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FOREWORD

This report was prepared by the Department of Civil Engineer=-
ing of Columbia Universiﬁy, New York, New York, under Contract Neo.
AF-33(616)-7042. This contract was initiated under Project No. 7351,
"Metallic Materials™, Task No. 73521, "Behavior of Metals", The work
was administered under the direction of the Materials Central,
Directorate of Advanced Systems Technology, Wright Air Development

Division, with Mr. D.M. Forney, Jr. acting as project engineer.

This report covers work conducted from February 1960 to

October 1960.
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ABSTRACT

In Part I of this report, a method is presented for the
determination of the frequency response functions of the components
of deformation and of stress in orthotropic sandwich plates. It applies
to the case of simply supported rectangular plates loaded by dynamiec
pressure normal to their planes.

In Part II, a similar method is presented for orthotropic
sandwich e¢ylindrical shells. The boundaries of the shell are assumed
as simply supported, and the dynamic pressure is normal to the middle
surface. In both problems, the analysis takes into account the trans-
verse shear deformation of the core and the material damping of core
and facings. The results are presented in the form of expressions

suitable for numerical evaluation.

PUBLICATION REVIEW
This report has been reviewed and is approved.

FOR THE COMMANDER:
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PART I:  VIBRATICNS OF SANDWICH PLATES

Introduction

In order io predict the behavior of a structural element sub-
jeet to the action of random loading (for instance random noise), it is
necessary to determine the frequency response functions of various
quantities, such as the components of deformation, the components of
stress, ete. This paper deals with the frequency response functions
for a rectangular sandwich plate. The loading is assumed in the form
of a normal pressure, uniformly distributed over the surface of the
plate, and being random in time. The frequency response function of
any quantity S (deformation, stress) is the function 5([&)’) s Such
that the quantity S corresponding to the loading g -~/ E" i re=

presented in the form

S =S(t) = Stiw) e’

The discussions of the plate and the coordinate system are
shown in Fig. 1. The analysis takes into account the effect of trans-
verse shear deformation of the core. The thickness of the facings is
assumed to be small in comparison to the thickness of the core.

The basic theory of such plates has been developed in two
papers [IJ ’ [2] by R.D. Mindlin in which the detailed discussion of

the assumptions is presented.

Manuscript released by authors 15 November 1960 for use as a WADD
Technical Report
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The materials of the core and of the facings are assumed to
be orthotropic. The elastic constants of the core fxx, f)r)/, bxy, Gx

Gy, Gz are defined by the stress-strain relations

Oyx =26y Cyz , Gz~“26’,¢3; ; a,=2€zfxy

(2)
Gux = Eax Exx +[xyc.(:y_y ’ ®f=[y]{yy+£xyfxx
and the elastic constants of the facings Fxx , Zié} y f?{y, C;;
by the relations
Cry = 26 Exy
(3)

' [ . ' r ! ' +[’ éf.i
Grx = £ xx Exx*fxffyj y C}y —[yyé}y xy Cax

The transverse shear deformations of the facings are neglected. If the

materials of the core and of the facings are isotropie, then

Ge= 6y =Gz =6 = £/2(1+»)
Frx "f-)f)f =£/(/‘P'?) / fx] =f—p/(/—-))2)

with similar equalities for the constants of the facings.

The effect of damping is introduced by the use of the complex
moduli of elasticity ( [3] , p. 276)
Ge = Gu((/+ikx) , Gy (1+ixy)
Gr = Ce(/+ipz) ; Ewx= Eanl 140 D0x) (4)

Ey = by (1+120y) 1 £y = by (V41 Dy

i
i

f

The coefficients//t;,//4,,,/xx, are E’ﬁr times the specific damping
AlVQV/qu, where 4 Wd is the energy dissipated during one cycle in shear,
and hﬁo is maximum shear strain energy. The coefficients ;7 are re-

lated in a similar way to the dissipated and the strain energies in the
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cyclic tension - compression tests. In general, //Zx,.”...“} :7{y

depend on the frequencies and amplitudes of cyclic stresses or de-
formations. In first approximation, it is assumed that the damping is
frequency=-independent. This assumption is in fair agreement with ex-
perimental results for various materials. It is also assumed that damp-
ing is independent of amplitude of applied stress. This assumption is
less justified by the experimental evidence, since the damping of real
materials usually increases with increasing amplitudes., However, without
this assumption non-linear equations of the problem would be obtained.

A proper selection of constant coefficients Ay,... .., "/xy , for an
expected - not too wide - stress and strain range, may provide sufficient
accuracy of the results of the analysis. The coefficients of damping and

the complex modulil of elastieity of the facings will be dernoted by d/x;/

’ 2’
71;; 7)7 ,7JL:’ and G.z/ é—xx p f)}, ,), respectively.

Basic Fquations
The equations of motion of an elastic orthotropic sandwich

plate are derived in [2] y in the form

_M + _ZCDM*' _ QX j SU'

Iy Jy é)fz
5 T, % =l5E 57
9 8x 4 _ o,
o T vt = o

where /V;, /?}, /V%y are bending and torsional moments, respectively;
Qx ’ (Q)’ are transverse shear forces; W/, 5‘{ p %x are the components
of deformation of the plate as shown in Fig. 2; 9 is the loading per-

pendicular to the plane of the plate; / is the moment of inertia of
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the mass of the plate with respect to its middle plane, P1 is the mass

of the plate. The internal forces /7;,.../

length of the

per unit area of the plate,

If the densities of the core and the facings are f

Qbr are taken per unit

cross-section, the loading 2 , moment [/ and mass /V

and ?'

respectively, then

/7= ¢h + ES”f
[ =ph)le * ¢ fY2

(6)

where 4 is the thickness of the core and.]f is the thickness of one

facing.

The relations between the internal forces

.‘,ij and

the components of deformation W/, Vﬁ,.%; , as derived in [2], are

~ 4 J _
Qx'— A/x (% + b‘i‘v) / ijy "Hx] (‘DX
0)’: K (%
D% oY
- Dw oY
=05 Oy g
where
/ﬁ\': K2Gx/) / Aj; = Kz Gj/?
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D, = h)12 + ES hf/ 2
Dy = £y H/72 + £, Y
Dxy <Eny K)/12 + oy hE/E
Hy =6:h7/12 + 6L h /2

¥
24

(7)

(8)



The equations (5), (7) and (8) are also valid for plates with

damping if the moduli ix A G:, Fur sy G+  are replaced
by the complex moduli fzx, C e 5; 7 Zi;, Ce Ci; . As it follows
from [2] , the coefficient K for sandwich plates is very close to

1 and, therefore, it will e neglected in further considerations.

Substituting the expressions (7) into equations (5), the

following three equations for the componentsof deformation are obtained:

50 L5 0 g Y
D*Tv}’*”‘f Dy H*fax@ H*fay* KV 5= 5

.Y

LQ;
bt
QE

- 5 9
0 9)/ ym— +/‘/xy +Hx)/a /{y(;{j W) /c')ta

-a :wy 9*’ c O%w A W
+K +/( &’Dy‘eq-gmMﬁ?T

The coefficients éyx,.. .y AGr are now complex, as they contain the
complex moduli of elasticity in the form (4). Equations (9) determine

an unique solution if on the boundary one quantity of each of the pairs

(MI,VI') J (/\7/;/'; {‘/1); (Qf;w) ; L=Xy /:x,y

are given. For the simply supported plate, the following boundary con-

ditions will be assumed:

for X=0,a , M=0, Y¥=0, w-=0

for )/30,15 ’ My-‘-'o, “fx=0, w =0

Determination of Dynamic Response

In order to determine the response of the plate to a loading

with known space distribution 5?{3(,)/) , being random in time, it 1is
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necessary to determine first the response of the plate to the loading
. = wl
9 (x,y,t) = gix y)e (1)

Employing Fourler series expansion, the loading ? (X,)/, Z‘) may be

represented in the form

Mmoo M=%

Q(X.)/,t‘) :”gZan J‘/’f?ofm./\(\s‘/‘r?/o’n)/e—‘l"“’If (/2)
where
0(‘17;: /77/7'/0. y) /Gn:/??/b
m=1,2,3... , nh=42,3, ..

with the coefficients (?n,n properly determined for each particular type
of loading 9-()(, Y ) . If the loading is in the form of the unit
pressure uniformly distributed over the plate, i.e., ? (x, )/) = const =
=/ ; then

Qmn = 16/mn7T° ; m=435,...,n=1 3 5.. (3

The solutions for ¥, % ;, W are assumed in the forms

% -‘=é—[ }‘{,,m oS 0(,,7 Xxg/'/?/Bh)/ 9,‘@){ - ];2(' e,'cd{
7

% = mZ-”[. %m,, S O(”?X Cos/gh)/f’iwl -

W =Z Z 14/”,” Sirn&p, XS"/')/B,,)/@"Q’!‘ o e‘-wf

n

eu.uf (/4)

<E

which satisfy the boundary conditions (10)., Substituting (14) into
equations (9) the following system of linear algebralc equations is

obtained for ¥, , Yomn , Winn,
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(Dy K + H‘,,ﬁ,fu?, ~10%) Yirmn * (Dol i+
+ Hey dom ) Yymn + Kickm Winn = 0
(Dayolm fin + Hyolm fon) Yamn +(Dy 35 + Hoy i+ (15)
+ Ky=Tw?) Ymn + Ky fin Whn=0
Ke oo Yormn + Ky B Yymn + (Kulm + Ky o = M er?) Won =
= @mn

The coefficients of these equations are complex, and the solutions
are, in general, also complex functions of W or (W : !f/]mn (!' C-J),
’ffmn (t'cu), Wonn (l'w) It is easy to check that the solution for Wi is

/

- £l + ¥ _ 27"
an"@mn/ [ew4 +A]w2+B +g M(,d] (l’6)

The functions %mn and V';-mn can be expressed in terms of Mnn

in the following way

- A;;O(mfwa + g (/7)
Wmn - \/\/mn [‘gw4+a‘tfw2+ ﬁ
}?.Yﬂﬂ ]&)2 + Cg- (/8)

YWonn = W [Fo*+ AL+ B

The notations in the expressions (16), (17), and (18) are:
A= (B ki B+ Ay ki v Ay pl e Rerky)
B = (Dnola + Hy B+ K)( Dy f55+ Hey ol + Ky )= p09)

'-([jx] + /:-Ixjv)ed-;:ﬁf
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=K, o, (B, 57 + Ay ot K )+ K, (D, o5, + i B)

A X,
D =K, 3, (DL + H,),ﬁ +K)+/(o((  on o+ Hoy 0 3,)

€ o R R
F oAy Ridt—Hy RIE+ (DK v 2Dy KK
+ 2Ry K K+ D K)o B - KK, oL KRS S8
&= Ko+ 4
W= V(w4 -E ()

If the frequency response functions ¥
W \:?(Zcu) are known, the frequency response function of any
component of deformation or stress can be easily calculated.

Considering the siress 6:, in the facing

h oY ¥
Exx 2 a + Ex] 2 9)/ (21)

Consequently, the frequency response funclion for G;,,

Colicw) =-ELt 5 T Yoy msin ey x sinflyy -

- £, -g— MZ%— Yomn B0 Sinf3, y sindm X =

is

(22)
= g{[fxx (/+I7XA’)2 xmnd- +
* Ex; (/+i 7,,})?— 1/{,,,,,/3,, /. sf'noC,,,xsmﬁ,,)/
and
mQX.é_;x(I-w):—ZZ [Ex’x ( [+ ?x’x ) _2/2- %mnd_m +
moon (23)

wEL (1% 2 ) 2 Yoo fir ]
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To determine the frequency response function of the shear stress in

-, - _ o f
the core G;; (tew) , 0,, = Gz (5(—0).@“0 , it is nec-

essary to start from the relation [2] :

G = G (W + 5¥) (24)

which implies

Gy (W) =

and
> (i z(;,(/u/a,,)gn[(%mv“b/mdm) (26)

max.Gyy (1)

G (1 +ip,) é_ %—(%m + W, O(m)cosofmx.ﬂhﬁ,y (25)

Similarly
— A
Gyl f[[ (/+z’7)’)’)?—%’“"ﬁn+
(e7)
+£,:J(/+z'7;j)-2/l ‘l{,,,,,d',,,_],&ho(mx.s/'n/@,,)/

and

C_}z(z'cu)=(iv (/+z'/u,)gnf(5§{m * M,nﬁnjsxhof,,,xcosﬂ,,)/ .(28)

Example

For the numerical evaluation of some of the above equations, a

plate with the following dimensions has been taken

a=20h , b=16n ,  f=005h

The elastic properties of the materials of the core and of the faecings

are described by the set of elastic constants

b = by =
£, = £, =03€
Elo= £, = E=50F

-
i

X

£l o= F = 03F°

*
~
<
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G, =G, =G, = 03846¢

The shear damping of the core only has been considered with the damping

coefficients

HMe = pyo= peo= O

Fig. 3 shows the response of this plate to a loading uniformly
distributed on the surface and harmonically varying in time with the
angular frequency (J . The absolute value of the dimensionless de-
flection W [ / h is given as a function of the dimensionless fre-
quency (,J/C.Ja » Where w., = D / h ] Some insight into the dynamical
behavier of this plate may be obtained from Fig. 4, which represents the
deflection Gz, caused by the loading distributed sinusoidally over
the surface and harmonic in time (in plotting the diagram, the effect
of damping was neglected). As it should be expected, three "resonant"
frequencies result from the theory employed for this calculation. The

classical plate theory would give only one of these frequencies.

Concluding Remarks

The derived expressions for the frequency response functions
of deformations and of stresses may be used to determine the behavior
of a plate under normal pressure, uniformly distributed over the surface
of the plate, and random in time. In particular, it is relatively easy
to determine the power spectra of the components of deformations and of
stresses for an arbitrary power spectrum of loading, even if it is not
given in the form of a mathematical expression (it may be given, for

instance, in the form of a diagram).
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The material damping is considered in a manner which seems
to be as exact as it is possible without employing non-linear equations.
The analysis neglects the interaction with the surrounding medium (air,
fluid); this effect will be discussed in one of future publications.
Also another limitation of the presented analysis should be indicated:
since the strains and stresses in the Z -direction have been neglected,
the results seem to be not applicable for the frequencies and modes for
which the distance between nodal lines is smaller than about twice the

thickness of the plate.
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Fig.2. Components of deformation w, ¥ 4;

WADD TR 60-307 12



£0

20

10

‘m ‘Aouenbaaj jo uoyduny o so ‘m ‘uoyosyeq ‘¢ b4

%m/m

~

000'02"

00|
100¢

100¢

\..oow

13

VATD TR 6o-30T7



(Buwidwop jnoyym ejoid)
Om/m Aouenbasy jo uoyouny b SO (j=U ‘|= W) N uouos|eq ‘614

*

Iz

WADD TR 6o-307



PART II: VIBRATIONS OF CYLINDRICAL SANDWICH SHELLS

Introdugtion

The dimensions of the shell and the coordinate system are
shown in Fig. 5. It is assumed that the components of the displace-

ment of any point of the shell may be represented in the form

U, = u + )(0 z
Uy = v + Yz
Uz = W

where U=U(Xy;t) , vev(Kytlad W= w(Xy;t)
are the components of the displacement of the middle surface in the
direction of X,)/, and Z , respectively; jo = }D(X,)/,- ll) and
Y= ‘/J(X._)’ i 1) are the angles of rotation of the fibers which in the
initial state are perpendicular to the middle surface.

The materials of the core and of the facings are assumed
to be orthotropic and dissipative. If the components of stress and the
comoonents of strain vary in time harmonically, G—lj e iwt ; and
é-"j e iwt , the elastie and damping properties of these materials
may be described by the use of complex moduli (u'). The stress-strain

relations for the material of the core are

G, = £y 6 + Fu€an = B (1+09)6, + Eu(1+i9a) 0
Geo = Bos€aa # E2€ = Loy (1#922)Eap # £, (V2 £90) E
€ = 26, (/+,-/a3)5,3

2 = 26 [+ dms) s

Goy = 26,y = 261+ 1) 6

WADD TR 60-307

[

15

(1)

(2)



Similarly, the stress-strain relations for the material of the facings

Gr= 6y6 v Epay = E/(1+19,)E, + £ (1+i94) &0
GoawEby €+ ELE, = El(1+cpl)Eus + Eb (14 i3)E,
G.=2G, €, = 2G,(1 +ims)é,

In the relations (2) and (3), the quantities £, , 7, ...0 , 4,

and fﬁ ’ ;2:,... (;: ’ /Ai; are material constants of the core and
of the facings, respectively.

In some considerations, the resultant forces and moments
are used rather than the components of stress themselves. The positive
directions of these resultants are shown in Fig. 6.

In the derivation of the equations of the problem, the
quantities containing /9/7? in the power higher than one will be neg-
lected, This leads, therefore, to a similar degree of accuracy as
accepted by Donnell (1) and Viasov (2) (in an alternate form of his
theory), but here the transverse shear deformations are taken into
account. The equations used in this paper can also be obtained from
the equations derived by Grigoliuk (3) after the latter are extended

for the materials with damping.

Equations of the Problem

Using the relations between the components of strain and

the components of displacement in cylindrical coordinates, and taking

into account the relations (1), the components of strain may be expressed

in terms of U, V, W)?a; and W

WADD TR 60-307
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1 du, oF
& = % IK Dofz)
/I rdv | Y
Eaezﬁ'(ﬁ'ﬁ+b-f_juz W)
L u |, dw , DF R
26'2-R0ﬁ+‘)0(+0/32 JO(Z) (4)
/
2513 _}0_,_.’3_ -'5)7;7/
| 0
26s = Vg 0%
where 0(=X/R-
Combining the relations (4) and Hooke's law(Eqs. (2) and
(3)), the following expressions for the components of stress are ob-
tained:
For the core:
s rou  IF + £ L vy —Q—EJ—Z)
Go-brm (52 + 52/ T Eer (g T od
= |/ /0 oY = [ /Idv D
G;a=£ez'§_(3/_;/+aﬁ+w)+aa (ﬁ-’-c—?fz)
= (ou , Iv , OF Y
G = Gjﬁ aﬁ +J_c_( gﬁz oK z) (5)
= ! dw
Cs =G (F*% 54
= I Ow
623=Gt( ﬁ:j-ﬁ
For ithe facings:
_tyu + P ), Fr L v £ Y h
Cr w5 = 2 2)+’9R(0 -9 2+W)
= |70 ¥V A = 1 fou L P A
Gom B g (35 255 2 ) Eam 5g 5 5)
=, | /du Qv + 9F h + VY A
Gie=63§(5ﬁ+5‘"f9 2 ~ 9 2)
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where the plus sign applies to the upper facing, and the minus sign

to the lower facing.

Finally, the relations between the resultant forces and

moments and the displacements U, V , h/,jb, and 9’ are

N, =(E h+ 25,,//),4-53—5" t’,ehﬂ*fﬁéf)%f%”/)’

If3 9

B (55 + )+ Ba 58

(G gy (82004 B 82)

M = (£, K/i2 +£,jf/72)-ﬁ,/—§§+ £,3b3/2+£,’2fh2 2)7%- 522:
54 Y

M, = (G, 002 + fﬁ/f)ﬁ/'%g + (Ea e+ B fHE) 5% -
Dugis Daw ik

M= (G512 G;fh72);—?/—(§ﬁf+g£)=H—RL(§/3f+%)
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The system of equations for the functions U, Vv, W,ﬁ }‘/
may be obtained either by substitution of the relations (7) into the
equations of equilibrium, or by the use of the princirle of virtual
work. For the considered problem, these equations are given in Table
l. The guantities f), !f%"fol are the components of external load-
ing; M and I are the mass and the moment of inertia, respectively,
per unit area of the middle surface.

The uniqueness of the solution requires that, at the

boundaries X = Const. one quantity of each of the pairs

N,u ] N,é v /V/;? 7 M;,glfj J Q,W

be prescribed, and at the boundaries ‘/3='C0ﬂ5f. one quantity of

each of the pairs
Na\/ J M,?U 7 sz /\112501 QBW

be prescribed. For this problem, the following boundary conditions
are assumed:

For X=0 and X=L

N=0, v=0,6 M=0, y=0, w=0 (8)
For ,%35 0 and /3=’Za/7?

Ne=0 , u=0 , IM,=0 , p=0 , w=0 (9)
Splution

It is assumed that only the normal pressure Pz acts on

the shell, while P,EO,' /D),EO. The loading P =Pz (d;ﬁ J 1‘)

WADD TR 60-307 19
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will -e revresentec in the form

Pz = Pz o't =g g R 80 A, A Sin X,,ﬂ et (10)

wher
A.=mTR/N , X, =nTR/b (11)
I7 tac cressure f& L5 constant over the surface of the shell
2
Brn = ps 16/Tmn (12)

Solutions for U, V, W, @ ¥ will be sought in the forms

wh o T I U, cosd, oL sink, 5.
v =v.e -,{{ Virr S101 A o(_cos)(,,/j.e"wf
WESwIPSLL =£n2 W sinAd. o sin r\’nﬁ it )
7 fg-e"‘*“[:gnz P cOSA, L.5in X, 3. it
ey et -;/,,-rg Y, sinAs, o(.coan/j_ piwl

whicnh satisfy the boundary conditions (8) and (9).

-
n
y
1)
H

i
)

H

The substitution of the expressions (13) into the equations
shown 1n Table 1, results in the svstem of algebraic linear equations
for the coefficients lfm,,,‘4;n f h4;n s Pmn,and S%;n as shown in
Table 2,

The solution of this system is relatively simple. The
quantities Um,, ’ l{,,,, ; ?gm,, ; %,, nay be expressed in terms of

h4;n in the following way:
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and the coefficients ld/mn are determined by the expression

RMwW? + 9
Wm”=Rszn/{P2Mgd4_R[\;weﬁ+ﬁ +f~/?M(A)2+

. RRI + & } ()
R — RIPE+Y

The notations used in the expressions (14) and (15) are

A =(B,X, +C X+ B X+ C/\f,,)/f?
B=[(B2+ CX7) (B X+ CXL) (B, + )02 X /R
€=(D”/\f,, +H)(:+/(_.A72+D22X:+H,\fn+k£/?z)/ﬁ o
D= (DX, + HX; + KR (D X+ H Xy + KRR -

~(H 0] X X, SR
E<(K X +k X +B,)/F
F =B A (B2 Xo * CA%) = By X, (82+C) Au X, ]/

9 2[822Xn(8u /ﬁn * CXE) - B, /{m('gh? * C) Am Xn]//?e
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B [-Kdn (D X w WA+ K R)# KDy (H 7 D2) A, X, ] /R

J=[-K X, (D, Ao+ HXS + KR + K A (HeD2)Am X, [/R

H=-Bodn/R; =B XofR; M=KD, ; N=KX,

O [(Bahn) + (B 6] IR 5 F=(K )+ (K X)

P=[~(Badn) (B Xi +CN,) = (B X, ) (B, X0 + CX2) +
+ 28,8, (B,+ €)M X3 ] /R

L= [~(K A ) (D X #H AL+ KR = (Ko X, ) (D, X5, + WA+ R+
+ 2K K, (H+ D) AL X0 ] /R

The use of the above equations is quite simple if the ex-
ternal loading /92 has only one harmonic component of frequency W .
It is necessary to calculate LAWn ) kﬁ; for this frequency,
and then all the components of deformation and of stress.

The above equations may also be used if the external load-
ing has a continuous spectrum over a range of frequencies, for instance
from (), to (Wp . In this case, it is necessary to determine
Upn ;.. ., W, as functions of W in the interval (W, , W, )
assuming that the load intensity over the surface of the shell is equal
to 1. After this is accomplished, the dynamical response of the shell
may be determined by the known methods of generalized harmonic analysis
for practically arbitrary spectra of external loading.

It is advisable to transform the expression (15) into a

dimensionless form for more convenlient numerical calculations.
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Example

Numerical caleulations were carried on for a panel with the

following dimensions:

[=b=30n , R=30h , f=005h

The materials of the facings and of the core were assumed
isotropic with the core being fifty times "softer" than the facings.
The Poisson's ratios of the core and of the facings were assumed equal
to 0.3. Only shear damping of the core was considered with the dissipat-
ion coefficient equal to 0.1l. The above assumptions lead to the follow-

ingz relations between the elastic constants:

%

G, = G, = E/2(1+v) = 0.3846¢

"

"= E'/2(1+y) = 0.3846F
/a.f = /Ué' = /uj = 0’

The ratio of densities of the core and of the facings was S’/f’ = /0
The external loading Pz was assumed uniform over the

surface of the shell and harmonically varying in time p, = P exp (t'(.d {)

— ] -
Fig. 7 shows the dimensionless deflection, 1274 E//O;_ R 2
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as a funection of the dimensionless irequency Gﬁ/&ub Gincre Wy =
= BQE/REM) in the interval (.9, w { /0w, . i+, 8 shows
a similar diagram for the same shell without damping. The comparison
of Figs.7 and & indicates that the effect of damping reduces con-
siderably the amplitudes of shear modes, while it is less significant

in the case of extensional modes,
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Fig.5 Coordinate system, components of external
loading, and components of displacement.
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