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Abstract

This paper discusses the application of passive damping to the Stanford Gravity
Wave Experiment [1,2,3]. The experiment’s ob jectives and methodolgy are described,
and mechanical design requirements are identified for this high order, cryogenically
maintained, and very flexible structure. The need for damping in the structure is
motivated, and the selection of passive magnetically induced eddy-current damping in
lieu of active control as a baseline is discussed. A design procedure which attempts to
optimally allocate viscous damping elements in linear discrete structures is presented.
Damper sizing and design considerations aimed at providing a stiffness~damping struc-
tural impedance match are also discussed.

Introduction

1.1 Experiment Description

The Stanford Gravity Wave Experiment apparatus shown in Figure 1 is aimed at sensing
the infinitesimal momentum and energy carried by the gravity waves predicted by Ein-
stein’s general theory of relativity, and which result from the motion of objects in space.
The energy content of gravity waves is extremely small. Only gravity waves associated
with galactic phenomena such as stellar collapses can hoped to be distinguished at this
time. The experiment consists of sensing gravity waves by making state-of-the-art mea-
surements of their dynamical interaction with the first longitudinal vibration mode of a
4800 kg aluminum bar (see Figure 2). The bar consequently acts as a gravity wave antenna,
and is designed to have its first longitudinal vibration mode at about 850 Hz. Sensing of
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Figure 1: Schematic diagram of the 4800 kg cryogenic gravity wave detector at Stanford
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Figure 2: Incident gravity waves induce strain in cylindrical bar
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the longitudinal strain in the bar is performed with a superconducting variable inductance
resonant transducer and SQUID amplifier [2,3].

Because of the weakness of these signals, a great deal of effort is spent minimizing
disturbances to the antenna. To reduce Brownian noise disturbances [4] sufficiently for
the level of sensing required, the antenna is held at a temperature of 4 K. The antenna is
also isolated from cultural and seismic ground disturbances in the laboratory by 250 dB
at the frequency of its longitudinal resonance. Furthermore, the antenna is maintained in
a near vacuum to minimize the possibility of acoustic disturbances propagating through
air to the antenna. To amplify the dynamical interaction of interest, and to consequently
make the sensing possible, the antenna is made of a high mechanical quality factor, Q,
material [2]. For the existing system, the antenna is made of Aluminum and has a @ of
~ 4 x 10% (Q = 1/2¢, {(=damping ratio) at 4 K in the mode of interest.

Isolation of the antenna from external disturbances is provided by an isolation system
consisting of four isolation stacks each with ten spring-mass pairs for high frequency iso-
lation, and an air bag for low frequency isolation (see Figure 1). 250 dB of mechanical
isolation in 6 degrees of freedom over a 200 Hz bandwidth centered at 850 Hz is provided
by this system. The isolation system is also external to, and thermally insulated from the
cryogenic region housing the antenna.

The next generation gravity wave detector at Stanford University® is currently being
designed (see Figure 3). A comparison between the characterstics of the existing system
and the goals of the next generation system is provided in Table 1. The goal of the new
system is a 1 to 2 order of magnitude increase in measurement sensitivity. To this end, the
new system will maintain the antenna at 40 mK to reduce Brownian noise and to further
increase the signal-to-noise ratio. In order to uncouple the thermal and isolation design
problems, and to minimize interaction with internally generated and difficult to identify
noise sources, the present strategy is to enclose the vibration isolation system in the low
temperature region.

The springs and masses for the next generation isolation system are currently being
designed. The objective is to design spring elements which will, when stacked together, be
compliant enough to provide the isolation required at the antenna longitudinal resonance
frequency. Concurrently, the springs must statically support the weight of the antenna
with minimal stress in the spring material. The motivation for minimizing stress levels in
the springs is discussed in section 1.2. The goal is to have the maximum static stress in
the springs be less than 10% of the 0.2% yield stress of the material.

In addition to stiffness properties, another issue underlying material selection is the
way in which the system’s components can be interfaced. As is discussed in section 1.2,
the system cannot tolerate nonlinear disturbance energy resulting from sloppy joints. All
components of the isolation system must be connected with welds or brazes which have
as close to a monolithic interface structure as possible. The materials currently under
consideration for spring fabrication are beryllium-copper and aluminum (e. g. Al 7075).

Note that the isolation must be provided in 6 DOF (degrees of freedom). The approach
taken is to design the springs and masses so that the same resonant frequencies are obtained
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Figure 3: Next generation ultra-low temperature gravity wave detector cryostat
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| parameter purpose existing system next generation
isolation - isolate antenna from ground 250 dB over 200 Hz | 300 dB over
(seismic & cultural) BW centered at 200 Hz BW about
- must be as purely linear antenna resonance | antenna
as possible in dynamic range resonance
temperature| - minimize brownian noise in antenn
- allow operation of superconducting 4 K 40 mK
sensor
pressure |- minimize disturbances on antenna ~ vacuum ~ vacuum

due to air (e.g. acoustic)

antenna |- High Q material reduces brownian Q=4x10° Q> 10’
longitudinal | motion noise (§{<5010%)
damping
- inductive superconducting resonant strain strain
sensing | transducer and SQUID amplifier a/i) (ai/t)
= 1018 =102

Table 1: Gravity Wave Experiment characteristics

in each DOF. To this end, consider basis unit vectors z, y, and z of a cartesian coordiante
frame fixed in the laboratory. Let kg, k,, and k, be linear translational stiffnesses and
let ks,, ko,, and ks, be linear rotational stiffnesses of the springs for the designated axes.
Similarly, let each mass element have mass m and central moments of inertia I, I,, and
I, for axes z, y, and z, respectively. Matching resonant frequencies requires that for each

spring—mass pair:
/ki [koi (. _
wr == T (t = z,y, and 2). (1)

The current spring configuration is shown in the hashed portion of Figure 4(a). The
springs have a clover-leaf like configuration. Each lobe of the clover-leaf springs acts
between two mass elements of the isolation stack. The concept for interfacing the spring
and mass elements is shown in Figure 4(b). The mass elements are shown as H-shaped
bodies which are intended to be approximately rigid.

1.2 Damping Issues

The previous section described objectives and system level issues for the existing and next
generation gravity wave detectors at Stanford. This section motivates the need for damping
in the isolation system of the next generation experiment. There are two issues. First is
the baseline decision to place the isolation system in the coldest temperature region, and
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(a) (b)

Figure 4: Isolation system concept: (a) isolation spring element, and (b) spring-mass
interfacing concept.

second is increased concern associated with the sensitivity to nonlinear creaking in the
system.

At 40 mK the isolation system itself will have mechanical Q’s on the order of 107 or
higher in all of its vibrational modes (see Figure 5) [4,5]. The resulting amplification of
the spectral content of the disturbances at the resonant frequencies (~ 70 — 250 Hz) of
the isolation system poses a key problem. These greatly amplified inputs may cause the
system to deviate from purely linear behavior. The effect is conversion of the narrow band
input disturbance into a broadband disturbance. Sufficient energy at the 850 Hz antenna
mode resulting from the broadband disturbance may corrupt the measurements. Although
physical mechanisms for this type of nonlinear behavior have not been clearly identified
for this system, hypotheses have been formulated. Among these are the hypotheses that
the large amplification of low frequency disturbances causes nonlinear creaking at stress
concentration areas of joints throughout the system. These concentrations of stress can
result in local hysteretic deformations of the material which can propagate as broadband
acoustic energy [2,6].

Design candidates for mitigating this problem include actively and/or passively damp-
ing the isolation system. The goal is to remove mechanical energy from the system which
results from low frequency disturbance amplification. The effect of damping is to reduce
the steep but narrow, and consequently relatively low energy, resonant peaks in the iso-
lation’s frequency response. In addition to reducing these peaks, added damping will
reduce the RMS (root mean square) dynamic stresses in the isolation springs. This in turn
will reduce the probability of localized hysteretic deformations which result in broadband
disturbances.

In regard to implementing damping for this system, there are a few interesting con-
straints which must be considered. First, the damping must be realizable at ultra-low
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Figure 5: Undamped frequency response (Q = (:10)7) from input at top of isolation
stack in z-direction to antenna excitation

temperatures. Potential energy dissipation candidates at this point include electronic ab-
sorption of ultra-sounds, low temperature relaxation of dislocations, magnetic hysteresis,
dry friction, or magnetically induced eddy-current damping [7]. Futhermore, the damping
is required to be predictable/repeatable, and it is required that the damping mechanism
not have substantial energy content at the antenna longitudinal resonance frequency. Con-
sequently dry friction, for example, is inappropriate because of the broadband spectral
content of this nonlinear phenomenon. Another interesting design issue which is discussed
in section 6, is matching the impedance between the dampers and the stiffness elements.

The baseline approach is to use passive eddy-current damping. The negligible impact
of the low temperature environment upon permanent magnets make this phenomenon re-
alizable at low temperatures. Furthermore, eddy-current damping devices can be designed
to provide nearly purely viscous damping, and can be made free of sloppy nonlinear joints.
Finally, by using a superconducting wire, the energy absorbed by the eddy-current damper
can be dissipated in an external resistor in a warmer region of the dewar. The concern
regarding remotely dissipating energy, however, is that the damper then has the Brownian
motion noise of the warmer region where the energy is being dumped.

Among the key design parameters are the placement and sizing of the dampers. Sum-
marized below are design considerations which guided the definition of these parameters.

o The added damping should minimize the RMS dynamic strain in the isolation sys-
tem’s modes.

e The added damping should not compromise the isolation provided to the antenna.
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¢ The 1* longitudinal resonance mode of the antenna is intentionally very lightly
damped for measurement purposes. The added damping should damp the isolation
system modes without damping this antenna mode.

¢ Energy dissipated as heat cannot be arbitrarily dissipated in the system. Because of
the severe refrigeration requirements at the lowest temperature region, only about
10 uW of power dissipation as heat can be tolerated in this region. In the warmer
insulation shells, such as the 0.6 K shell (see Figure 3), as much as 1 mW of heat
can be tolerated.

The sections that follow discuss how these considerations were used to establish baseline
damping allocation requirements for the Gravity Wave Experiment system.

2 Damping Allocation Design Procedure

This section discusses a design procedure being developed which is aimed at aiding a
structural designer to identify the degree to which damping can be of value, and to identify
locations on a structure which are in some sense optimal for the inclusion of damping. The
procedure also identifies levels of viscous damping which are also optimal in some sense.
Furthermore, the procedure is automated by software written in PRO-MATLAB [8] and
FORTRAN 77.

The motivation for the development of such a tool is to include damping as a parameter
in the design of controlled structures. The potential payoffs are numerous. Recent studies
(e. g Passive and Active Control of Space Structures (PACOSS)) have demonstrated that
passively included damping elements can reduce the number of control actuators and total
control energy required in some large flexible structure control problems. Futhermore,
when actively controlling a structure, a higher closed-loop bandwidth can frequently be
achieved by adding damping to an otherwise lightly damped structure.

The task of identifying an optimal allocation of damping in a structure is complicated by
many design issues. Certainly cost, complexity, repeatability, geometry, and environmental
conditions are just a few of the many typical design considerations. These considerations
can have quite varied characters, are often difficult to quantify, and can be difficult to
compare on an equal footing for trade-off purposes. Furthermore, the damping which can
be incorporated into a structure may be distributed or discrete, may have a wide range
of thermal or frequency dependencies [7], and may vary nonlinearly with amplitude or
velocity.

The design procedure described here focuses on outputs derivable from the response of
a linear structure to external inputs. The goals are to determine locations on a structure
where damping elements will have their greatest influence on specific outputs, and to
identify the level of influence at these outputs. Typical outputs may include the response
of a radio frequency antenna mounted on a spacecraft or the control energy required by
actuators on a structure.

A key underlying idea in the damping allocation optimization scheme used here is that
damper placement should be tailored to a system’s specific input and output characteris-
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tics. Consequently, specific information regarding a system’s input locations, directions,
and spectral content, as well as outputs of interest, must be available. The outputs must
be derivable from a linear combination of the states (i.e. positions and velocities) of the
system. A cost function computed as a weighted norm of the RMS or 1o values of the
states of a discrete linear system model is used to determine an optimal damping allo-
cation. This condition on the types of outputs allowable is not as restrictive as it may
seem. As will be discussed in section 4, outputs which have been used include the resonant
excitation of a large flexible bar (the Stanford Gravity Wave antenna), the average power
dissipated as heat in dampers placed on a structure, and the dynamic strain induced in
elements throughout a structure. Furthermore, should the peak rather than RMS value
of an output be regarded as the appropriate quantity for optimization, then a reasonable
approximation to the peak can be obtained by considering the 3o or 40 value of the output.

An important feature in this damping allocation procedure is the specific emphasis on
the sensitivity of damper placement to specific input and output characteristics. Methods
for damping allocation which are based solely on modal strain energy considerations, for
example, and which attempt to identify energy concentration areas and consequently at-
tempt to minimize the global energy in a system , may result in effort expended to remove
energy that does not seriously impact outputs of interest. Futhermore, there is a possibil-
ity of a mode of vibration with relatively little energy, but for which an important output
is seriously impacted. An example may be the vibration of a small antenna on a massive
spacecraft. Another consideration is the possibility that inputs to a structure may have
points of application, directions, or spectral content which do not significantly excite the
vibration modes for which outputs of interest have large mode shape values.

2.1 Assumptions

Several assumptions underlie the design procedure developed. The procedure requires the
existence of a nominal structural model. The dynamics of the structure must be describable
by a linear, constant coefficient, matrix equation of the form:

[M]{z} + [C){z} + [K[{z} = {F(*)} (2)

where [M], [C], and [K] are the time-invariant mass, viscous damping, and stiffness matri-
ces, respectively, of the structure associated with the n generalized coordinates comprising
the vector {z}. {f(t)} is a time dependent vector of input forces. The mass and stiffness
matrices, [M] and [K], are assumed to be real and symmetric, and the stiffness matrix is
assumed positive definite. The viscous damping matrix must be real, and need not be
proportional damping (i.e. a linear combination of the mass and stiffness matrices). These
assumptions consequently require a discrete linear structural model, such as is available
from finite element software packages. In the case of a finite element model of the structure,
the generalized coordinates are the node displacements in all active degrees of freedom.

The nominal structure is assumed asymptotically stable. Consequently some positive
viscous damping must be modeled in each mode of the nominal structure, though the
damping in each mode may be arbitrarily small.
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There can be an arbitrary number of temporally uncorrelated external forces acting on
the structure. These forces can be applied at arbitrary nodes and in any direction. The
input forces must be capable of being modeled as filtered zero-mean, gaussian, ergodic,
white noise. The coloring filters, which define the spectral content of the input forces,
must be strictly proper continuous filters with no poles at the origin.

Damping added to the nominal structural model is assumed to be in the form of purely
viscous discrete damping elements. Each element is attached to the structure at two
distinct nodes. Furthermore, each damping element may provide damping in as many
as six degrees of freedom, with an arbitrary viscous damping constant in each degree of
freedom.

2.2 Candidate Damper Locations

The design procedure consists of two steps: a more synthetic step discussed in this section,
and an optimization step discussed in the next section. The synthetic step is aimed at
identifying good candidate locations for placing dampers in a structure. In the optimization
step, the candidate locations are compared by determining the impact upon outputs of
interest of placing dampers at these locations.

Several approaches can be taken to identify good locations for dampers. The approach
taken here is motivated by an attempt to identify which locations on a structure have the
greatest influence upon the outputs of interest. The result is the development of easily
computed influence coefficients. The coefficients consider the location and spectral content
of external inputs as well as the system outputs.

Consider the modal coordinates for a system described by equation (2). The modal
coordinates {n} are related to the physical coordinates {z} by:

{z} = {U]{n} (3)

where [U] is the system’s real n x n matrix of eigenvectors (mode shapes) normalized
according to:

U IMI[U] = (L], (4)

where [I,]] is the n x n identity matrix. Using (3) and (4), the system’s dynamical equations
can be expressed in modal coordinates as:

{11} + [2¢Q{n} + [Q%{n} = VI {f(1)} ()

where [2((] and [Q2?] are real diagonal matrices of modal damping and natural frequencies
squared, respectively. Note, it has been assumed that the nominal system’s inherent damp-
ing matrix, [C], has sufficiently small damping to be at least approximately uncoupled by
a coordinate transformation using [U]. Taking the Laplace transform of (5) ignoring initial
conditions yields:

n(s) = ([La]s® + [2¢Qs + [Q])7 [U]T{F(s)} (6)

so that using (3):
i — (u}TF () (™

n
o1 8% + 2(wis + W]

z;(s) =

FBA-10

Confirmed public via DTIC Online 01/13/2015
|



From ADA309666 Downloaded from Digitized 01/13/2015

where z; is the j® element of {z}, {1} is the :** mode shape (column of [U]), u;; is the
jt» element of {u;}, ¢; is the damping ratio of mode ¢, and w; is the natural frequency of
mode i (i=1,...,n).

Now consider the effect of introducing to the nominal system, a discrete viscous damp-
ing element acting between generalized coordinates z, and z, (1 < a,b < n). Assuming for
the moment that this damper is massless, the dynamical effect on the system is identical
to the effect of adding equal magnitude but oppositely directed forces at z, and zp which
are proportional to the relative velocity between these coordinates. These damping forces
can be considered by adding a force vector in equation (2) with forcing terms in the ath
and b** elements, that is:

Frmp=|0 .. 0c(d—2,)0...0 —c(€—2) 0... 0 |. (8)
b

Considering only the contribution of these damping forces to z;(s), we can write

ry(s) = 30 iillad ~ W) () g (s)). (9)

et 82 4+ 2(;w;s + w?
In fact, these damping forces result when relative motion between coordinates z, and z

is induced by external forces. With this in mind, and noting that z.(s) and z)(s) in
equation (9) can be expressed in the same form as z;(s) in equation (7):

n

£y(s) = 3, lllai — uae {5 ("""‘““°""32{uk}"] F(s). (10)

=1 8%+ 2wis + wf i1 8% + 2Gkwis + Wi

Now consider the case in which the external force consists only of a force applied at
coordinate m, and also only consider the contribution to z;(s) from mode r ( = r in
equation (10)) and express this as (z;m),:

Ujr(Uay — Upr)C [n  (Ubk — Uak)S
.m r —_ 14 1 1 i ) m m . 11
(@5mh($) = 5 2mra 1 w2 [; T s 4 ot | Fe(®) (11)

Recalling that the objective is to identify some measure of influence from an input to an
output with discrete viscous damping acting between two arbitrary coordinates, it can be
seen that equation (11) expresses this influence, with m as the input coordinate, j as the
output coordinate, and a and b as the coordinates between which the damper acts.

Now let s vary along the Jw-axis (J = v/=1), emphasizing an interest in the dependence
of this influence upon the spectral content of the input, to obtain:

n

Ujr(Uar — Upr)C (upk — Uak)JW
) = : : : . 12
(@jm ) (J0) w? —w? 4+ J * 2Guw,w k2=:1 wi—wi4 Jx Wrorw ™ Fn(J) (12)

Evaluating at w = wy, since it is the contribution of mode r under consideration, the
following measure of the gain or influence at mode r associated with an input at coordiante
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m, an output at coordinate j, and a viscous damper acting between coordinates a and b is
obtained:

|Fn(Jw,)l. (13)

Ujor(Ua,r — tpr)C i (ubk = Uak)Jwr u
2¢,w? S Wl -l + T 2w, ™

Furthermore, for outputs of interest which are linear combinations of system states, such
as:
n
{u} = [Cl{z}, s0 that y; = 3 C(jyi)a(i) (14)
1=1
where [C] is a real constant outputs x n matrix, then the influence coefficient for output
y; is obtained by replacing u;,, in equation (13) with 1%, C(j,1)u; .

A PRO-MATLAB function has been written to automate the computation and sorting
ot these influence coefficients. By easily specifying input locations, the spectral content at
each input location, outputs, and damping coordinate pairs, this function aids a designer
to generate a first cut at good candidate damper locations. Futhermore, by ranking the
influence coefficients by mode, one can identify which modes are most significant for the
inputs, outputs, and damper locations considered. Application of this procedure to the
Stanford Gravity Wave Experiment is discussed in section 3.

2.3 Optimization Analysis

Section 2.2 discussed a procedure to generate a collection of good candidate damper lo-
cations in a structure. This section discusses an analysis tool developed to evaluate the
impact of incorporating viscous damping elements in a controlled structure. The objective
of this tool, which is fully automated in PRO-MATLAB software [8], is to identify which
of a collection of candidate damper placement scenarios in a structure is optimal for a
particular application, and furthermore what level of damping is appropriate. The hope
is that damping will be allocated in an efficient way to adequately damp all important
modes. Each damper allocation case considered can include an arbitrary number of arbi-
trarily distributed and directed damping elements, each with arbitrary viscous .amping
constant. Furthermore, the procedure will include the impact upon a nominal structure
of damping elements with arbitrary mass and stiffness properties. Typical of candidate
damper locations to consider are those generated by the algorithm of section 2.2.

Several inputs are required for this analysis. A nominal discrete linear (finite element)
model must exist for the structure under consideration. The model must consist of n x n
mass, stiffness, and viscous damping matrices, where n is the number of active structural
degrees of freedom. The location, direction, and spectral content of all inputs must be
known. Finally, a collection of outputs of interest must be identified.

This section begins by constructing a state-space realization for a general system consid-
ered. This realization demonstrates the ability to address systems which include structural
dynamics states; sensor, actuator, and estimator states as needed; and coloring filter states
to model the spectral character of external inputs. The topology for the optimization, as
well as the structure of the performance index used is then discussed. A procedure to
sub-optimize over damping constant values for each case is also discussed.
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A state space model for the nominal structure, or plant, is modeled using plant coor-
dinates, {z,}, as:

{0} = (4,12} + (Bl {Fo(0)} + (B £e)) (15)
where,

SSES &4 NVSEY NN ) (16)

Bl 2| _pip, | 182 | g, | )

[M], [C], [K], and {z} are as defined in equation (2), and I, is the n x n identity matrix.
{f2(t)} is a vector of m, external inputs and {f.(t)} is a vector of m, control inputs. [Be]
and [B,] are input distribution matrices for external inputs and control inputs, respectively.
Note that for numerical stability, care must be taken to select appropriate units for M],
[C], and [K] so that [A,] is well conditioned.

Now consider the inclusion of actuator dynamics to the nominal plant. Let {f.(t)} be
the vector of controls actually input to the plant, and {u4(t)} be the vector of actuation
commands. Furthermore, let a state space realization from the ith actuator input, f.;, to
the i** actuator command, u,, be given by:

{Zas} = laail{zas} + {Baii}tta;i (18)
fei = [Vail{Tai} + ba,itta (19)

The combined plant-actuator system can then be realized as:
{2} = [Apa){Zpa} + [Bpal{ua} + [Bpe]{fz} (20)

where,
a )z a | Ay Byl A& | BpcAa

@ { o mat [ ] e B 1)
[4s] £ diag| @as @2 .- Qam, |, [Ba] & diag faz Baz - Bame ), (22)
[Ta] 2 diag[ Va1 Yoz -+ Yame |, [Aa] £ diag[ba1 bag - Sam. |- (23)

The notation diag[- - -] refers to a block diagonal matrix with the arguments on the diagonal.
[A,], for example, is a block diagonal matrix with the blocks a,; (i = 1,... ,m¢) on the
diagonal.

Now consider the inclusion of sensor dynamics to the nominal plant-actuator system.
Let [Cpa] be a real constant measurement matrix such that an m,-vector of ideal measure-
ments, {Yigea }, is given by:

{idea} = [Cm]{2pa} (24)

To accommodate sensor dynamics, let a state space realization from the i element of
{Yidea} to the i** element of the actual measurement vector, {y}, be given by:

{j:a,i} = [aa,i]{ma.i} + {ﬂa,i}yideal,i (25)
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¥i = [Vail{Zsi} + 0s,iYideari (26)
The combined plant-actuator-sensor system can then be realized as:
{Zpas} = [Apasl{Zpas} + [Bpal{tia} + [Byc]{f:} 27
where,
.é Zpa _A_ Apa 0
{xpon} - { x‘ }’ [Ap!u] - [ B.Cm A, ] 1) (28)
[Ao] é diag[ Q1 Qg2 « .. Qpm, ]a [Ba] é diag[ 'Ba.l ﬂa,2 v ﬂa,m. ]a (29)
and note that {y} is given by:
{y} = [C{2pes}, where [C]Z[A,Cn T, ] (30)
where,
[T.] £ diag o1 Yoz -+« Yome J» [Ad] £ diag] 601 602 <. bum, |- (31)

Now consider designing a control system for the structure being considered. To this
end, assume that the control law generated is in the form of feedback of estimated plant,
actuator, and sensor states. Simpler control laws, such as feedback of sensor outputs alone
with no estimation, are a subset of this more general construction. Actuator commands

are then given by:
{ua} = —[K]{Zpas} (32)

where [K] is constant control gain matrix and {%,,,} is a vector of estimated plant, actuator,
and sensor states. [K] may, for example, be the gains resulting from a solution of the linear
quadratic regulator (LQR) control optimization problem [9]. The estimator state equation
is assumed to be of the following form:

{épa:} = [Apas{Zpas} + [Bpa{ta} + [L] [{y} - [Col{Zpas}] - (33)

[L] is a constant estimator gain matrix, and may, for example, be the steady state Kalman-
Bucy filter gains associated with the linear quadratic estimator (LQE) optimization prob-
lem [9].

By combining equations (27), (32), and (33), the entire system can be realized as:

{Zpase} = [Apase]{Zpase} + [Bpz]{ fz} (34)
where,
{-'ﬁmu} é { ;::: }’ [Apa:e] é [ ‘28: Ap“ —_éBpTIf— IC, | (35)

Finally, consider the inclusion of continuous filter states used to shape the spectral
content of the m,—vector of external inputs, {f.}. The external forces can be the result
of a directly applied force, or the result of external ground motion acting through linear
translational or rotational springs and/or viscous dampers. It is assumed that the MSSD
(mean square spectral density) also referred to as the PSD (power spectral density) of
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either the applied force or ground motion is known, and can be adequately modeled as
continuously filtered white noise. The Laplace transform of the coloring filters is assumed
to have no purely imaginary poles. The i*h external input can be written as:

fz.i = kz,i¢z,i + C:.i&z,i (z =1,... ,mz) (36)

where ¢, ; is the ith filtered input. Let a state space realization from an external input
with a white PSD, w;;, through the it shaping filter to ¢,; be written as:

{224} = [ozil{z2} + {Bri}wa,i (37)

¢z.i = [7::,!']{1':,1'} + 6.1:,1"-‘7.1:.1' (38)
Now assume that the transfer function of these filters in the Laplace domain is strictly
proper so that 6,; =0 (i = 1,...,m;). Then by substituting equations (37) and (38) into
equation (36):

fri = [Okeil{Tzi} + Bkeiwe,i (39)

where,
[aked] £ kailte] + Coilvaillazd, (40)
bkes = CoilVeil {Bei}- (41)

The combined system with plant, actuators, sensors, estimator, and external input shaping
filters can then be realized as:

{Zaa} = [Asys]{Zsys} + [Bays]{wz} (42)
where,
Tpase a Apase szA c A szB c
{zaya} é { z, }s [Aaya] 9_ [ 0 A,k l ) [Baya] = [ sz ] ) (43)
[A.] £ diag| aey @op - Gom, )y [Be] = diag Bey Bea - Bama b (44)

[Akc] ‘_e' diag[ Qkc,1 Rke2 + -+ Qkeymy ]a [Bkc] é diag[ bkc.l bkc,2 e bkc.m, ] (45)

{w;} is a vector of external inputs, w, (¢ = 1,...,m;), which are assumed to be ergodic
uncorrelated zero mean gaussian distributed inputs with white PSD.

With a state-space realization available to model a wide class of linear system descrip-
tions, the way this realization is used can now be discussed. To this end, the optimization
portion of the damping allocation procedure shown in Figure 6 will now be discussed. This
portion of the procedure considers each good candidate damper application case individ- -
ually. For each case, a list of damper geometries is specified, as well as nominal viscous
damping constants, and mass and stiffness properties of the dampers. The [M], [C], and
[K] matrices in equation (16) are modified from their nominal values to appropriately ac-
commodate the added dampers, and are then used to construct a modified plant model.
Actuator and sensor dynamics can then be added to the plant model, a control system can
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be designed as indicated in equations (32) and (33), and a system model constructed as
per equation (42).

The optimal damper configuration selection is based upon minimizing a cost function
constructed from RMS values of system outputs. Computing the RMS values for high
order systems can be computationally intensive. For a linear system with uncorrelated
inputs, one method of finding the RMS values, zrys, of a state z resulting from a random
ergodic input f(t) is to perform the following integration [10]:

ThMs = J;ix /_ :" |G 1o(Jw)|? Sy(w)dw . (46)

Gyz(Jw) is the transfer function from fto z in the Laplace domain and evaluated at s = Jw.
Sy(w) is the PSD of fand is defined by:

Sy(w) = /_:o R,_(r)e“"‘”dr (47)

where, R/(t) = E[f(t)f(t — )] for an ergodic process. The procedure for computing
and integrating G;.(Jw) for all inputs and outputs is computationally intensive. A more
efficient approach is to solve a continuous-time Lyapunov equation [11] of the form:

[ono] [P ] + [P ] [Atv-]T + [Baw][Q] [Bcw]T =0 (48)

for the matrix [P). If [A,,,] is asymptotically stable (i.e. all eigenvalues have negative real
part) and [Q] is positive semidefinite, then there is a unique solution [P] which is positive
semidefinite and satisfies:

[Pl = [ eAhBE,QBuyuetwds (49)

If all inputs to the system are regarded as uncorrelated purely random (white PSD)
inputs with unity spectral density (input shaping filters account for gain differences), then
[Q] is an identity matrix and [P] is the steady-state covariance matrix for the system’s
states.

Now consider an m,-vector, {y,}, consisting of outputs of interest for the system, and
related to {z,,,} by:

{¥o} = [Col{Zuys} (50)

The output covariance matrix, [Y,], is then given by:
[Y,] = [C.][P)IC.)” (51)

A vector {yrms} of RMS outputs of interest can then be computed as the square root of
the diagonal elements of [Y,).

As a computational note, equation (48) is computed in PRO-MATLAB by transforming
to schur form, solving for the upper-triangular system, and then transforming back 8].
Because [B,,,][B.y,]T can be poorly conditioned, it is numerically more robust to compute
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the SVD (singular value decomposition) [12,13] of [B,,,] and then solve a related Lyapunov
equation [14]. To this end, let the SVD of [B,,,] be given by:

[Bow] = [U][E][V.] 2 _ (52)

where [U] and [V] are unitary matrices and [Z] is a diagonal matrix containing the singular
values of [B,,]. The following related Lyapunov equation can then be solved for P:

[A0][P) + [PIlAu,]" + S]] = 0 (53)
where,
[An] £ [U*][4ne][V] and [P] 2 [V*][P]U] (54)

The desired covariance matrix, [P], is then obtained by transforming back using [P] =
[VI[P][U™].

Having obtained RMS values, the next step is to compute a cost function, J..,¢, which
is a weighted p-—norm of the elements of {yrums}, and is given by:

o ( yrms; \' M
Jeost = —_— . 55
cont § (yRMS ma:c,i) \ ( )

The optimal damping case is that for which J,,,; is minimized. The quantities yrars maz,i
are weightings which represent the maximum tolerable values of yryms(t = 1,...,m,) as
determined by system level requirements. The default value used for p is 2, but any value
can be used.

For each case, there is a simple sub-optimization scheme used to identify what level of
damping minimizes J.,,:. The sub-optimization scheme used modifies the nominal damping
constant in each damper by the same factor. At this point the factor is chosen simplistically
using a secant direct search method [15].

After addressing each case, the cases are ranked and sorted by J.o..

A drawback of the optimization procedure is that it is computationally intensive both in
regard to number of operations and memory requirements. Although not yet developed, it
is felt that model reduction techniques can be used to handle extremely high order systems.
To date, the largest system to which this optimization phase was applied contained 292
states, and required a maximum of 16 megabytes of memory. Another drawback is the
current inability to easily handle the inclusion of hysteretic damping [7] either in the
nominal structure, or as appended damping.

3 Candidate Damper Locations for Gravity Wave Ex-
periment

This section provides an example of the procedure discussed in section 2.2 to identify
good candidate damper locations. The application is the simplified finite element model

3[ ]* denotes Hermitian transpose of [ ]
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Figure 7: Simplified model of Gravity Wave Experiment structure

of the Stanford Gravity Wave experiment shown in Figure 7. The model consists of two
spring-mass isolation stacks, each stack consisting of ten 6-DOF springs and masses. The
isolation stacks are connected at each end of a 4 node cylindrical bar modeling the antenna.
Four nodes are sufficient because primary interest is in the first longitudinal mode. The
complete structure has 144 DOF.

Inputs of interest for the Gravity Wave experiment are cultural and seismic noise in the
laboratory. For this example, only seismic noise is modeled, and it is assumed to be applied
in three translational DOF at the top of each isolation stack. The PSD of seismic ground
motion used is shown in Figure 8, and was adapted from chapter 10 of reference [16]. For
the sake of this example we will regard excitation of the antenna as the sole output of
interest. A measure of this excitation is the relative motion between nodes 11 and 14 in
the z-direction (see Figure 7).

The objective is to place viscous dampers in the isolation stack so that they have max-
imal effect upon the output considered. The damper can be placed to dissipate energy due
to the relative motion between any pair of masses in the isolation stack. As a result of the
symmetry in this model, only one isolation stack need be considered. Using an automated
PRO-MATLAB procedure, the gain factors of equation 13 were quickly computed for all
45 (n(n — 1)/2, n = 10) possible damper locations, for all 144 modes of the model, and
for the input and output specified. Among the outputs of the procedure is a 3-D contour
plot of peak gain factors versus the damper connection coordinate pairs.

Figure 9 shows the contour plot for this case. The height of the contour at any inter-
section is the gain factor associated with placmg a damper between coordinates a and b
designated by the horizontal axes. A large peak and a smaller plateau stand out in the
figure. The large peak indicates the effectiveness of placing dampers between coordinates 5
and 10, or between coordinates 6 and 10. The plateau indicates that dampers are effective
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Figure 9: Contour plot of gain faciors versus damper connection coordinate pairs for
simplified Gravity Wave Experiment model
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Figure 10: Normalized mode shapes for modes 13 and 25 of simplified Gravity Wave
Experiment model

between coordinates coordinates 2 or 3 and coordinates 7 or 8. In addition, the program
identifies the mode of vibration which produced the peak gain factor for a specific damper
geometry. The peak in the contour is associated with the 13 mode, whereas the plateau
is associated with mode 25. These results are supported by the mode shape plots shown in
Figure 10. Mode 13 shows substantial relative motion between coordinates 5 and 10 and
between coordinates 6 and 10. Similarly, mode 25 shows large relative motion between co-
ordinates 2 or 3 and coodinates 7 or 8. Furthermore, for both of these modes there is large
relative motion between coordinates 11 and 14 (the output of interest), as indicated by the
blow-up of coordinates 11 through 14 in Figure 10. The blow-up is required because the
antenna is quite massive and stiff so that its motion is small relative to motion of the isola-
tion stack elements. Another interesting result is that although mode 25 has larger relative
peak-to-peak motion than mode 13, the contour plot indicates that damping mode 13 is
more effective. This apparent contradiction is clarified by looking at the spectral density
of the input. Figure 8 shows that for frequencies above 0.15 Hz (~ 9(10~*) rad/msec) the
input PSD shaping filter is rolling off at 40 dB/decade. Because mode 25 is at 123.5 Hz and
mode 13 is at 62.5 Hz, the input shaping filter has about 1/4 of the gain at mode 25 than
at mode 13. Consequently, sufficiently more disturbance energy density at the frequency
of mode 13 makes this mode the more desirable mode to damp.

Note that the above example was provided primarily to illustrate the procedure that
generates good candidate damper locations. For application to the actual Gravity Wave
Experiment, a more detailed finite element model of the system was used, and the outputs
of interest identified in section 1.2 were considered.
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4 Optimal Allocation for Gravity Wave Experiment

This section discusses the application of the optimization procedure described in section 2.3
to a collection of candidate damper configurations generated as discussed in section 3.
Because there is no active control for this example, the nominal system need only be
modified to include appended dampers and the external disturbance filter states. As
in section 3, the inputs are comprised only of seismic disturbances acting in 3 DOF at
the top of each isolation stack. The appended dampers were assumed to have negligible
stiffness and mass, an assumption which can be abandoned in future studies as the damping
hardware becomes defined better.

The outputs to be optimized for this case provide an interesting sample application of
the procedure. The optimization objectives are summarized as follows:

¢ Minimize the RMS dynamic strain in all of the isolation springs.
¢ Minimize the average rate of energy dissipation as heat.

o Maximize the amount of isolation provided to the antenna at the antenna’s longitu-
dinal resonance frequency.

¢ Maximize the Q in the antenna longitudinal mode (i. e. do not damp the antenna
mode).

RMS dynamic strains in the translation degrees of freedom of each spring are computed
as the RMS dynamic stretch in each spring divided by the static vertical deflection in each
spring. Average power dissipation as heat is computed for each damper as the damp-
ing constant times the covariance of the relative velocity between the damper connection
coordinates. RMS motion between the antenna end faces is used as an approximate mea-
sure of the isolation of the antenna longitudinal mode. Since no appropriate measure of
the @ in the antenna’s longitudinal mode is available from the RMS state outputs, this
figure of merit was excluded from the optimization. Verification that the inherent Q in
the antenna’s longitudinal mode was not significantly reduced by the added damping was
performed after the optimization by studying the resulting frequency responses.
The cost function, J,,,:, constructed for this application is given below:

J €max 2 Eheat ? antenndezcit 2
ee=|(m2) + (32 - ).
€mazation Eheat,;;,.,, antennBezcite ;o
€maz i8 the maximum RMS strain in all springs of the isolation system with all degrees of
freedom considered. Ej., is the total rate of energy dissipation as heat in all dampers for.
each case considered. antenna.z.. is the RMS relative motion between the antenna’s end
faces. The weighting factors designated by the notation (' )atiow represent the maximum
allowable values of the quantites in ( ) as determined by system level requirements. These
requirements are listed in Table 2.

The structure of this optimization provides for interesting trade-offs. First of all, the
allocation of damping must be such that it damps all isolation modes with a minimal
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Quantity Requirement Current value
max. RMS dynamic |< 1% of 0.2% spring| ~0.2% of 0.2%
stress in isolation spring yield stress spring yield
stress
max. average heat <10 uyW in ~0.18 uW per
dissipation in 40 mK region damper * 8 =
dampers 1.44 uW
antenna isolation ~ 300 dB ~250 dB
antenna resonance Q = 107 = 107
Damping required in 6 DOF :
direction X,¥,2 (N-s/m) | Oy, ey (N-s-m)[ g, (N-s-m)
damping constant 0.1 0.2

Table 2: Baseline design requirements for added damping in Gravity Wave Experi-

ment
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Figure 11: Baseline damping allocation for simplified model of Gravity Wave Experi-
ment structure

number of dampers, and yet does not damp the antenna mode or compromise the isolation.
Secondly, the desire to minimize RMS dynamic strains tends to demand large damping
constants, whereas the requirements to minimize heat dissipation and maximize antenna
isolation at the antenna resonance tend to reduce the desired damping constants.

5 DBaseline Damping Allocation and Design Require-
ments

Application of the optimization procedure produced a set of baseline damping allocation
requirements. The procedure was used to identify the effectiveness of using either one
or two 6-DOF dampers for each isolation stack. Using two dampers per stack provided
enough performance improvement, as measured by the cost function J_,,¢, to warrant the
additional hardware. The baseline allocation is shown in Figure 11. Applying 6-DOF of
damping between the 1% and 3™ stages, and between the 6 and 8** stages of each isolation
stack was considered optimum by the procedure.

Note, that the locations identified in section 3 are quite different from the optimum
locations obtained. One reason for this apparent discrepancy is that the criteria of antenna
excitation used in section 3 was just one of three criteria used in the optimization of
section 4 (see equation 56). Secondly, antenna excitation is a quantity to be minimized
since it is used as a measure of the isolation provided to the antenna.

Table 2 compares system requirements with values obtained from the optimization
procedure for the quantities specified in section 4. As discussed in section 1.2, the require-
ment on maximum RMS dynamic strain in the isolation springs is intended to minimize
the probability of nonlinear creaking in the isolation system. The design value of 0.2% of
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Figure 12: Frequency responses from input at top of isolation stack in z-direction to an-

tenna excitation with added damping in baseline configuration and damping
constants of: (a) 0, (b) 3 kg/msec, (c) 33 kg/msec, and (d) 0.3 kg/msec

the 0.2% yield stress is well within the 1% maximum. Assuming that the entire isolation
system is enclosed in the 40 mK region, the maximum tolerable heat dissipation is 10 uW.
For the baseline design there is an energy dissipation rate as heat of about 0.18 yW per
damper, or about 1.44 uW for all eight dampers, which is well within the requirement.
Note that the current isolation system design does not meet the isolation requirement.
This condition, however, is primarily associated with the stiffness of the springs modeled.
Figure 12 shows the frequency responses from a disturbance excitation at the top of the
isolation stacks in the z-direction (see Figure 11) to relative motion between the antenna
end faces for various damping constant values. As can be seen from Figure 12(a), even
with no added damping, the isolation provided to the antenna at the antenna resonance
is about 250 dB. The springs currently being designed, and which will be used for future
modeling, will be made less stiff to improve the isolation. It remains to be seen to what
extent the reduced stiffness impacts the ability to meet the dynamic strain requirements.
As can also be seen in Figure 12, the level of damping used at the baseline damper
locations has an interesting impact upon the isolation to the antenna mode, and upon the
Q of the resonant peaks in the isolation modes. Figure 12(b) shows that for a damping
constant of 3 kg/msec in all translational dampers, the resonant Q’s of the isolation system
are substantially reduced from 107 to about 10! —10%, but the isolation to the antenna mode
is reduced by 45 dB. As the damping is increased to 33 kg/msec, the isolation system'’s
maximum resonant Q’s are reduced further to about 10!, but the isolation to the antenna
is reduced by about 80 dB. Figure 12(d) shows the frequency response for the design
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Figure 13: Concept for matching impedances between stiffness and damping elements

damping values given in Table 2, and indicates that the maximum isolation resonant Q’s
are reduce to less than 10, while the isolation to the antenna mode is reduced by only
24 dB. The design damping constant values provide a good compromise between resonant
peak reduction in the modes of the isolation system, and the level of isolation provided
to the antenna at the antenna longitudinal resonance. Note that the damping allocation
is such that for all damping constant values used in Figure 12, the resonance Q of the
antenna’s 1* longitudinal mode deviates indistinguishably from its undamped value of
107.

6 Damping-Stiffness Impedance Matching

Section 1.2 discussed issues associated with realizing damping in the Stanford Gravity
Wave Experiment. This section discusses still another important damping realization
issue, namely the impedance mismatch between the stiffness acting between the isolation
system’s masses (see section 1.1) and the damping to be used between the masses. A feature
of the optimization procedure discussed in section 2.3 is the computation of RMS values
for all states of the system. For the model of seismic motion used, typical RMS dynamic
forces are about 0.15 — 0.5 N. Recall that these forces are associated with the stretching of
the isolation springs. Typical RMS dynamic torques are about 2(10-2) N-m. RMS relative
velocities between masses of the isolation system are about 1 um/sec. From the standpoint
of damping implementation, these quantities represent an impedance mismatch. A viscous
damper which provides a comparable level of force for these velocities would require a
damping constant of about 3(10°) N-sec/m. This would require the comstruction of a
sizable damping element. :
This impedance mismatch can be reduced, however. The idea, illustrated purely con-
ceptually in Figure 13, is to use a lever mechanism to amplify the motion of interest.
Consider an RMS force F; acting between masses 1 and 2 in the figure, and an associated
RMS relative velocity v;. By using the advantage shown, the relative velocity can be am-
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plified at a remote location by the leverage ratio L,/L,, where L, and L, are as shown
(Ly < L;). Consequently the magnified velocity is v; = (%) v;. In addition, the remote
force F; which would cause the same motion between masses 1 and 2 as F) is related to
F by F, = (%) Fy. A damper sized to match the stiffness impedance at location (1) is
given by b, = F, /v,, and the rate of energy dissipation resulting from this damper is given
by E; = byv?.

A damper sized to match the stiffness impedance at location (2) is given by:

_ kB _ (L R Ll)2
w=0=(2) 5= (@) » 0
and the energy dissipation rate for this damper is:
. L\?, /L\? ,
E2 = bgvg = (f:-) b1 ('L'—:) vf = bﬂ)? = El (58)

Consequently, if L; << L;, then equations (57) and (58) indicate that the same energy
dissipation rate can be obtained at (2) as at (1) by using a damper with a factor of
(Ly/L,)? << 1 less damping constant than used at (1).

This impedance matching concept is key to constructing reasonably sized damping
elements for application to the Stanford Gravity Wave Experiment. Furthermore, because
of the experiment’s sensitivity to nonlinear components, it is important that the mechanism
used for motion amplification have no sloppy joints. Hinging elements based solely upon the
elastic deformation of materials, such as the concept shown in Figure 13, are consequently
an important requirement.

7 Status / Conclusions

This paper has motivated and discussed the need for damping in the high order, cryogeni-
cally maintained, and nominally extremely lightly damped isolation system of the Stanford
Gravity Wave Experiment. Issues associated with realizing damping in this system were
mentioned and the selection of passive magnetically induced eddy-current damping as a
baseline was discussed.

A general procedure aimed at optimally allocating and sizing viscous damping in con-
trolled flexible structures was introduced. Characteristics of the procedure were motivated,
underlying assumptions were discussed, and algorithmic details were developed. This de-
sign procedure was applied to the Stanford Gravity Wave Experiment system using a
unique set of optimization criteria. The result was the specification of reasonable baseline
damping allocation design requirements which provide a good compromise between the.
various optimization objectives.

The eddy-current dampers to be used for 6-DOF of damping in the Gravity Wave
Experiment are currently being designed. The importance of a damping-stiffness structural
impedance match was mentioned, and mechanisms for providing this match are being
worked into the damper design process. Work is also in progress to refine the stiffness
values used in modeling the system.
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