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ABSTRACT

Hypersonic flow separation and its effects on control character=-
istics were investigated analytically and experimentally. Included
are conclusions drawn from extensive test data for hypersonic flows
over "basic'" geometries and over "typical" flight configurations with
aerodynamic controls,

The basic flow geometries discussed include: separation on flat
plates ahead of ramps (flaps); flows over sharp expansion corners;
"breakaway" separation; and fin plate interactions. Force data and
limited pressure and heating rate distributions are presented for the
flight configurations for various trailing edge flap settings. As a
supplement to this work, available sources of pertinent hypersonic
controls data are tabulated in the Appendix.

This technical report has been reviewed and is approved.

WASLO%Z

Colonel USAF
Chief, Flight Control Division
AF Flight Dynamics Laboratory
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LIST OF SYMBOLS

The principal symbols used 1n this report are listed below.
All other auxiliary symbols are clarified by the context in which
they are used.

aw

=T

axlal force coefficlent (see "Experimental Facllities..."
section for reference areas and lengths for all force and
moment coefficients)

rolling moment coefficlent

pltchlng moment coefflcilent

vawing moment coefflcient

normal force ccefflcient

pressure coefficient, C = (p - n,/q,)

slde force coefflclent

reference length (planform virtual length of model)
free stream Mach number

pressure {psia)

free stream static pressure (psia)

aerodynamlc heating rate (BTU/ft2 sec)

free stream dynamic pressure (psia)

Reynolds number based on x, Re =P« Uy X/ b oo
Reynolds number per foot, Reg/ft =0 U/b
reference area (planform virtual area)

time (sec)

adlabatic wall temperature (°R)

wall temperature (°R)

free stream static temperature (°R)
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LIST OF SYMBOLS (Cont.)

U, free stream velocity (ft/sec)

X streamwise surface distance

X nondimensional streamwise distance

v spanwise dilistance outboard from centerline
Y nondimensional spanwise distance

Z distance normal to local surface

Z nondimensional vertical distance

a angle of attack {degrees)

8 sideslip angle (degrees)

5 flap or ramp deflection angle (degrees)
&, free stream viscosity (slugs/ft sec)

v expansion corner angle (degrees)

o, free stream density (slugs/ft3)

Subscripts (used with &)

L,R refer to left and right flaps, respectively, of delta wing
body combination

lower refers to both lower surface flaps on pyramidal
configuration

upper refers to both upper (dihedral) surface flaps on
pyramidal configuration

lower refers to left flap only on lower surface of pyramidal

left configuration

upper refers only to flap on left dihedral surface of

left pyramidal configuration

Increments (used with force data)

AC, = C - C
A By As =0

&Cm = C - C
T 40 T =0

AC_ = C - C
N N&#O N6=0
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INTRODUCTION

Sudden and large changes 1n aerodynamlc control characteristics
frequently result when the alrflow separates from a surface. The
problem of flow separation, important for low speed flows, 1s even
more severe for hypersonic flows because of the latter's high energy
levels., BSeparated flows and their effects on control characteristics
must be understood with reference to the future design of controlliable
hypersonic vehicles., This need led to the research investigation of
hypersonic flow separation and control characteristics described here-
In, A comprehensive literature search, conducted at the outset of the
investigation (Ref. 1), indicated a severe lack of hypersonic flow
control data. To help £ill the void, the subject investigation was
principally experimental in nature, but includes some two dimensiocnal
flow analyses. To provide maximum usefulness of the test results as
early as possible, fthey were presented without analyses in a serles
of widely avallable data reports (Refs. 2 through 23). Thus, the
over-all program provlides a broad base of experimental data required
for the future development of analytical methods for estimating sep-
aration effects and aerodynamic control characteristics in hypersonilce
flows (see Fig. 1, page 2¥.

Presgsure rises, due to tralling edge flaps for example, are prop-
agated through the boundary layer and can cause separation far upstream
of the flap, Depending on the severlty
of the separatlon, reattachment may noct
ocecur untll the trailing edge of the flap
(see sketch). In this event the load due
to the pressure ahead of the flap may well
exceed That due To the flap surtface
pressures (which are reduced by the
blanketing separated flow), thereby re-
ducing and pcsslbly reversing the de-
sired moment. In addition to causling
possibly drastic shifts 1n loads, the high energy levels of hyper-
sonle flows can cause extremely high heatling rates and pressures at
reattachment. Indeed, as shown herein, at reattachment the local
prressures and aerodynamic heating rates can be more than twilce as
large as those at the stagnation points of blunt nosed entry config-
urations.

In hypersonle flows, pressure loads produced by compression sur-
faces are orders of magnitude larger than those produced by expansion
surfaceg. Conssquently, effectlive aerodynamic controls usually in-
volve compressions of the local stream flow (or pressure relief for

Manuscript released by authors in December 1964 for publication as an
R&TD Technical Report.



Separated Flows Ahead of Ramps Fin-Plate Interaction
Fore and aft flaps, end plates Small and large fins with sharp
3 separate models: and blunt leading edges

2 separate models:
1) Pressure and heat transfer, AEDC Tunnels
A&B,M=5%& 8, Refs. 5, 8, and 9. 1) Pressure and heat transfer, AEDC Tunnels

2) Controlled wall temperature, pressure, A&B,M=5&8, Refs. 8 through 11.
AEDC Tunnel B, M = 8, Refs. 6 and 8. 2) Pressure and heat transfer, Grumman Shock

3) Pressure and heat transfer, Grumman Shock Tunnel, M = 13 & 19, Ref. 7.

Tunnel, M ~ 13 & 19, Ref. 7.

Clipped Delta, Blunt Leading Edge Pyramidal, Blunt Leading Edge, Dihedral
Center body, T.E. flaps, drooped nose, T.E. flaps, canard, ventral fin
spoiler, tip fins 3 separate models:

3 separate models:
1) Pressure and heat transfer, AEDC Tunnels

1) Pressure and heat transfer, AEDC Tunnels A&B,M=35& 8, Refs. 9 and 19 through 21.
A&B, M=5&8, Refs. 9 and 12 through 15. 2) Pressure and heat transfer, Grumman Shock

2) Pressure, AEDC Hotshot 2, Tunnel, M =~ 21, Ref. 22.
M = 19, Refs. 16 and 17. 3) Six component force, flap loads, AEDC

3) Six component force, AEDC Tunnels Tunnels A & B, M = 5 & 8, Refs. 21 and 23.

A&B,M=5%& 8, Refs. 15 and 18.

Figure 1. Photographs of Models and Remarks for Over-All Program
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preloaded control surfaces), Therefore, shock-induced separation
ahead of compression surfaces 1s the most pertinent type for hyper-
sonlc controls and has received most attention (Ref. 1); it 1s the
subject of the following two secticns. Following these sections are
summaries of the results of our investigations of flows over sharp
expansion corners, and shock-wave boundary-layer Interactions due to
hypersonic flows past fins mounted on flat plates. The results 1n-
clude conclusions drawn Trom a substantlal amount of hypersonic test
data generated for the experimental poertion of the Investigation.
The experimental techniques used in obtaining the data are described
briefly and presenfed along with descriptions of the models.

In addition to pressure and heatlng rate distrlbuticns, force
and moment data and flap loadings were obtailned on two '"typlecal"
hypersonic flight configurations with assorted aerodynamic control
surfaces (see Fig. 1). The data are used in describing the effects
of separation on control characteristics and effectiveness. Litera-
ture sources of supplementary Information on a wilde varlety of hyper-
sonic aerodynamlic controls are listed in the Appendix,



BOUNDARY LAYER METHODS FOR SEPARATED FLOWS

Boundary layer separation 1s generally well known to be a result
of flow agalnst a pressure gradient. Low-momentum layers, near a wall,
that cannot overcome an adverse pressure gradient will slow down.

If the normal component of the wvelocity gradient at the wall reaches
zero, the boundary layer will separate from the wall. The point,
where the shearilng stress is zero, is defined as the separation polnt
{in three-dimensional flow this 1s not a necessary condltion for
separation).

Despite this simple description, separatlon phenomena are rather
complex. The adverse pressure gradlent may be an effect of body
geometry on the inviscid sfream, or may be caused by a shock wave
impinging on a boundary layer, or both., Thickening of a btoundary
layer from varicus causes Including an adverse pressure gradient
affects the pressure distribution. When significant, thls phenomenon 1s
known as a viscoug interactlon. Three-dimensional effects alsoe com-
plicate the problem., One might Intultively expect cross-flow of low
energy layers near a wall to change the thickness of the boundary
layer, affect the location and definition of the separation point,
and distort the usual conception of a separatlion bubble,

Mathematlically, the separation point in two-dimensional flow is
a singularity in the boundary layer equations. To deal with the fluld
mechanics rigorously in the neighborhood of this point reguires the
inclugion of more terms of the Navier-Stokes equatlons that are
usually accounted for In boundary layer analysis,.

Because of the complexlity of a rigorous approach tc the separa-
tion problem, attempts have been made, some more scphistlcated than
others, to use approximate or semi-empirical methods. In our prevlous
survey (Ref. 1), we discussed the Crocco-Lees mixing theory and the
attempts made to apply or modify i1t. This method, because of its
complexlty, and because it produces results that are no more accurate
than glmpler methcds, seems to have been by-passed In the more recent
investigations. A brief review of our work 1s presented below, fol-
lowed by a summary of a few of the more promising of the recent in-
vestigations,.

Mcdified Dorodnitsyn Strip Method

We attempted to use a Dorodnitsyn Strip Method (Ref. 24) modified
as suggested by Donaldson (Ref. 25), to predict the location of a
gseparation point together with veloclty and temperature profiles within
a separatlion bubble for two-dlmenslonal or axlally-symmetric laminar
compressible flow.



The method appeared to have all the advantages of finite dif-
ference methods 1ncluding the prospect of eventually allowing one to
use second order terms of the Navier-Stokes equations. Also, it was
hoped that iIncreased accuracy could be attained eventually by using
narrower strips.

The boundary layer was divided into N strips parallel to the
wall. Across each strip, the momentum and energy equations were in-
tegrated. The inftegrand in each term was considered to be a linear
function of the normal physical coordinate, z, whichenabled us to use
the trapezoidal rule fto evaluate each integral.

The resulting set of simultaneous ordinary differential equations
was solved with an Adam's Four Polnt numerical method on an IBM 7094
computer. We obtained reasocnably accurate profiles for the compres-
sible case with heat transfer and were able to predict the approxi-
mate location of the separation polnt, using a known adverse pressure
distrlbution. We were not, however, able to pass through the separa-
tion point into the reverse flow region, apparently because of numer-
ical instabllity of the solution,

The applicablg numerical-stability criterion seems to follow the
expression pu( Az) ( # Ax), where p and u are the density and ve-
loclty, respectively; u is the absolute viscosity; Az, the strip
width, and Ax the increment of the streamwise coordinate., The nu-
merical value of this criterion at any strip must be greater than a
certain positive number (see discussion in Ref. 26). Hence a negatilve
velocity In the reverse flow region causes numerical instability.

The criterion also limlts the atfainment of high accuracy without
exhorbitant computer time; 1f Az is divided in half then Ax must be
divided by eight (u ~ Az near wall).

Summary of Selected Methods

We reviewed a large number of publications that have appeared
since our previous survey (Ref. 1). However, rather than wrlte an
exhaustlve supplement, we belleved it would be more useful to limit
cur discussion here to a few that appeared fo be both novel and prom-
iging either 1n method or results. The followlng four lnvestigatlons
seemed to fulfill this criterion.

Lees and Reeves (Ref. 27) developed an integral technique to
predict pressure distributions generated by a viscous interactlon 1n
laminar flow. Integral techniques generally make use of polynomial
expanslons to express the veloelty and enthalpy profilesg in the var-
icus terms of the Integral equations of the boundary layer. In the
Pohlhausen method the coefficients of the polynomlal are all expressed
in terms of one parameter that relates the shape of the veloclty pro-
file 1n the boundary layer to the local pressure gradient, Leeg and
Reeves use a different parameter, following Tanl %Ref. 28). This
parameter 1s essentially the nondlmensional slope of the velceity
profile at the wall. However, rather than use a guartic polynomial
expansion as Tani did, the authors use simple algebraic functions of



thls parameter to represent flow terms of the integral equations.

The functions were found by curve fitting the simllar solutions of
Cohen and Reshotko (Ref. 29), including the reverse-profile solutions
for separated flow. Using these functions, the Integral equations
were solved simultaneocusly with a Prandtl-Meyer expresslon relating
the inclination of the local external streamline with the local ex-
ternal Mach number. The results corrclated rather well wlth experi-
mental pressure distributions,

Erdos and Pallone (Ref. 30) exploilt to good advantage the concept
of a free interaction for both laminar and turbulent flows. A free
interaction 1s defined as an interactlon where the pressure distri-
bution is not directly influenced by down-stream geometry. Chapman
et al, (Ref. 31} found in their experiments, free-interactions up to
the pressure-plateau reglon in laminar flow, and free-Interactions up
to the separatlon point in turbulent flow as shown 1n the followlng
sketch.

Turbulent
Platean
C
P Laminar
— - Turbuleqt Free - X-Xx
' Interaction Region X
. 1

. Laminar Free Interaction

Region

Erdos and Pallone follow the approach used in Ref. 31 and couple
an invlscid linear relation with the boundary layer eguations at a
wall to derive an expression for the pressure distribution as follows:

o F P s My, W]
= n X 11 X g P
P (ReX_l) 3 Ta



where C_ 1s the pressure ccefficient based on conditions Just upstream
of the “interactlon;

Rex, 1s the Reynolds number based on Xy;

X 1ls the streamwise surface distance; subscript 1 locates
guantlties in the local undisturbed flow Just upstream of the
interaction;

n =1/2 for lamlnar flow and 1/5 for turbulent flow,

£ 1s a factor to correct for the discrepancy between the
inviscid linear relation and the nonlinear Inviscid flow and
has a value close to unity;

f3[ (x~x1)/11] is a universal function, determined empirically
from a single set of pressure measurements (Ref. 31} for a free
Interaction (curves of f2 are presented in Refs. 30 or 32 for
both laminar and turbulent flow);

11 1s the length of the lnteraction reglon; and

g(M,, Twi/Tal) is a function of the Mach number and ratioc of

wall temperature to temperature at the edge of the boundary
layer, {this function is obtained from the solutions of
Van Driest (Ref. 33), and plots of g are presented in Ref., 32),

Thils expression for the pressure distribution was used 1ln con-
junction with the boundary layer method of Ref. 34 to calculate re-
verse-flow profiles. Agreement with experimental data was good.

Erdos and Pallone also derlve an expression for the length of the
interaction region that agrees reasonably well wlth experimental data.

They use the "dlviding streamline" concept flrst suggested in Ref,
31 to develop an empirical method for caleulating the length of
the separating streamline and the locations of the separation and re-

attachment points for a compression corner.

Erdos and Pallone alsc show how the free-Interactlon concept can
be used for estimating base pressure and the wake angle in the near
wake of a slender body, by assuming that a free interaction occurs at
the trailing shock. Further, they show how a shock Interaction stronger
than a free interactlon must cause separation, throwlng some light on
the problem of incipient separation,

Pallone (Ref., 34) developed a modified Dorodnitsyn integral strip
method combined with a Pohlhausen approach. The boundary layer was
divided into a number of strips parallel to the flow and a sef of
governing equations for each strlp was integrated from the wall to the
boundary of each strlp. Polynomial profiles were used to represent
the flow terms 1in each strip. The set of ordinary differential equa-
tions that resulted was then solved numerleally with an 1lmposed



atreamwise pressure gradlent. Thls method was used successfully in
the investigation discussed above (Ref. 30) to calculate reverse flow
profiles 1n a separated reglon.

Libby et al. (Ref. 35) study effects of three-dimensional bound-
ary layer flow 1n the neighborhood of a centerline of symmetry of a
flat plate surface of a hypersonlc inleft 1n laminar flow. Both a
simllar solution (with certain restrictions required for three-dimen-
sional flow) and an integral method are used with known adverse pres-
sure gradlients., The solutions by bofth methods Indlcate that fhinning
of the boundary layer and delaylng of separation can be gquite signif-
icant as a result of the spilling of layers of low energy fluld near
the wall away from the centerline of symmetry. The solutions also
indicate, for the stream and body conditions consldered, that very
small angles of attack produce significantly large crossflows. The
results 1ndicate the general applicability of the method and, in
particular, the applicabillity of the method to hypersonie control
surfaces.



SEPARATION AHEAD OF RAMPS

Separation ahead of a ramp is probably the most important single
type of separation pertinent to investigations of aerodynamic control
characteristics. Depending on the flow conditlions and the height of
the ramp, the flow may or may not reattach on the ramp surface.
Further, the separation can be either of the "free interaction" type
mentioned 1n the preceding sectlon, or can be influenced by down-
stream conditions. TFlow separation ahead of ramps has been the sub-
Ject of many experimental investigatlons in the supersonlc range,
however hypersonic flow data are sparse.

Models of simple geometry are essential for baslc studles of flow
separatlion phenomena. Accordingly, we tested flat plate models with
varlous ramp shaped flaps. Pressure and heat transfer data were ob-
tained for flows ahead of full and partial span tralling edge ramps
(flaps) for wide ranges of ramp
angles, plate angles of attack,
and free stream conditions (Refs.
5 through 9). Three wind tunnel
models were required to investi-
gate aspect ratio, end plate, and
wall temperature effects on sep-
aratlion for wvarious Reynolds num-
bers and nominal free stream Mach
numbers of 5, 8, 13 and 19. (See
sketch and pages 41 - 60
herein for descriptions of test
facilities, ranges of test vari-
ables, and models.)

The models had square planforms and 25 percent chord tralling
edge ramps. One of the models also had a forward ramp that could be
deflected at angles up to 90° wilith respect to the flat plate surface.
In addition to providing data for flows zhead of forward facing steps

(or "spoilers"), the forward ramp provided
data for examining leading edge effects.
Further, 1t provided data for wider ranges of
ramp aspect ratlos and running length Reynoids
numbers, Re,. The ramp chord to plate length
ratio was tﬁe same for the forward ramp as
for the tralling edge ramps. For the same
free stream conditions, the running length
Reynolds numbers for the forward ramp data
were one-third those for the tralling edge
ramp data.




Evldence of the importance of Reynolds number effects is given
by the sample forward ramp data shown 1In Flg. 2.

0.8

u
C [
o 04E
! } z
C l 101t
0 1 t ) i N
0 ( 0.4
0 0 0.2| |
X Ramp
é - 90°

Figure 2, Centerline Pressure Distributions on Plate and
Face of Forward Ramp (step) for o =0

Pressures measured on the flat plate and ramp surfaces were nondlmen-
sionalized with respect to free stream conditions and presented in
standard coefficient form. The pressure coefficlents are plotted
versus X, the streamwlse surface distance nondimensionalized with re-
spect to the model length (see Fig, 26 , page 50). Based on the total
model length (12 inches), the forward ramp hinge line is atX =0.250
and lts traillng edge 1s at X =0.333. The pressures exceed the flat
plate value ahead of the hinge line but do not reach thelr maximum
values on the 300 pamp until near the ramp tralling edge. These sep-
aration effects become more pronounced for the thicker boundary layers
(lower Rew values) and higher pressure rises {(larger ramp deflections).
Indeed, the plate pressures 1n the separated flow region ahead of the

forward facing step were essentlally equal to those on the face of the
step.

Pregssure dlstributions for flows over full gpan, 309 tralling
edge ramps are presented 1n Flg. 3. The pressure distrlbutions and
extent of the separated flow regilons are affected markedly by changes
in the free stream unlt Reynolds numbers. Regarding the forward ramp
data, the separatlon effects become more pronounced for the thicker
boundary layers (due to either lower Reg or higher My values). The
separatlon polnt moves upstream with decreasing Reynolds number and
reattachment is delayed. The inviscid wedge values (obtained from
shock tables for 30° wedges) are not attained untill considerably down-
stream of the hinge line.
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For the same Reynolds number, the extent of separation increases

with Mach number. Further, although the available variation in Re o
was smaller, the pressure distributions indicate the increased im-
portance of Reynolds number effects with increasing Mach number.,

Thus, for the Mach 8 data, laminar separation near the plate leading

edge was observed for Ree /ft = 1.1 million, whereas transitional

separation was observed for Rew /ft = 3.3 million. Photographic

evidence of this (but for a 5° model angle of attack) is provided by
the shadowgraphs shown in Fig, 4.

b) Rey /ft = 3.3 Million

Figure 4. Shadowgraph Photographs for Mach 8 Flows Over a Full Span 30°

Ramp on a Flat Plate at 5° Angle of Attack

Finite span effects are examined by comparing pressure distri-
butions for full span trailing edge ramps with and without end plates
and for a partial span trailing edge ramp (Figs. 3 and 5). The ramp
and model geometry are described on pages 47-52 herein (see also

Fig. 1, page 2, for a photograph of the model with end

12
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plates). The extent of separatlon 1s least for the partial span ramp
and greatest when the full span ramp ls end plated. Crossflow venting
of the vortical reverse flow in the separated region ahead of the ramp
ls easlest for the partial span ramp but is essentially prevented by
the end plates. These crossflow effects are more pronounced for the
lower Reynolds numbers, higher Mach numbers, and higher pressure rises.

Indeed, for Mach 8 flows over 450 ramps, the end plates strongly
influence the surface pressure distributions {see Fig., 6}. The flow
separates near the leadling edge of the flat plate and doesn't reattach
until near the ramp trailing edge. The end plates prevent venting of
the separated reverse flow and delay reattachment. Thus, they sub-
stantially inerease the amount of "trapped" flow in the separated
region and lead to a conslderably larger dividing streamline angle at
separation. This results 1n the larger pressures measured on the flat
plate surface. It 1is also indlcated in Flg, & that the ramp pressures
fall far below the estimated inviscld wvalues (constant C. values; the
curves faired through the data points are only for clarigy and do not
represent analytlical values), Indeed, wlth end plates, the force due
to the ramp pressures may well be lesg than that due to the plate
pressures upstream of the hlnge line, with posslble drastic conse-
quences for the characterlstlcs of ramp shaped controls on hypersonilc
vehicles.

Even when the model was pltched 5°, making the flat plate surface
leeward, the end plates led to positive pressure ccefficients on the
plate surface. These pressures are comparable to those obtalned at
a =0 without end plates (Fig. 6). The inviscid wedge value of the
ramp pressure coefflclent was calculated using Prandtl-Meyer expan-
sion for 5° from Mach 8 and then estimating the pressure rise due to
a sonlc wedge shock wave. As for thea = 0 case, the end plates cause
the pressures on the ramp surface to be far less than the inviscid
values.

Without end plates, the maximum ramp pressures exceeded the in-
vliscld wedge values 1n several lnstances (Figs. 6 and 7). In Fig. 7
the Mach 5 and 8 pressure data are compared for tralling edge, full
span, ramps on flat plates at « =0 for variocus ramp angles. For ramp
deflections of 30° and less, the pressure coefficient distributions
ahead of the hinge line are Insensltlive to the change 1n Mach number.
On the other hand, Mach number effects are quite pronounced on the
ramp surface, especlally near reattachment. The Mach 8 data presented
in Fig. 7 for the 459 ramp were obtained from a different test run
than those presented in Fig., 6. The repeatabllity of the data can be
seen by comparing the pressure distributions in the two figures.

Very high pressures were measured near reattachment on the ramp
surfaces when the model was piltched at positlve angles of attack (flat
plate windward)., The possibility of high local loads at reattachment
is due to the comparatively gradual compresslion of the flow through
many coblique shock waves, therebg avolding strong normal shock wave
losses. Typical cases, for a 30Y full span trailing edge ramp, are
shown in Fig. 8 for both positive and negative angles of attack

14
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(referenced to the flat plate surface) for unlt free stream Reynolds
numbers of 3.3 million. Mach 5 data are presented in Fig. 8a and
Mach 8 data are presented in Fig, 8b.

Sample heat transfer data, obtalned for Me=8, 13, and 19, are
presented in Fig. 9. The aerodynamic heating rates, g (B’I‘U/fté sec),
are plotted versus the same nondimensional distance X as for the pres-
sure coefficients, To obtaln essentially centerline distributions for
both the pressure and heat transfer data, it was necessary to offset
8lightly from the centerline both the pressure taps and thermocouples
in the heat transfer models {see Fig, 26, page 52). Heatlng rates
obtained for flows over 309, full span, trailing edge ramps are shown
in Flg. 9 for three free stream unit Reynolds numbers. The heat
transfer rates decrease from thelr leading edge values to almost zero
at the separation point, Increase gradually wlthin the separation
zone and Increase abruptly at reattachment. The heat transfer rates
are very strongly dependent on Reynolds number values near reattach-
ment. Reynolds number dependence for flat plates wlthout ramps can
be_accounted for by presenting the data in terms of Nusselt number/

J Re,, as done in the data reports (Refs, 5 and 7), but this param-
eter  loses gignificance for the ramp data.

In addition to investigating flow separation effects on the aero-
dynamic heating rates, we investigated the effects of wall temperature
on flow separatilon. This was particularly desirable because the
heating rate distributlions were obtained on essentlally cold wall
models whereas the corresponding pressure distributions were obtained
on hot wall models (.see pages 41 through 60). Sample
data, obtained using an internally cooled model, are shown in Flg. 10
for two different wall temperature levels, Again, pressure coeffi-
clents are plotted along the center line of the flat plate and sur-
face of a 30°, partial span, tralling edge ramp. Without cooling, the
plate and ramp wall temperatures, T (OR » attained thelr equililbrium
(zero heat transfer) values, Tay (Oﬁ). The wall temperatureswere re-
duced to about a third of fhese values with Internal cooling. The wall
temperature effects on pressure distributions are compared for three
free stream unit Reynolds numbers. Additional data for examlining wall
temperature effects are readily avallable in Ref. 6.
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FIL.OWS OVER EXPANSION CORNERS AND DOWNSTREAM OF RAMPS

Further insight into the fundamental fluld processes responslble
for flow separation was galned by investigating the causes of "break-
away'" separation. This type of separatlon occurs at convex corners
where the local, inviscid pressure gradient is faverable such as the
flow breakaway from the leadling edge of a leeward surface or from the
corner of a rearward facing step (see sketch). Because the local
pressure gradient is favorable, in the inviscid sense, there was con-
troversy as to the cause of breakaway separation (Ref. 1).

B. Lyr. "
S—

Our investigations of flows over expansion corners, downstream
of ramps, and on leeward surfaces, 1lndicate that separation will not
ocecur without adverse pressure gradients., Thus, as for standard
boundary layer separation, adverse pressure gradlents are the prime
cause of breakaway separation. However, the pressure rise responslble
for breakaway separatlion can be far downstream of the separation
point; 1ts effects are propagated upstream through the subsonic por-
tion of the boundary layer.

For example, flow separatlon from the leading edge of a leeward
surface 1s attributed to the eventual downstream pressure rilse re-
quired to recompress the flow at the trailing edge. This type of
separation was lnvestigated using the flat plate models with tralling
edge flaps mentioned in the preceding section (see also Ref., 6, Part
TII). The flow was observed (through a ground glass shadowgraph
viewing screen) as the model was slowly pitched through an angle of
attack range, making the flat plate surface leeward, and then returned
to zero. Ags the plate surface became more leeward, the separation
polnt moved, comparatlvely rapidly, upstream to the sharp leadlng edge
of the flat plate. Although rapld, the upstream movement of the sep-
aration point was continuous and, moreover, the process was reverslble
as the angle of attack was returned to zeroc. The procedure was re-
peated for different free stream Reynolds numbers (for Me = 8) and
pressure distributions were recorded at discrete angles of attack
(Ref. 6). There was no sudden breakaway of the flow from the leading
edge but rather a rapid extenslon of the separated flow region due to
the pressure rise over the after portion of the model,
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Separatlon behind rearward facing steps and ramps also can be
attributed to the upstream propagation of adverse pressure gradients.
Pressure rises at reattachment and our investigations of flows down-
stream of ramps are descrlbed after the followling subsection. To
asgess the importance of adverse pressure gradient effects cn break-
away separatlion, we Investlgated flows over simple expanslon corners
for which there were no downstream recompressicns. In these cases,
even for machlined sharp expansion corners, there was no flow separa-
tion,

Flows Over Expansion Corners

Before our research into the problem, we had conjectured, pri-
marily intuiltively, that hilgh speed flows could not negotlate sharp
expansion corhners wlthout breaking away from the surface and forming
at least a small bubble of separated flow immedlistely downstream of
the corner., For supersonlc flows over expanslon corners the stream-
wise pressure gradient 1s negative and therefore favorable for at-
tached boundary layers. However, the standard boundary layer assump-
tlon requiring that the surface curvature be small in comparison to
the boundary layer thickness 1s violated at the sharp corner. There-
fore, standard boundary layer methods are inappllcable and so, strilectly
speaking, their indication that separation is caused by positive
pressure gradients need not be true,

Further, for flows over sharp expansion ccrners, there are large
pressure gradlents normal to the surface (in contrast to the standard
boundary layer result ap/az = 0). Thus, nondimensionalizing the
curvilinear Navier-Stokes equations (see Ref. 36, p.98)and performing
an order of magnitude analysis, the pressure variation across the
boundary layer is found to be of the same order of magnltude as the
pressure itself[Ap = O(p)] for small corner radii [r = Of )] . The
normal momentum equatlon must be retalned and ap/ aX cannot be re-
placed by dp/dx.

Indeed, in the attempt to apply momentum integral methods to the
problem, both fourth (Ref. 36) and sixth (Ref. 37) degree veloclty
polynomlals resulted in "bowed" or "popped" veloclt
profiles for r < O(runnirg length of boundary layerg.
These profiles indicate velocitles wlithin the bound-
ary layer exceeding those outside (sketch). Bowed
velocity profiles can be avoided by using exponential
functions rather than simple polynomials (Ref. 38), but
still it appears that the use of standard momentum
u/U integral methods for expansion corner flows should be
limited to finite corner radii = >> &,
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Abandonling standard boundary layer methods, simple approaches to
the problem are to neglect or to avold the sharp corner singularity.
By assuming similar boundary layer profiles, displacement and momentum
thicknesses and thelr ratlos across the singularifty can be calculated
in terms of the inviscid flow conditions upstream and downstream of
the corner. Of course, this masks the nature of the flow 1n the im-
mediate vicinity of the corner. A similar approach makes use of flat-
plate boundary-layer solutlons upstream and downstream of the corner
and Joins them by l1gnoring wall shear 1lh the vicinlty of the corner
(Ref. 39). 'The singularity 1s thus avoided by assuming a separated
flow bubble (zero shear) that effectively rounds the sharp corner.

A more promising approach (in the hindsight of our experimental
research), assumes that separation does not occur but that a new
viscous sublayer starts on the downstream surface at the sharp ex-
pansion corner (Refs. 40 and 41). The upstream boundary layer is ex-
panded 1nviscidly about the corner, both subsonlc and supersonic
layers, and superimposed on the new viscous sublayer. We applled the
rotational characteristles method to the inviscld expansion of the
gupersonic portion of the shear layer and analyzed the flow field.
Immediately downstream of the corner the shear layer velocity pro-
files are bowed. As expected, there are large, normal pressure grad-
ients ( op/ 9z >0); and the streamwise pressure gradients are favor-
able along every streamline in the flow fleld ( ap/ ax <0).

Surface pressures were measured for flows over sharp and rounded
expanslon cormers for varlous free stream Mach numbers and angles of
attack (see pages %7 through 52 herein and Refs. 5 through 8).
Steamwise pressure data along model center lines are presented in
Figs. 12 through 14, The data are given in standard coefficient
form, Cp = (P - Pe, )/de » nondimensionalized with réspect to free
stream conditions (upstream of the wedge leadlng edge shock), and
angles of attack are referenced to the flat plate surface downstream
of the expansion corner (see Fig. 11). Because of the closeness of
the data points (both Cp and X values, see Fig. 26), faired data
curves are presented in thls sectlon for clarity; they do not represent

Corner Radius
r=0o0r 0,50"

SLLLLLLLLLLLL Y
L d = Boundary
z Layer Thickness

Figure 11. Nomenclature for Expansion Corner Flows

-
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analytical values,

The pressures measured downstream of the corners were slightly
larger than those calculated by the rotational characteristics method
described above, and these values, in turn, were slightly larger than
those calculated uslng the simple, inviseld, shock expansion method.
In all cases where the wedge leading edge shock was attached, the cal-
culated values were quite close to the measured values downstream of
the c¢orner region.

In cases where the wedge leading edge shock is detached, there
is a large drop iIn the pressure upstream of the corner. The measured
pressures are less than those corresponding to sonle wedge flow, In
some of these cases (for the higher Reynolds numbers), there is a
characteristic dip in the pressure distributlion immedlately downstream
of the corner (Figs. 12 through 14), followed by a recompression.
For subsonic wedge flows there is a sonlic line at the corner on the
upstream surface, Expansion waves from the corner are reflected from
the sonic line as compresslons and are responsible for the recompres-
slonsg 1n the filgures, For very strong recompregsions, like those on
a flat-nosed plate, the adverse pressure gradlient due to the recom-
pression can cause a small separated flow bubble immedlately downstream
of the corner {Ref. 42, page U417 and 705). This again shows the de~
pendence of separation on adverse pressure gradients.

Rearward and forward facing Stanton tubes at two stations
(C.25 and 0.50 inches) downstream of the corners gave no evidence of
any separation. For every test condition, every forward facing tube
measured a higher total pressure than that measured by the correspond-
ing rearward facing tube. Further, the rearward facing tubes gave
pressures lower than the local surface static pressures. These re-
sults are the prime experimental evidence that there was no separation
downstream of the sharp expansion corners.

Sample total pressures measured by the forward facing Stanton
tubes are shown in Fig. 15. Although there were insufficient tubes
to obtaln boundary layer profiles (Just three forward and three rear-
ward facing tubes on each model, see "Experimental...Models" section
and Refs, 5, ©& and 10, the data were sufficient to indicate that the
boundary layer thicknesses downstream of the corners were substantially
larger than those calculated Immediately upstream of the corners.

The Stanton tubes didn't affect the downstream surface pressures,
but did affect severly the aerodynamlc heating rates measured at the
game gpanwlsge statlons. These effects were limited to the wakes be-
hind the tubes and did not extend inboard to the model centerlines.
Sample centerline heating rate dlstribuiions downstream of the two
dimensional corners are presented in Fig. 16, Heating rates down-
streaﬁ of axisymmetric corners (cone-cylinders) are presented in
Ref. 41.
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Finalily, in addition to the total pressure measurements and the
distributlons of surface pressures and heatlng rates, schlieren and
shadowgraph flow photographs and high speed motion pictures showed no
separation downstream of the sharp expangion cornersa., We must con-
clude that separatlon doesn't occur without adverse pressure gradients
although, as for the flows described below, the pressure rigses can be
far downstream of the separation peclnts.

Flows Downstream of Ramps

In additlon to providing Re, and aspect ratio effects for sepa-
ration ahead of ramps (see preceging section), the forward flap on a
flat plate model also provided data on the reattachment of flows
downstream of ramps. As mentioned in the preceding section, the model
was tested with and without endplates {(see.Fig. 1 and pages 47
through 52 for a more complete description of the model and for-
ward flap). The nomenclature used here 1s Indicated in the following
figure, where X 1s the nondimenslonal distance downstream of the sharp
leading edge. Reynolds numbers, Rew , are based on the one-foot
length of the model and free stream conditions. Angles of attack and
flap (ramp) deflections are positive when windward (as shown in Fig.
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Figure 17. Nomenclature for Flows Downstream of Ramps
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Pressures for Me =5 and 8, and aerodynamic heating rates for
Mw = 8, were measured on the flat plate surface downstream of the flap
for many angles of attack {up to 450), and many flap deflections
(up to 90°)., Streamwise and spanwise distributions of all the data
and schlieren flow photographns are presented 1in Refs. 5, 8 and 9;
representative results are presented here in the following Figs. 18
and 19,

The flow separates from the trailing edge of the ramp-type flap
and reattaches downstream on the flat plate surface. The extent of
the separated flow region and the pressure rise at reattachment de-
pend on several parameters: a, 8§, Mw , and Rew (Fig. 18). For high
surface angles of attack (a:>2005, the downstream pressures are every-
where less than those recorded on the surface wlth no forward flap
deflection, This can be attributed to model tip effects. However,
at lower surface angles of attack, the pressures at reattachment con-
siderably exceed those recorded for 8= 0. These exceps pressures de-
pend on the flap deflection angle as well ag on the stream flow con-
ditions (compare Figs. 18a, b and ¢). The 30° flap leads to the
highest excess pressures at reattachment whereas the 909 flap causes
no excess pressure (similar to rearward facing steps, Ref. 31).

Except as noted in the first two parts of Flg. 18, the pressure
digtributions are those recorded along the centerline of the model
without end plates. In most cases tested, there 1s no apprecilable
spanwise pressure varlatlon across the center portion of the model;
moreover, the pressure distributions downstream of the flaps are not
significantly affected by end plates. The nondimensional ¥ = 0,34
spanwlse location 1s two inches outkoard from the model centerline,

Similar to flcws over rearward facing steps (Ref. 31), the pres-
gure drop in the separated flow region and the locafion of reattach-
ment depend strongly on the laminar or turbulent character of the
boundary layer (Figs. 18c¢c and d). Turbulent boundary layers, associated
with the higher Rew values, lead to the greater pressure drops and
rezgttachment upstream of that for laminar boundary layers,

Aerodynamic heating rateg are substantially reduced in the sep-
arated flow reglon downstream of flaps but exceed the undisturbed,
flat plate, values downstream of reattachment (Fig. 19b). As with the
pressures, the heating rates downstream of flaps do not vary appre-
clably spanwlse across the center portion of the model, However, the
heating rates are more sensitive te end plate effects; a typlcal com-
parison showlng end vlate effects 1s drawn 1n Fig. 19c.
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FIN PLATE INTERACTION

The present understanding of the complicated flow in & stream-
wise corner reglon is poor 1n terms of a satlsfactory theory, but for
hypersonic free streams there are several rules and approximations
that are helpful in predictilng the observed effects. It appears that
the dominant mechanism in fin plate interactions 1s always the sep-
aration of the plate boundary layer under the influence of the fin
shock wave. There are three baslc modes in which this separation can
take place, and many combinatlions of them may be present in any given
interaction flow.

The first mode occurs near the fin leadling edge, where the thick-
ness of the inviscid shock layer on the fin 1s very small relative to
the natural length of the separated bhoundary layer on the plate, The
pressure rise due to the fin shock 1s propagated upstream through the
boundary layer and separation occurs far ahead of the fin. This mode
has been cbserved on plates upstream of both blunt and sharp fins
(see Fig. 20, parts a and b), although the detailed characteristics
are different in the two cases. Three dimensional effects are always
of first order importance in this mode, and there are no satisfactory
methods for predicting the flow characteristics except for purely em-
pirleal correlations.

The second mode occurs when the fin shock layer thickness is com-
parable to the separation zone length measured normal to the local fin
surface. The presence of the fin 1s an essential part of the struec-
ture of the separation zone in thls mode, and the separatlion line on
the plate 1g not in general parallel to elther the fin or the fin
shock (see Flg. 20, part ¢)., A considerable amount of pressure and
heat transfer data pertinent to the first and second modes was obtained
for the investigation summarlzed herein (Refs. 7 through 11).

The third basiec mode 1n whilch interactlion separation can take

lace has been Investigated theoretically and experimentally {(Refs.
ﬁB and 44), This mode occurs when the shock wave is sufficiently far
from the fin so that the separated boundary layer on the plate can
reattach without signlficant influences from the presence of the fin.
In this mode the fin acts simply as a shock generator, and the problem
reduces to the pseudo two-dimensional problem of a swept planar shock
separating a boundary layer. The fin plate Jjuncticn, far enough down-
stream of the leading edge, poses a streamwlse corner boundary layer
problem for the reattached flow downstream of the fin shock.
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At hypersonic speeds the fin shock is close to the fin surface
and generally the interaction cannct be split into separate incident
shoek and corner flow boundary layer problems. Thus the subject in-
vestlgation was concerned primarily with the first two modes of fin
plate interaction separation,

The oll film flow photographs of Fig., 20 present vivid evidence
of the first and second modes of interactlion separation caused by
300 wedge shaped fins mounted on a flat plate (see following section
for model description). The high pressures on the blunt fin leadlng
edge are propagatéed upstream through the plate boundary layer and
cause separation far upstream of the fin (Fig. 20a). Indeed, the
laminar boundary layer separates just downstream of the plate leading
edge and is similar to the two-dimensional "free interaction" type
of separation (see Refs, 10 and 11 for pressure distributions and
profile schlieren photographs). The extensive region of separated
flow ahead of the fin, characteristic of the flrst mode of interaction
separation, is modifled greatly for the sharp fin case shown In
Fig. 20b. Although the region of separation 1s sharply reduced (in
part due to the higher free stream Reynolds number), it is still pre-

dominantly three-dimensional over the forward portion of the model.

The extent of the first mode of interaction separation is seen to
be limlited to the sharp fin leading edge region in Fig, 20c. For
this case the model was pitched 5° resulting In a somewhat lower speed
flow over the flat plate. The major portion of the interaction is of
the second mode described earlier, IFor this type of Interaction the
flow is generally conical in nature. The most promising theoretical
approaches to the problem appear to be those based on crossflow
plane analyses,

Pressure coefficient and heating rate distributions measured on
the fin and plate surfaces at various steamwise stations (crossflow
planes) are presented in Fig. 21. Coeffilclents are referenced to free
steam conditlons and the model angle of attack, a , 1s referenced fto
the flat plate surface. As lndlcated in the figure, the coordinate
origin is at the intersection of the fin leadlng edge with the flat
plate. Streamwlse and fin spanwise (heightwise) statlons are non-
dimensionalized with respect to the fin chord and height respectively,.
For the data presented in Fig. 21, the 30° wedge shaped fin had a
sharp leading edge and an aspect ratlo of 0,500 (see followlng section
for model description).

The fin surface and inviscid shock locatlons and pressure coeffi-

clents {for a 15° flow deflection) are also indicated in Fig. 21,

The pressure distributions on the plate surface resemble those meas-
ured 1n separated flow regions ahead of ramps. There are overpres-
sures on the plate surface far outboard of the fin shock and gen-
erally the plate pressures do not reach the inviscid shock values
until very close to the fin plate junction. On the fin surface the
pressures increase somewhat from their values at the plate junction

to values exceedlng those glven by two-dimensional lnviseid shock
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tables. These overpressures are attributed to the multiple shock
compression of the flow in the interactlon region and indicate the
extent of the region., The Infteractlon region is also marked by large
aerodynamic heating rates, presented in Fig. 2lec.

Mach and Reynolds number effects on the Infteraction pressures
and heating rates are given in Fig. 22 for a 300 sharp leading edge
fin with an aspect ratio of 0.156. Again simllarly to two-dimensional
separation ahead of a flap, the extent of separaticn and overpressures
on the plate depend strongly on the boundary layer thickness, Partic-
ularly for the thicker boundary layers (larger M and smaller Re w
values), the pressure rise due to the fin shock is propagated far out-
board and causes substantlal overpressures over a large portion of the
plate surface.

The data presented in Flgs. 21 and 22 are representative of those
obtained for the second mode of interactlon separation described at
the outset of this section. In many cases, particularly for fins

with blunt leading edges, the
Interaction was predominantly
Blunt\ three-dimensional in character
z| fin | (first mode)}. Although not
L.E./ amenable to theoretical analyses
at present, pressures and
heatlng rates were measured for
a wlde variety of flow condi-
tions and can readily be used
for engineering estimates (see
following section and Refs, 7 through 11). Particularly noteworthy
in this aspect are the high pressures and heating rates observed on
the leading edges in the iImmedlate vicinity of reattachment of the
separated flow ahead of the fin. In some cases the peak values were
more than three times larger than the stagnation values of the pres-
sure and heating rate measured on the cylindrlcal leading edge out-
side of the interactlon region (see sketch).

Sep. Flow
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EXPERIMENTAL FACILITIES, TECHNIQUES AND MODELS

The wind tunnels and models used to obtain the experimental re-
sults presented herein are briefly described in this section. First,
the over-all test program is outlined. The technigues used to obtain
the data are then described along with the reduction and accuracy of
t?e data. Finally, the models are described (see also Fig, 1 on page
2

Tunnels and Ranges of Variables

Tests for the experimental porticn of the program were conducted
in the Grumman Hypersonlc Shock Tunnel and at the AEDC ven Karman
facility. The partlcular AEDC wind tunnels used were the: 40-inch
supersonic wind tunnel, 50-inch Mach 8 tunnel, and the Hotshot 2
hypervelocity tunnel. These facilities provided the Mach number and
unit Reynolds number ranges shaded in the following altitude-velocity
chart (Fig. 23). The test conditions fall within the so-called flight
corridor whose upper and lower bounds are delineated, approximately,
by the dotted hypersonic flight entry trajectories shown in Fig. 23.

Pressure and force data were obtained in the AEDC 40-inch super-
sonle tunnel for a nominal free stream Mach number of 5. The angle of
attack ranges used for the various models are given In the followilng
table. The table also lists the ranges of the unit free stream
Reynolds numbers, sideslip angles, and control deflectlon angles.
0il film, schlieren flow photographs, and high speed schlieren motion
pictures were taken. Pressure, heat transfer and force data were ob-
tained in the AEDC 50-inch Mach 8 tunnel and shadowgraph flow photo-
%raphs were taken for the configuraticns indicated in the table,

ressure data were obtalned on just one configuration in the Hotshot
2 impulse-type, hypervelocity facility. Schlieren flow photographs
were obtained and very high speed, color motion piectures were taken
during the test runs when heat sensitive paint was applled to the
model. More complete descriptions of this impulse type tunnel and
the continuous flow tunnels mentioned above are readlly avallable in
the AEDC Test Facility Handbook (Ref. 45).

Limited pressure and heat transfer data were obtained in the
Grumman Hypersonic Shock Tunnel for the Mach numbers and unit Reynolds
numbers listed 1n the table. Interchangeable nozzle throat blocks
are used for the different Mach number flows. Schlleren flow photo-
graphs were taken in addition to motlon pictures showing the dis-
colorization of heat sensitive paint applied to two of the models.
Further descriptions of thils tunnel are given iIn Refs. 7 and 22,
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Figure 23. Altitude Velocity Chart with M and Re,,/ft Test Ranges

Experimental Techniques and Data Reductlon

All pressure data were reduced to standard coefficlient Torm:

c P - Pw

P Qw

where p 1s the measured pressure, pe 13 the Iree stream static pres-
sure, and Qe is the free gtream dynamic pressure.

The accuracy of the pressure measurements depends upon the
particular Tacility and also the pressure level. For the Mach 5
data, pressures below 1.0 psia are measured to within £ ©,005 psia
while the accuracy for the higher pressure measurements is + 0.075
psla., Whence, depending upon the values of and Reg, the pressure
coefficient accuracy varies from about £ 0,009 to = 0.020., Similarly
for the Mach 8 data, pressure coeffilclent uncertainties vary, for
example, from 0.004 for Cp < 0.3 and Re, /ft = 1.1 millicn, to 0.013
for C, = 2.0 and Rey, /ft = 3.3 million. Pressures cbtained in the im-
pulse type test facliitles were estimated to be accurate to within
10 percent of thelr measured values, More thorcugh discussions of the
pressure data accuracy are avallable in Refs. 10, 16, and 22,
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Aerodynamic heatling rates were obtained using the thin wall
transient temperature technique. Cooling shcoes were installed In
the AEDC 50-inch Mach 8 tunnel. The model was pltched to the desired
angle of attack while 1nside the coolilng shoes. The shoes were then
rapidly retracted and thermocouple temperatures recorded during the
initial heating of the model. The coocling shoes were then closed,
the model cooled to approximately 500°R , and pitched to the next
desired angle of attack. In this manner, temperature historles were
recorded for a set of test conditions while limiting the amount of
heat absorbed by the model. The cooling shoes were then left retract-
ed while the pressure data, which require several minutes teo stabllize,
were obtained at the same set of test conditions.

The aerodynamic heating rates, ¢ (BTU/ftESEC), are calculated
from the temperature histories: :

4 = ¢ abc (dT /dt)

where AT _/dt (OR/sec) is the wall temperature rise rate; a (1bm/ft3)
is the d¥nsity of the wall materlal; b (ft) 1s the thickness of the
wall; ¢ (BTU/1bm) is the specific heat of the wall material; and {

is the correction factor for conduction effects and relates the
measured heat transfer rates to the aerodynamic heating rates. For
very thin walls, made possible by our Innovation of the use of honey-
comb sandwich panels (described in the following subsection), the
temperature response is very rapld and conduction effects are negli-
gible, To within the accuracy of the wall material properties and
measured wall thicknesses, { = 1.00,

The thin wall ftransient temperature method was also used to
obtain the aerodynamic heating rates on the models tested in the
Grumman Hypersonlc Shock Tunnel., The temperatures measured by the
thin film heat transfer gauges were converted by analogs and pre-
sented directly as heat transfer rates,

31x component force and moment data were obtalined and reduced
to standard coefficient forms for body oriented axes. DBody axes
were used in lieu of wind axes to facllltate the comparison of
integrated pressure and force increments, and to facilitate deter-
mining contrcl effectiveness.

The normal, axial, and side force coefficlients are:

o _ normal force c _axlal force
N = qu A oS
and
o = 81de force
YT qu
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where S is the reference planform area (see Table II}. The pitching,
yvawing and rolling moment coefflclents are:

C pltching moment C = yvawing moment
m Q.55 n = QoL

1l

and
C, = rolling moment
L= q Sk

where the reference length, L, 1s the planform virtual length and
moments are taken about a point 0.60L downstream of the planform
virtual apex on the longltudinal axis of the balance. The co-
efficlents presented herein are those due to the total forces and
moments measured; they are not corrected for base pressure effects.
The sign conventions for the force and moment coefficients are glven
in Fig. 24. Angles of attack, @, are positive for nose up, and
gideslip angles, B, are posltive for nose left.

Figure 24. Sign Conventions for Force and Moment Coefficients
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The total forces and momenits were obtalned using an AEDC water
cooled balance, The same balance was used in both continuous flow
wind tunnels for both force models, The uncertainties in the force
and moment coefficilents cbtalned from the balance measurements are
shown in the following table for both models for the nominal values
of the Mach 5 and Mach 8 free stream dynamic pressures. The un-
certaintlies 1n the coefficients vary inversely with the q,values,
and can bhe calculated for the different free stream Reynolds numbers
by dividing the tabulated uncertalnties by the ratio of the gevalues
for the different free streams. Reference areas and lengths for
both force models are gilven in Table II,

TABLE 1X
FORCE AND MOMENT COEFFICIENTS
Reference Areas and Lengths
q delta wing ~ body pyramidal confilguration
L 191,2 square inches 157.6 square inches
18.2 inches 20.8 1inches
Uncertainties in Coefficlents®*
delta wing - hody pyramidal configuration
Mach 5 Mach 8 Mach 5 Mach 8
(Cloo = Qo = Qoo = (qw =
1.81 psia)| 2.56 psia) 1.81 psia) 2.56 psia)
Cy £ 0.0039 + 0,0154 + 0.0080 + 00,0174
Cp + 0.0021 + 0,0033 +* 0,0020 + 0, 0037
Cy + 0,0029 + 0.0077 £ 0,0052 + 0, 0087
C, + 0,0016 + 0.0044 + 0,0016 + 0,0043
Cn + 00,0010 + 0,0022 + 00,0010 + 0, 0021
Cy + 0.0003 + 0,0004 + 0, 0002 + 0. 000k
*Due to error spread in balance readings for Mach 5 and repeatability
spread 1n data for Mach 8 (Refs. 15 and 21).
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Normal loads and hinge and twisting moments were measured on
one of the remotely controlled tralling edge {laps on the pyramldal
configuration. The water coocled flap balance and accuracy of the
measured flap loads are descrlibed 1in Ref, 23, wherein the flap
force and moment data are presented.

Ags described 1n the followlng subsectlon, remotely controlled
flaps were used for several of the models. Flap deflections, for
the remotely controlled flaps, were set using Leeds and Northrup
indleator readings of potentiometers connected to the fiap drive
screws. The flap settings were checked frequently uslng a surveyor's
translt and were estimated to be accurate te well within a quarter of
degree.

Several photographic techniques were used as alds in determinlng
regiong of separated flow and in interpreting the measured pressures
and aercdynamic heating rates. Virtually all of the better flow

hotographs obtained are reproduced in the varilous data reports
Refs. 5 through 23).

Profile schllieren and shadowgraph photographs were useful in
Indicating boundary layer thiclmess, transltlon, separatlon and the
accompanying shock wave patterns., Schlieren motion pictures, when
reviewed at a much reduced speed, showed that separated flows were
stable,

Charring of a thin coat of ordlnary white enamel paint, sprayed
on the Hotshot 2 model, clearly indlcated regions of high aerodynamic
heating rates. However, only marglnal resulfts were obtalned from
raint tests 1n the Grumman Hypersonlec Shock Tunnel. A sllght dis-
coloratlon occurred, rather than decisive charrlng, probably due to
the much shorter durations of the shock tunnel flow and conseguent
less total heat flow per test run (Refs. 7 and 10).

0il film flow photographs were obtained in the AEDC 40-inch
supersonic tunnel., A thin f1lm of o0ill, which was fluorescent under
ultraviclet 1light, was sprayed on the model at the outset of a test
run. The tunnel flow was started and the fluorescent oil filim
cbserved as the deslred tunnel flow condltions were reached. When
the oll fllm flow pattern had become established, and steady, it was
photographed., The medel angle of attack, or flap deflection, was
then changed to the next desired setting and the new oil film flow
pattern photographed when it became establlshed. This was repeated
for several dlfferent test conditions before a major portion of the
oll had evaporated or bhlown downstream off the surface of the model
(Refs. 11 and 23),

Model Descriptlons

As 1Indicated at the outset of this section, and in Fig. 1 on
page 2, flows cover four baslc configuratlons were investigated: a
flat plate with ramp shaped flaps, another flat plate wlth wedge
shaped fins, a delta wing body comhination, and a pyramidal con-
figuratlon having a triangular cross sectlon. Eleven wind tunnel
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models, each having several geometric varlations, were required:
seven for the continuous flow tunnels, one for Hotshot 2, and three
for the Grumman Hypersonlec Shock Tunnel,

Four models for the continuous flow tunnels were instrumented
for both pressure and heat transfer measurements. Our innovation of
the use of honeycomb sandwlch constructleon for the planar portions of
these models avoided many of the usual problems assoclated with thin
wall heat transfer models and led to exceptional accuracy in the
heat transfer data (Refs. 2 and 3).

The honeycomb sandwlch panels are composed of 1/4 inch thick,
stainless steel honeyecomb having 3/8-inch cells, sandwiched between
0.018-1inch~thick stainless steel sheets. The honeycomb webs were
Just 0,002 inches thick and were perforated to ensure pressure
equalizaton. Thermocouples were spot weldéd to the Inner surface of
the outer wall of the honeycomb sandwich In the mlddle of individual
honeycomb cells. These panels permitted the use of considerably
thinner walls wlthout buckling than those posslble with standard
"thin wall" models or those obtained by milling local thin spots in
thick wall models. Thus response time was faster, conducticn effects
were greatly reduced, and the heat absorbed by the model was minimized
{thereby substantially reducing the cooling time required). Further,
the wall heated more uniformly, subjJect only to the distribution of
aerodynamlc heatlng ratezs, and local hot spots and large heat sinks
were avoided.

To make optimum use of the contlnuous wind tunnel test time and
eliminate time consuming shut downs required for minor model changes,
the aerodynamic control surfaces on several of the models were re-
motely actuated. A speclally designed water cooled actuator housing
was fabricated and used Interchangeably for the three pressure and
heat transfler models having moveable control surfaces. The housing
was attached to the base of the model and then the entire model-
housing unlt was sting mounted (see Pig. 25a). The hcusing centained
three each: drive screws, motcors, and linear potentiometers (see
Fig. 25b).

Three flat plate models with ramp shaped flaps were used. The
models had machined sharg—leading edges, square planforms, and thelr
lower surfaces formed 40% expansion corners. Two models, for the
Mach 5 and 8 tests, had 12-inch-square planforms while the third
model, tested 1n the Grumman Hypersonic Shock Tunnel, had a 6-inch-
square planform. Line drawings of the larger models, showing
instrumentation locations and flap geometry, are gilven in Fig. 26.

One of the larger models, Instrumented for both pressure and
heat transfer measurements, had three sets of remotely contrclled
flaps: a forward flap with 90° travel, an essentlally full span aft
flap with 45 degree travel, and a partlal span aft flap with 45 degree
travel. A photograph of thls model, with end plates attached, 1s
shown 1n Fig. 1, page 2, The expansion corner formed by the inter-
section of the lower surfaces of the model had replaceable sharp and
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b) Drive screws, motors, and potentiometers

Figure 25, Water Cooled Actuation System
for Remotely Controlled Flaps

A
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1/2-inch-radius corners. The expansion corner instrumentation was
similar to that for the larger flat plate fin model (Fig. 27).

The other model shown in Flg. 26 was internally cooled by a
mixture of low temperature oxygen and nitrogen. The model had
attachable full span, 25 percent chord, tralling edge flaps having
ramp angles of 10, 20, and 30°%; and an attachable partial span, 30°,
tralling edge flap that was also Internally cooled. The coolant was
supplied to settling chambers in the basic model and in the ramp and
was then pasgsed through channels adjJacent to the flat plate and ramp
gurfaces. Because of its high thermal conductivity, the cooclant
channels were fabricated of thick berrylicoc sheet in the attempt to
maintain as unifrom a4 wall temperature as posslible, As shown in
Flg. 26, both the upper and lower surfaces of the model had compara-
tively dense streamwisge presgssure Instrumentation., Six total pres-
sure, forward and rearward facing, Stanton tubes were mounted at two
stations downsgtream of the sharp expansion corner.

The Grumman Hypersonlc Shock Tunnel model had 159, 309, and 459,
full span, 25 percent chord trailling edge ramps. It was instrumented
with 10 pressure gauges and 10 heat transfer gauges. Ag for the
larger pressure and heat transfer model, the inboard pressure and
heat transfer instrument distributions had to be offset slightly
from the model centerline (Fig. 26a). Further descriptions of these
flat plate models with ramp shaped flaps are available in Refs. 5
through 7.

Fin plate interactions were investigated using two flat plate
models with 309, total angle, wedge shaped vertical Fins mounted on
thelr upper surfaces (see Fig. 1, page 2,and Fig. 27). Pressures and
aerodynamic heatlng rates were measured on both the piate and {in
surfaces of both models. The larger model had a l2-inch-square plan-
form. The lower face of the model intersects the flat plate upper
surface at 300; both the leading edge and the 30° expansion corner
on the lower surface are machined sharp. The lower surface instru-
mentation is similar to that for the pressure and
heat transfer model shown in Fig. 26a). A total of four fin con-
figurations were mounted on the upper, flat plate surface of the
model: "small" and Tlarge” fins with sharp and blunt leading edges.
The sharp leading edge finsg have 8 1lnch chords which are reduced by
about 8 percent for the 0.25 inch radius blunt leading edges. The
height of the "small" fin is 1.25 inches and that of the "large" fin
is 4,00 inches,

The other fin plate interaction model, tested in the Grumman
Hypersonic Shock Tunnel, had a 6-1nch-square planform and 4-inch-
chord, sharp leading edge, fins geometrlcally similar to those on
the larger model, Purther descriptions of the fin plate interactlon
models are available in Refs. 7, 10, and 11.

Three models of the cllpped delta wing hody combinatlon were
required for the force, pressure and heat transfer data for a "typical”
hypersonic winged re-entry conflguratlion. A rear view photograph of
the model mounted in %he AEDC 50-inch Mach 8 tunnel is shcwn in
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Fig. 28. The actuator housing for the flap drives and controls is
evident immediately behind the model. The basic pressure and heat
transfer model consists of a spherically capged cylindrical cabin
mounted on top of a blunt delta wing with 60 sweepback. The delta
wing has clipped tips and a thickness equal to 10 percent of the

virtual length of the model. The cabin height 1is equal to the wing
thickness.

Figure 28. Photograph of Winged Re=-entry Configuration
in the AEDC 50-Inch Mach 8 Tunnel

The model has three, remotely controlled, trailing edge flaps;
two outboard "aileron type" flaps, extending from the cabin-wing
Junctions to the shoulders of the cylindrical wing tips, and one
"split" flap on the lower surface of the wing, extending spanwise
between the outboard flaps. The flaps are rectangular and have
chords equal to 15 percent of the virtual length of the model. Each
flap 1s iIndividually controllable; the outboard flaps have a travel
of = 40° and the center flap on the lower surface has a travel of
+20°, Flap deflectlons are defined positive for downward deflections
of the flap tralling edges.

The model has attachable tip fins, a tralling edge spoiler, and
an attachable conical fairing for the spherically capped cabin. The
fins are attachable to the cylindrical wing tips of the model and
have cylindrical 1leading edges with 509 sweepback, The spoiler 1is
attachable to the lower surface of the model, spanning the distance
between the tip fins, and has a height equal to tge vertical projec-
tion of the tralling edge flaps when deflected 20°, The instrumenta-
tion locations are indicated in Fig. 29.
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The pressure and heat transfer model wags limited to a 12 inch
span to fit inside the cooling shoes for the AEDC 50-inch Mach 8
tunnel., A geometrlcally similar model, but with a 16.8 inch span,
was used to obtain six component force and moment data in the con-
tinuous flow wind tunnels., As Indicated in Fig. 30, the balance
cavity extended into the conical cablin fairing and all force data
were obtalined for this conlcal cabin confilguration.

Three water cooled electric motors were contained within the
force model and used to control the ailleron-type trailing edge flaps
and the movable apex of the delta wing. Attachable tip fins, full
span+20O traillng edge flap, and tralling edge spoller were provided.

A third geometrically similar model, having a S-inch span, was
tested in the AEDC Hotshot 2 hyperveloclty facility. Further
descriptions of these wing body models are glven 1n Refs. 12 through
14, 16, and 18,

Finally, three models of the pyramidal configuration were
reguired for the force, pressure, and heat transfer data. The con-
flguration has a triangular cross sectlion with 35° dihedral angles
(see Fig. 1, page 2). The lower surface of the model is a blunt
delta wing with 70° sweepback. The planar portions of the dihedral
gurfaces are right trlangles and are connected by a c¢ylindrical
gegment that lforms the modells ridge line. The three ¢ylindrical

leading edges and the spherical nosge haye the same radlus (also the
game as for the wing-body configuration). The cross sectional

shape is the same as one of the ASD-General Applled Sclences Lab-
oratory pyramidal models tested in the AEDC Hotghot 2 hypervelocity
facility (Ref. U46).

A photograph of the pressure and heat transfer model 1in the AEDC
Lo-inch supersonic tunnel is shown in Fig. 31, Again, the same flap
actuator housing as used for the models described earlier, 1s evident
immediately behind the model. The model has four, remotely controlled,
tralling edge flaps, one on each dlhedral surface, and two on the
lower surface that are actuated as a pair, The flaps have rectangular
planforms, and thelr hinge lines are parallel to the base of the model
{(perpendicular to the ridge line). The chords of the remoctely con-
trolled flaps are 15 percent of the virtual length of the model. The
flaps are deflectable at angles between 0° and 40°, measured in the
planes normal to the flap hlnge lines. In additlon to the remotely
controlled flaps, one palr of instrumented flaps having a set deflec-
tion of 200 and a chord equal to 25 percent of the model reference
length are attachable toc the lower surface cof the model.
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Figure 31, Photograph of Pyramidal Configuration in
the AEDC 40-Inch Supersonic Tunnel

The model has attachable canards (Fig. 1, page 2) that have
cylindrical leading edges and 450 sweepback, A ventral fin 1s attach-
able on the lower surface of the model between the trailing edge
flaps; it can be set at fin (or rudder) deflection angles of 0° or
+15° (trailing edge left), and has a chord equal to 15 percent of
the model reference length. Instrumentation locations are indicated
in Fig. 32.

The flaps on the dihedral surfaces of the force model (Fig. 33)
were remotely controlled using water cooled motors and potentiometers
contained within the model. The lower surface flaps were individually
attachable (sideslip force data were obtained for asymmetric lower
flap settings). The upper surface, port dihedral flap 1s supported
by a force balance beam which is instrumented for flap normal force,
hinge moment, and twisting moment; flap loads are presented in Ref. 23.

Finally, pressure and heat transfer data were obtained on a
geometrically similar model in the Grumm Hypersonlic Shock Tunnel.
The model had a six-inch span and only 40~ flaps were tested. Further
descriptions of these models are given in Refs. 19 through 23.

Sample data obtained on the wing body and pyramidal configurations
are presented in the following section.
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Figure 33. Force and Moment Model of Pyramidal Configuration
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HYPERSONIC AERODYNAMIC CONTROLS

Controls are required to provide maneuvering capability for flight
vehlcles and can also be used to supply the aerodynamle stabllity and
trim necessary to maintaln an equillibrium £light trajectory. The most
economical and stralght-forward type of control for a vehicle flying
In the atmosphere 1s usually an aerodynamlec surface, but the applica-
tion of aerodynamic control surfaces to hypersonle flight vehicles
presents many formldable problems. For flight at very high altltudes,
thick boundary layers and low dynamic pressure may render aerodynamic
controls ineffective; extenslve separated flow regions induced by
deflected controls can alter the aerodynamic leoad dilstribution and
stabillty characteristics throughout the flight regime. The over-all
stabllity problems are aggravated by the large ranges of speed and
angle of attack encountered by hypersonic flight vehicles. Further,
these vehlecles, as envisioned to present, tend to have compact
geometries and therefore require high control loads to produce useful
moments about the center of gravity.

Although Iinnumerable control configurations are possible, the
general problem areas can be investlgated using a limited number of
different types of controls on simplified configurations. Thus, the
models described in the preceding sectlon were used only as carrlers
for a wide assortment of aerodynamic controlsg and are not proposed as
actual flight configurations, They served to generate different types
of hypersonic flow interactions and provided information on control
characteristics and effentiveness. The data obtalned on the typical
hypersonlic flight configurations are readlly avallable in a serieg of
Alr Force reports (Refs., 9 through 23, see Fig, 1, page 2). The
reports contaln piots of all the pressure, aerodynamle heating rate,
force, moment, and flap lcad data, and also many flow photographs,

This section containg selected data from the broad experimental
program on the effectiveness of aerodynamic controls for hypersonic
flow conditlons. Representative results are presented for trailing
edge flap type controls. The term "flap" 18 used herein to denote
controls wlth a general type of geometry, rather than thelr function.
Thus, trailing edge elevators, allerons, or elevons are all referred
to as flaps., Results for the other aerodynamic controls tested and
sallent aspects of the data are dlscussed qualltatively.

We also present, in the Appendlx, a synopsis of the information
on hypersonlc aerodynamle controls avallable in the literature. For
a number of these reports we present, 1in tabular form, Information
on the control tested, the vehlcle confilguration, the test conditions,
and the data obtalned, The remalnder of the reports 1llsted in the
Appendix will also be of great interest to those working in the fleld
of hypersonic aerodynamlc controls,
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Delta Wing Body Combination

Partial and full span flaps were tested on the tralling edge of
a blunted, 60° sweepback, delta wing with clipped tips and an over-
slung body (see preceding section)., The partial span flaps were
independently operated (travel angle of ® 09), and data were obtalned
for both symmetric and asymmetric flap settings. The wing apex was
deflectable {travel angle of +20°), The model also had an attachable
tralling edge "spoiler" (used in this case to generate pressures, like
a +90° flap).

The baslc wing-body combination provides controls Information for
configurations having either overslung or underslung bodles. For con-
venlence we have chosen the overslung body configuration as our refer-
erice and we have deflned the coordlnate system and control deflection
angles with reference to thils basic configuration (positive control
deflection angles 1ncrease Cy foraes0), Thus the positive angle of
attack regime for the overslung body provides the aerodynamlc data
for the underslung body at negatlve angles of attack. The sign of
the flap deflection angles, for the underslung body case, must be
reversed so that both cases are viewed in the same reference gystem,
This definition fixes the flat plate surface of the wing as the lower
surface for the results presented hereln. The angle of attack 1is
positive when the flat plate surface is windward. The statlc longi-
tudinal aerodynamic characteristics at Mach 5 and 8 of this basic
configuration are shown in Figs. 34 through 36. Increments due to
gymmetrlc deflections of the tralllng edge flaps are presented 1n
each figure, Fig. 34 also presents the angle of attack for zero
normal force and Fig. 35 presents the trlm angle of attack; these
are presented as functionsgs of the flap deflectlion angle.

The flaps are effective 1n produclng force lncrements through the
entire angle of attack range and are most effectlive when deflected in-
tc the lncldent flow. The normal force increments increased wlth
angle of attack for posltive flap deflections at positive angles of
attack and negative flap deflections at negative angles of attack up
to angles of attack of about +30° and -30°, respectively. Beyond
these angles of attack the incremental normal force coefficlents
decreased with 1ncreasing angle of attack. At high angles of attack
and large flap deflecticn angles, the flap is almost normal to the
flow and contributes little to the normal force coefficients. The
geometric effects can ke seen by comparing the curve of ACy for
8, = SR = 20° and 40°., For the 200 flap deflection case, %he peak
ACy occurs ate =400, while for the 409 rilap deflectlon case, the peak
ACy ocecurs ata=25C, It is also noted that the flaps produce
incremental normal force coefflcients through the entire angle of
attack range, even when they are deflected out of the flow (Fig. 34); in
part this 1s due to the pressure relief on the windward slde of the
model.

With the moment reference center at 60 per cent of the virtual
root chord the basic conflguration was statically stable at Mach 5
and 8 for the middle portions of the angle of attack ranges for all
flap deflections tested (Fig. 35). Based on the trim angles obtained
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Figure 34. Normal Force Coefficients for Delta Wing
Body Combination with Symmetric Flap Deflections
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Figure 35. Pitching Moment Coefficients for Delta Wing
Body Combination with Symmetric Flap Deflections
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at Mach -+ it is believed that a trim point would be found at Mach 5
for the 40° flap deflectlon if the tests had been extended to higher
negative angles of attack. Although trim points were found for all
flap deflectlon angles at Mach 8 there are large ranges of angle of
attack where the gtabllity of the configuration, using these flaps,
varies from marginal fo neutral,

Strong pitch-up (indicated by a decrease in restoring moment
negative at+e and positlve at —hy, is observed when the flaps are
deflected into the flow, The angle of attack at which pitch~up occurs
is strongly dependent on the flap deflecflon angles. This dependency

is caused by the extenslve separated flow areas induced by large flap
deflection angles. Thils flow geparatlion tends to limlt tThe pressure
rise on the flap but induces a strong pressure rise on the wing lorward
of the flap hinge line. The forward movement of the center of pressure,
due to this effect, sharply decreases the pitchlng moments.

In the angle of attack range where the flaps are deflected into
the flow, and prior to the onset of pitch-up, these flaps are effective
genergtors of restoring moments for both the overslung and underslung
conflgurations. Due to the marginal stability when the flaps are
deflected out of the flow, the trim points are not well defilned.

The axial force coefficlents, and the incremental changes due to
symmetric flap deflections, for Mach 5 and 8 flows, are presented in
Plg. 36. As expected, the axial force lncrements induced by the flaps
are posltive and large when they are deflected Into the lncildent flow
and small, or negatlve, when they are retracted ocut of the flow, These
negatlve increments imply a reductlon of the axial force coefficient by
the retraction of a sector of the wing from a high pressure area., This
same effect can be seen in the normal force coefficlients,

The addition of tip fins to this conflguration produced increases
in the normal force coefflcients and the axlal force coefficlents at
both Mach 5 and 8, The effectiveness of the flaps increased in the
presence of the tlp fins. The slope of the resulting pitching moment
curve lncreases and the extent of the marglnal stability range was
decreased. The presence of the fins narrowed the latitude of trim
angles associated with flap deflectlon. These effects are illustrated
in the following sketch.

Comparisons were obtained between the partial span trailing edge
flaps and a full span flap for a flap deflectlon angle of +20°, A
full span spoller, having the same height as the +20° flap, and a
deflectable apex were also tested (see preceding section for further
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description of these controls). As shown in the following sketches,
the added control surface area of the full span flap produced posltve
normal and axlal force incrementse and stronger restoring moments. The
full span spoller was effectlive in producing lincrements of normal
force and restoring pitching moment when it was exposed to the flow.
The effectlveness, approximately the same as the full span flap,
increased with increasing angle of attack in the angle of attack range
of 0° to +25°, It also produced increases in the axlal force
coefficients. The deflectable apex, although it produced slight
increments in normal force and pitchlng moments, was not as effective
as the other controls Investigated.
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The lateral and directlonal characteristics of the aileron type
flaps on the basic configuration are shown in Fig. 37. The alleron
controls are effective over the range tested whether they are deflectied
separately or differentially. Around & =0, the individually deflected
flaps produce lower rolling moments and higher, adverse, yawling moments
than the differentially deflected flaps. As the angle of attack is
increaged, and one of the dlfferentiglly deflected flaps 1is shielded
by the wing, the differences 1n response of both types of roll control
diminish. The effectiveness lnecreased wlth increasing control deflec-
tion and Increasing angle of attack, The adverse yawing moment also
lncreaged with increaslng control deflectlon and angle of attack wilth
the exception of the region arounde = 0 where differential flap
deflectlonsg tended to minlmlze the adverse yawing moments, When both
flaps are exposed to the flow they produce opposite (cancelling)
vawlng moments except for the Interference loads induced on the body
that are generally quite small. The addition of the fins had little effect
on the yawlng moments (B=0) but did, in general, increase the rolling
effectiveness,
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Figure 37 Lateral and Directional Characteristics for Delta
Wing Body Combination with Asymmetric Flap Deflections
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We have also 1ncluded a group of pressure and heat transfer
distributions 1n order to provide a better understanding of the
effects of control deflection and angle of attack on the aerodynamic
characteristice of the vehlcles (Fig. 38). These distributions are
representative of those obtained at Mach 5 and 8 and do not necessarilly
indicated the peak values that were induced by Interference effects,
Tor comparlson purposes we have also included sample Mach 19 data.
The complete pressure and heat transfer distrlbutions can be found in
Refs. @ through 17, a few of the results are summarized here,
Evident immediately 1ls that control deflections produce large lncreases
in pressure and heat transfer on the control itself. Moderate deflec-
tion angles and angles of attack {a=20°, & +20°) do not induce
extensive separation forward of the hinge line, Large flap deflectlons
induce separation far forward of the hinge line at all angles of attack
while at high angles of attack all flap deflectlons tested induced
strong separatlon effects forward of the hinge line, These observa-
tions on the presgsure dlstributions explain the increased control
effectiveness 1n the low and Intermedlate angle of attack and control
deflectlon ranges (due to pressure increase on controls that are aft
of the moment center), and the decrease In effectiveness at high angles
of attack (due to pressure decrease on flap and pressure lnereases ohn
wing forward of moment center).

The heat transfer data, presented in [ig.38, show extreme heating
rate values on the flaps at high angles of atftack and large deflection
angles. In some cases the measured values exceeded those calculated
at the blunt nose stagnatlon point, Thils heating probklem 1s a major
stumbling block to the deglgn of hypersonic aerodynamic controls.

Pyramidal Conflguration

Tralllng edge flaps were alsc tested on the blunt pyramidal
configuration described in the preceding section {Filg. 33). The lower
surface; a 70° sweptback delta, and the upper (dihedral? surfaces,
have 15 percent root chord tralling edge flaps. Angle of attack 1s
referenced to the lower, delta wing, surface and is positlive when
thls surface ig windward. The dihedral surfaces are aligned wilth
the flow, and thelr flap hinge 1ings are perpendlicular to the flow,
at a model angle of attack of 14,3, Flap deflection angles, whether
for the upper on lower surfaces, are positive when deflected away
from the surface.

The static leongitudinal aerodynamic characterlstics of the bhasic
pyramidal conflguration are shown in Figures 39 through 41, The
experimental data are presented and also the increments due to
symmetric deflectlons of the upper or lower flaps. The angles of
attack for zero normal force and the trim angleg of attack are
presented as functions of the flap delflection angles in Figs, 39
and 40,

As for the wing-body comblnation, the flaps were effective in
produclng useful normal force increments and restoring pitching
moments when deflected into the incident flow. When, however, the
Tlape were shielded by the body they were ineffectlive as controls.
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with Symmetric Flap Deflections
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The normal force increments increased with flap deflection angle and
angle of attack; the lincreases being in the posiltive angle of attack
range f'or the lower surface flaps and in the negatlve angle of attack
range for the upper surface {laps. With the moment reference center
at 60 percent of the virtual length of the model, this configuration
was statlcally stable for all flap deflection angles at Mach 5 and 8.

Trim points were found for all flap deflectlion angles. The spread
of trim points was small (frome ~ -10° to a ~+20°) and there were not
any regions of neutral or marginal stability. The data available
Indicate that, if the tests had been extended to higher values of
angle of attack, a pitch-up problem would have been encountered.
Generally speaking the Increments in restoring pitching moment co-
efficlents increased with both flap deflection angle and angle of
attack. Deflection of the upper (dihedral) surface flaps produced
larger axial force coefficlents and larger increments than the lower
gurface [laps.

The longer chord lower surface flaps (25 percent root chord)
produced medest increments in normal foree and restoring pitching
moment, as indicated in the following sketch.

C
m

(+)

(=

Short Chord Flaps
Long Chord Flaps — ———

Effect of Flap Chord on Pyramidal Body

The lateral and directional aerodynamic characteristics or this
configuration due to single flap deflections are shown in Flg. 42,
A strong, unstable, yaw-roll coupling exlsts similar to that for the
singly deflected alleron type flap; some form of differential flap
deflection would be requlred to eliminate this problem.

The canards, when mounted on the basic pyramidal confilguration,
produced positive increments in normal force, axial force, and nose-
up (destabilizing) pitehing moment. The small ventral fin (see pre-
ceding section) had negligible effect on the normal force. It produced
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Figure 42, Lateral and Directional Characteristics for Pyramidal
Configuration with Asymmetric Flap Deflections
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small increases in the axlal force and nose-down (stabllizing) pltch-

ing moment; in the low side-sllp angle range 1t provided nc significant
improvement over the basic bedy. These effects are l1lllustrated in the

following sketches.

:: C
) S _)_B m
+)
CY
Cn -)
(+)
+)8
(-) -)
Cr Basic Pyramidal Body ———«=—
+) : Basic + Canards — =—
Wl Basic + Ventral Fin — —= ==

Effect of Fins and Canards on Pyramidal Body

In addition to the six component force and moment data for the
configuration, three component flap loads were obtalned for all test
conditions. Plots of the flap normal force, hinge moment and twisting
moment for the particularly wlde range of test conditiong indicated in
Table I, page 43, are presented in Refl. 23.

Typical pressure and heating rate dlstributionsg along flap center-
lines are shown in Flg. 43. The pressures and aerodynamic heating
rateg exhibit generally the same effects as previously noted for the
flaps on the wing body combination. Agaln, some representative
hyperveloclity (Mach 21, Ref, 22) data are included., Plots of all the
pressure and heat transfer data are readily avallable in Refs. 19
through 22,

Some of the results of the investigations described in this
section may be summarized as follows:

1) Tralling edge flaps of reasonable proportions are effective
plteh and roll contrels in the hypersonlc regime and are
effectlive trimming devices.

2) Tip fins reduced trim angle changes due to flap settings.
3) Strong, adverge yaw-roll coupling results from the use of a

single flap (particularly forea = 0); differential flap
settings reduce this conaslderably.
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5)

Deflected flaps Ilnduce separated flow regions on the vehicle
surface forward of the flap and produce very high heating
rates and pressures on thelr own surface and increase the

heating rates and pressures on the vehiele surface forward
off the flap.

Full span flaps, full span spoilers, and canards are also
effective pltch contreol devices.
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CONCLUSIONS AND RECOMMENDATIONS

Only the more salient aspects of our research investlgation of
hypersonic flow separatlon and control characteristics are presented
in this secftion. The entire report, by its format and intended
nature, 1s a summary of conclusions drawn from the preliminary
theoretical and experimental investigations. The experimental results
were disseminated widely (Refs. 5 through 21) because of thelr time-
liness and the need for hypersonic flow data, but much work remains
£o be done in analyzing the data and understandling the observed
phernomena.

Aerodynamic heatlng rates, pressure disftrlibutions and loads are
geverely affected by separation. The extent of separatlon depends on
the nature of the boundary layer, stream conditions, and model geometry.
Three-dimensional effects are of flrst order importance for the highly
vortical reverse flow 1in separation reglong. Thus, even for the
seemingly two-dimenslonal models (flat plate with trailing edge flaps),
the separated flow 1s essentlally three-dimensiocnal in nature and
strongly affected by finite span effects. End plating the model
prevented venting of the trapped reverse flow in the geparation reglon
and doubled the extent of geparation. This greatly changed the chord-
wise pressure and heating rate distributions, Increasing their values
on the plate surface whlle decreaslng thelir values on the flap surface.

Streamwise pressure and heating rate gradients are extremely
large just prior to reattachment and lead to exceptionally high
pressures and heating rates downstream of reattfachment on trailing
edge flaps. In many cases the pealk pressures and heatling rates re-
corded on the trailing edge flaps were more than twice as large as
blunt nose stagnation polnt values. These high values result from
the flow being compressed through many oblique shock waves, thereby
avolding strong normal shock losges. As expected, these effects
become more pronounced for the hlgher Mach number free stream flows.

Leadlng edge separation and flows over sharp expanslon corners
were investigated to determine the fluid flow mechanisms responslble
for breakaway separation. This type of separation occurs at convex
corners where the local pressure gradient, in the inviscid sense, 1s
favorable, It was found that In the complete abgence of adverse
pressure gradients, even for machined sharp expansion cornerg, ho
flow separation occurred. The exlstence of an adverse pressure
gradient is a necesgsary conditlon for separation. However, for
breakaway separation, the adverse pressure gradlent can be far
downstream, the pressure rise effects are propagated upstream through
the boundary layer. Thus, as for standard bhoundary layer separatlion,
adverse pressure gradients were found to be the prime cause of break-
away separatlion.
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The interaction due to a fin generated shock wave with the
boundary layer on a flat plate i1s fundamentally different for super-
aonlec and hypersonic flows. In supersonic flows, the region of
separation on the plate surface ig limited tc the vicinity of the
shock wave. In hypersonic flows, the separated flow region on the
plate extends from the fin root to far outboard of the shock location.
The line of separaticon, far enough downgtream of the fin leadinpg edge,
more nearly follows a conleal ray emanatlng from the fin leadlng edge.
The large extent of the separated flow region, in part is due to the
thickness of the hypersonic boundary layer.

Separated flows ahead of trailing edge flaps on typical hyperscnic
flight configurationg are predominantly three-dimensicnal. Spanwige
gradients of pressure and heating rates are equal 1nh magnlfude to
thelr streamwise gradlents. When finlte span effects are better under-
stood, it is recommended that leadling edge bluntness effects also
be investigated. These effects should then be included, probably
empirically, in establishing englneering methods for predicting the
extent of separation ahead of tralling edge flaps. Probably 1in con-
Junctlon with the aerodynamlc heatling rate estimates, engineering
methods should be developed for calculating shear forces.
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APPENDIX

DATA TABLES AND BIBLIOGRAPHY

Thils section lists many reports that contain Informatlon pertain-
ing to aercdynamilc control characterlstlcs with emphasis on hypersonic
flows., The types of Information contalned 1n many of the reports are
cutlined in tabular form., The tablee provide the reader wlth a rapid
method of determining the general type of informaticn contalned in
each report or, conversely, Jjust which reports contain the Informatlon
he desgires,.

The tables give the type of control investigated, the configura-
tion upon whleh it was investigated, the test conditions, and the main
information presented in each of the referenced reports., An "X" in a
row In the data sectlon indlcates the data that are presented in a
given report. Similarly, in the configuration section, an X"
indlcates the configuratlon upon which the listed contrcl was investi-
gated. In order to maintain the tabular data form and still pregent
a maximum of Information, the letter code on the followlng page was
established and used to provide the additional informatlon In compact
ferm.,

The tables supersede those in our preliminary survey report

(Ref. 1), Many additlonal references have been added and more in-
formatlion is tabulated for each reference.
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LETTER CODE FOR DATA TABLES

Tip Control
Canard
Spoiler

Nose Cant
Nose Spike
Unswept
Swept*

Delta*
Trapezoidal Wing
Arrow
Circular

Air Tunnel
Helium Tunnel

Free Flight

\

>

Control

Wing Configuration

Test Facility

Leading edge sweep indicated in tables.
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