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ABSTRACT

An analysis is presented of the data obtained from a short
series of tests to "shakedown" a powered model of the ADAM II
V/STOL concept. Correlating data from tests of a related semispan
model are also included. Results show that the longitudinal
stability of the present configuration in the cruise mode has a
greater variation with angle of attack and power than conventional
alrplanes. The data indicated that, for this test, possible lower
surface flap separation and detached nose fan exit flow caused
nonlinearities in pitching moment. These can be eliminated by
redesign at critical points to provide good stability. The location
of the horizontal tails in the wing tip vortex results in an upwash
derivative (negative de/da ) that results in & high level of hori-
zontal tail contribution to stability. Although the basic low
aspect ratio horizontal tails were highly loaded and operating with
disturbed flow conditions much of the time, there was no indication
of tail stall, Horizontal tall control effectiveness appears to be
adequate at the present stability levels. The model was less stable
directionally than longitudinally in the sense that a greater forward
movement in c.g. location is required for neutral stabllity. 1In
this test, directional stebility was independent of angle of attack
and power effects, and lateral stability was at all times positive
and varied with angle of attack and power effects.

This aspect is subject to special export controls, and each
transmittal to foreign govermments or foreign nationals may be made
only with prior approval of Alr Force Flight Dynamics laboratory
(FDMM), Wright-Patterson Air Force Base, Chio, 45433,
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SECTION I

INTRODUCTION

This report concerns the results of LTV low speed wind
tunnel test 299 to check out the power system, remote actuators, and
model fit prior to entry in the NASA tunnels., The test was primarily
of the cruilse mode with zero vane box and flap deflections. A run
log of the test is presented in the appendix. The results are com-
pared with those of & semispan model of similar configuration. The
essential differences between this model and the related semispan
model {of LTV LSWT test 172) are shown in Figure 1, these differences
being the wing cross section and airflow provigsions, nose fan, and
horizontal tails. Both low and high aspect-ratic horizontal talls
were tested on the full-span model. No tuft photographs or pressure
date were obtained from the shakedown test. Tuft observations were
recorded, however, and are used in the anelysiz, Irregularities in
lift and moment curves have at times been refaired where it appeared
the true stability picture would be in better focus. The refaired
curves are shown &3 dashed lines together with the actual dats pre-
sented in the figures.

All of the data presented include thrust in the force and
moment coefficients. The level of thrust is indicated by net thrust
coefficient. Momentum coefficient based on wing fan plus primary
gross thrust is used for comparison with previous test results.
Momentum coefficient (or gross thrust coefficient), defined by
Cu = £F./qS, is the accepted correlating parameter for jet flap
work ang was adopted for the ADAM propulsive wing. For the special
case of the jet flap, Cu = m,V_/gS. For this model, Cp = Z[(ﬁ +
m )V./g|/a8, since the comprEsed sir used to drive the tip turbine
féng and simulate the primary flow is added to the system. The mo-
mentum coefficients in this report do not include the nose fan and
its drive air gross thrust. Net thrust is gross thrust less ram
drag, therefore the net thrust coefficient for the model is:

=3 [(h, + IV /g -~ m &V /g|/aS. The net thrust coefficlents in
tElS repogt 1n81u e nose fgn gross thrust, drive air, and ram drag.
An sdditional ram drag corresponding to the compressed alr mass flow,
W v /g, would be present on the airplane. For ADAM IT tests, gross

st and subsequently momentum coefficient was computed from pres-
sure distributions at the primery, secondary, and nose fan flow exits.
The distribution of gross thrust among the propulsive flows on the
model was, in general, approximately 17% for each of the five fans,
and 7.5% for each of the left- and right-wing primary exists. VAD
has done some private development of thrust removal techniques.
However, additional work is required before the external aerodynamic
foreces can be separated., Since the measured sercdynamic coefficients
include thrust, large 1lift coefficients, large pitching moment co-
efficients and large negative drag coefficients are to be expected.
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It was found that the inclusion of thrust in the data did not
particularly detract from the analysis. Since the definition of

Cp hag free stream dynemic pressure in the denominator, the actual
airplane operating range of Cu extends from about 0.03 at high speed
flight to infinity at hover.



SECTION II
LONGITUDINAL STABILITY

There are three regions in the ADAM II pitching moment
data where different types of flow conditions seem to apply, as
shown in Figure 2. Reglon 1 is where the model functions in a
normal, linear fashion. 1Inh region 2, an unstable change in slope
occurs which is believed to be caused by flow separstion from the
flap lower surface, aft fuselage,or booms. In region 3, a stable
change in slope occurs, believed to be caused by a reduction in
the destabilizing contribution of the nose fan, the mechanics of
which are not certain. A further increase in angle of attack
results in a decrease in stability for low values of wing Cy,

GEE@E—EEEEEE), due to suspected flow separation from the flap
upperqsurface at an angle of attack of 15 degrees (Figure 3, runs
19 and 28), At the higher values of Cy, upper surface wing stall
occurs at an angle of attack of 30 degrees where the flap upper
surface is maintained unstalled due to BLC effect of the primary
flow.

These conclusions are based on the tail-off and tail-on
Jift and pitching moment curves presented in Figure 3. The short
dashed line is an arbitrary fairing where thrust is inconsistent.
Momentum and net thrust coefficients quoted in this report are
average values during & run. The long dashed lines are drawn to
make the slope changes of regions 2 and 3 more evident. Data were
taken with and without the flap "scab™ shown in Figure 1(b). With
the scabs off, the flap deflection for runs 11 and 12 was 20° T.E,
up to obtain aligmment of the lower flap surface. The three
stebility "regions" are evident in the pitching moment curves,
particularly at low values of Cp.

In moving dowmward from region 1 to region 2, the fact
that the slope changes at a = O indicates that a flow condition
change is caused by some type of model asymmetry. From Figure 1(b)
this would be either the ncse fan with the under fuselage exit, or
the area including the wing box, flap and jet flow exits. In con-
sidering low values of Cy, where the effect is most apparent (runs
19 and 28), the reduction in 1ift curve slope in region 2 with an
unstable shift in the moment curves suggests a stalled region behind
the moment reference point. The lower surface of the flap is suspect
because at negative angles of attack, there is an expansion of the
secondary fan flow required between the flap lower surface and the
streamline from the lower wing trailing edge. This expansion
produces an adverse pressure gradient along the lower flap surface
and a tendency for the flow to separate from the lower flap
surface, A comparison of the tail-off moment curves for the
windmilling cese, Cp = "0," with and without flap scabs (flap 20°
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T.E. up)}, the reduced stability of region 2 applies for =ll angles
of attack, and that in region 2, and upward deflection of the flap
has no effect which is typical of separated flow. The upward
deflection of the flap adds to the expansion required of the
secondary fan flow. Other evidence of lower surface flap separation
consists of the change in upwash at the horizontal tail below a= 0°,
for low values of Cu, as shown in Figure 4, It was also found that
the spanwise velocity distributions in the primary exits were not
uniform and may have been a contributing factor. ILater tests re-
ported in Parts IIT and IV used screens and redesigned pipes to
improve flow distribution. If lower surface flap separation proves
to be the case 1n spite of these improvements, then & chasnge in
flap and lower surface lines can be used to avoid separation.

The stable change in pitching moment curve slope and re-
duced C,, of reglon 3 is believed to be a nose fan effect. Tuft
observat%ons indicated that, with q = 0, the nose fan exhaust
appeared to be separated from the fuselage. With this in mind,
tufts were put on the lower surface of the fuselage, a&nd for run 12,
tufts showed a gradual attachment of nose fan exhaust flow starting
at a = 15° and becoming complete at « = 30°. This gradusl attachment
to the lower surface with increasing angle of attack would result in
increasingly negative pressure increments on the lower forward
fuselege, affecting a stable change in moment curve slope. As might
be expected, runs 18 and 19 of Figure 3 show that this effect is
gradual for high values of Cu and more abrupt for low values of
Cu. There was speculation that such a stable change msy be due to
a partial stall of the nose fan. However, RFM during the run was
steady indicating no unloading of the nose fan.

The tail-on data of Figure 3 are for the low aspect ratio
horizontal tails. The high aspect ratic horizontal tails were
also tested. Results in piteh are shown in Figure 5 for both the
low and high aspect ratio horizontal tails at two different posi-
tions provided by the boom extension. Although more stable at low
angles of attack, the high aspect ratio tail exhibits indication
of stalling (see Section III, Figure 6). Unless otherwise noted,
tails are in the forward position without the boom extension.
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SECTION III
LONGITUDINAL CONTROL

Longitudinal control effectiveness runs were made for
the high aspect ratio tail on the semi-span model at a Cuof
approximately .72 and for the low aspect ratio tail on the full-
span model at Cu = 1.30 and Cu = "0." These three sets of curves
are presented Figures 6, 7, and 8. Figure &6 again shows the
pitch-up due to horizontal tail stall which is indicated by the
cross-over or merging of curves at both low and high angles of
attack., Figure & also shows the unstable change in slope in
region 2 associated with flaep lower surface separation. It is
also noted that the stable change in slope at high angles of
attack that exists for the nose-fan equipped, full-span rodel
was not present for earlier tests of the semi-span model. C
for the high aspect ratio horizontal tail is -0.0088. it

Low aspect retio horizontal tail effectiveness presented
in Figures 7 and 8 shows that Cmi is not affected by these ranges
of Cu and has a value of approximately -0.0054. There seems to be
considerable inconsistency in the pitching moment data for the var-
ious tail ineidences of Figures 7 and 8; therefore, a liberal smount
of fairing was done in order to get a reasonable family of curves
for computation of the downwash presented in Figure 4, and tail
incidences required to trim which are presented in Figure 9. The
fact that the tail-on curves of Figures 7 and 8 do not cross-over
or merge with each other indicates that the tails are unstalled even
though tufts indicate disturbed flow which may portend airframe
buffet. The three stability regions discussed under Longitudinal
Stability are evident in Figures 7 and 8, and, in addition, there is
a reduction in stability at Cu = 1.30 and high angle of attack which
exists for large negative tail incidence only. This is believed to
be due to unporting between the base of the horizontal tail and tail
boom. The same unporting effect should exist for Cp = "0O" in Figure
8, but the forward shift in a.c. position already existing above
a = 15° for all incidences, and lack of some data points at high
angles of attack, makes the effect difficult to see,

Trim curves for the full-span model and low aspect ratio
horizontal tail are presented in Figure 9. The nonlinearities
of the curves at low and high angles of attack have been attributed
previously to flap lower-surface flow-separation and nose fan flow
attachment. The trim change due to power (Aiy = 15°) is & function
of flap setting. A down rigging of the flaps would seem to improve
the lower surface flow separation characteristics and the longitudinal
trim change due to power. A nominal flap deflection of 10 degrees
is recommended for use in the high speed wind tunnel program.

13



SEMISPAN MODEL

LTV LSWT TEST 172
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The horizontal tail contributes to the airplane span
efficiency by increasing overall wing span and influencing the
spanwise 1ift distribution to be more elliptical. Therefore,
Figure 10 is included to show the increment in 1lift attributable
to the horizontal tail. Within the ranges tested, the low
aspect ratio horizontal tail shows no indication of stall,
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SECTION IV
DIRECTIONAL STABILITY

Figure 11 presents tail-on yawing moment curves with
tail location amnd horizontal tail planform as parameters, Taill-
off yaw runs were not made during the full-span shakedown test.
Tufts indicate varying degrees of disturbed flow on the vertical
tails even at zerc yaw due to the strong wing tip vortex and
resulting high sidewash. The angle of attack is three degrees,
C. = 0.28, and the wing tip vortex is of moderate strength. Al-
tﬁough the results indicate a directionally unstable configuration
(with nose fan), the effects of tail location and horizontal tail
aspect ratio are normal: a longer tail arm provides more tail con-
tribution to stability and the higher aspect ratio horizontal tail
provides more teil contribution by additional end plating of the
vertical tail and by moving the sidewash from the wing tip vortices
further outboard. Without benefit of tail-off data, the nonlinearities
in the Cy curves at ¥ = +5 and -10° cannot be explained.

Figure 12 shows that the effect of power on directional
stability at low angles of attack is slight for the range of powers
tested. The effect of the nose fan is significant, however, as
shown in Figure 13(a), which compares the nose fan at two R°M's
with the plugged nose. The computed stability decrement due to mass
flow through the inlet is ACphy = +0.0036 which is close to that
obgerved between runs 4 and 30. The fact that the plugged nose con-
figuration had an asymmetric tail arrangement makes the comparison
approximate. The differences between the curves for Cuz="0" and
Cup = 1.30 at this angle of attack is not explained. Contrary to
what is shown, a reduction in stability at high Cp would be ex-
pected, This, and the unusual shape cof run 31 compared to run 30
and thos= of Figure 12, makes run 31 appear to be of doubdtful
validity. Therefore, it is believed that power effects on direc-
tional stability are small at high angles of attack also. Figure
13(b) presents the side force variations for the same runs, and
shows that C v is about the same for the nose fan and the plugged
nose, There¥ore, the increase in directional stability due to
plugging the nose represents a rearward shift in center of pressure.
Refer to Figure 1(b) for & description of the plugged nose con-
figuration. Figure 14 presents a comparison of two yewing moment
curves at different angles of attack and values of Cy. If the
effects of power can be assumed to be small (as indicated by Figure
12), then directional stability is independent of angle of attack,
in spite of the increasing wing tip vortex strength. There were no
data available for direct comparison of angle of attack effects at
constant power.
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Tc provide an indication of the degree of dlrectional
instabllity, Figure 15 is included that shows the forwsrd c.g.
shift required to produce adequate stebillty, based upon the
stability levels presented in Figure 11, For neutral directional
stability, & forward c.g. shift to 27% MGC is required for the
tails in the forward position {with low A.R. horizontal tail),
which compares with a 36% MGC longitudinal neutral point from
Figure 9, indicating that the configuration is considerably less
stable directionally than longitudinally in the cruisze mode.
Recent results from the Langley 17-foot low speed tunnel indicate
that a centerline vertical tail should be incorporated, perhaps
in addition to ocutboard tails.
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SECTION V

LATERAL STABILITY

For all the configurations and runs tested, the model ex-
hibited a positive dihedral effect. Figure 16 shows that lateral
stability is independent of moderate Cu changes at low angles of
attack., At high angles of attack a comparison of runs 30 and 31
of Figure 17 shows a change in Cgy with Cpu; however, in this case
the Cp change is much greater and contains the special case of
windmilling fans. Flgure 17 also shows that the effect of the
plugged nose on Gy is minor. Run 31 with windmilling fans (Cu #0)
has & much reduced value of CZy at low values of yaw, indicating
that the windmilling fan produces a poor flow condition, such as
duct spillage, which affects /¢ within sideslip angle of L°.

It is not known whether this effect is due to forces on the nose
itself or an interference on downstream surfaces. Figure 18

presents & remaining comparison of runs 30 and 34, which are dif-
ferent in both angle of attack and Cy. If CEy is independent of Cu,
then Figure 18 shows the effect of angle of attack, which is believed
to be the case.
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SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

The conclusions developed in the preceding paragraphs
gre as follows:

1, The nonlinearity of the pitching moment curves may
be improved by improving the primary flow distribution
and the flap contour, deflecting the flap T.E. down,
and developing the nose-fan exit geometry.

2. Iow aspect ratio horizontal tails are preferred over
the high aspect ratic horizontal tails because tail
1ift is maintained avoiding pitch-up due to tail
stall.

3. The control effectiveness of both low and high aspect
ratio horizontal talls is adequate at the present
stability levels. Longitudinal stability with low
aspect ratic horizontal tails in the forward lccation

.is satisfactory for c.g.'s forward of 36% MGC.

4, Disturbed flow on the tails due to the wing tip vortex
may result in buffet.

5. Directional stability is independent of angle of
attack.

©. Lateral stability is affected by angle of attack,

7. Lateral stability is independent of Cp at low angles
of attack, and varies with Cp at high angles of
attack.

These tests provide some stability and performance charac-
teristics of the present ADAM II configuration. In order to define
configuration changes to improve the stability and performance, it
is recommended that additional tests be conducted designed to
investigate the flow conditions on and around the wing.
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APPENDIX
RUN SCHEDULE FOR TEST NO. 22v
IN LTv LOW SPEED WIND TUNNEL

P
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| b 20,000 b2
=5 | Y Y Y ¥ |is.000 Y k35
¥ |, /430 29.94| Al Tare | 10,000 3 k30 Y ¥
3.2 f Y 9.9 & 22,000 3 425 12/3 | BAB
3-h Y +15 '15+15 29.98| s Y 20,000 b i *
105 o| o | o | o |e9.92| 58 v .= | 380 | No mta Taken RRO
- 15 | 2.3 29.80| %0 0o - - 3 )
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- 60/60 .-
‘o‘/o --
=5 Y 1 30/30 -~
5 29,90 52 45/0 == Y Y I
a o/o 20,000 -- 385 CRP
|| | I Y 120,000
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APPENDIX

RUN SCHEDULE FOR TEST RO. 223
IN LTV LOW SPEED WIRD TUNMEL

45y BARO i ty g T
o CONFIGURATION q |(IN. | & v mss TEMP. | TUFTE it | ar| ax| .0”4 = STATIC |prmas REMARKS DATE |ENG.
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AFPPENDIX
RUN SCHEDULE POR TEST MO, 229
IN LTV LOW SFEED WIND TURNEL

9sET BARD iy iy TRA4
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APPENDLX '
RUN SCHEDULE FOR TEST NO. 229
IN LTV LOW SPEED WIND TUNREL
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