test the specimen
surfaces were ground and.cleaned with acetone before lubricants were added or assembly
was made. The grip holding the lower block has two flexible sections which permits the
frictional force developed at the contact surfaces to be transmitted to the strain gage pickup.
The output of the gage is fed to an Ellis Bridge, Model BA-11, and then to an oscilloscope.

The alternating exciting force is provided by the revolving eccentric and
transmitted to the upper assembly by the connecting rod. The vertical bar with two flexible
sections is used fo prevent rocking or fishtailing of the upper specimen block during its
oscillation. Normal loading is obtained by two calibrated extension springs. A velocity
pickup is attached to the upper assembly to provide a velocity signal and, after integration,
an amplitude signal. The amplitude signal is used primarily to observe the wave form rep-
resenting the displacement. The measurements of the amplitude of motion are taken with a
micrometer microscope. The signals representing friction force and velocity were applied
to the appropriate deflecting plates of « DuMont 304-H oscilloscope and the resulting
trace photographed with a Polarcid-Land camera. Figure 4 illustrates the results of this

technique.
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SECTION V. FRICTIONAL CHARACTERISTICS OF A RECIPROCATING
SLIDING SURFACE UNDER VARIOUS CONDITIONS
OF PRESSURE AND LUBRICATION

The problems of slip domping are very intimately related to those of the
frictional properties of sliding surfaces. Thus, in connection with this investigation on
axial joints and future work on slip damping in simple built-up beams, data are required
on the frictional characteristics of mild steel under various conditions of pressure and
lubrication.

The frictional damping is a function of the contact pressures, the type and
amount of lubrication, the sliding velocity, and the properties of the materials in contact,
In most engineering applications it is desirable to reduce or eliminate friction, but for the
purposes of slip damping it is necessary that a given amount of friction be included and
maintained.

No general relationship exists for specifying the optimum frictional properties
for maximum damping in joint or connection. Indeed it seems that each friction problem
must be solved individually (22). Although o given coefficient of friction may be obtained
it can be held constant only under very carefully controlled conditions.

Using the setup of Figures 2 and 3, described previously, test data were
procured on mild steel sliding surfaces under various operating conditions. The resulting
test data are shown plotted in.Figures 5 and 6. The test data of the unlubricated dry
surfaces, initially ground, have a maximum scatter of approximately + 15 per cent.

This scatter was caused at least partially by seizure characteristics. During the first ten
thousand cycles of the test there is seizure, oxidation, and tearing out of material which
radically changes the surface conditions and makes the acquisition of reproducible data
impossible (22). After an initial period of violently unstable motion there appears a
gradual change to a state where the amount of fretted material generated between the
surfaces is constant and the coefficient appears to stabilize.

It was found in the cases of dry surfaces and those lubricated with M052 :
that deviations from the steady state amplitude of motion resulted in deviations in the
measured coefficient of friction. Larger amplitudes gave lower values of the coefficient
because of the opportunity for the wear material to be ejected from between the sliding
surfaces and possibly because of motion over the comparatively virgin surfaces at the ends
of travel. Small amplitudes were impossible to sustain for a long period of time and usually
terminated in seizure (23).

The test data of the ground surfaces lubricated with M052 dusted on indicate

that the effect of this fubrication is only temporary under these test conditions. The number
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of cycles necessary for appreciable mechanical wear to begin, in general, decrease with
increasing normal load. The coefficient of friction increases gradually to a value

which corresponds to the surfaces operating without any lubrication. No work was done
using other methods of applying the MoS,, (25) in such a way as to make a more permanent
lubricating surface .

If the surfaces are lubricated with SAE 30 oil, the coefficient of friction
exhibits very little change with number of cycles. The coefficient decreases during a
wear-in period and thereafter appears to stabilize or continue to slowly decrease. During
the test there was a liberal supply of oil surrounding the test surface at all times. The
edges of the slider were beveled slightly to eliminate any scraping action which would
prevent oil from entering between the surfaces.

The maximum sliding velocity in all of the above tests was of the order of
25 feet per minute. Within the range of variables investigated and within the accuracy
of measurement made, the coefficient of friction was found to be independent of velocity
and pressure for the dry and M052 surfaces, '

Figures 7 and 8 are included to indicate the appearance of the sliding sur-
faces after testing. The photographs are negative reproductions of Faxfilm (Brush Develop-
ment Company) impressions.

Of particular interest is the instantaneous variation between frictional force
and velocity during the vibration cycle. Figure 4 shows Polaroid-Land photographs of the
oscilloscope trace, with the exception of the displacement versus time curve which was
drawn in for completeness, which were obtained by the means described in Section IV.
These photographs show the existence of a somewhat unsteady pause at the amplitude
extremes which indicate that the friction is high enough to exhibit motion with one stop
per half cycle. [t can also be seen from the force versus velocity trace that there is a
slight peaking at zero velocity, maximum amplitude, where the static coefficient of
friction is overcome.

The frictional force remains essentially constant throughout each half cycle
of motion in close approximation to an assumption of Coulomb friction. This behavior
except for an initial run-in period of a few thousand cycles was noted in most cases for

the range of pressure and sliding velocity which was investigated.
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SECTION VI. DAMPING ENERGY AND RESPONSE CHARACTERISTICS
OF AN AXIAL MOTION JOINT

In order to provide a stepwise approach to the understanding of resonant
amplification effects, tests and anal yses were made on the axial slip joint setup shown in
Figures 2 and 3. This background, it was felt, would aid in the analysis of more compli-
cated joints.

The axial slip joint shown in Figures 2 and 3 can be analysed as a simple,
single degree of freedom system with Coulomb damping. A complete analysis of this type
of system is given in reference 10. Several attempts were made to check the theoretical
response curves shown in Figure 9 for this system. However, due to the high degree of
instability, experimental curves could not be procured. Referring to Figure 9, at the high

F/Po ratio necessary to obtain a finitely peaked response curve, it was found to be
impossible to maintain this ratio over the required frequency range because of the 15 per
cent variation in the coefficient of friction mentioned in Section V. The low F/Po
ratios lead to extremely large and unstable slope. Thus, the experimental determination
of the curves near resonance could not be made.

In view of the above instability, either the above or below resonance region
of operation had to be used. The above resonance region was selected. Most of the tests
with this setup were run with  @/wp = 1.5 or in that neighborhood. The high F/Po
and @/wy, ratios place operation in or near that region of the response curve diagram in
which motion with one stop per half cycle occurs. This is the region below the dashed
line in Figure 9. lilustration of this type of motion is shown in Figure 4.

An attempt was made to determine the magnitude of the energy dissipated by
joint friction. Two methods were used: (1) energy was calculated using the frictional
properties of the surfaces as discussed in Section V, and (2} energy input was determined
from machine readings during a vibration test. In all of the computations it was assumed
that the motion was sinusoidal. The results and equations used are shown below. It wiil
be observed that for some of the given F/Po and @W/w, ratios there is no phase angle
given in Figure 10. The phase angles in the tabulated results were obtained experimentally
by "stopping" the motion with a General Radio Strobotac so that the displacement was zero,
and measuring the angle made by the weighted eccentric (direction of input force) and the
direction of motion. Hence, even though the motion was not sinuscidal , the phase angle

defermined in this manner does provide a reasonable value for use in the below formulae

Wi =7 Po X0 sin tf) (1)
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Do=4F X = 4pF X (2)
Lubrication w ¢
W

Fn n Measured F/ Po # Wi Do
Dry
21 1.41 90 0.78 0.460 1.42 1.38
Dry
77.5 1.65 90 0.71 0.61 3.12 3.97
M052
42 1.41 71 0.74 0.61 3.04 3.05
M052
77.5 1.58 66 0.71 0.59 5.97 5.82
Qil From
61 0.90 Fig. 10 0.51 0.033 0.46 0.52

35 38
Oil
77.5 1.75 168 167 0.16 0.040 0.55 0.56

it can be seen that though the motion is not sinusoidal and the phase angle was
determined as previously described, a fairly good check exists between the energy input and
the energy dissipated using equations 1 and 2. Therefore, an energy input equation can be
provided even though the motion is not strictly sinusoidal . If a phase angle can be deter-
mined in the manner described above, then the energy input can be determined for use in

damping calculations.

SECTION V. SUMMARY AND CONCLUSIONS

A brief summary of various methods of damping analysis is presented which
points out the difficulty of analytically handling most forms of energy dissipation in a
vibrating system. These difficulties are accentuated with the dissipation of large quantities

of energy as are encountered in connection damping. The use of an equivalent viscous
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damping coefficient is most often used in design considerations of a vibrating system. This
artifice works surprisingly well even in cases where small non-linearities in damping and
elasticity are present. A complex stiffness coefficient has also been used with good results
in cases where the damping is small. In general, however, the phenomena of energy
dissipation in materials and structures is not ¢learly understood.

Since the energy dissipation in slip damping takes place, for the most part,
through sliding friction, an investigation of the properties of mild steel in reciprocating
sliding motion was undertaken. For the range of normal pressures, sliding velocities, and
lubrication conditions investigated it was found that:

(o) After an initial wear-in period the frictional force versus velocity
characteristic was very similar to that usually assumed for dry friction
or Coulomb damping.

{b) Regardless of whether oil (SAE No. 30), MoSz, or no lubrication was
used there exists an initial stage of rapid change in the coefficient of
friction under reciprocating sliding motion.

(c) After the wear-in period the coefficient of friction and amount of
mechanical wear, if any, appears to stabilize or change very slowly,
if at ali.

Since the frictional characteristics of the test setup does approximate those
of Coulomb damping, the apparatus was considered from this viewpoint. Theory predicts
that for the large damping energy experienced, motion with one stop per half cycle should
exist. Experimental observation of this condition was made. Ar was not computed for
this slip joint since high damping and small variations in coefficient of friction did not
provide stabie motion nor reliable data. It was also found that a check of energy balance
was possible and reasonably accurate despite the fact that nonsinusoidal motion occurred in
some cases.

. Future work in slip damping should take into account possible changes in the
frictional characteristics of the mating parts. A nonconstant slip distribution could easily
lead to a varying frictional characteristic along the length of slip. It is thus possible that
a joint in bending vibrations could have damping characteristics which change with number
of cycles in a manner similar to that experienced in hysteresis damping. Proper lubrication
would perhaps diminish some of these difficulties. However, it is easily seen that connec-

tion damping in jointed members is a problem relatively untouched as yet.
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APPENDIX |
DEFINITION OF SYMBOLS AND TERMS

A_ = resonance amplification factor.

A whenf = f .
v roov
A = vibration amplification factor at frequency fv .

ratio of amplitude of vibration near fv = 0 fo amplitude of vibration at

frequency fv under the same exciting force.

O
Il

damping coefficient, |b-sec/in.
¢, = critical viscous damping coefficient = 2 +/km, Ib-sec/.in.
C = discord = frequency ratio = F\/fr _(= 1 at resonance).
= w/w_ if damping is relatively small.
D, = total damping energy absorbed by a test volume or joint; in-lbs/cycle.
E = static modulus of elasticity, psi. |
f = resonant frequency, usually where ¢ = 90° (Appendix I1).
F = frictional force, lbs (References 9 and 10).

F, = difference between upper and lower limits of applied load for bending joints,
ibs (AF in Reference 6).

(]

damping force, Ibs.

1
il

N normal force, lbs.
F_ = exciting force, + lbs (usually Po. in Table I).

fraction of L  that locates end of spar cap from free end of cantilever beam

@
]

with reinforcing spar caps.
h = depth of beam, in.
| = moment of inertia of beam, in4.
J,n = constants in equation Do = J 5" (Reference 4).

k = spring constant, lbs/in.

f, = frequency of exciting force = frequency of vibration in normal mode, cps.
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cross sectional shape factor { Reference 4 ).

longitudinal stress distribution factor ( Reference 4 ).

K
K
K = material factor = 'n"/Ed J Sn-2 (Reference 4).
K volume -stress factor ( Reference 26 ).

L = length of beam.

m = mass, lb-secz_/.in.

ratio of half length of cap (cover plate) to total length of beam ( Reference 6 ).

o U
o

exciting force, lbs.

P = limiting shear force {per unit length) between the cap and the beam, lbs/in

( Reference 6 }.

ro= 2 |/Ah2, nondimensional constant, { A , in Reference 6 ).

portion of total beam length measured from free end of beam to splice ( Reference 6).
W. = energy input to a system or joint, in-lbs/cycle.

W = elastic energy stored in system at maximum stress, in-lbs.

x
fl

displacement or amplitude of vibration, + inches ( Table | ).

maximum of amplitude during a cycle, inches.

x
]

x = velocity, in/secz.

. . 2
acceleration, in/sec”.

xE
Il

x_, = amplitude as w approaches zero = Po/k, inches.

z = E—f—— , nondimensional notation convenience ( Reference 6 ).
th
= |ogarithmic decrement.
X
-1 . .
= In( Xn ) = Ax/xn , whera X and x ~are the amplitudes of successive
n
decay vibrations and Ax = X 17X

B = coefficient of sliding friction.

#) = phase angle between the rotating vector representing sinusoidal exciting force

and the rotating vector representing sinusoidal displacement.
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= specific damping capacity 21T/Ar = +28 (Reference 18).

frequency of impressed force (Table 1}, rad/sec.

£ <
I

Wy = damped natural frequency, rad/sec.
wn = +/k/m = undamped natural frequency, rad/sec.
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APPENDIX I
SOME RESONANCE RELATIONSHIPS FOR DAMPED VIBRATIONS

A. Viscous Damping

Forced vibration of a linear spring-mass system with viscous damping can be

described by the equation:
m¥X + cx + kx = P, sin wt (1)

The solution of this equation of motion can be written as:

“ TS - fua]

where;

— (@2 (3)
= ()
From these relations we find:

1. i w=wq, ;

x - L.
xstl - 2% and c‘b = 90 degrees (4)
c
c \?2
2. f wswg=w, 1= (-5;)
C \2
X ! | 2 I—(E;:)
— - - 5
xs' 20 [I 25 — (c—)z]i and ¢ fan c ’ ( )
Ce Ce Cc
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= g maximum

3. If w=aaw, ./1-2 (%c)’

st
2 (Y
%‘ = ! - and ¢ = tan™' I Zc(cc) 6)
st| max 2%c[|“ (&)2]5 Ec

From an engineering viewpoint Equation 6 is the most significant since the
maximum amplitudes of a vibrating system are of primary interest. For systems representable
by a single degree of freedom with viscous or equivalent viscous damping, Equation 6 gives
the maximum amplitude obtainable. Fortunately, in most cases the damping is small and
Equation 4, 5, and é give results which are very close to each other. Figure 11 shows the
variation of phase angle and amplitude ratio as a function of the amount of damping.

Thus, of many purposes the resonance amplification factor, A, may be obtained

from Equation 4 as:

mw
A, = Ic = cn $ = 90 degrees. 7)
2%

-

The damping ratio can be that of equivalent viscous damping for most engineering
applications without undue error. Figure 11 shows that for a damping ratio, actual or
equivalent, less than 0.2, Ar caleulated on the basis of o and Ar calt_:uiated
on the basis of W max. differ by very little: 4 per cent at C/CC = 0.2, The
difference decreases, of course, with decreasing damping.

The logarithmic decrement & can also be associated with Ar for a

viscously damped system. It can be shown that:

\ |
A, = % (|+-8—) (8)

8

This equation is subject to the assumption that the points of tangency between the decay
curve and its envelope are the same or the points of maximum amplitude. |t is also assumed

that W, = @, ond that the resonant amplitude is obtainable from Equation 7.
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B. Unspecified Type of Damping, Such as Hysteresis or Slip

In most engineering applications the damping is not purely viscous in nature.
It is therefore desirable to investigate the applicability and limitations in the equations of
Section A, above. Since the primary interest in this paper is the special case of resonance
and damping terms required for defining resonance amplification factors and related terms,
the equations defining the shape of the resonance curve will not be discussed further in this
Appendix.

As mentioned previously, for systems which can be described approximately by
Equation T with an equivalent viscous damping, the values given by Equation 7 and the actual
maximum resonant amplification factor will not differ by more than 4 per cent if the damping
factor is less than 0.2,

For a system with unspecified type of damping, suffi¢iently linear force-

deflection relationship, and motion close enough to sinusoidal so that,
W; =7 P, x, sin ¢
Then,
A, =27 — (9

Thus, Ar from Equation 9 for ¢) = 90 degrees and the assumed viscous or equivalent

viscous damping of Section A, above:

l 2
_ 2ﬂ'§ kxo _ |
Ar = 2 - ¢
TCWX, 2 =

reduces to Equation 7 as couid be expected. _
However, for all cases covered to date and in general (subject to the
restrictions mentioned above) Ar for maximum amplitude may be assumed to be equal
to Ar for ¢> = 90 degrees.
The logarithmic decrement for a system with unspecified damping can also
be related to Ar through the specific damping capacity Y of the system. By defi-

nition of the logarithmic decrement:
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Also,
‘JI _ DO k(X:-|"‘xn)
We k xﬁ_,
Therefore: X1 [I - ]"lz
and 8= - 3loge (I-V)
28

ve2[s-8"+ 2 ] (10)

Using Equations 9 and 10 for a system with unspecified damping:

A = —— (1)

' 8-8°

This equation applies with fair accuracy to the case of viscous damping and is, of course,
more general than Equation 8.

Since, however, Ar is a function of stress distribution, stress history, and
specimen shape (4, 26}, the equations of this Appendix should be applied with care unless

the exact form of damping is known.
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Type of Damping
Equation of Motion

TABLE

DAMPING ANALYSIS AND A,

Amplitude and Phasa Angle
Response Characteristics

PRESENTATION

D, = Energy Dissipated Per Cycle
8 «Logorithmic Dacremaent
¥ = Specific Domping Capacity

A, =Resonance Amplification

Viscous or Velocity Damping

Fy =cx

= 2
Dy = wewx,

21%?

a-.-['——i-%_c)—.—].‘=

Factor
ﬁ)' -Ct i
Ay

' 2{i-¢)

"%[%E {cot ¢ l]

Ref 9,10

Discontinuous at Resonance

¢ =sin”' (—%u %)

mi +ox +kx=P, sinwt Cs|
2 W
¢ = tan™ c % ?2'{?: if%:<<| ?%
Ref. 9 - {&)
yeRzse N T
¥ cw
Non-Stap Motion Cnly.
Ref. 10 for Stop Motion
Coulomb or Dry Friction Imfinite Amplitudes
Damping 2 i D, = 4F x
x v fE . 3 I L F %
ko [V (F;) U] of Resongnce if A
F, =F (sign opp. of x) )
(w,,)' w, w, Decay = 5“—’: par Cycle Based on Equivalent
N W sin_TF .
v o U= i ft.
mii + kx £ F = B, cos {wl + ¢) (%l-l I+cos o ¥ b Viscous Damping Coeft
4F
From : ——— = ——
' sz k‘n |_(i ,;,)l %
I L I
A, =zt

v I—C!

Air or Velocity Squared
Damping

Fy=cn|x|
mi +ci|i|+kx =P sin wt

¢z constont, Ib-sec®/in®

Based on Equiv. Yiscous Damping
Coetficiant

_~
|
EIE
EYT
—a
+
[ I

Based on Equiv. Visc.
Damping Coefficient

. (2

Az —
1- A} (I-c*P

Material Damping

Rel. 4, 24,26, 27

1 Dp=dS

L

Ref. 9, 24 5
Whare D= —c"'—k,—P’—
= Th s - K
Hysteresis it D= fiS) = Then A, =K, K,
or .St
Whare: Ky = ﬁ!‘—

Cannaction
ar

Structural Damping

Ref 6

Nonlinear .Chnruclerinics,
Coupled Stiffness and
Damping

Slow Vibrations Only
Spliced Joint

R (s+p) 8¢
°" 12Elq,h (I+r+z}
L ] 13
+(s—p! +r‘s ]
{i+r-z}
Reinforcing Spar Coaps
» L I |
D« Fy L' g
® 12Elq hller-2)"

Equiv Viscous Coeff.

()

2(1=-¢)

A, -

Exact Exprassion
Unknown
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Type of Damping
Equetion of Maotien

TABLE I
DAMPING ANALYSIS AND A, PRESENTATION

Amplitude and Phuse Angle
Response Charocteristics

{cont)

D, = Energy Dissipated Per Cycle
8 =Logarithmic Dacremant
¥ = Specific Domping Capacity

&, =Resonance
Amplitfication Factor

Combined Viscous and |
Coulomb Domping

Fo=ti & F

mE+ek £ F +kx = P, cos (wt + )

Ref IO

FNE

F
!f&<

Based on Equiv. Viscou

Damping Coefficient

A

x . _g{E /Lt fEY
Xar G(Pe)+ q* H‘(P.)
| 2
hBVAvAILE %)
V= I«J "
- (&)
€
5"““('?"'%‘;) - : < sin;-'-' r. /- C—g).
- a)
G =
cosh (fu'""n l:_)+ cos g ¥ (- %e).

;"-"'- sin -r,\/Tg—:)T

H:/I- (%;)I ) cosh (:'—,'-' 1%:)1-1:05 ? ',\/I- (%e).

Dy =wcwxg +4F x,

+*

1 ]

from:

+A,

E..LC

[1-3
T P, €e

u-cht+sc ()

s 5)-
[1-ch +act (5)']

0

Damping Mot Specified,
Assumed Prop. to Displ.
Complex Notation

mX+k(l+ighx= Poei"

D, = » kgxy, smoall g.

-]

Ref. 14

2w b, small domping

2{1-C)

2(1-C)
g=Coeff. of Complex Damping ) 8 Zrg 9
= . P Fe——— g
¢ =tan T 'ﬂ/W :lg for small g.
= (%)
Ref. 13, 24
Damping Not Sopecified,
Assumed Prop. to Displ, -
Complex Notation x Ll cvk s 2 .
omplex Notati Xat -\/|-2 (.‘L)‘ s (Q' D, =7k sin 2bx, A, = [2“ - cos Zb)] 4
@y wa
. ) . . .
mi +ke®™ x=p o™ =¥ k2bx;, smoll demping
B-py SINO0 ANt i
_ sin 2b cosb (T‘) ~c'
2b=Complex Damping Factor x, =tan _ZTW e v
cos 2b— {7
@y

Reloxation Damping
Fyz=(c, —cy )%

of Fgs—ai+yi’
- u’)i+m=x=0
I 31
A-Xx+yX +w, x=Fcos at

Ref. 9,11

Genaral Closaed Solution Not Known

Limit Cyc¢le Exists.

Non Sinusoidal Motion
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FIG. 4-FORCE, VELOCITY, TIME RELATIONSHIPS DURING
A VIBRATION CYCLE.
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FIG. 7 -SURFACE AFTER 1,603,000 CYCLES AT 775 LB.
LOAD. MoS, DUSTED ON. (X7)

FIG. 8 -=SURFACE AFTER 637,000 CYCLES AT 85 LB.
LOAD. NO LUBRICATION. (X7)
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