Cleared: May 25th, 1973
Clearing Authority: Air Force Aero Propulsion Laboratory

AFAPL-TR-70-79
Volume I

THREE-DIMENSIONAL NOZZLE DESIGN
FOR MAXIMUM THRUST

VOLUME I. THEORETICAL DEVELOPMENT AND RESULTS

Lynn E. Snyder and H. Doyle Thompson

*** Export controls have been removed **%*

This document is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of the Air Force Aero Propulsion Laboratory, RJT, Wright-
Patterson Air Force Base, Ohio 45433,

The distribution of this report is Timited because information in this
report is embargoed under the U.S. Export Control Act of 1949, admin-
istered by the Department of Commerce. This report may be released by
departments or agencies of the U.S. Government to depariments or agencies
of foreign governments with which the United States has defense treaty
commitments. Private individuals or firms must comply with Department
of Commerce export control regulations.



FOREWORD
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ABSTRACT

The problem of designing three-dimensional (nonaxisymmetric)
supersonic nozzles which produce the maximum axial thrust for a
prescribed upstream flow field, mass flow rate, exit 1ip shape and
position, and ambient pressure has been formulated and numerically
solved. The formulation was written to consider a three-dimensional,
supersonic, isoenergetic, homentropic flow of a perfect gas. The
axial thrust and mass flow rate were written as integrals over a
control surface which was constrained to pass through the exit Tip
of the nozzle. The functional to be maximized was formed by summing
the integral equation for the axial thrust and the integral equation
for the mass flow rate times a Lagrange mul tiplier. The fixed length
and fixed ambient pressure constraints were imposed by substitution
into the variational problem.

The set of partial differential equations and the algebraic equa-
tions which resulted from setting the first variation of the functional
equal to zero were numerically solved. For a particular set of initial
conditions the numerical solution technique generates the character-
istic surface which passes through the exit of the resulting optimal
nozzle, the position of the exit 1ip, the magnitude of the axial thrust,
and the ambient pressure for which the nozzle is an optimal.

The numerical solution technique was programmed for the CDC 6500
computer. The results for nine sample cases are presented. The results
confirm that the three-dimensional optimal nozzles designed using this
technique are significantly better than other three-dimensional nozzles
that have identical initial conditions and have comparable overall
dimensions. Furthermore, the results show that two-dimensional or axi-
symmetric methods are not adequate for designing three-dimensionai
optimum nozzles.
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SECTION 1
INTRODUCTION

}. INTRODUCTORY REMARKS

Applications of the calculus of variations occur in several fields
of engineering, such as flight mechanics, fluid dynamics, optimal control
and system optimization. The theory of the calculus of variations has
been of great interest in the professional journals devoted toc applied
mathematics, but it is only in the last fifteen years that the theory has
been applied to engineering problems. It is the application of the
calculus of variations to the problem of designing three-dimensional
nozzle contours which deliver maximum axial thrust that is treated here.

At present, there are several applications which can benefit from
the use of three-dimensional nozzles. These include three-dimensional
nozzles for rocket engines having nonsymmetric exit area constraints and
three-dimensional nozzles for airbreathing propulsion systems where a
high degree of integration of engine and vehicle structure is required.
With the ability to apply the calculus of variations to the design of
three-dimensional nozzles it is possible to determine the maximum thrust
which can be delivered by a three-dimensional nozzle with specific
geometrical constraints, compare the performance of optimal three-
dimensional nozzles with that of nonoptimally designed three-dimensional
nozzles, and eliminate costly analytical and experimental parametric
studies to determine optimal nozzle contours.

The objective of the present research is the development of a method
to design three-dimensional, supersonic thrust nozzles to produce the
maximum axial thrust for specific design constraints. The need for such
a sophisticated design procedure is established by the critical depend-
ence of several advanced mission systems on the propulsion system per-
formance and thus on the thrust nozzle performance. For such systems as



advanced airbreathing propulsion units {e.g. ramjets and scramjets) and
rocket engines, a small change in engine efficiency is magnified many
times in determining the overall system performance. For example,
NASA's Office of Advanced Research and Technology has estimated that for
the space shuttle a one per cent degradation in specific impulse will
reduce the cargo payload by 20 per cent where a payload of 50,000 pounds
is being sought (25). Furthermore, the final version of many of these
advanced systems will almost certainly require an integration of the
engine with the airframe and will result in a three-dimensional thrust
nozzle.

The technigues which are necessary in the design of maximum thrust,
axisymmetric, supersonic nozziles are well developed. The axisymmetric
optimization problem has been solved for a variety of flow assumptions
and geometrical constraints. The technique necessary to design maximum
thrust, fixed length, axisymmetric nozzles with irrotational flow is in
use in many propulsion companies. Analyses which permit more involved
flow models and which allow for more general geometrical constraints do
exist for optimized axisymmetric nozzles. While these methods for
axisymmetric and two-dimensional nozzles have become fairly well devel-
oped, equivalent methods for three-dimensional nozzles are in their
infancy. Although formulations exist which deal with the design of
maximum thrust three-dimensionai nozzles, no numerical solutichs have
existed until now.

2. STATE OF THE ART EVALUATION

The concept of designing nozzle contours by applying variational
calculus techniques was introduced in 1955 by Guderley and Hantsch (1)
for nozzles with axisymmetric, supersonic, homentropic flow. Until then
only empirical investigations of the problem of designing maximum thrust
nozzles had been carried out. The principal idea of Guderley and
Hantsch was the introduction of a characteristic surface as a control
surface for computing the thrust, the mass flow rate and the length of
the nozzle. Figure 1 illustrates the general nozzle geometry employed in
the thrust nozzie optimization. The entire optimization problem is
formulated along the control surface IE, and the thrust across this
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control surface is maximized for a fixed value of nozzle length and
constant mass flow rate.

The condition that the control surface is a characteristic surface
in reality imposes two constraints on the control surface. First, the
condi tion forces the control surface to be everywhere tangent to a
characteristic (wave) surface of the flow, and second, it forces the
compatibility equation for a characteristic (wave) surface to be satis-
fied on the control surface.

In 1958 Rao (2} considered the same problem and demonstrated that
it is not necessary to impose specifically the constraint that the
control surface be a characteristic surface. He found that the control
surface becomes a characteristic surface when a maximum thrust nozzle is
designed under the constraints of fixed lTength and constant mass flow
rate. Rao's formulation and solution technique has proven to be much
easier to apply than that of Guderley and Hantsch, and Rao's technique
is currently used by engineers in the design of supersonic thrust
nozzles.

The differences between the formulations in Refs. (1) and (2) were
analyzed by Guderley (3), who extended the development to include
isentropic flows with constant total enthalpy and constant entropy along
a streamline but with entropy variations between streamlines. Guderley
showed that the two formulations in Refs. (1) and {2) were both valid
and yield the same result.

In the above three analyses, the variables on the control surface
are functions of only one independent variable, and only the fixed
Tength problem is treated. The problem of obtaining the contour which
produces the maximum thrust for a general geometrical constraint on the
shape of the nozzle wall was formulated by Guderley and Armitage (4, 5).
Their formulation results in a variational problem in two independent
variables.

Recentiy, several more general nozzle optimization problems for
axisymmetric and two-dimensional nozzles have been treated. Hoffman (6)
extended the Guderley and Armitage {4, 5) formulation to treat a general
gas mixture in chemical nonequilibrium. Scofield, Thompson and
Hoffman (7) developed a design technique and computer program for the



design of maximum thrust nozzle contours including boundary layer effects
for irrotational flow fields. The formulations of (6) and (7) were
combined and extended by Hoffman, Scofield and Thompson {8) to include

a general gas mixture in chemical nonequilibrium, a simple dissociating
gas in chemical nonequilibrium, and & general gas mixture whose composi-
tion is either frozen or in chemical equilibrium, all including boundary
layer effects. The design technique and computer program for the
formulation in (8) was developed by Scofield and Hoffman (9). Shmyglevskii
(26) considered both irrotational and rotational nozzle flows but
restricted his investigations to geometrical models with prescribed
endpoints, thus omitting from consideration constraints such as fixed
surface area and arc length. Kraiko et al. (27) developed the design
equations for maximum thrust nozzles for both irrotational and non-
equilibrium flows.

The theory of the calculus of variations has also been applied to
the design of maximum thrust plug nozzles. Rao {10) applied the varia-
tional technique to the problem of generating maximum thrust plug
nozzles for axisymmetric, homentropic flow. Rao's formulation for plug
nozzles is similar to the work in Refs. (1) through (3) in that the
optimization equations are functions of only one independent variable.
Humphreys, Thompson and Hoffman (11) formulated the maximum thrust plug
nozzle problem in two independent variables so that geometrical con-
straints could be imposed on the optimization. Johnson (12) formulated
the maximum thrust plug nozzle problem with variable inlet geometry and
developed the numerical technique and computer program to solve the
resul ting equations.

In 1965 Thompson and Murthy (13} formulated the problem of designing
maximum thrust, three-dimensional nozzles. Their formulation for the
three-dimensional optimization case is analogous to Rao's (2) approach
to the axisymmetric optimization case in that they formulated the problem
in terms of variables on a control surface which passes through the exit
of the nozzle. Thus, the three-dimensional optimization problem reduces
to a variational problem in two independent variables. Borisov (14) has
also formulated the three-dimensional optimization problem for fixed exit
conditions. Borisov's formulation is analogous to the formulation of



Guderley and Armitage (4, 5) for axisymmetric nozzles in that his formu-
lation includes the flow region bounded by the kernel and the control
surface. Thus, Borisov's formulation results in a variational problem
in three independent variables. Up until this time, no numerical tech-
nique for the design of a maximum thrust, three-dimensional nozzle has
been presented.

In general, the development of the procedures to design optimal
three-dimensional nozzles has proceeded relatively slowly. This is not
due to Tack of interest but is rather a result of the extreme complexity
of the problem and the need to develop the analytical techniques
required to implement a numerical procedure. For example, in addition
to the requirement for a relatively large and fast computer, the design
procedure for optimal three-dimensional nozzles requires the ability to
numerically analyze supersonic, three-dimensional flow fields. Ransom,
Hoffman and Thompson (15) have presented a comprehensive review of the
methods available for computing three-dimensional, supersonic flows.
Their survey indicates that prior to 1969 no practical and accurate
numerical method existed to calculate internal, three-dimensional, super-
sonic flows, In Refs. (15) and (23), Ransom, Hoffman and Thompson develop
a numerical algorithm and associated computer program for the analysis of
internal, three-dimensional, supersonic flow. In general, the numerical
algorithm and computer program have been demonstrated to be highly
satisfactory; however, for the design of optimal three-dimensional
nozzles the numerical algorithm and computer program are too specialized
and require modification to solve the entire three-dimensional design
problem. The computer program (23) was utilized in this research to
analyze the three-dimensional kernel flow.

3. SCOPE AND METHOD OF APPROACH

In this research the variational problem is formulated in a manner
similar to that presented by Thompson and Murthy (13); however, the
present formulation possesses several important differences. The most
important difference is that no differential constraint is introduced
into the fundamental function to specifically prevent the existence of



Beltrami flow (24) on the control surface (in all the numerical cases
presented in this report, an irrotational kernel is used to generate
irrotational flow on the control surface).

The problem is formulated as a variational problem for the three-
dimensional, supersonic, isoenergetic, homentropic flow of a perfect
gas. The quantity to be maximized is the axial thrust of the nozzle
which is written as a surface integral over a control surface. The
initial flow conditions, the mass flow rate, and the nozzle length are
held fixed. The control surface passes through the exit lip of the
nozzle and intersects the kernel region, where the kernel region is that
portion of the flow field that can be determined from the prescribed
initial conditions.

The integral thrust expression is maximized by applying the calculus
of variations to obtain a set of design equations (two partial differen-
tial equations and three algebraic relations) which relate the flow
variables on an optimal control surface. Boundary conditions corres-
ponding to the fixed length constraint are also obtained from the
variational solution.

The uniqueness of the solution is established by proving that an
optimal control surface is a characteristic surface, a result which
assures a unique matching of the flow in the kernel with the flow across
the control surface. MWhen the flow is constrained to be axially
symmetric, the solution reduces to the well known resuit obtained by
Rao (2}.

The design equations are solved numerically. An overall solution
procedure is developed which is conceptually similar to the method
discussed in Ref. (21) for axisymmetric optimum nozzles. The procedure
has the advantages that optimal solutions are obtained by a straight-
forward calculation and that to match specific boundary conditions the
iterations are between optimal nozzles.

In this research the main emphasis is to establish:

1) that the three-dimensional optimization procedure can be

implemented,

2) that the three-dimensional optimization will produce a

significantly better thrust nozzle than other, heretofore



arbitrary, design procedures for three-dimensional
nozzles, and

3) how the optimized three-dimensional nozzles differ

from the nozzles that have resulted from applying
approximate two-dimensional methods.

Once the control surface for an optimal nozzle has been determined,
the corresponding optimal nozzle contour can be found by computing the
three-dimensional flow field between the kernel and the control surface
(using the three-dimensional method of characteristics) and then follow-
ing the streamlines from the exit 1ip back to their origin. This final
part of the design procedure relies on the theory developed in Refs. (15)
and (23); however, that part of the procedure is not part of this
research. The exit contour, the axial thrust and the exit flow properties
can be determined and compared for whole families of aptimal nozzles with-
out having to complete the contour determination.

The method presented by Borisov (14) was studied and found to be too
complex to be used in the initial attempt to solve the three-dimensional
nozzle design problem. The Borisov formulation does offer some advan-
tages and is worthy of further consideration when better methods become
available to analyze systems of quasi-linear, first order, hyperbolic,
partial differential equations in three independent space variables,



SECTION II
THEORETICAL DEVELOPMENT

The problem of designing optimal, three-dimensional, supersonic
nozzles to be discussed in this work concerns only the determination of
the supersonic portion of the nozzie contour downstream of a specified
initial expansion contour. The theoretical development of this optimiza-
tion problem is presented in this section.

Figure 2 shows a schematic representation of a general three-
dimensional nozzle with supersonic flow. The zone of influence of the
initial expansion contour of the nozzle is referred to as the kernel.

The properties of the supersonic flow in the kernel are compietely deter-
mined by the upstream conditions in a totally supersonic region of the
flow and by a prescribed initial expansion contour. The flow properties
in the kernel are determined by applying the three-dimensional method of
characteristics analysis described in Refs. (15) and (23). The initial
flow conditions and initial contour are specified as part of the problem,
and they act as initial conditions for the mathematical optimization
problem.

The formulation of the maximum thrust, three-dimensional design
problem is based on considering the flow across a three-dimensional con-
trol surface which is constrained to pass through the exit Tip of the
nozzle contour and to intersect the boundary of the three-dimensional
kernel. The intersection of the control surface and the outer surface of
the kernel is referred to as the initial value line since the flow
properties along this intersection serve as initial conditions for the
calculation of the control surface. The flow across the control surface
is restricted to steady, inviscid, isoenergetic, homentropic flow. The
shape of the control surface and the flow properties on the control
surface are described in terms of four dependent variables V, o, y and f
which are functions of two independent variables r and ¢. The variables
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V, 6 and y describe the magnitude and direction of the velocity vector ¥
while the function f defines the axial position of any point on the
control surface.

The axial thrust is expressed in terms of the four dependent vari-
ables as an integral equation over the control surface. The mass flow rate
through the control surface is also written in terms of the dependent
variables as an integral egquation over the control surface. The mass flow
rate is constrained to be a constant quantity by multiplying the surface
integral expression for the mass flow rate by a constant Lagrange multi-
plier and adding the total expression to the surface integral expression
for the axial thrust. This linear combination of terms is the functional
[ to be maximized.

A necessary condition for maximum thrust with a constant mass flow
rate requires that the first variation of the functional | vanishes
identically for every admissible distribution of variations of the vari-
ables in the problem. The restrictions on the thermodynamics of the
flow and the fixed length constraint are imposed by substitution into
the expression for the first variation of I.

In the analysis, arbitrary and independent variations in the four
dependent variables V, 0, ¢ and f are allowed on the control surface.
When the first variation of the functional I is required to vanish iden-
tically, sufficient equations result to solve for the dependent variables
on the extremal control surface (It is assumed that a maximum exists and
that the solution will be for a maximum thrust nozzle and not a minimum
thrust nozzle.). The fixed length constraint is introduced into the
analysis by not allowing variations in the axial position of the exit lip.
By allowing variations in the radius of the exit 1ip, an equation is
derived which relates the variables along the outer boundary of the con-
trol surface (i.e., the nozzle exit 1ip). At this point in the develop-
ment, the equations which result from requiring the first variation of
the functional I to vanish identically are used to prove that the
extremal control surface and the kernel flow are compatible. Finally,
at the end of this section, it is shown that the optimization equations
derived for the three-dimensional case reduce to the equations derived
in Refs. (2) and (3) under the assumption of axisymmetric flow.
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1. FORMULATION OF THE OPTIMIZATION PROBLEM
A. Geometrical Relationships

A cylindrical coordinate system is used throughout this work as the
spatial reference. The z-axis is oriented in the direction that the
thrust is to be maximized. Since the control surface is a three-
dimensional surface, it is convenient to transform the problem to the
two-dimensional r¢-plane. The transformation corresponds physically to
projecting the control surface onto the r¢-plane. On the control surface,
the four dependent variables V, 8, ¢ and f are only functions of the two
independent variables r and 4.

As stated above, the velocity vector V at any point in a three-
dimensional nozzle flow, and specifically at a point on the control
surface, is uniquely determined by its magnitude and two spherical angles
o and y. The direction cosines of V are as follows:

Vr =\ sing cosy
V¢ = ¥ sing siny (1)
Vz = V¥ cosé

The control surface is described by the equation
z = f(r.e) | (2)

where the function f(r,$) is to be determined from the analysis. The
control surface shape is also known if at every point on the control
surface the direction of the unit outer normal to the control surface is
known. The unit outer normal n is uniquely specified by two spherical
angles o and 8. The direction cosines of the unit outer normal to the
control surface are as follows:

12



sing cosa

>
1}

r
n, = sing sina (3)
n, = coss

Although the angles o and ¢ will appear in the integral expressions
for the thrust and mass flow rate across the control surface, it should
be emphasized that the shape of the control surface is defined by the
single dependent variable f. The angles « and g are related to f by the
following equations:

of _
T tang cosa (4)

af _ .
T tang sina (5)
where 3f/ar and 3f/5¢ are related through the mathematical relationship
df = (af/ar)dr + {af/34)do (6)

If the values of a(r,¢) and 8(r,¢) are known, then Eqs. (4), (5) and (6)
can be combined with the proper initial conditions to solve for f(r,¢).
If f(r,¢) is known, then Eqs. (4) and (5) can be used to soive for a{r,4)
and g{r,¢). A more complete discussion of the geometrical relations
involved in this three-dimensional nozzle optimization problem is given
in Appendix A.

B. Gas Dynamic Model

The supersonic motion of most compressible fluids encountered in
propulsion systems can be accurately described by means of the governing
equations for the motion of an ideal fluid. The major assumptions which
constitute the gas dynamic model are: 1) continuum, 2) inviscid,

3) steady, 4) isoenergetic (i.e., constant stagnation enthalpy h,
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throughout the flow} and 5) homentropic flow (i.e., constant entropy
throughout the flow). In this work the fluid is assumed to be a perfect
gas. Other equations of state could be treated and the basic approach
would be unchanged.

Under these assumptions, it is possible to show that the pressure p,
density p, sound speed a, and Mach angle u are functions of the magnitude
of the velocity and the stagnation conditions. Thus, the following
differential relationships are valid throughout the flow:

dp = - pVdV (7)
~ 2
do = - pV/adv (8)
B -1, V'
da = - (12—) "a— dv (9)

- (y_z—_.l + s'inzu)

du = —53hm cosy dv (10)

In the formulation of the optimization problem the gas dynamic model
constraint is introduced by eliminating derivatives of pressure, density,
sound speed and Mach angle in the variational equations by substitution
from Eqs. (7) through (10).

The existence of shock waves has been implicitly excluded in the
flow model by the homentropic flow assumption. The flow in the kernel
is assumed to satisfy the gas dynamic model since the kernel flow serves
as an initial condition on the calculation of the control surface. A
more complete discussion of the gas dynamic model is given in Appendix B.

C. Functional to be Maximized

The thrust expression to be maximized is written as the sum of the
pressure differential and the momentum flux across the controi surface.
The pressure differential is the difference in the pressure acting on the
outside of the nozzle wall and that acting on the control surface. It

14



is assumed that a constant and uniform ambient pressure acts on the outer
surface of the nozzle wall. For a given nozzle, the only portion of the
thrust which enters the variational problem is that part generated by the
flow passing through the control surface. The magnitude of the axial
thrust produced by the flow not passing through the control surface TIVL
is a constant for a given kernel and specified initial value line.

The total axial thrust T is given by the following equation:

2n re(¢) _
T=T, * f f (r(p-pa)-rpvz EQiE_ElEQ] drd¢ (11)

cosp
0 ri(4)

where the angle ¢ is defined by the vector relationship

sing = =" M) - cocp(- coss + singcosy 2F M—g{-) (12)

AT
v ar r

The limits of integration r1(¢) and re(¢) refer to the radius of the
initial value line and the nozzle exit lip, respectively.

The mass flow rate through the exit of the nozzle mT is given by the
following expression: '

B = My F M (13)
where
2 re(qb)
mc ¢ T f J {- roV sing/cosg)drds (14)
0 ri(9)

For a specified kernel and a specified initial value line hT and hIVL
have constant values; therefore, from Eq. (13) the value of mc s is a
constant for a specified kernel and a specified initial value line.

15



To introduce the condition that hc S has a constant value in the
extremal problem, the expression

2 re(¢)
(- rpV sing/cosg)drde + Mpy, = My =0 {15}

0 r.(9)

is multiplied by a constant Lagrange multip]ier‘AZ. The resuit is then
added to the exnression for the axial thrust as given in Eq. (11). Thus,
the functional I to be maximized has the form

2n ro(¢)
[=T+ 0, [ f (- roV sing/cosg)drds + mpy, - m (16)

0 ri(e)

Equations (11), (12) and (16) can be combined and rearranged to obtain
the following expression for I: '

D= Ty + aplmpy = myp)

+ [ f Flryo,Vipap,8,0, af/00, af/ar)drde (17)

where
F = r‘(p - pa) - PDV(VCOSB + }\2)(-(:053 + sinecosw %;

; sine siny gj) (18)
r d¢
In the next section the calculus of variations will be applied to
the fundamental function F given by Eq. (18) to determine the necessary
conditions which must be satisfied for the total axial thrust to be a
maximum for a constant mass flow rate, specified kernel and specified
initial value line. A more detailed derivation of the integral equations
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for the thrust and mass flow rate is given in Appendix C while a discus-
sion of the method of Lagrange multipliers can be found in Ref. (17).

2. DERIVATION OF THE OPTIMIZATION EQUATIONS
A. Application of the Calculus of Variations

The application of the calculus of variations to the problem of
determining the necessary conditions which must be satisfied in order to
extremize an integral I of the form which appears in Eq. (17) is presented
by Miele (18). A summary of the theory presented in Ref. (18) appears
in Appendix D. The value of the functional I depends on the choice of
the surface o, defined by the n functions zk(r,¢), whose projection on
the r¢-plane is the regions S1 and 52; it also depends on the geometry of
the boundary line 1, defined by the n+l functions r = r(¢) and z = zk(¢),
whose projection on the r¢-plane is the contour B (see Figure 3). The
purpose of this section is to determine the necessary conditions which
must be satisfied by the n functions zk(r,¢) and the n+1 functions,

r = r(¢) and z, = zk(¢), in order to extremize the functional I.

For the surface o to be an extremal surface, the set of functions
zk(r,¢) must be such that the first variation of the surface integral I
vanishes identically for every admissible distribution of variations;
that is,

81 = 0 (19)

When an admissible surface ¢ is defined as any set of functions zk(r,¢)

which are continuous, whose derivatives are continuous everywhere except
along a finite number of corner lines, and which satisfy the prescribed

boundary conditions, the following extremal condition is obtained:

n

o ) ~

(S = F - — - .,__{ d
! ”S] k);1( Zy a"’( Fpk) ar Fqk)].azkdr ¢

i ff E (sz g SE(Fpk) "%F(Fqk)]&zkdrd¢

82 k=1
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n
+ f (Xs + Yér + ] W 6z, )do

n
- j (aKs¢ + aQsr + ) ARkGZk)d¢ =0 (20)
k=1
C

which must be satisfied for every admissible distribution of variations.
In Eq. {20) the functions Pps 9> Xs ¥, W, K, Q and R
following expressions:

i are given by the

P = 2y = sz/a¢ (k=1,.,n) (21)
G =4, ° azk/ar (k=1,.sn) (22)
E r( E ) (23)
X = pF+ r(F - p,F 23
k=1 € 9k k=1 € Py
(F- JqF )-+) (24)
Y=-(F- q,F -r)q,F 24
k=1 K 9" k=1 KRy
= - ty k=1,..., 25
wk Fqk erk { n) (25)
) HF- Do) (26)
K= pF+ r(F - p F 26
k=1 K qi k=1 K Py
n n
= - (F - F 27
Q ( E_quFq ) rkZ qk p (27)
Rk = - Fqk + erk . (k=1,....,n) (28)

where Fp denotes the partial derivative of F with respect to Py and

Fq deno%es the partial derivative of F with respect to qk§ Equation (20)
k
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is written with A(...) denoting the difference in the quantity (--+)
evaluated on the outer side of the corner line and the same quantity
evaluated on the inner side. The details of the derivation of Eq. (20)
are shown in Appendix D.

B. Equations Which Define Optimal Control Surfaces

As shown in Eg. (17), the functional I to be maximized has the
following form:

2w r_(¢)

e
I = constant + f f F{r.¢, V,psp,8,0, af gi)dl"dfi) (29)

ar * 3¢
0 r.(¢)

Since the constant term in Eq. (29) vanishes when variations in I are
considered, the term can be dropped from further consideration. The
functional in Eq. (29) matches the form of the generalized functional in
Appendix D. As derived in Appendix B, the static pressure p and the
density p are only functions of V and the constants Pos ho’ R and v;
therefore, it is possible to write Eq. (29) in the following form:

I = ff F(rs¢=zkspk:qk)drd¢ (30)
S

where

zy = 'R 2, =8, 23 = ¢, 2, = f (31)

1]

Py = 3V/30, Py = 36/3¢, Py = 3Y/3¢, Py = 3F/3¢ (32)

a4y = av/er, q, = 36/3r, G5 = 3w/ er, Gy = af/ar (33)

The independent variables are r and ¢ while the 2 (k =1, .., 4) represent

the four dependent variables.
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For arbitrary and independent variations of the four dependent
variables V, o, ¢ and f, Eq. (20) can only be satisfied if the following

four equations are valid in the regions S] and 52:
Foo-2(F)y-2 (Fy=0 (k=1,..,8) (34)
Z, %% Py ar * q e

These four equations are referred to as the Euler equations.
For the fundamental function F given by Eq. (18), the four Euler
equations reduce to the following equations:

Vcose + Ay = - Vsinetanu (35)
a = ¢ (36)
g =06+uyu+ q/2 (37)

2

gE-(pvzsinzetanusinw) + %F-(rpv sinzetanucosw) = 0 (38)

Thus, the application of the Euler equations yields expressions relating
the variables on an optimal control surface.

The functional I is being maximized under the assumption that
Vir,s}, o(r,¢), v(r,¢) and f{r.¢) are continuous and have continuous
derivatives in regions S] and 52. This reguirement can be used to obtain
a form of the geometrical relationships between o, 8 and f which can be
combined with the Euler equations to obtain an additional relationship
between V, 6 and y in regions S1 and 52. This relationship results from
equating the cross derivatives of f(r,¢) and is given as follows:

§$-[tan(e + oy + n/2)cos¢] - %F [rtan(e +p+ w/2)sing|l =0 (39)
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The five equations, Eqs. (35) through (39}, can be numerically
solved for the five variables V, 8, ¢, a and B which describe an optimal
control surface. The solution of these equations is discussed in Section
III. A more detailed derivation of Egs. (35) through (39) is given in
Appendix E.

C. Transversality Equation

The transversality equation is a necessary condition that must be
satisfied when variations of the dependent variables on the boundaries of
the region S are considered. The transversality equation relates the
values of the independent and dependent variables on the boundaries of
the extremal surface and provides boundary conditions for the Euler
equations. As shown in Appendix F, the following equation must be satis-
fied for every set of variations &¢, Sr and 6zk consistent with the
conditions imposed on the location of the boundary line B:

n
f (Xso + Yor + k£1 W52, )de = 0 (40)
B

where ¢ has been chosen as the independent variable of the line integral,
and the terms X, Y and W_ are defined by Eqs. (23) through (25). For the
fundamental function F presented in Eq. (18), Egs. (40) and (23) through
(25) reduce to the following equations:

f (X6 + Ysr + w4sf)d¢ =0 (41)
B
X=p,F +7rF - rp,F (42)
4 g 4 Py
Y=-F+q,F - rq,f (43)
4 g, 4py
W, =0 (k = 1,2,3) (44)
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Wy =-F +rF (45)

4 Qg Py
where r = dr/d¢ and
Py = 3f/3¢ (46)
qq = af /ar (47)

In this work the region S (which has two subregions S] and 52) has
an inner and an outer boundary. As shown in Figure 4, the projection of
the initial value line on the r¢-plane is the inner boundary, and the
projection of the nozzle exit lip is the outer boundary.

Since the conditions on the initial value line are specified and
fixed, no variations are allowed on the inner boundary of the region S.
Hence, the three variations &f, &r and &¢ are each identically zero when
evaluated on the inner boundary of the region S. Therefore, Eq. (41)
reduces to the following form:

Jr (X5¢e + Ysr, + w46fé)d¢ =0 (48)
e

where Tg denotes the outer boundary of the control surface (i.e., the
nozzle exit 1ip). Before any additional information can be obtained
from Eq. (48), it is necessary to determine how the variations &f_, 5ry
and 8¢, are related.

On the boundary Ta» g is the sole independent variable, and the

following expressions are valid:

. of, af,

6f, = &f, + 5= 81, + 35 %% (49)
e e

8Ty = 6Ty + 18, (50)
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where 5f denotes variations of f (e, Tas %q ) taken while holding the
var1ab1es L and ¢ constant, Gf denotes var1at1ons of f (e, res 9o )
with no restr1ct1ons on how r and ¢ Can vary, dr denotes var1at1ons

of re(s, ¢e) taken while ho}dfng the independent var1ab1e Ya constant,
and 8ry denotes variations of re(e, ¢e) taken with no restrictions on
how $g Can vary. Forming the partial derivatives of F as indicated and
substituting Eqs. (42) through (45), (49) and {50) into Eq. (48) yields

the following equation:

f {[r(P p,)-roV(Vcose+h,)(~cose + s1n9005¢ -lléﬁlﬂy-ag)]
r

e
+ [rstine(Vcose + Ae)(cosw - r51n¢/r)] }d¢ 0 (51)

Equation (51) is now evaluated consistent with the constraints on the
problem.

The purpose of this research is to design three-dimensional nozzles
which are designed for a fixed length (the length may vary with ¢e), have
a constant mass flow rate, exhaust to a constant ambient pressure and
produce the maximum axial thrust subject to these conditions. The
constant mass flow rate constraint has already been imposed on the varia-
tional problem; however, the fixed length and constant ambient pressure
constraints must be introduced into Eq. (51) in order for the constraints
to be satisfied.

Since the length of the nozzle is fixed, the nozzle length fe cannot
be varied while applying the calculus of variations to maximize the
thrust; therefore, the variation éfe is equal to zero. Since the exit
radius o is allowed to seek its opfima] value and satisfy the ambient
pressure constraint, the variation are is arbitrary. There is an addi-
tional condition which must be true for the fixed length constraint to
be satisfied. This condition is that in the variational problem while
allowing for variations in ro the following equations are valid:

1) afe/are = 0 and, 2) afe/a¢e = dfe/d¢e. If this condition is not

satisfied, the nozzle length fe can change with variations in r Thus,

e-
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in the variational problem, the variation ére is arbitrary and independ-
ent, and the following three equations are substituted into Eq. (51) to
enforce the fixed length constraint:

sf, = 0 (52)
afe/are = 0 (53)
8f /30, = df /de, (54)

Substituting Eqs. (35) and (52) through (54} into Egq. (51), dividing
by re and requiring that the variation 81y is arbitrary results in the
following expression:

= 0 (55)

sinesinyrdfe)
r dé

((p-pa) + szsinetanu(— cosge +

e r

& e
Equation (55) is the transversality equation for a fixed length, maximum
thrust and constant mass flow rate nozzle where re(¢) has been allowed to
seek its optimal value. The use of Eg. (55) to establish the location of
the optimal exit 1ip on a generated optimal control surface is discussed
in Section III. A more detailed discussion of the derivation of the
transversality equation is presented in Appendix F.

B. Corner Line Conditions

An admissible extremal surface ¢ is defined as any set of functions
zk(r,¢) which are continuous everywhere except along a finite number of
corner lines, and which satisfy the respective boundary conditions. The
set of equations which govern the portion of an extremal surface where
the derivatives are continuous and the transversality equation which must
be satisfied along the outer boundary of an extremal surface have been
presented. When a corner line is present on an extremal surface (i.e.,
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the derivatives of the dependent variables z, are discontinuous across
a line on the extremal surface), a mathematical criterion is needed to
join the subsurfaces of the extremal surface. This criterion is the
Erdmann-Weirstrass corner condition.

The Erdmann-Weirstrass corner condition results from the following
expression which must be satisfied in order for &I = 0:

4
§ (AKs + aQsr + ¥ ARkGZk)d¢ =0 (56)

where the line integral is along the corner lines on the extremal surface.
In this work no restrictions are placed on the corner lines {i.e., the
corner lines are free), and the six variations &4, §r and 5z, are inde-
pendent and arbitrary along any corner line. From Eq. (56) it follows
that at any point on a corner line the following six equations must be
satisfied:

AK =0 (57)
80 = 0 (58)
ARk =0 (k =1,..,4) {59)

where K, Q and Rk are defined in Eqs. (26) through (28), and where the
symbol A(---) denotes the difference of the quantity (---) evaluated on
the outer side of the corner line and the same quantity evaluated on the
inner side. Equations (57) through (59) are the Erdmann-Weirstrass
corner conditions for the case of the corner lines being free.

In Appendix G Egs. (57) through (59) are evaluated for the funda-
mental function F given by £q. (18), and it is shown that the corner line
conditions for this problem are identically satisfied by the requirement
that the dependent variables V, 6, ¢ and f are continuous on the extremal
surface. Therefore, no additional information is obtained from the
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Erdmann-Weirstrass corner conditions.

3. COMPATIBILITY OF THE CONTROL SURFACE AND THE KERNEL

At this point there is no assurance that the equations which have
been derived to describe the dependent variables V, 8, ¢ and T will
produce flow properties on the control surface which can be matched with
the given flow in the kernel. If it can be shown that the control surface
has the properties of a wave surface in a homentropic, iscenergetic,
supersonic flow, then the matching of the flows is assured.

The necessary and sufficient conditions for a surface to be a wave
surface are discussed in Appendix H. Briefly, the surface must be
oriented in a direction tangent to a wave surface of the flow, and the
variation of the flow properties along the surface must satisfy the
compatibility equation that applies along wave surfaces in the flow. It
can be shown that an optimal control surface is indeed tangent every-
where to a wave surface in the flow and that Eqs. (35) through (38) can
be combined to derive the compatibility equation which must be satisfied
along wave surfaces in the flow. Thus, the compatibility of the flow on
the control surface with the flow in the kernel is assured. For details
on the derivation of these conditions, see Appendix H.

4. SPECIAL CASE OF AXISYMMETRIC FLOW

If the six equations, Egs. {(35) through (39) and Eq. (5%), correctly
describe the control surface for a maximum thrust, fixed Tength, constant
mass flow rate nozzle, then for an axisymmetric flow these equations will
be compatibie with the axisymmetric optimization equations as derived by
Rao (2) and Guderley (3). For an axisymmetric flow ¢ = 0 and 5( )/3¢ = O.
Under these conditions, Egs. (35) through (39) reduce to the following
three equations:

Vcos(o - u) _
cosu = (60)
$' =0+ u (61)
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PpV251n29 tanu = - A3 (62)

where ¢' = 8 - /2 and A3 is a constant. If the condition that y = 0 is
substituted into Eg. (55), the transversality equation can be rewritten

as follows:

[(p - pa) - szsine cos6 tanu]] =0 (63)
T

e
Equations {60} through (63) are identical to the equations which were
derived by Rac (2) and Guderley {(3). Thus, for axisymmetric flow the
optimization equations for the three-dimensional problem reduce to the
corresponding equations for the equivalent axisymmetric problem. For
more details of the axisymmetric nozzle optimization analysis consult
Appendix I.
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SECTION III
NUMERICAL DEVELOPMENT

In this section the numerical solution procedure used to solve the
design equations derived in Section II is presented. When these equa-
tions are solved using initial conditions obtained from a specified
three-dimensional kernel, the solution yields the following information
for a maximum thrust nozzle: 1) the position of the control surface,

2) the flow properties on the control surface, 3) the shape of the exit
lip of the nozzle, 4) the thrust produced by the optimal nozzle and

5) the ambient pressure for which the nozzle is optimally designed. The
design parameters which affect the features of maximum thrust nozzies are
the initial contour, the initial value surface, and the position of the
initial value line.

Before the numerical solution procedure used in this research is
presented in detail some general comments should be made. There are
several design procedures which could be used to design optimal three-
dimensional nozzles. The possible approaches can be separated into the
following two cases: 1) solve the problem as a two point boundary value
problem and 2} solve the problem as an initial value problem. To solve
the problem as a two point boundary value problem, conditions are
specified on both the inner and outer boundary of the control surface
(e.g., the flow in the kernel could be specified along with the desired
shape of the exit 1ip, the desired nozzle length and the desired ambient
pressure). When the problem is solved as a two point boundary value
problem, a number of iterations are necessary before an optimal control
surface is generated which satisfies the conditions at both boundaries.
Treating the problem as an initial value problem makes it possible to
calculate an optimal control surface with no iterations and then iterate
between optimal solutions to match specific boundary conditions. Both
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approaches are valid; however, they differ in complexity. In this
research the problem is solved as an initial value problem since this is
the most straightforward approach. The overall algorithm used in this
approach is now presented.

The overall numerical algorithm consists of four basic steps which
are discussed separately in this section. The four steps are listed
below:

1} For a specified initial contour and starting surface

in supersonic flow calculate the resulting flow
field (kernel).

2) Determine the shape of an initial value line in the
generated flow field which satisfies the design
equations presented in Section II.

3) \Use the conditions along the initial value line as
initial conditions, and solve for the corresponding
optimal control surface,

4) Determine the nozzle exit 1ip which corresponds to
the optimal control surface which has been generated.

The above four steps are discussed in more detail on the following pages.

1. THREE-DIMENSIONAL KERNEL REGION

For a specified initial contour and starting conditions in a super-
sonic portion of the flow, the flow in the kernel can be calculated.
Later in this section it will be shown that to obtain an optimal, three-
dimensional nozzle, it is necessary to start with a three-dimensional
kernel; therefore, all discussions concerning the kernel will be for
three-dimensional flow fields.

In this work the theoretical development and associated computer
program presented in Refs. (15) and (23) are used to analyze the flow
in the kernel. The three-dimensional, supersonic, steady flow analysis
is based on a method of characteristics numerical scheme which has second
order accuracy. The computer program may be applied to analyze non-
isoenergetic and nonhomentropic flows of a calorically perfect gas or
homentropic flows of a real gas in chemical equilibrium. In this work
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the flow on the noncharacteristic starting surface is restricted to an
isoenergetic, homentropic flow of a perfect gas. Hence, the flow through-
out the kernel is iscenergetic and homentropic since shocks waves are

not treated by the flow analysis program, and the flow is assumed to be
inviscid.

The procedure to generate a three-dimensional kernel is as follows:
1} specify an initial expansion contour which extends from a planar
starting surface to a station which is downstream of the region where the
initial value line will be located, 2) specify supersonic flow conditions
on a planar starting surface which is normal to the z-axis and 3) utilize
the three-dimensional fiow analysis program to calculate the flow field
downstream of the initial value surface. A planar starting surface is
necessary since the integration process in the analysis program takes
place between a series of planes parallel to the starting surface. Hence,
more of the flow field than just that in the kernel is calculated. In
fact, the extent of the kernel is not known until the initial value line
in the three-dimensional flow has been constructed. To obtain a three-
dimensional flow in the kernel it is possible to specify a three-
dimensional contour, specify a three-dimensional flow on the starting
surface or do both.

Since the flow field in the kernel will directly affect the contour
of the particular maximum thrust nozzle that is generated, the initial
expansion contour and starting surface should be chosen with care. When
the numerical results are presented in Section IV, it will become clearer
what defines a reasonable contour and starting surface. A more detailed
discussion of the calculation of the flow in three-dimensional nozzles is
presented in Appendix J.

2, INITIAL VALUE LINE

An initial value line is defined as the intersection of the boundary
of the kernel with the optimal control surface. However, at this point
in the numerical development the extent of the kernel has not been
determined. Once the position of an allowable initial value line is
determined, the extent of the kernel can be determined, and the control
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surface corresponding to the particular initial value can be numerically
determined.

Since an initial value line is the inner boundary of an optimal
control surface, not only must the conditions along an initial value line
match the conditions in the kernel, but they must also satisfy the set
of design equations that define an optimal control surface (i.e., Eqs.
(35) through (39)). Therefore, the following equations must be satisfied
along an initial value line:

Vcose + x, = - Vsing tany (64)
a =y (65)
B=06+yu+ /2 (66)

df = (af/ar)}dr + (af/34)d¢ (67)

where AZ is a constant and

I

af/or = - tangcoscw (68)

It

5F/9¢ = - rtangsing (69)

Equations (38) and (39) do not specify any conditions that can be
evaluated along an initial value line; therefore, they are not included
in the above set of equations. For Eq. (64) to be satisfied along an

initial value line, the values of V, 6 and u at all points along the
initial value line must be such that

- V{cose + sinstany) = > (70)

where Ao has the same constant value at all points. By substituting Eqs.
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(65), (66), (68) and (69) into Eq. (67), Eq. (67) can be rewritten in
the following form:

df = - tan{e + u + 7/2)(cosydr + rsinyds) (71}

By choosing an initial value line to satisfy Eqs. (70) and {71}, the
initial value line will be compatible with the optimal control surface.

For a specified initial contour and starting surface the specifica-
tion of the position of one point which must lie on the initial value
line and the application of Eqs. (70) and {71) are sufficient to deter-
mine a unique initial value Tine in the generated flow field. The
details concerning the manner in which Egs. (70) and (71) are applied
are presented in Appendix J.

Before continuing it should be noted that, in general, in an
axisymmetric flow field, Eqs. (70) and (71) are only satisfied along
axisymmetric curves in the flow. Only an optimal axisymmetric nozzle
can be designed from an initial value line along which r, z, M, 8 and ¢
are constant. Therefore, in general, it is necessary to have a three-
dimensional kernel to be able to design an optimal three-dimensional
nozzle. ‘

3. CONTROL SURFACE

The equations which govern the shape of the control surface and the
flow variables on the control surface were derived in Section II. Three
of the equations, Eqs. (35}, (38) and (39), are written in such a form
that they contain only three of the dependent variables V(r,¢}, a{r.¢)
and ¢{r,s). Equations (35), {38) and (39} can be solved numerically for
these three dependent variables where the initial value Tine serves as
the inner boundary to the control surface and gives initial conditions
for the solution.

If Eq. (35) is differentiated, solved for the quantity ds/dV, and
combined with the following two equations which are derived in Appendix B,

dp = - 1/(M(M2 - 1)”2]dr4 (72)
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M = [1 N (Y-1)M2/2]/a dv (73)

then the following equation is obtained:

&(M2~1)]/2cose + sina] _ Msine
+

2 ) -T2
go = N0 P (1) gm (74)
[(M - 1)/ “sing - cosel

If Eqs. (38) and (392) are expanded and Egs. (72) through (74) are used to
eliminate derivatives of p, V, and 8, Eqs. (38) and (39) can be rewritten
in the following form:

Mo M, B, 9y -
Dg 3r * Do rae * D5 5y * Dg rag th; =0 (75)
g, Moy Moy ey Wy o

1 ar 2 3¢ 5 ar 6 rag 7 (76)

The coefficients in Eqs. (75) and (76) are functions of the Mach number M
and the flow angles & and §. The expressions for the coefficients are
given in Appendix K.

In order to numerically solve the set of first order, quasi-linear,
partial differential equations given by Eqs. (74) through (76}, it is
necessary to determine the nature of the set of equations. By putting
Eqs. (79) and (76) into a form suitable for solution by the method of
characteristics, it can be shown numerically that the slopes of the
characteristic directions of the equations are real in the domain of
interest. Thus, the partial differential equations are hyperbolic, and
a marching numerical scheme can be used for their solution.

To solve the hyperbolic set of equations, the two partial differen-
tial equations, Eqs. (75) and (76), are put into characteristic form by
using the theory of the method of characteristics. Thus, the two partial
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differential equations are replaced by two ordinary differential equa-
tions called compatibility equations. Each of the compatibility equa-
tions is valid along a characteristic direction. The equations for the
slopes of the characteristic directions are obtained by the application
of the method of characteristics.

The two ordinary differential compatibility equations, im combination
with the equations for the characteristic directions and Eq. (74), are
solved by expressing these five equations in finite difference form and
employing & modified Euler numerical solution scheme. The details of the
equations, procedures and mesh used in the solution are presented in
Appendix K.

With the values of the variables V(r,s), o{r,¢) and v(r,s) known on
the control surface for a specified initial value line, Eq. (71) is
solved for f(r,¢) by expressing the differential equation in the follow-
ing form:

fy= - (r, - r])(tan (6 + u+ "/2)‘305411

average

- (¢2 - ¢1)(rtan(e + o+ w/2)sinw] (77)

average

where the averages are between points 1 and 2. Equation (77) is applied
between mesh points on the control surface using the initial value Tine
as an initial condition.

For a specified kernel and initial value line the solution for the
control surface is continued radially outward to a radius such that the
exit lip of the nozzle will 1lie inside the outer boundary of the solution
surface. Since the position of the nozzle exit 1ip corresponding to the
specified kernel and initial value line is not known beforehand, the
point at which to stop constructing the control surface depends on the
amount of mass flow crossing the control surface. More about the proce-
dure at this point in the solution is presented in Appendix K.
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4. NOZZLE EXIT LIP

The equation which must be satisfied along the exit lip of an
optimal fixed length nozzle has the following form:

sinesinmdfe)]

re 4t

it

0 (78)

((p-pa) + pvzsinetanu(- cosg +

Te

Equation (78) is used to determine the shape of the exit 1ip of an optimal
nozzle after the control surface has been constructed. It should alsc be
noted that the optimal exit 1ip must also satisfy Eq. (13) so that the
constant mass flow rate constraint is satisfied.

To apply Eq. (78) the equation is rewritten as the following finite
difference equation:

‘ rpvzsinecosetanu - r(p~pa)
f, = f + ——s (6, - 41) (79)
e e oY sin"atanusiny

average

For a known control surface V(r,¢), e(r,¢}, w(r,e), p(r.¢), p(r,s) and
f(r,4) are available to use in Eq. (79)}. If one point on a known control
surface is assumed to lie on the exit lip corresponding to the control
surface, a second point on the exit lip can be determined by picking a
$o and iterating until a f2 is found which satisfies Eq. (79). This
process can be continued argund the exit lip until an entire curve on the
control surface has been constructed. Since Eq. (79) contains the
quantity Pas it is necessary to assume a value for Py when the first
point on the exit lip is picked. Unless the correct value of Py is
chosen, the curve which is generated using Eq. (79) will not be a closed
curve. Thus, an iterative process is necessary to determine the value of
Pa which yields a closed curve.

Once a closed curve has been generated on an optimal control surface,
then the mass flow rate through the portion of the control surface
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bounded by the initial value line and the exit lip is calculated. Since
the total mass flow rate which passes through the nozzle and the mass
flow rate which passes through the exit of the nozzle interior to the
initial value line can be calculated, the required value of mc_s. is
known.

If the first complete exit lip which is generdted does not satisfy
the mass flow rate constraint, a new first point for another exit lip
and another Pa value are chosen., If the calculated value of hc_s. is
less than the required value, the new first point is chosen to be at a
larger radius than the original first point, and vice versa. The correct
value of Py for the new point is determined as explained above, and a
second candidate exit 1ip is generated. This process is continued until
a closed curve on the control surface is found which allows the correct
mass flow rate to pass across the control surface and satisfies Eq. (79).
The details on the numerical solution for the optimal exit 1ip are

presented in Appendix L.
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SECTION 1V
THREE-DIMENSIONAL OPTIMAL NOZZLE RESULTS

In this section results are presented for nine optimal nozzles which
have been numerically generated using the theory presented in Sections I,
IT and III. Solutions for three different initial expansion contours are
presented to illustrate the general capabilities of the technique and to
illustrate general trends which have been observed. The cases presented
are not necessarily directed toward any specific applications but are
representative of the types of nozzles which might be considered for
either rocket, ramjet or scramjet nozzles.

1. INTRODUCTION

The optimal control surfaces for several maximum thrust, three-
dimensional nozzles have been generated numerically in the course of this
research. The primary results for nine of these optimal nozzles are
discussed in this section and are illustrated in Figures 5 through 28.

In each case the kernel region was computed for a prescribed set of
initial conditions (i.e. a prescribed initial expansion contour and a
prescribed start condition) using the three-dimensional method of charac-
teristics program described in Refs. {15) and (23). In each case a
circular initial expansion contour was specified with parallel uniform
flow of Mach number 1.05 at the throat. Also, it was assumed that two
planes of symmetry exist. This is not essential to the general optimi-
zation procedure, but it does permit a considerable reduction in compu-
tational time while investigating the salient features of the method.

The nine optimal nozzles are divided into three sets of three nozzles
each. Each set of nozzles has been designed using a different initial
expansion contour. The three sets of initial expansion contours differ
in their throat radii and their radii of curvature, but all sets have
initial expansion contours which are elliptical in cross section.
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In this work the term throat is used to dencte the cross section of
the nozzle where the starting conditions are specified. Since the nozzle
contour is not specified upstream of the throat, it is not known that
the throat section is actually a minimum area section. Thus, the results
are not restricted to converging-diverging nozzles.

Since no convenient dimension exists to nondimensionalize the length
and radius of three-dimensional nozzles, the actual dimensions are shown
in inches, Of course, all dimensions can be scaled upward or downward.

The thrust coefficients of the optimal three-dimensional nozzles
are nondimensionalized with respect to the thrust coefficient of the
ideal (perfect) nozzle designed for the same ambient pressure, stagnation
pressure and specific heat ratio. For an ideal nozzle Cf is given

by the following equation: 1deal

1/2
2
Fideal o (2 (O g gp) T (80)
1Gea

The pressure ratio for which the three-dimensional nozzles are
optimal 1y designed are expressed as dimensionless ratios of the form
(polpa) where Po is the stagnation pressure and Py is the ambient pres-
sure. The values of (pofpa) range from 11.1 to 470.0 for the nine noz-
zles shown in this report.

As each optimal nozzle is discussed, it should be remembered that
each nozzle produces the maximum axial thrust for the following set of
conditions: 1) starting flow conditions, 2} initial expansion contour,
3) length, exit 1ip shape and flow conditions along the exit 1ip and
4) ambient pressure. Therefore, each of the nozzles discussed here is
optimally designed for a unique set of conditions. It should also be
pointed out that the determination of the actual optimal nozzle contour
is not a part of this research; however, many important features of opti-
mal three-dimensional nozzles can be determined without knowing the
entire nozzle contour.
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The flow is irrotational on each starting surface since the flow is
uniform and parallel; therefore, the flow on an optimal control surface
generated using an initial value line in this irrotational fiow field
must also be irrotational. In each of the nine cases presented here it
has been numerically shown that the flow on the optimal control surface
is irrotationeal.

The resuits for the nine sample optimal nozzles are now presented.
As discussed above, the nine nozzles are divided into three sets of
three nozzles each. These three sets are referred to as Case A, Case B
and Case C, and the sets of nozzles differ in their throat shapes and
their throat radius of curvature. For convenience Figures 5 through 28
are grouped together at the end of this section.

2. CASE A

The three optimal nozzles in Case A were designed from a kernel
region produced by an initial expansion contour with a radius of curva-
ture of one inch and an elliptical throat cross section with a major
di ameter equal to four inches and a minor diameter equal to two inches.
In each case a different amount of the initial expansion contour is a
part of the optimal contour since the extent of the kernel is different
for each of the three optimal nozzles.

A. Optimal Nozzle 1

Figure 5 shows the intersection of optimal nozzle 1 with the two
planes of symmetry (i.e., the ¢ = 0° and ¢ = 90° planes). The figure
shows the initial expansion contour, the extent of the kernel, and the
optimal control surface. As shown in Figure 5 the optimal nozzle does
not end in a plane or have a constant exit radius.

Figure 6 shows the values of r, z, M, 8 and ¢ along the initial
value Tine for 0° < ¢ < 90°. As shown in the figure, the initial value
line lies very nearly in a plane; however, the radius of the initial
value 1ine is a strong function of the polar angle 4. Also, the values
of M, e and ¢ vary in a smooth fashion along the initial value line. The
values of the flow angle y( - 11.6° < y < 0.0°) along the initial
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value line illustrate that the flow is indeed three-dimensional.

Figure 7 shows the values of the flow variables M, & and ¢ on the
optimal control surface. The values of M, o and ¢ are shown as functions
of radius along the ¢ = 0°, 45° and 90° pianes. As shown the Mach
number on the control surface increases with radius while the flow angle
6 on the control surface decreases with radius. A very interesting
result is shown by the plot of (45°) as a function of radius (The flow
angle ¢ is identically equal to zero on the two planes of symmetry.).

In the ¢ = 45° plane the value of ¢ on the control surface very rapidly
decreases in absolute value from 11.6° to 0.0° and then slowly increases
in absolute value to reach a value of 1.25° at the exit 1ip. This
indicates that the flow on the control surface near the initial value
line has a cross flow component in the counterclockwise direction {facing
the positive z direction), while on the control surface near the exit 1ip
the flow has a cross flow component in the clockwise direction.

Figure 8 shows the values of r, z, M, 6 and y along the exit lip of
optimal nozzle 1. As shown the radius of the exit lip varies from 4.6
inches to 2.8 inches, and the nozzle does not end in a plane (9.2 inches
< length < 13.8 inches). The figure also shows that the Mach number is
constant along the exit Tip, while the flow angle 8 varies slightly from
a mean value. Also along the exit 1ip the flow angle ¢ varies as a
function of ¢(- .30 < y < 1.25°).

Figure 9 shows the projections of the throat, the initial value line,
and the exit 1ip on the r,¢-plane. An interesting and unexpected result
is illustrated in this figure. Figure 9 shows that the maximum thrust
nozzle corresponding to the elliptical initial flow (throat) has an exit
1ip which has a generally elliptical projection on the r,¢-plane but with
the orientation of the ellipse rotated by 90 degrees. Figure 10 summar-
izes portions of the results presented in Figures 5 through 9 by present-
ing the results in tabular form.

The nozzle itlustrated in Figures 5 through 10 is optimally designed
for a pressure ratio of (po/pa) = 49.7. Also the ratio Cf/Cfidea] is
equal to 0.996 where the perfect nozzle is designed for the same pressure
ratio,

42



To further evaluate the performance of this maximum thrust, three-
dimensional nozzle a three-dimensional comparisen nozzle was designed
and analyzed using the three-dimensional flow analysis program described
in Refs. (15) and (23). The starting flow conditions and initial expan-
sion contour for the comparison nozzle were identical to those of
optimal nozzle 1. The length and exit radius of the comparison nozzle
was chosen so that the comparison nozzle was not overexpanded for a
pressure ratio of (polpa) = 49.7. The comparison nozzle was 12.8 inches
long and had an exit radius of 5.0 inches. For this three-dimensional
nozzle Cf/CfidEa] = 0.940 when the nozzle is operating at an ambient
pressure such that (po/pa) = 49,7, Similar results were obtained for
other comparison three-dimensional nozzles which were designed with over-
all dimensions similar to nozzle 1. Since the flow analysis program (23)
is not written to handle free pressure boundaries, only three-dimensional
nozzles for which the exit 1ip was in a plane were analyzed.

B. Optimal Nozzle 2

Figure 11 shows the intersection of optimal nozzle 2 with the two
planes of symmetry. The figure shows the initial expansion contour, the
extent of the kernel, and the optimal control surface. As shown in
Figure 11 optimal nozzle 2 does not end in a plane, and its exit radius
is a function of the polar angle ¢. By comparing Figure 11 to Figure 5
it can be seen that the initial value 1ine for nozzle 2 is farther down-
stream and at a larger radius than the initial value line for nozzle 1.

Figure 12 shows the values of r, z, M, @ and  along the initial
value line of optimal nozzle 2. As was the case with nozzle 1, the
values of r, z, M, 8 and ¢ vary along the initial value line. By com-
paring the initial value line of nozzle 2 with the initial value line of
nozzle 1, it is seen that the initial value Tine of nozzle 2 is in a
region of higher Mach number, higher divergence angle & and lower
absolute value of the flow angle y. Thus, the equations which define
the optimal control surface have different initial conditions in the
two cases.

Figure 13 shows the values of the flow variables M, o and ¢ on the
optimal control surface of optimal nozzle 2. As shown, the Mach number
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increases with radius while the flow angle ¢ decreases with radius. Again
the angle y(45°) decreases in absolute value, passes through zero and

then slowly increases to a value of 2.09°. This variation of y is similar
to that observed in Figure 7; however, for optimal nozzle 2 32¢(45°)/82r >
0 on the control surface near the initial value line, while for optimal
nozzle 1 a2¢(45°)/32r < 0 on the control surface near the initial value
line.

Figure 14 shows the values of r, z, M, 8 and ¢ along the exit Tip.
The radius of the exit 1ip varies from 5.80 inches to 3.88 inches. The
value of the Mach number is constant, while the flow angle ¢ varies
slightly (7.94° < 0 < 8.14°). Also, along the exit 1ip -0.30° < y 22.09°.

Figure 15 shows the projections of the throat, the initial value line
and the exit 1ip on the r¢-plane. Again the results show that the maximum
thrust nozzle corresponding to the elliptical initial flow (throat) has
an exit lip which has a generally elliptical projection on the r¢-plane
but with the orientation of the ellipse rotated by 90°. Figure 15 also
shows that the projection of the exit lip of optimal nozzle 2 is more
nearly rectangular than that of optimal nozzle 1. It is also interesting
to note that the exit 1ip dips in slightly near both planes of symmetry.
Figure 16 summarizes portions of the information presented in Figures 11
through 15.

Optimal nozzle 2 is designed to operate at a pressure ratio of
(pO/pa) = 170.0. Thus, if both nozzle 1 and nozzle 2 are operated for
identical stagnation pressures, nozzle 2 is optimally designed for a
lower ambient pressure. The performance of optimal nozzle 2 is such that
Cf/cfidea] = 0.984 where the comparison perfect nozzle is also designed
for a pressure ratio of (pO/pa) = 170.0.

To further evaluate the performance of this optimally designed three-
dimensional nozzle, a comparison three-dimensional nozzle was analyzed.
The starting flow conditions and initial expansion contour for the com-
parison nozzle were identical to those of nozzle 2. The comparison
nozzle was 12.33 inches long and had a circular exit 1ip with a radius
of 6.45 inches. For this three-dimensional nozzle Cf/Cfi eal 0.958
when the nozzle is operated at a pressure ratio of (po/pa§ = 170.0.
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C. Optimal Nozzle 3

Figures 17 through 22 present the numerical results for optimal
nozzle 3. Nozzle 3 has the same throat region as nozzles 1 and 2;
however, the extent of the kernel is different. The initial value line
of nozzle 3 is farther downstream than the initial value Tine of either
nozzle 1 or nozzle 2. Also, optimal nozzle 3 is Tonger and has a Targer
projected exit area than either optimal nozzie 1 or optimal nozzle 2.

The results are generally similar to the results presented for
nozzles 1 and 2, but there are some differences. As shown in Figures 20
through 22, the variations of r, z, M, 6 and v along the exit lip do not
vary in as smooth a manner as is the case with nozzles 1 and 2. These
variations result from the more irreguiar variations in r, z, M, 8 and
along the initial value line (see Figure 18).

Optimal nozzle 3 is designed to operate at a pressure ratio of 314.0,
The thrust performance of the nozzle is such that Cf/Cfidea =0.993. A
comparison three-dimensional nozzle with a length of 20.0 1nches and an
exit radius of 7.0 inches was analyzed and for this comparison nozzle
Cf/cfidea] = 0,960 when evaluated at a pressure ratio of (po/pa) = 314.0.

3. CASE B

The three optimal nozzles in Case B were generated from a kernel
region produced by an initial expansion contour with a radius of curva-
ture of 1.2 inches in the ¢ = 0° plane of symmetry and a radius of
curvature of 1.0 inch in the ¢ = 90° plane of symmetry. The throat of
each of the nozzles has an elliptical cross section with a minor diameter
of 2.0 inches in the ¢ = 0° plane and a major diameter of 2.4 inches in
the ¢ = 90° plane. The rest of the initial expansion contour for
0° < ¢ < 90° is composed of a smooth transition section. Therefore, the
initial expansion contours of the nozzles in Case B are less axisymmetric
than the initial expansion contours used in Case A,

A. Optimal Nozzle 4

Figure 23 summarizes the numerical results for optimal nozzle 4. The
projection on the r¢-plane of the throat, the initial value line and the
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exit 1ip are shown for one quadrant of the nozzle. In the tabie the
values of z, o, M and  along the initial value 1ine and along the exit
lip are tabulated as functions of the polar angle .

As shown in Figure 23 optimal nozzie 4 has a three-dimensional
shape, but it is less axisymmetric than the nozzles in Case A. Nozzle 4
is optimally designed for pressure ratio of (pO/pa) = 21.55. The overall
performance of the nozzle is such that Cg/Cy¢ = 0.991.

ideal
B. Optimal Nozzle 5

Figure 24 summarizes the numerical results for optimal nozzle 5.
Nozzle 5 was generated using an initial value line which is at a larger
radius and is farther downstream than the initial value 1ine for nozzle
4. The result is that nozzle 5 is a longer nozzle with a larger exit
radius and is designed for a higher pressure ratio ( (po/pa)z 66.6). As
with the previous four optimal nozzles, optimal nozzle 5 has a projected
exit Tip which is generally elliptical in shape, but the orientation of
the major axis is rotated 90° from the major axis of the throat. For
optimal nozzle 5, Cf/Cfidea} = (.974.

C. Optimal Nozzle 6

Figure 25 summarizes the numerical results for optimal nozzle 6
(note that different scales are used in the plots on Figures 23 through
25). Nozzle 6 is the most symmetric nozzle presented up to point, and
it was generated using the most symmetric initial value 1ine that has
been presented. Nozzle 6 is optimally designed for a pressure ratio of
(pO/pa) = 470.0, and has a performance such that Cf/Cfidea1 = 0.997.

4. CASE C

The three optimal nozzles in Case C were generated from a kernel
region produced by an initial expansion contour with a radius of curva-
ture of 0.5 inches in the ¢ = 0° plane of symmetry and a radius of
curvature of 1.0 inches in the ¢ = 90° plane of symmetry. The throat
of each of the nozzles has a circular cross section with a 1.0 inch

46



radius. The rest of the initial expansion contour is composed of a
smooth transition section along which the radius of curvature varies
from 0.5 inches to 1.0 inch.

A. Optimal Nozzle 7

Figure 26 summarizes the numerical results for optimal nozzle 7.
The exit radius of optimal nozzle 7 varies from 1.40 inches to 1.61
inches while the length varies from 2.75 inches to 3.07 inches. This
nozzle is optimally designed for a pressure ratio of (pO/pa) = 11.1 and
has a performance such that Cg/Cg. = 0.998.
ideal

B. Optimal Nozzle 8

Figure 27 summarizes the numerical results for optimal nozzle 8.
The initial value line for nozzle 8 is in nearly the same r¢-plane as
the initial value T1ine for nozzle 7, but it has a larger radius. The
result of the two different initial value lines is that nozzle 8 has a
larger projected area than nozzle 7, but nozzle 8 is shorter than
nozzle 7.

Nozzle 8 is optimally designed for a pressure ratio of (pO/pa) =
19.6. Its thrust performance is such that Cf/Cfidea] =0.982.

C. Optimal Nozzle 9

Figure 28 summarizes the numerical results for optimal nozzle 9.
The initial value line for nozzle 9 js in nearly the same r¢-plane as
the initial value lines for nozzle 8 and 9, but it is at a larger radius
than either of the other two initial value Tines. Also the values of M
and 6 are higher on the initial value line for nozzle 9 than on the initial
value lines for nozzles 7 or 8. The result is that nozzle 9 has the
greatest projected exit area, the shortest length and the highest design
pressure ratio ( (po/pa) = 29.8 }. The thrust coefficient ratio for

optimal nozzle 9 is Cg/C = 0.963.
P f fidea]
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SECTION V¥

SUMMARY

A method has been developed for designing three-dimensional nozzles
that produce the maximum axial thrust for the following specific condi-
tions: 1) starting flow conditions, 2) initial expansion contour, 3)
Tength and exit 1ip shape and 4) ambient pressure. The theoretical
development of the optimization design equations, the numerical technique
used to solve the design equations and the results from nine sample cases
are presented in this work,

The uniqueness of the solution is established by proving that the
optimal control surface is a characteristic surface, a result which
assures a unique matching of the flow in the kernel with the flow across
the control surface. Furthermore, when the flow is constrained to be
axially symmetric, the solution reduces to the well known result obtained
by Rao (2).

Comparison of the performance of three-dimensional nozzles is dif-
ficult since there is no established criteria for comparison. The
nozzles discussed here have been compared to two different types of
nozzles. First, the thrust coefficients of the optimal three-dimensional
nozzles were compared to the thrust coefficients of ideal (perfect) nozzles
designed for identical ambient and stagnation conditions. The ratio
Cf/Cf. for the nine optimal three-dimensional nozzles ranged from
0.9631%8a10.996. These values are consistent with the results obtained
in comparing the performance of 6ptima1 axisymmetric nozzles with the
performance of comparable ideal nozzles (see Refs. (2} and (28)).

Second, the thrust coefficients of three of the optimal three-
dimensional nozzles were compared to the thrust coefficients of non-
optimally designed three-dimensional nozzles that had identical initial
conditions and comparable overal] dimensions. Since the three-dimensional
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flow analysis program (23) that was used in this research did not have
the capability to handle pressure boundaries, it was only possible to
analyze three-dimensional nozzles ending in a plane. The compariscn
of the thrust coefficients confirms that the performance of the three-
dimensional optimal nozzle is significantly better than those three-
dimensional comparison nozzles which were analyzed.

Other features of the nine optimal three-dimensional nozzles were
also investigated. The results show that two-dimensional or axisymmetric
methods are not adequate for designing three-dimensional optimal nozzles.
In fact, the results show that for the cases investigated the optimal
nozzles with elliptical throats have exits which have an elliptical projec-
tion on the r¢-plane but with the orientation of the ellipse rotated by
90 degrees. The results also show that optimal, fixed length, three-
dimensional nozzles do not necessarily end in a plane.
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APPENDIX A
DERIVATION OF GEOMETRICAL RELATIONSHIPS

1. COORDINATE SYSTEM

Three coordinate values are required to describe the position of a
point in three-dimensional space. A r,¢,z-cylindrical ccordinate system
is used throughout this work as the spatial reference. The z-axis is
aoriented in the principal flow direction with the positive z direction
corresponding to the downstream flow direction. The polar angle ¢ is
measured in the counterclockwise direction from a stationary reference
line in the r¢-plane, and the radius r is measured radially outward
from the z-axis. The orientation of the coordinate system is shown in
Figure 29,

2. CONTROL SURFACE

A schematic representation of a general three-dimensional nozzle
is also shown in Figure 29.  The nozzle shown has one plane of symmetry.
The zone of influence of the initial contour of the nozzle is denoted as
the kernel and is the portion of the supersonic flow for which the flow
variables are completely determined by the initial flow conditions
upstream of the initial contour and the shape of the initial contour.

The control surface passes through the exit 1ip contour of the
nozzle and intersects the kernel. The control surface can be described
parametrically by the equation

F'(r,4,z) = 0 (81)
Equation (81 ) can be solved for z in terms of r and ¢ to give

z = f(r,¢) (82)
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which describes the control surface when the function f(r,4)} is known.

The control surface can also be described by the outer unit normal
n at every point on the control surface. The outer unit normal for an
element of the control surface is shown in Figure 30, and is uniquely
specified by two spherical angles o and 8. The angle 8 is defined as
the angle between the positive z-axis and the unit outer normal to the
control surface, {0° < 8 < 180°). The angle a is measured counterclock-
wise from the radial direction to the projection of n onto the r¢-plane.
Hence, the direction cosines of the unit outer normal to the control
surface are

n. = sing cosa
n¢ = 5ing sina (83)
n, = cosg
and n can be written as
n = (sing COSu)?} + (sing sina)T4 + (coss)?} (84)

where T}, T;, and ?; are unit vectors in the positive radial, tangential,
and axial directions, respectively.
On the control surface, the partial derivatives of f can be

expressed in terms of the angles a and g8 as follows:

of

o = - tang cosa (85)
of _ .
25 © - rtans sina (86)

In the formulation, r and ¢ are the independent variables on the
control surface. Thus, it is convenient to relate the area of a differ-
ential element of the control surface dAc s to its projected area on the
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r¢-plane. By using the vector relationship

- (n - 7_)dA ¢ T rdrd (87)

and combining it with Eqs. (83) and (84), the following equation is
obtained:

dAc.s. = ~ rdrdé/cosp (88)

3. VELOCITY VECTOR

The velocity vector V at any point in the three-dimensional flow
is uniquely determined by its magnitude V and two spherical angles ¢
and ¢. The angle 6 is the angle between the positive z-axis and the
velocity vector, {-90° < 6 < 90°). The angle ¢ is measured in the
ro-plane, counterclockwise from the radial direction to the projection
of V onto the r¢-plane. These angles are illustrated in Figure 31.
The direction cosines of V are

Vr = V sing cosy
v¢ = VY sine siny (89)
VZ =V cos9

Thus, the velocity vector can be written as the following:

V = V((sine cosy)T  + (sing sin¢)i¢ + {cose)i,) (90)

The angle ¢ 1is defined by the following equation:
sing = - (V + n)/¥ (91"

By combining Eqs. (83) and (89 ) with Eq. (91 }, the following expres-
sion is obtained:
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FIGURE 31. VELOCITY VECTOR
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sing = - cosg cosé - sing sine cos(y - a)

When Eqs. (91 ), (84) and ( 85) are combined, the expression

sing . of , sino siny of
—t E . + - + —
osp cos8 + sing cosy o = 5a

can he written,
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APPENDIX B
DYNAMICS AND THERMODYNAMICS
OF THE FLOW

In this appendix the assumptions which constitute the flow model
used in this research are presented. The thermodynamic relations
governing the flow are combined with the momentum equations to show that
the thermodynamic properties p, T and p are unique functions of the
velocity V, the stagnation conditions Po and hO and the constant proper-
ties of the flow vy and R. Finally, a number of differential relation-
ships are derived which will be used to introduce the flow model into
the formulation and solution of the optimization problem.

The three-dimensional, supersonic flow considered in this work is
that of a continuum fluid flowing without friction and without body
forces (gravity, electromagnetic, etc.). A1l stream properties within
the flow are assumed to vary continuously in all directions; this implies
that shocks are excluded. In addition, the flow is assumed to be steady,
homentropic (i.e., the entropy is constant throughout the fluid flow) and
isoenergetic {i.e., the stagnation enthalpy h0 is constant throughout the
fluid flow). The thermodynamic properties of the flow are assumed to
obey the perfect gas relations.

For a homentropic flow of a perfect gas the following egquations are

valid:
T/T=1+ (v - 1)/2 (94)
po/p = (T m =) (95)
o o = (TymM/ T = 1) (%6)
% = (dp/dp)g = 2 (97)
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h = yRT/{y - 1) (98)

where the constants vy and R are the specific heat ratio and the gas
constant, respectively. In addition, M is the Mach number where M = V/a.
The pressure-temperature-density relation of a perfect gas is

p = pRT (99)

For the inviscid flow of a pure substance (e.g. a perfect gas),
Crocco's theorem must be satisfied. Crocco's theorem states that

Tvs - V x (v xV) = vho + aﬁ}at (100)

For a steady, isoenergetic, homentropic flow Crocco's theorem is satis-
fied only if V x (v x V) = 0. Thus, the flow is either an irrotational
flow or a Beltrami flow (24) (i.e., V is parallel to v x V).

For a homentropic flow of a perfect gas the following equation is

valid:
Y o Y .
p/p' = po/p0 = K1 (101)

where K] is a constant. Since shearing forces and body forces are
excluded from this analysis, the only forces acting on the system are
the pressure forces. Under these assumptions, Euler's equations of
motion are valid. These three equations can be expressed in vector
form as

= - vp/p (102)

Lo J ] )
1=

where the symbol D/Dt represents the substantial derivative with respect
to time. Reference (16) shows that for a steady, isoenergenetic, homen-
tropic fluid motion the Euler equations of motion, Eq. (102 ), can be
used to derive the following equation:
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]

d
J P+ L=k, (103)

where K2 is constant throughout the flow.
Taking Togarithmic differentials of Eq. (101) and combining the
resulting equation with Eq. (103 ) yields the relation

ver2 + K]YpY_]/(Y-]) = K, (104)

where Ky is a constant. By combining Eqs. (97 ), (101) and (104) the
following equation can be derived:

Va2 + &%/ (v-1) = af/(x-1) (105)

Equation ( 105) relates the velocity V with the sound speed a and the
stagnation sound speed a, which is a constant. Equation (105 ) can be
solved for a2 so that

a = ag - Ve (y-1)/2 (106 )

Equations { 97 ) through { 99) can be substituted into Eq. (106 ) to
yield the following equation:

ve = Vel = 17 (b (-1/VE - (y-1)/2) (107 )

Therefore, as shown by Eq. (107 ), the Mach number is an unique function
of the flow velocity and the constants y and h,. Combining Eq. (107 )
with Eqs. { 94) through ( 97) yields the following functional relation-
ships:

T= T(Vs hO’ Rs 'Y) (]08 )

o
It

p(V, Pys hys Ry y) (109 )
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o= D(Vs Po: hO’ R, T) (]]0)

a = a{Vv, Pys Ny R ¥) (111)
The above relationships were derived for a steady, isoenergetic, homen-
tropic flow of a perfect gas. The information in the above equations
will be impoertant in the variational problem when deciding what varia-
tions are independent. The equations which relate the differentials
dp, dp, da, du and dM to the differential dV will now be derived.

By applying logarithmic differentiation to Eqs. (97 ), (101),
(103 ) and (105 ) and combining the resulting equations, the following
equations can be derived:

dp = - pVdV (112)
- 2
dp = - pV/a~dv (113)
- y =14V
da = ~ () 7 dv (114)
By definition, the Mach angle p is given by the equation
w=sin” (1/M) = sin”" (a/V) (115)

Equations (114 ) and (115) can be combined so that the differential dy
can be written in terms of the differential dV as

- (I.._é..l + S'inzu)
V sinp cosy

du dy (116)

Furthermore, Eq. (115 ) can be logarithmically differentiated to yield
the following relationship:

du = - 1/ (M2 - 1)1/2)am (117)
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Equations (116 ) and (117 } can then be combined to obtain the following

equation:
M= (1 + (y-1)M/2)7a dv (118)

Equations {112 ) through (114 ) and (116 } through (118) will be used
throughout the variational problem to relate the properties of the flow.
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APPENDIX C
DERIVATION OF THE INTEGRAL THRUST AND
MASS FLOW RATE EQUATIONS

In this appendix expressions for the axial thrust produced by a
three-dimensional nozzle and the mass flow rate through a three-
dimensional nozzle are derived. The notation used is consistent with
that shown in Figure 32, For convenience, the figure is drawn for the
axisymmetric case, but the thrust and mass flow rate expressions are for
a general three-dimensional nozzie.

In the variational problem the initial expansion contour BC and
the flow conditions along a noncharacteristic start surface AB are
specified where AB is in a totally supersonic flow region. With this
information the flow in the kernel region can be calculated. The
surface CIF is the characteristic (wave) surface which is the downstream
boundary of the kernel. Therefore, the conditions along the wave sur-
face CIF are known and fixed. In addition, the position of line I is
known and fixed. The control surface IE is allowed to seek its optimal
shape in the variational problem such that the axial thrust produced by
the flow across the surface IF and the control surface IE is a maximum
for the specified mass flow rate across these two surfaces. The
expressions for the thrust and mass flow rate are written in terms of
variables on these two surfaces.

1. INTEGRAL AXIAL THRUST EQUATION

The axial thrust term to be maximized is equal to the gross axial
thrust produced by the supersonic nozzle minus the drag force produced
by the ambient pressure acting on the projected area of the nozzle.
Thus, the axial thrust can be written as
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mial Thrust = - [ o, - @ ) - [[ o0 @ ()
C.S. C.S.
2 Y‘e(¢)
+ Fixed Axial Thrust . - J J rpdrds (119)
0 70

where the first two terms on the RHS represent the thrust produced by
the flow across the control surface, the third term represents the thrust
produced by the flow across the characteristic surface IF and the last
term represents the ambient pressure force on the frontal area of the
nozzle,

In Appendix A the following equations were derived:

- (n - iz)dAc.s. = rdrdé (120)
dA_ . = - rdrd¢/cosg (121)
V= V((sinecosw)?} + (sinesinw)?@ + (cose)?;) (122)
sing = - (V + )7V (123)
where
dAC s, ° nd:“tc'S (124)

Equations (120), (121) and (124} can be substituted into Eq. (119) to
yield the following equation:
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2 r (9)

Axial Thrust = (rp + rpVZ(V'- n)/cosg)drds
0 ‘rile)
2n r‘e(¢=)
+ Fixed Axial Thrust . - J f rp drdy (125)
0 ‘0

By combining Egs. {122) and {123) with Eq. (125) the following equation
is obtained:

2n v (¢)
Axial Thrust = J (rp - rpvzcosesing/cosa)drd¢
0 r'i(d))
2n r.(9)
+ Fixed Axial Thrust,. - JO JO rp drd¢ (126)

The Tast term in Eq. (126 ) can be split into two surface integrals
and written as

2r ry(s) 2r r.(¢) 2n v (¢)
rpadrd¢ = rp, drdg + rp drdy (127)

0 ‘0 0 /0 0 ri(¢)

where the first term on the RHS is a fixed quantity in the variational
problem since ri(¢) is known and p, is a constant. By combining this
fixed quantity with the Fixed Axial ThrustIF term, the axial thrust
equation can be written as

2n r (4)
Axial Thrust = J J {r(p - pa) - rpvzcosesingfcosa)drd¢
0 ‘ril¢)
+ Fixed Axial Thr‘ustIF (128)

It is the axial thrust as expressed in Eq. (128 ) that is to be maxi-
mized in the variational problem.
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2. INTEGRAL MASS FLOW RATE EQUATION

The following expression represents the total mass flow rate through
the nozzle:

ﬁT = hc.s. + Fixed Mass Flow Rate (129)

where

me. -” -o(V- @A) (130)

The Fixed Mass Flow RateIF term in Eq. (119 )} is the mass flow rate
across the surface IF. By substituting Egs. (120) through (124) into
Eq. { 130}, it is possible to rewrite Eq. (129 )} as follows:

2T re(¢)
ﬁT = (- rpVsing/cosg)drds

0 ‘ri(e)

+ Fixed Mass Flow Rate (131)

IF

It is the total mass flow rate hT as given by Eq. (131} that is con-
strained in the analysis to be a constant,
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APPENDIX D
APPLICATION OF THE CALCULUS OF VARIATIONS

In this appendix, the necessary conditions which must be satisfied
to extremize a generalized functional having the form

I = ” Fl¢s rs zp5 P» G ddr do (132)
S

are derived. The derivation closely parallels the presentation in
Miele (18)}.

In the surface integral, r and ¢ denote the independent variables,
z) are the dependent variables {(k =1, ---, n), and

Py = Zk¢ = azk/a¢ (133)
q = Zpp = sz/SF (134)

indicate partial derivatives of ) with respect to the independent vari-
ables. The function F is an arbitrarily specified function of the
arguments within the parenthesis, called the fundamental function, and

S is the domain of integration.

The value of the functional I depends on the choice of the surface
o, defined by the n functions zk(r,¢), whose projection on the r¢-plane
is the region S. The boundary of the surface o is denoted by the symbol
T while the boundary of the planar region S is denoted by the symbol B.
Figure 33 illustrates these geometric relationships.

An admissible surface o is defined as any set of functions zk(r,¢)
which are continuous, whose derivatives are continuous everywhere except
along a finite number of corner lines, and which satisfy the prescribed
boundary conditions. The balance of this appendix deals with applying
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the calculus of variations to the problem of determining that special
surface in the class of admissible surfaces which maximizes the func-
tional I in Eq. {(132).

For the surface o to be an extremal surface the set of functions
zk(r,¢) must be such that the first variation of the functional vanishes
identically for every admissibie distribution of variations; that is

sI =0 (135)

The condition expressed in Eq. (135) is a necessary condition for a
relative maximum of the functional I. An admissible distribution of
variations is defined as any set of functions gzk(r,¢) which are contin-
uous and consistent with the prescribed boundary conditions.

The first variation of the functional I is given by the expression

I = JJ sFdrdg + JJ Fdrde + JJ 6Fdrdp + JJ Fdrdg (136)
S.I 631 32 552

where the difficulties arising from the presence of discontinuities in
the derivatives of the unknown functions are bypassed by dividing the
domain of integration for the surface integral into subdomains in which
the derivatives are continuous. For simplicity, Eq. (136) is written
for the case in which only one corner line is present in the class of
surfaces being investigated. The symbol &F denotes the first variation
of the fundamental function F calculated at a constant station r and 4
and is represented by

6F =

k (F;

6z) * Fp

135

sp, + F_sq,) (137)
1 & K Kok

with gzk, 5pk, and qu denoting variations calculated holding the inde-
pendent variables r and ¢ constant. Because of the continuity require-
ment for the functions zk(r,¢), these variations satisfy the relation-

ships shown below:
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. a(sz, )

8p, = 7 Jk =1, ....,n) (138)
sa, = olez) (k =1 n) (139)
N — s

In Eq. (136), 65, and 85, denote the variation of the area of inte-
gration resulting from variations of the coordinates of the boundary
line 1. For instance, the contour B may be given while the distribution
of ordinates is free, or the ordinate z may be required to have a
constant value while the contour B is free, or the boundary line t may
be allowed to belong to any surface of three-dimensional space. The lTat-
ter contains every other problem as a particular case since if a
boundary © is a solution to a problem with an unconstrained boundary,
then the same surface ¢ is an optimal if the boundary is constrained to
be this same r.

Upon combining the above equations, operating on terms by Green's
theorem, integrating by parts and rearranging terms as shown in (18),
the following optimizing condition is obtained:

n
] SR -2 )3
st = || Iy = (R ) - lEy iz dr

n
{- - __a - —3 o
JJ ki (F 8¢(Fpk) Br(Fqk))azkdrmp

n
+ J (X6¢ + Ysr + 3 wkazk)d¢

B k=1
n
- J (aKs¢ + AQsr + I ARkazk)d¢ = (140)
k=1

¢

which must be satisfied for every admissible distribution of variations.
In these relationships, the functions X, Y, wk, K, Q and Rk are given
by
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X= zpF +r(F- 2pF )
k=1 € 9 k=1 € Py
: n on
Y=-(F- 2qF )-rzgqgfF
k=1 K @ k=1 K Py
W, =-F +rF k=1, , n
k 9 Py
n n
K= npF +v(F- zpF )
k=1 € 9 k=1 K Py
n ) n
Q=-(F- £qF )-rzaqrF
k=1 K 9 k=1 K Py
R =-F +pF ,lk=1, ,
K 9 b ( n)

(141)

(142)

(143)

(144)

(145)

(146)

Equation (140) is written with A(--..)} denoting the difference in the
quantity (---) evaluated on the outer side of the corner line and the

same quantity evaluated on the inner side.

Equation (140) must be satisfied for every admissible distribution

of variations for I to be an extremum.
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| APPENDIX E
DERIVATION OF THE EQUATIONS
FOR AN OPTIMAL CONTROL SURFACE

1. INTRODUCTION

In this appendix the set of equations which will be solved to yield
the shape of the optimal control surface and the flow variables V, 6 and
 on the optimal control surface for given initial conditions is derived.
Five equations are derived which represent the solution for the five
variables V(r,¢), e{r.¢), v(r,e), a{r,¢) and g(r,¢). The shape of the
control surface can be determined if u{r,¢) and g{r,¢) are known.

Four of the five equations result from allowing the variations of
the four dependent variables 5V, 50, 5w and §F to be arbitrary and
independent while applying the calculus of variations to maximize the
axial thrust of the nozzle. The fifth equation results from the relation-
ships between o, g and f and the requirement that the derivatives of V,
8, v and f be continuous on the optimal control surface except across
a finite number of corner lines.

2. EULER EQUATIONS

In Appendix D the necessary conditions which must be satisfied to
extremize a generalized functional I having the form

I = JJ F(rs9,2 5p, »q) Jdrds (147)
S

are presented. In Eq. (147) F is the fundamental function, r and ¢ are

the independent variables, z, (k = 1,..n) represent the n dependent

k
variables, and the terms Py and q, are defined as follows:
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P = 97,/0¢ = 7, (148)

q = 8z /3r =z, (149)

A necessary condition for I to be an extremum is that the first
variation of I is equal to zero for every admissible distribution of
variations. Setting the first variation of I equal to zero results in
the following equation:

si= ][ r e, - o) rlFg ingrds

n
d g
+ F - - drd
st k§1( 2, 3¢(Fpk) ra qk))esz rd¢

n
LW, zk)d¢

+ J (Xs¢ + Yor +
k=1

B

n
- J (AKS¢ + AQSr + & ARkazk)d¢ =0 (150)
k=1
C

where X, Y, W , 8K, 4Q and AR, are defined by Egs. (141 ) through {146 ).
For arbitrary and independent variations of the n dependent variables

Z) Eq. {150) can only be satisfied if the following n eqguations are
valid in the regions S] and 52:

3

3
- — - —(F =0 k=1,..,
sz 3¢(Fpk) ar( qk) ( n) (151)
where
= 5
Fpk 3W3ﬁ¢ (152}
Fqk = aF/azkr (153)
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The n equations given by Eq. (151) are referred to as the Euler equations.
In this research the functional I to be maximized has the form

2 Y‘e(¢)
I = J F(r,o,V,p.p,0,9, -g{; , Br)drdc:» (154)

0 rile)

where

= r(p-p,) - roV(Vcose + 1,)(-cose + sinscosy o af + -lﬂgilﬂi SI)

(155)

In Appendix B it was shown that for steady, inviscid, irrotational,
homentropic flow of a perfect gas, the pressure p and density o are
unique functions of the velocity V, the stagnation pressure Po and the
stagnation enthalpy ho‘ Thus, the fundamental function F given by

Eg. (155) is only a function of the four dependent variables V, e, ¢

and f. Therefore, to apply the general theory of Appendix D to the
functional under consideration, the quantities Zi» Py and q, are de fined
as follows:

zZy = v, 22 = g, Zy = U, z, = f (156)
P = oV/ 3¢, Py = 30/ 36, Py = Y/ 3¢, Pg = af/s¢ (157)
qy = aV/ar, qy = 3g/ar, Gy = ayp/ar, qy = af/or (158)

Using Eqs. (156 ) through ( 158} to expand Eg. (151) results in the
following four equations:

O oFdp oFde 3 (oF ) 2,
VI pdV  op dV T 3¢ ( p]) EF{ q1) =0 (159)
OF (3 (aF 3 (3F, _
30 3¢ (apz) ar (3q2) =0 (160)
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aF 3 aF 9 aF -

Fri 53'(3553 - 5;‘(gag) = ( (161)
af d aF 3 aF

3F 5 (ap,) " or Ui 7 O (162)

If the above operations are carried out using the fundamental func-
tion given in Eq. (155}, the four Euler equations, Egs. (159 ) through
{162}, can be rewritten as follows:

2 _ 1)(sing/cosg) - V(1 + cosesing/cosg) = 0

(163)

(Vcose + Az)(VZ/a

Vsinesing/cosg - (Vcose + Az)(sine - tangcoss + cos{y - «)) = O
(164)

{Vcose + Az)sinesinesin(w -a) =0 {165)

é SE(DV(VCOSS t p)sinesing) + gF{rpV(Vcoso + Az)sinecos¢) =0

5 (166)
? where the three geometric relations

? af/or = - tanfcosa (167)
f af/3¢ = -rtangsina (168)
| %%2§-= - €0Sé + sinscosy %£-+ Eiﬂgéiﬂﬂ-%g {169)

derived in Appendix A, have been used to simplify the results.
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The only acceptable solution to Eq. {165 ) is that o = y. The
solution a = y + = is geometrically not acceptable, and the solution
(Vcoso + 12) = 0 leads to a trivial solution when used in Eqs. (163 },
(164) and ( 166). Therefore, on an optimal control surface

a =y (170 )
When Eqs. ( 167} through { 170) are combined, the equation
sing = - cos(e + B) (171)

can be derived. For o = y the two Euler equations, £gs. (163 ) and
{ 164 ), can be rewritten in the following forms:

(Vcose + hz) i} sinesine ( )
v {sinecosg - cosesing) 172

(Vcoso + AZ) ) sinzu(POSB + cososing)

(173 )
v sine(l - sinzu)
where i is the Mach angle defined by the relationship
V/a =M= 1/siny (174)

Setting the RHS of Eq. (172 ) equal to the RHS of (173) and using Eq.
(171 ) results in the following equation:

sinzu = sinzg (175)

Thus, u = £ since the other solutions to Eq. (175 ) can be discarded on
the basis of geometric considerations.

With this information further simplifications are possible. The
relationship u = £ and Eq. {171 ) can be combined, and the following
expression results:
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B=86+yu+ /2 (176)

By using the fact that o = y and p = ¢, Eq. ( 172) can be rewritten as

+ o
Veoss + A, - singsinu (177)
v singcosg - cosesing

Equation { 177) can be further reduced to the following form by using
Eq. (30):

Vcoso + Ay = - Vsinstanu (178)
At this point only one of the original Euler equations has not been

utilized. This equation, Eq. { 166}, can be combined with Eq. (178 ) to
yield the following equation:

%3 (pvzsinzetanusinw) + %F-(rpvzsinzetanucosw) =0 (179)

In sumary, the four Euler equations have been reduced to the four

equations:
Ycose + Ay = - Vsinetanu (180)
o= ¥ (181)
B=18+yu+ 1/2 (182)
%3 (pvzsinzetanusinw) + %F-(vazsinzetanucos¢) =0 (183)
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3. EQUATION RESULTING FROM CONTINUOUS DERIVATIVES

In Appendix D the necessary conditions to extremize the general
functional I given by Eq. (147) were derived under the assumption that
an admissible surface o was defined as any set of functions Z) (k=1,...,n)
which were continuous, had continuous derivatives, and satisfied the
prescribed boundary conditions. For the functional I given by Eqg.
(154 ), the dependent variables are V, 0, ¢ and f. Thus, the functional
I is being maximized under the assumption that V(r,4¢), o(r,¢), ¢(r,¢) and
f{r,¢) are continuous and have continuous derivatives in regions S] and
52. This requirement can be used to obtain a form of the geometric
relationships between o, 8 and f which can be combined with the Euler
equations to obtain an additional relTationship between V, 6 and y in
regions S.l and 52.

As shown in Appendix B, the Mach angle u is a unique function of
v, Py and ho' Thus, when the condition that V, 8 and ¢ are continuous
with continuous first derivatives is combined with Eqs. (181 )} and (182 ),
it can be concluded that on an optimal control surface the angles o and
¢ must also be continuous and have continuous first derivatives. Further-
more, Eqs. ( 167) and ( 168) can be used to show that the derivatives
azf/arz, azf/a¢2, azf/ara¢ and azf/a¢ar'are continuous since o and g
have continuous first derivatives.

As stated in Ref. (19), if all second derivatives of a function are
continuous, the order of differentation is immaterial. In other words,

afy o af
57 e = 3 G (184)

Equations (167), ( 168) and (184 ) then combine to yield the following
exprassion:
3

- 8 .
53-(tan3c05a) = 37 (rtangsing) _ (185)

By substituting Eqs. (181 ) and (182 ) into Eq. (185 ), the following
equation which must be satisfied on an optimal control surface is
derived:
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gg-(tan(e + u+ w/2)cosy) - %F-(rtan(e +u+ m/2)sing)  {186)

4. SUMMARY

In summary, the following set of five independent equations which
are valid on an optimal control surface has been derived:

Veose + i, = - Vsing tanu {(187)
gE~(pv251n29tanu51nw) + %F-(rpvzsinzetanucosw) =0 (188)
%$-(tan(e +u + w/2)cosy) - %F-(rtan(e + o+ n/2)sing) = 0 (189)
@ =P {190)

B =0+ u+ n/2 (191)

The five dependent variables in the above five equations are V(r,s),
o(rye), wir,e), alr,¢) and 8(r,¢). If alr,4) and 8(r,¢) are known, Egs.
(167 ) and ( 168) can be used to solve for f{r,¢).
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APPENDIX F
DERIVATION OF THE TRANSVERSALITY EQUATION

The transversality equation is a necessary condition that must be
satisfied when variations of the boundaries of the region S are con-
sidered. The transversality equation relates the values of the inde-
pendent and dependent variables on the boundaries of the extremal
surface and provides boundary conditions for the Euler equations. In
this appendix the transversality equation is derived in a manner con-
sistent with the following constraints: 1) the conditions along the
inner boundary of the region S (i.e., the initial value 1ine)} are known
and can not be varied in the variational problem, and 2) along the outer
boundary of the region S (i.e., the nozzle exit lip) the axial position
of the boundary is fixed in the variational problem.

The following equation must be satisfied for every set of variations
§¢, 8r and 8§z, consistent with the conditions imposed on. the location of
the boundary line B:

n
JB (X869 + Yér + Z] wkazk)d¢ =0 (192)

k
where ¢ has been chosen as the independent variable of the line integral
since ¢ has the property of being monotonic everywhere along a boundary.
The terms X, Y, Nk and 2 in Eq. (192) are defined as follows:

n n
% = p,F. + r(F - p.F_ ) (193)
i ooy RS
(F- ¥ Y- ) (
Y = - (F - @F ) -r q,F 194)
kZ1 k™ ay k=1 K Py
W= -F + rF (k =1,..,4) (195)

where r = dr/d¢ and
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F = r(p-pa) - rpV{Ycose + 12)(-cose + singcosy of , §1&§§1ﬂ£_§£) (196)

ar r 34
Py = aV/36, Py = 38/3¢, Py = S4/d0, Py = /3¢ (197)
gy = 8aV/ar, q, = 36/0r, g3 = Apfor, q = of/far (198)

For the fundamental function F presented in Eq. (196), Egs. (192} and
(193) through {195) reduce to the following equations:

j (X84 + Yor + W,6F)dp = O (199)
B
X = p4Fq4 + rF - rp4Fp4 (200)
Y=-F+qg,F - rg,f (201)
4 Qg 4 Py
Nk =0 (k = 1,2,3) (202)
W, = -F +rF (203)
4 Q(l_ p4

The region S has two boundaries. These are: 1) the projection of
the initial value line on the r¢-plane, and 2) the projection of the exit
lip of the nozzle on the r¢-plane. The relative locations of these two
boundaries is shown in Figure 34.

On the inner boundary of S (i.e., the initial value line) no varia-
tions are allowed while applying the calculus of variations to maximize
the functional I since the conditions on the initial value Tline are
specified and fixed. Hence, the three variations §f, &r and ¢ are each
identically zero when evaluated on the inner boundary of the regions.
Therefore, Eq. (199) reduces to the following form:

J (Xa¢e + Yor, + w45fe)d¢ =0 (204)
I‘e :
where Fe denotes the outer boundary of the control surface (i.e., the
nozzle exit lip). Before any additional information can be obtained
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from Eq. (204 }, it is necessary to determine how the variations 5%,
5re and 5¢e are related. The fixed length constraint can then be imposed
on Eq. (204 ),

As shown by Elsgolc {17), it is possible to write the following
expression for the value of fe in terms of the variational parameter e:

fo = fole) = Tyles roles ()]s oge)] (205)

e

Differentiating fe with respect to ¢ yields the following equation:

df, of, of, dr, of_ dp

e _ 0
de 3 ¥ Bre de * 99 de (206)
In the 1imit as e+0 Eq. (206 ) becomes the following expression:
af af
Pl ‘e
6f, = 6f, + TS i * g 8¢ (207)

where Sfe denotes variations of fe(e, L ¢e) taken while halding the
variables r, and ¢, constant, and Gfe denotes variations of fe(e, L ¢e)

with no restrictions on how LN and ¢e can vary.

On the boundary Tas o is the sole independent variable, and in the

variational problem

re = re(s, ¢e(a)) (208)

From Eq. (208 )} it follows that

8Ty = 8ry * s (209)

where Sre denotes variations of re(e, ¢e) tazken while holding the inde-
pendent variable bg constant, and sry denotes variations of re(s, 6 )
taken with no restrictions on how bo Can vary,

Equation (204 ) can now be simplified by substituting Eqs. (200)
through (203 ) into Eq. (204 } and using Eqs. (207 ) and (209 ) to com-
bine terms. These operations result in the following equation:

€

J (Fér, + (-Fq + ﬁFp )Sfe]d¢ =0 (210)
r 4 4
e
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Forming the partial derivatives of F as indicated and substituting Eq.
(196} into Eq. (210 ) yields the following equation:

J {[%(p—pa)~rpV(Vcose+A2)(—cosB-+sinecosw %;—+ §lﬂ§%lﬂi %g)]gre
T

+ [rstine(Vcosei-AZ)(cos¢- }sinw/r)]éfe}d¢ =0 (211

Equation (211 ) is now evaluated consistent with the constraints on the
problem.

The purpose of this research is to design three-dimensional nozzles
which are designed for a fixed length (the length may vary with ¢e), have
a fixed mass flow rate, exhaust to a fixed ambient pressure and produce
the maximum axial thrust subject to these conditions. The fixed mass
flow rate constraint has already been imposed on the variational problem;
however, the fixed length and fixed ambient pressure constraints must be
introduced into Eq. (211 )} in order for the constraints to be satisfied.

Since the Tength of the nozzle is fixed, the nozzle Tength fe can not
be varied while applying the calculus of variations to maximize the thrust;
therefore, the variation 5fe is equal to zero. Since the exit radius re
is allowed to seek its optimal value and satisfy the ambient pressure
constraint, the variation §re is arbitrary. There is an additional condi-
tion which must be true for the fixed length constraint to be satisfied.
This condition is that in the variational probiem while allowing for vari-
ations in r, the following equations are valid: 1) of Jor, = 0 and, 2)
afe/a¢e = dfe/d¢e. I[f this condition is not satisfied, the nozzle length
fe can change with variations in Fa Thus, in the variational problem,
the variation Sre is arbitrary and independent, and the following three
equations are substituted into Eq. (211 ) to enforce the fixed length
constraint:

§f, =0 (212)
afe/are =0 (213)
afe/acpe = dfe/dq;e {214 )
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Substituting Eqs. (212} through (214 ) into Eg. {211 ) and requiring
that the variation Sre be arbitrary results in the following expression:

singsiny dfe)]

r

=0 (215 )
e d¢e

r(p-pa) - rpV(Vcose + Az)(— cose +

T
e

In Appendix E it is shown that on the optimal control surface the
following algebraic equation is valid:

(Vcose + a,) = - Vsinetanu @16 )

Substituting Eq. (216 ) into Eq. (215 ) and dividing by Yo yields the
following equation:

sinesiny,dfe)
re d¢

=0 (217)

[(P-Pa) + pvzsinetanu(- cose +

e T

e
Equation {217 } is the transversality equation for a fixed length, maxi-
mum thrust and constant mass flow rate nozzle where re(¢) has been allowed
to seek its optimal value.

The transversality equation for a fixed length constraint can also
be derived in a manner analogous to that used by Guderley (3} in the
axisymmetric,one independent variable problem. Consider a control surface
ending at the exit 1ip of the nozzle. Since a variation in the nozzle
exit radius re is permitted, supplement the control surface by an annular
surface on which f is only a function of ¢ and which extends between the
exit 1ip of the original nozzle and the exit 1ip of a new nozzle with a
varied contour, The annular surface is illustrated in Figure 35, and
the change in radius is Sre.

The momentum transferred through this annular surface is given by
the following expression:

.. df
J (r(p-p,) + roV2cose(coso - SInesiny d¢e))gred¢ (218}
T e

e
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The mass flow rate through this section is

5in6siny dfe

(reV{cose -
Jre r d¢e

)16r, d¢ (219 )

Therefore, in computing the variation of the fundamental function I, the
following additional term appears:

Vcose + 12

)(COSG _ S'ines'inw dfe
y

> dre))Sred¢ (220)

fr (rp-p,) + roV¥(

=

For arbitrary variations Sre, Eq. (220 ) is satisfied only if

sinesinydfe)}

e

=0 (221)

[(P-pa) + szsinetanu(— cose +

where Eq. (216 } has been used to eliminate X, Equation 221 ) s
jdentical to the transversality equation, Eq. (217 ), '
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APPENDIX G
DERIVATION OF THE CORNER
LINE CONDITIONS

In this appendix the Erdmann-Weirstrass comer condition equations
for this problem are derived, These equations join subsurfaces of an
optimal control surface should there be corner lines on the surface.

An admissible extremal surface o is defined in Appendix D as any
set of functions zk(r,¢) which are continuous everywhere except along a
finite number of corner lines, and which satisfy the respective boundary
conditions. The set of equations which govern the portion of an extremal
surface where the derivatives are continuous is derived in Appendix E
while the transversality equation which must be satisfied along the
boundary of an extremal surface is derived in Appendix F. When a corner
line is present on an extremal surface (i.e., the derivatives of the
dependent variables z, are discontinuous across a line on the extremal
surface), a mathematical criterion is needed to join the subsurfaces of
the extremal surface. This criterion is the Erdmann-Weirstrass corner
condition.

The Erdmann-Weirstrass corner condition resuits from the following
expression which must be satisfied in order for &I to equal zero:

n
é (AKS¢ + AQSr + [ AR 6z )}d$ =0 (222)
c kel Kk

where the 1ine integral is along the corner Tines on the extremal surface.
In this work no restrictions are placed on the corner lines (i.e., the
corner lines are free), and the (n+2) variations &8¢, &r and §z) are inde-
pendent and arbitrary along any corner line. From Eq. (222) it follows
that at any point on a corner line the following (nt2) equations must be
satisfied:
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MR, =0 (k=T1,..,n) (225)
where % y E ) ’
K = p F. + r(F - p,F 226)
k=1 K 9 ka1 K Py \
n n
. 227)
Q=-(F- ] qF ) -F ] oF (
k=1 K 4a 21 kP
= - +' = .
Rk Fqk erk (k =1,..,n) (228)

and the symbol A(-**) denotes the difference of the quantity (:-°)
evaluated on the outer side of the corner line and the same gquantity
evaluated on the inner side. Equations (223) through (225) are the
Erdmann-Weirstrass corner conditions for the case of the corner Tines
being free.

For the fundamental function F given by

_ . 3f . i ... af
F = r(p-—pa) - roV{Vcoso + AZ)(-cose + sinécosy 5 + sinssiny a¢)

(229}
Eqs. (226} through (228) can be rewritten in the following form:
K = p4Fq + r(F - p4Fp ) (230)
4 4
Q=-(F- q4Fq4) - rq4Fp4 (231)
R, =0 (k =1, 2, 3) (232)
R, =-F +rF (233)
4 q p
where 4 4
F, =~ reV(Vsing + ,)sinecosy (234)
94
Fo = - pV(¥sine + a,)sinesiny (235)
Pg

Substituting Eqs. (229) through (235 ) into Egs. (223) through (225)
results in the following three nonzero corner line conditions:
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o

a[-rpV(Vcose+-AZ)(sinecos¢ %§-9c056+-ﬁsinecosw %{J-br%(p—pa)] =0 (236)

ALroV{Vcos +A2)(-coso-+§lﬂg%lﬂi-%£-§ Elﬂgélﬂi %;)- r(p-pa)] = 0 (237)

AlroV{Vcoso + A,) (sinecosy - r §iﬂ§%iﬂwa] =0 (238)

It has been shown that on an optimal control surface the following
equations are valid:

Veose + 1, = - Vsinstanu (239)
af/ar = - tangcosc (240)
3f/3¢p = - rtangsina (241)
where
@ = (242)
B=8+pn+nf2 (243)

Furthermore, on an optimal control surface Pys s r and the dependent
variables V, 6, ¢y and f are continuous everywhere. The variables p, o
and 1 are continuous since they are unique functions of V and the stag-
nation conditions. Since 6, ¢ and p are continuous, Eqs. (242 ) and

{ 243) show that o and B are also continuous. The continuity of « and
8 on an optimal control surface in combination with Egs. (240 ) and

( 241) shows that the first derivatives of f are continuous everywhere
(i.e., there are no corner lines in the contour of an optimal control
surface). The continuity of the RHS of Eq. (239 ) shows that the quan-
tity (Vcose + AZ) is also continuous. Therefore, in Eqs. (236 )} through
( 238}, every quantity inside the outer parentheses is continuous, and
the three equations are identically satisfied.

In summary, the corner line conditions for this problem have been
derived and are identically satisfied by the requirements on the con-
tinuity of the dependent variables on the control surface. No additional
information is obtained from the Erdmann-Weirstrass corner conditions.
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APPENDIX H
PROOF THAT OPTIMAL CONTROL SURFACES
ARE WAVE SURFACES

The governing equations for a steady flow of an ideal compressible
fluid in three dimensions constitute a system of quasi-linear, first-
order, partial differential equations. When the flow velocity exceeds
the Tocal velocity of sound, the equations are classed as hyperbolic,
and, within the solution space, surfaces exist on which the system
reduces to an interior operator (i.e., a linear combination of the
equations can be found which involves only directions of differentiation
which lie within the surface). These surfaces are called characteristic
surfaces, and they are important in the methods of solution of the set of
equations.

In {(15) it is shown that two infinite families of characteristic
surfaces exist for three-dimensional supersonic flow; these are the
stream surfaces and the wave surfaces. The family of stream surfaces
consists of all surfaces made up of streamlines of the flow. The wave
surfaces consist of all surfaces tangent to the local Mach conoid. The
system of equations reduces to an interior operator on each surface of
both families of characteristic surfaces. The linear combinations of
the equations which have the characteristic property are called compat-
ibility relations. Data can not be arbitrarily specified on character-
istic surfaces since the compatibility relation must be satisfied.

[t is the wave surfaces that are of primary interest here since it
will be shown that an optimal control surface is actually a wave
surface. The proof that an optimal control surface is a wave surface
is an essential step since it establishes the unique character of the
control surface. That is, since wave surfaces are unique surfaces in
three-dimensional supersonic flow, the proof that optimal control
surfaces are wave surfaces is equivalent to a uniqueness proof for the
optimization problem,
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Each point in a supersonic flow field is associated with a Mach
conoid as illustrated in Figure 36. The right circular cone formed by
the tangents to the Mach conoid at a point is the Mach cone. The rays
of the characteristic cone make the angle p with the velocity vector,
where u is the Mach angle defined by p = sin'1(1/M).

Associated with each point on a non-characteristic and space-1ike
curve is a Mach conoid. The two surfaces tangent to the Mach conoids
and containing the space-like curve are wave surfaces. This geometric
condition is also shown in Figure 36. Since a wave surface is tangent
to the Mach conoids associated with each point on the wave surface, the
velocity vector V and the unit outer normal to the wave surface m
satisfy the following relationship at every point on a wave surface:

V-m=-Vsiny (244)
In Appendix E it was shown that on the optimum contrel surface
u=E (245)

where the angle ¢ is defined by the following equation:

sing = - (V * n)/V (246)
and n is the unit outer normal to the control surface. Equations
through (246) may be combined to show that

n=m (247)

and thus, optimal control surfaces are oriented in the same direction as
wave surfaces of the flow.

For optimal control surfaces to be wave surfaces it is also neces-
sary that the data on the control surface must satisfy the appropriate
compatibility relation. The compatibility relation in a L, N-
coordinate system s derived in (20) as the following equation which is
valid on wave surfaces in homentropic, irrotational flows:
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aL ( )
248
R . + . .
- sinptanucosésing Ql%%r~fl—+ sinutanusing %9—= 0

where the partial derivatives denote differentiation on the wave surface.
Figure 37 illustrates the coordinate system relTationships. The direc-
tion L is along a bicharacteristic curve (i.e., the intersection of a
Mach conoid and a wave surface). The direction N is normal to L and in
the tangent plane to the Mach cone at the point Q. Thus, the L, N-
coordinates 1ie on a wave surface. The direction of the velocity vector
V is described by the angles 6 and y as defined in the following

equation:
Vr = VY sing cosy
V¢ =V sino siny (249)
VZ = V cos9

The angle n is the angle between the V, z-plane and the V, L-plane.

The unit vectors in the L and N directions are denoted by L and N
respectively, and the components of L and N in the r, ¢ and z directions
are dencted by Lr’ L¢, LZ, Nr’ N¢
defined by the following equations:

and NZ. The unit vectors L and N are

=L (250)
IV x n|
C=D0xN (251)
[n x N|
Therefore, the following equations can be written:
N, = (nzVdJ - n¢Vz)/cosu (252)
N¢ = (anZ - nzvr)/cosu (253)
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N, = (n¢Vr - an¢)/cosu (254)
L, = (nrsinu + Vr)/cosu (255)
L¢ = (n¢sinu + V¢)/cosu (256)
L, = (nzsinu +V_ )/ cosy (257)

The angle n is defined by the following expressions:
cosn = N - (T; X V)/liZ x V| (258)
sinn = [N x (1, x V}|/[1, x V| (259)

Equations (258 ) and (259} can be expanded and simplified by using Egs.
(249), (252} through (257 ) and the following equation from Appendix A:

n. = sine cosg
n, = sing sing (260)
nz = C0SP
to yield the expressions
cosn = {- cospgsing + singcosecos(y - a))/cosy (261)
sinn = - singsin{y - a)/cosu (262)

If the flow is such that o = y on a wave surface, then Egs. (261)
and (262 ) can be rewritten as
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sinnp = 0 (263)
cosn = sing(cos® - tangsine)/cosp (264 )

and the compatibility relation, Eq. (248), can be rewritten in the
following form:

%-g%—- tanucosn %%—- sinutanucosnsing Eljﬁj%—él-= 0 (265)

In Appendix E the following equations are derived:

Vcose + 1, = - Vsinetanu (266)

2 2

gE-(pV sinzetanusin¢) + g;—(rpvzsin gtanpcosy) = 0 (267)
%E-[tan(e + u + w/2)cosy) - %F (rtan(e +u+ w/2)siny) =0 (268)
a = P (269)

B=86+yu+ 1/2 (270)

These equations are the governing equations for an optimal control

surface. It will now be shown that Eqs. (266 ), (267 ), (269 ), and

(270 ) can be combined to derive the compatibility relation, Eq. (265 ).
Expanding Eq. (267 )} and substituting the differential expressions

dop = - pV/aZdV (271)

. (1€%J_+ siny)

du dv (272)

Vsinp cosp
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into the expanded expression yields the following equation:

D) 35+ Dy rog * D3 36+ Dy oy * D5 Sk + D g + Dy =
where
D] = - sinecosy {1 + ctnetanu)/Vtanzu
D2 = D]tan¢
D, = cosy(cose + sinectnu)
D4 = D3tan¢
DS = - singsing
D6 = - Dsctnw
D7 = 06/r

(273)

(274)

(275)

(276}

(277)

(278)

(279)

(280)

Equation (273 ) can be transformed to the L, N- coordinate system
by the relationships

3 .. 3
ar - A art

‘QJ

3 - 3_ a_
rap by 3L * P2 oW

k. af L. = cosy(sing ~ tangcose)/cos
ar - tr T ar Rz ¥ H
N _ f y -

i Nr + T Nz cosetan¢a1
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T
b, = 59 L

- N _
b, = rag N

where Egs. (248) through ( 257),

have been used to evaluate the coefficients 315 a9 b1 and b2.

affar

af/ 3¢

of _
o + Foo 2 " tany a,
of _
¢+Y‘—B¢TNZH-COSB a]

Eq. (269 ) and the equations

"

- tang cosa

It

- rtang sinu

ing the transformation, Eq. { 273) becomes

where

2V 3V
G L * Gt e

[*p]
1

[}
1

o
1l

28 38 P +
3350 TG 3Nt G “iyﬁf‘gl *

1 ¥ bohy

3t boly

ale + b]D6
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(285)

(286)

(287)

(288)

Perform-

(289)

(290)

(291)

(292)

(293)

(294)



65 = a0 * b, (295)
= - 9 o9t
Gy = Dy - 65 of - G 3y (296)

Equation ( 289) reduces to the following equation when Eqs. (269)
(270) and ( 274) through ( 286) are used to simplify:

1av | 80 s oooale tog) |
7 50 tanucosn T sinutanucosnsing N =0 (297)
where
cosn = sing{coss - tangsine)/cosu (298)

Thus, the data on the control surface are specified by Eqs. (266)
through ( 270) in a manner which satisfies the compatibility relation
for a wave surface. In summary, the control surface which satisfies
Egs. ( 266) through {(270) is actually a wave surface of a three-
dimensional, homentropic, irrotational, supersonic flow, and the control
surface is a unique surface.
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APPENDIX I
THE AXISYMMETRIC SOLUTION

In this appendix it is shown that for an axisymmetric kernel flow
the equations derived in Appendices E and F for optimal three-dimensional
nozzles reduce to the equations obtained by Rao (2) and Guderley (3) for
optimal axisymmetric nozzles. Also, as an aid to understanding the solu-
tion procedure for the design of optimal three-dimensional nozzles, an
analogous solution for the design of optimal axisymmetric nozzles is

presented.

1. GOVERNING EQUATIONS

The following set of five independent design equations defines the
shape of and the flow properties on the control surface (exit character-
istic surface) of an optimal three-dimensional nozzle:

Vcoso + A, = - Vsinotany (299)
5%-(pvzsinzetanusin¢) + 5%—(rpvzsin29tanucos¢) =0 (300)
5%-{tan(e + p + w/2)cosy) - 5%—[rtan(e +p + n/2)siny)= 0 (301)
a =P (302)

B=06+pu+ /2 (303)

These equations were derived in Appendix E and contain the five dependent
variables V{r,¢), o{r,¢), vir,¢), alr,s) and plr,4).

For an axisymmetric flow ¢ = 0O,and all variables are independent
of ¢ (i.e., a( )/o¢ = 0). Therefore, for an axisymmetric flow, Egs. {299)
through (303) reduce to the following equations:

Veoso + A, = - Vsingtany (304)
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roV¥sinZotany = - A3 (305)
a=9p=0 (306)
B=0+yu+ /2 (307)

where Aq is a constant. Equation (301) is identically satisfied since
o= 0 and 3( )/3¢ = 0. Equations (304), (305) and {307) represent the
governing equations for V(r), e(r) and 8(r) on an axisymmetric optimal
control surface.

The shape of a nonaxisymmetric control surface is represented by
the function f(r,$) where

af/ar

- tangcoso {308)

af/a¢ = - rtangsina {309)

For an axisymmetric control surface the function f is only a function of
r and is given by the solution to the following equation:

df/dr = - tang {310)

The transversality equation derived in Appendix F for a three-dimen-
sional, fixed length nozzle has the following form:

(311)

1]
o

[(p~pa) + pvzsinetanu(-cose + sinesinwdfe/(red¢e))]

Te

For an axisymmetric nozzle siny = 0, and thus Eq. (311 )} can be rewritten
in the following form:
(P,-P,)

-——-——2——= S'iﬂZBe (3]2)
PaVe/?

Equations (304), (305), (307) and (312 ) are equivalent to the
axisymmetric optimization equations derived by Rao (2) and Guderley (3).
Equations (304), (305}, (307) and (310 ) can be rewritten as the following
expressions: '

126



(313)

Vcos(8 - u)/cosy = - Ay
PpVZSinzﬁtanu = - g (314)
¢' =8+ (3]5)
df/dr = ctng' (316)
where
$' =8 - /2 (317)

Equations (312 ) through (316 ) are identical to the optimization equa-
tions derived in (2) and (3). Thus, the optimization equations derived
in Appendices E and F for three-dimensional nozzles reduce to the axisym-
metric optimization equations for the special case of axisymmetric flow.

2. SOLUTION PROCEDURE

There are several procedures which can be used to design axisym-
metric, maximum thrust, fixed Tength nozzles. A1l procedures involve
the numerical solution of Egs. (312 ) through (316 ), but each approaches
the problem in a different manner. Two of the possible approaches have
been presented by Rao (2} and Williams™ (21). Rao (2) treats the problem
as a two point boundary value problem while in Ref. (21), the problem is
treated as an initial value problem. When the problem is solved as a two
point boundary value problem, a number of iterations are necessary before
an optimal control surface is generated which satisfies the conditions at
both end points. Treating the problem as an initial value problem makes
it possible to calculate an optimal control surface with no iterations
and then iterate between optimal solutions to match specific boundary
conditions. Also, the solution procedure in Ref. (21) eliminates the
sensitive iterative matching procedure used by Rac (2) to match conditions
at the kernel.

* Williams (21) was not responsible for developing the overall design
procedure; however, the procedure is documented in Ref. (21), The
design procedure was developed at the NASA Lewis Research Center,
Cleveland, Ohio, but it was not documented by the NASA staff.
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Both of the approaches are valid; however, the procedure presented
in Ref. (21) is more straightforward than Rao's (2) procedure. The
overall solution procedure presented in this report for the design of
three-dimensional optimal nozzles is similar to the procedure presented
in Ref. (21) for axisymmetric optimal nozzles. For this reason the
procedure in Ref, (21} for the design of axisymmetric optimal nozzles
is now presented.

The following steps which refer to Figure 38 describe the design
of a maximum thrust, fixed length, axisymmetric nozzle:

1) Choose an initial expansion contour BC and initial flow

conditions along a start line AB.
2} Calculate the supersonic flow field in the portion of the
nozzle which is governed by the initial expansion contour
(i.e., the kernel).

3) Pick a point I which is on the boundary of the kernel,

4) Numerically solve Eqs. (313 ) through {316} to construct
the optimal control surface which passes through point I.

5) Determine the mass flow rate across CI, and locate point E

such that hﬁl = mIE'

6) Apply Eq. {312 ) at point E to determine the ambient pressure

Pa for which the control surface IE is optimally designed.

7) Calculate the flow field in the region of the nozzle which

is bounded by the characteristic surface CI and the charac-
teristic surface [E.
8) Determine the optimal nozzle contour CE by calculating the
shape of the streamline which passes through point C and thus
also through point E.
These eight steps are now discussed in greater detail.

Assuming that the nozzle designer has complete flexibility in the
design of the entire nozzle, he has the choice of the shape of the
initial expansion contour BC, the flow conditions along the start line AB
in a supersonic flow region, and the position of point I. Thenozzle
contour upstream of point B is assumed to be known and can be a converg-
ing, diverging or constant area section.
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If the supersonic nozzle to be designed is a converging-diverging
nozzle, then point B is downstream of the throat of the nozzle, and
section BC is a suitable initial expansion contour which eliminates sharp
corners in the throat region and allows the flow to rapidly expand. In
this case, a transonic flow analysis can be used to determine the flow
properties along the start line AB which is in a totally supersonic flow
region. If the supersonic nozzle to be designed is a nozzle without a
sonic throat region {e.g., a nozzle for a scramjet engine), it is assumed
that the flow properties are specified along a noncharacteristic start
Tine in a totally supersonic flow region. Again, the initial expansion
contour BC is chosen to suitably accelerate the flow. In either case
an axisymmetric method of characteristics analysis can be used to
calculate the flow region which is dependent only upon the start line AB
and the initial expansion contour BC (i.e., the kernel region of the
nozzle). The outer boundary of the kernel CIF is the right-running
characteristic which emanates from point C.

The next decision to be made is where along the boundary of the
kernel (i.e., the right characteristic CF) to position point I. The
position of point I and the flow conditions at point I serve as initial
conditions in the solution for the shape of and flow conditions on the
control surface which produces the maximum axial thrust in a fixed length
for a given mass flow rate. For any one choice of the position of point
I on a given right characteristic CF a unique optimal nozzle can be
designed. This nozzle will be an optimal for a particular exit radius,
length and ambient pressure. As point I is chosen farther downstream on a
given right characteristic CF the optimum nozzle is longer, has a larger
exit radius, and is designed optimally for a lower ambient pressure.

After the position of point I on the characteristic CF has been
chosen, Egqs. (313} through (316 ) are solved to calculate V(r), e(r) and
f(r). Using the initial conditions at point I the entire solution for
the optimal control surface can be generated; however, the position of
point E can not be determined until step 5 is completed.

Since the flow properties are known along the start Tine AB, the
magnitude of the total mass flow rate entering the nozzle ﬁTotal is known
and fixed. Also, once the position of point I has been chosen, the mass
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flow rate across the line IF, ﬁIF’ can be calculated. Therefore, the
mass flow rate across the control surface can be calculated from the
following equation:

- m (318)

e = rotal = MIF
By using the following equation for the mass flow rate across the control
surface, the position of point E can be determined such that Eq. {318)
is satisfied:
. "E
Mg = J 2rrpVsinu/sin{e+yu)dr (319)
r
I

At this point, the exit radius and length of the maximum thrust
nozzle can be determined along with the magnitude of the vacuum thrust
produced by the optimal nozzle contour. In step 6 the ambient pressure,
for which the nozzle is optimally designed, is determined. The design
ambient pressure is calculated using the following form of Eq. {(312):

2.2
Py =Pyt peVes1n Be/(ZCOtue) (320)

Since all the flow variables at point £ are known, p, can be evaluated.

In step 7 the flow in the region bounded by the right characteristic
CI and the left characteristic IE (i.e., the control surface) is deter-
mined. The intermediate flow field is calculated by applying a numerical
technique such as the method of characteristics to the equations which
govern the irrotational, isentropic, steady flow in the region,

The final step, step 8, consists of determining the path of the
streaml ine which passes through the points C and E. Since the flow
properties in the region of the streamline are known from step 7, the
streamline can be easily determined. The path of the streamline CE is
identical to the contour of the optimal nozzle contour.

' If either the length, area ratio or ambient pressure of this optimally
designed nozzle does not meet the requirements which the designer has
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placed on the problem, then an iteration process is necessary to generate
the desired optimal nozzle. Different optimal nozzlies are designed by
using different starting conditions. During the iteration process, any
or all of the following conditions can be changed: 1) the conditions
along the start 1ine, 2} the initial expansion contour, and 3) the posi-
tion of point I.
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APPENDIX J
DETAILS OF THE CONSTRUCTION OF
INITIAL VALUE LINES

In this appendix the conditions which must be satisfied along an
initial value line are presented. Also, the solution technique which
is used to generate an initial value line along which these conditions
are satisfied is presented.

Throughout this appendix it should be remembered that the overall
design problem is being solved by specifying conditions along the inner
boundary of the control surface, solving for the corresponding optimal
control surface and then determining the length, exit 1ip shape and
ambient pressure for which the nozzle is an optimal. This method of
solution is used in place of specifying the length, exit 1ip shape,
ambient pressure and flow conditions on the desired exit lip, solving
for the corresponding optimal control surface, and then using an itera-
tion method to match the control surface to some kernel. For this
optimization problem, the method of choosing the conditions along the
inner boundary of the control surface such that the conditions match
an existing three-dimensional supersonic flow and then designing the
corresponding optimal nozzle is more advantageous. The method presented
in this work yields an optimal nozzle each time the method is applied.

T. EQUATIONS WHICH DEFINE AN INITIAL VALUE LINE

An initial value 1ine (i.e., the intersection of the boundary of
the kernel and the optimal control surface) represents the initial con-
ditions for the solution of the design equations derived in Appendix E.
Since an initial value line is the inner boundary of an optimal control
surface, it must satisfy the same set of design equations that define
an optimal control surface. Therefore, the following equations must be
satisfied along an initial value line:
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Ycoss + Ay = - Vsine tanp (321)

%6-(pvzsin20tanusinw) + %F-(rpvzsinzétanucosw) =0 (322)
g—¢ (tan{e + u + w/2)cosy) - %F (rtan(e + u + n/2)siny) = 0 (323)
o= (324)
B =0+ u+ 7/2 , (325)
df = (af/ar)dr + (3F/0¢)d¢ (326)
where i, is a constant and
af/ar = - tangcosa (327)
af/3¢ = - rtangsine (328)

Equations (322) and (323) do not specify any conditions that must
be satisfied along an initial value Tine (i.e., as will be shown in
Appendix K, the characteristic curves of Eqs. (322) and (323) do not
coincide with inftial value lines; if they did, it would not be possible
to use the two equations to solve for optimal control surfaces). On the
other hand, Eq. (321) and Egs. (324) through (328) prescribe relations
which must be satisfied along the inner boundary of an optimal control
surface. From Eq. (321) the values of V, & and p at all points along
an initial value 1ine must be such that

- V(cose + sinatany) = Ay (329)

where Ao has the same constant value at all points. By substituting
Eqs. (324), (325), (327) and (328) into Eq. (326), Eq. (326) can be
rewritten in the following form:
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df = - tan{e + u + n/2)(cosydr + rsinyds} (330)

By choosing an initial value line to satisfy Egs. (329) and (330}, the
initial value line will be compatible with the optimal control surface.

2. DESCRIPTION OF THE DESIGN PROCEDURE

The procedure for generating an initial value line from which an
optimal three-dimensional control surface can be constructed consists
of the following five steps:

1} Choose an initial expansion contour for a portion of the

supersonic nozzle and a noncharacteristic starting surface
on which the flow is homentropic, isgenergetic and supersonic,
and the perfect gas relations are satisfied.

2} Utilize a three-dimensional supersonic flow analysis program
to calculate the homentropic and isoenergetic flow field which
is determined by the specified contour and starting surface.

3) Choose a point in the generated flow field (kernel) which will
be constrained to lie on the initial value line. This fixes
the value of Ay

4) On each of several planes of flow data which neighbor the
chosen point, determine the shape of the curve along which
Ao has the chosen value.

5) Determine numerically the shape of the curve which goes
through the chosen point, has a constant value of Ay and
satisfies Eq. (330).

These five steps are now discussed in more detail.

The first step in generating an optimal three-dimensional nozzle
is to determine the flow conditions in the kernel region. Thus, it is
necessary to have the capability to analyze three-dimensional, supersonic,
internal flow fields. A practical and accurate numerical method to
calculate three-dimensional, supersonic, internal flow fields was presented
by Ransom, Hoffman and Thompson (15). The associated computer program
described in (23) is utilized in this research to calculate the three-
dimensional flow in the kernel region. The overall design procedure
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presented in this appendix is valid for any analysis program; however,
since the analysis program (23) uses an integration process which takes
place between a series of planes parallel to the starting surface, some
parts of the procedure are written to take this into account.

In step 1 the flow properties along a noncharacteristic starting
surface are specified so that the analysis program can be used to calculate
the resulting internal flow field in which an initial value tine can be
generated. To use the analysis program, the starting surface must be
normal to the z-axis. The values of the flow variables ¥, 6 and y must
be specified by continuous functions on the starting surface, and to
satisfy the isoenergetic and homentropic flow assumptions, the stagnation
pressure p_ and the stagnation enthalpy h0 must be constant on the start-
ing surface. Also, the values of V, @ and ¢ on the starting surface are
specified such that the flow is irrotational.

In addition to specifying the values of the dependent variables on
the starting surface, the shape of the boundary (initial expansion contour)
must be specified, Since the analysis program (23) uses an integration
process which takes place between a series of planes parailel to the
starting surface, it is necessary to specify more of the boundary than
just the portion upon which the kernel region is dependent. Thus, an
entire nozzle contour is specified from the planar starting surface down-
stream to a planar surface which is certain to be downstream of the posi-
tion of any desired initial value line.

Step 2 consists of employing the analysis program to calculate the
flow field bounded by the starting surface and the specified boundary.
The numerical solution of the set of hyperbolic differential equations
which governs the homentropic, isoenergetic, supersonic flow field is
based on a three-dimensional method of characteristics solution technique.
The solution consists of integration along a system of streamlines
throughout the flow. The output from the three-dimensional method of
characteristics analysis program is the position of a given number of
mesh points on each calculational plane and the values of V, 8, u and y
at each mesh point.

Figure 39 a shows what the lines of constant Ao look like for a
representative plane of an axisymmetric flow while Figure 39b shows the
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situation which exists on a plane of a representative three-dimensional
flow with two planes of symmetry., As illustrated in Figure 39b, the
curves of constant X, are not necessarily closed curves for some values
of Az.

In step 3 a point is selected which will be constrained to lie on
the initial value line. This point should be chosen such that it lies
on a constant Ay Curve which is a closed continuous curve. Furthermore,
the point should be chosen such that it 1ies on a characteristic surface
which intersects the initial expansion contour downstream of the starting
surface. Note that when this point is selected the constant value of Ao
is then known. '

Once a point has been chosen which will be constrained to lie on
the initial value line, the next step (step 4) is to examine the flow
data on the planes which neighbor the chosen point and determine the
curve in each plane along which Ay has the known constant value. Equation
(328) is satisfied as long as the initial value Tine consists of a series
of points on the generated curves of constant Ay OF on the interpolated
constant Ao surface between the planes.

In step 5, Eq. (330 ) is used to determine the unique initial value
Tine which passes through the chosen point and lies on the constant A
surface which was determined in step 4. To apply Eq. B30 ) the equation
is written in the following finite difference form and applied between
neighboring points on the generated constant A surface:

fo = fy = (ry - rp){tan(e + u + w/2)cosy)
average

(r] - r2)
- ———— (¢, - ¢ )(tan(e + u + w/Z)S'imp]‘ (331)
. average

The conditions at point 1 are known while the conditions at point 2 are
to be determined. The solution for the position of point 2 is an itera-
tive process which is complete once fz is chosen such that the LHS of

Eq. (331 ) is equal to the RHS of Eq. (331 ). Equation ( 331) is applied
between a series of neighboring points on thg constant Ay surface until

a continuous closed curve has been determined.
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Figure 40 1illustrates the physical situation where an initial value
Tine has been generated in a three-dimensional flow region with two
planes of symmetry. Notice that in general the initial value line will
not Tie in a plane; however, it must be symmetric with respect to any
planes of symmetry. This initial value line which is generated by the
above method is a unique Tine which can serve as the inner boundary of
an optimal control surface and matches the flow conditions in a specified
kernel.
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APPENDIX K
DETAILS OF THE CONSTRUCTION OF
OPTIMAL CONTROL SURFACES

The equations which describe the shape of the control surface and
define the values of V¥, 8 and ¢ on the control surface which produces
the maximum axial thrust were derived in Appendix E. These design equa-
tions are valid for steady, homentropic, iscenergetic flow. In this
appendix a method is outlined for solving the design equations to locate
the control surface and to determine the values of the flow properties
on the control surface.

1. NATURE OF THE DESIGN EQUATIONS

The five design equations for the five unknowns V, o, y, « and ; are
Eqs. (187 ) through (191 ). They are repeated here for convenience.

Veose + 2, = - Vsinetany (332)
5%—(pvzsin28tanusin¢) + %F-(rpvzsinzatanucos¢) =0 (333)

E% [tan(e o+ n/Z)coswl- %F~(rtan(e +u+ n/2)singl =0 (334)
o=y (335)

g =6+u+ /2 {336)

In addition, the relationship between «, B and f is given as follows:

df = - tang{cosadr + rsinadg) (337)

Notice that Eqs. (332) through (334) contain only the unknowns V, o, i
(recall that » and n are functions of V alone). Therefore, the solution
for V{r,¢), o(r,¢) and ¢(r,¢)} is not dependent on the solution for f(r,s),
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and Eqs. (332) through (334) can be solved independently of Eqs. (335)
through (337).

Before attempting to solve Eqs. (332) through (334} it is expedient
to determine the nature of the equations {i.e., if the set of equations
are elliptic, parabolic or hyperbolic). To do this the three equations
i1s combined so that the two partial differential equations contain only
partial derivatives of two dependent variables.

In Appendix H it was shown that Eq. 333) can be vewritten in the
following form:

Y 3y 98 _388 Sy _8p =
DI ar * DZ r3g * D3 ar * D4 rae * D5 ar ¥ D6 rao * D? 0 (338)
where
Dy = - sinecosy (1 + ctnetanu)/VtanZu (339)
D, = Dytany (340)
Dy = cosy(cose + sinsctny) (341)
Dy = Dstany (342)
D. = - sinesiny (343)
D = - Dectny (344)
D; = Dg/r (345)

Also, the following equations were derived in Appendix B:

du = - 17 ((Me - 1)1/ 2)am (346)

M = (1 + (v-1)M/2)/a dv (347)

1]

When Eq. (332} is differentiated and combined with Eqs. (346 ) and (347 ),
the following equation is obtained:
ij2-1)1/2cose+sina] _ _Msine
4o < ML+ (r-1)4%/2) (M2-1)
((Mz-{31/zsine - cos6)

dM (348)
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By combining Eqs. (338) and {348 ), £q. (338) can be rewritten as follows:

aM

Dg 3¢

where

+ D

9 rag

5 ar

B oosw[(M2-1)1/251na + cose)

!

(M2-1)

and D, Dy and D, are given by Egs. {343 ) through (345 ).
Expanding Eq. (334) and substituting Eqs. {346 ) and (348 ) into the

M+ (v-1)M%/2)

|

M, o 2o 2, g -
LTI Sy e Al

(349)

172 {(B-1)%cos6 + sine) . Msine(1 + (v-1)M%/2)

(2-1) %550 -

D9 = D8 tany

cos6) (M2-1){(Mz-])]/zsine-cosa]

expanded equation resuits in the following expression:

aM
5
where

-Msiny

+ H

2 ro¢

-1

5

ar

1

oM 3y _ay -
+ H + HG o4 + H7 =0

H

T [(Mz—l)]/zsine+cose)

H

= [(MZ-I)]/Zcose

L

(sine+(M>-1)' /2cose) _ Msin

+
m(Me-1)72 (1) %5 ine-cose)

- H] ctny

H5 tany

Hs/r
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- sing)cosy/M

ﬂ

M1+ (v-1)M/2) Me-1

(350)

(351)

(352)

(353}

(354)
(355)
{356)

(357)
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Equations {349 ) and (352 ) are two partial differential equations which
are valid on optimal control surfaces and contain derivatives of only the
Mach number M and the polar angle y. The nature of these two first
ordef, quasi-linear, partial differential equations, Eqs. (349) and ( 352),
can be determined by putting them into a form for a solution by the method
of characteristics.

The equations to determine the values of the characteristic directions
of £gs. (349 ) and (352 ) are as follows:

M, o M, Bb, o b, o] -

01[D8 5r * D 79 T D5 5 * D 7oy Dz] 0 (358)
M, LT 1] -

02[ 1or T M2 Ty ra¢ *Hg 5p t Hg g Hi] 0 (359)

where e and o, are unknown functions. Adding these two equations and
rearranging yields the following equation:

(0,0 + ot )[4 (o709 * opty) ]
7 21 (U-IDB + dsz r‘8¢J

(6,D. + a5 H.)
LI 176 26" a3y _
+ ((J]D5 *+ o, 5)[ (0 D T 5 ST b + (0107 + 02H7) 0 {360)

where the coefficients of the partial derivatives in the r direction of
M and ¢ have been factored out.

In order to consider Eq. (360 ) as a directional derivative in a
direction in which the partial derivatives of M and ¥ both combine to
yield total derivatives of M and y, the coefficients of the partial
derivatives with respect to ¢ must both be set equal to the slope of the
desired direction. The slope of the desired direction or characteristic
curve is denoted by A». Thus,

rd¢ (610 + oxHy) (oD + opHg)
 {oyDg + o) 7 {095 + oyHg)

A= (361)

Since M and ¢ are assumed to be continuous functions, the following
relationships are valid:
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dM _ &M aM

ar = or + T5h (362)
T I (363)

In view of Eqs. (361 ) through (363 )}, Eq. (360 ) becomes

(GiDS + ozH])dM + (OTDS + 02H5)d¢ + (0107 + n2H7)dr =0 (364}
Equation (364 } is a total derivative re]ationship,'ca11ed the
compatibility equation, which is valid along the characteristic direction
» given by Eq. (361 ). It remains to eliminate the parameters oy and "y

from Eq. (361 ).
Equation (361 ) can be considered as two equations for the two
unknowns 9 and Ipe These two equations may be written as follows:

(365)

L]
o

(Dyn - Dg)o] + (HIA - H2)02

8

(Dsh - D6)c:.I + (HSA - Hs)c2 0 (366)

For Eqs. (365 ) and (366) to have any solution for o, and T other than

the trivial so]ution,a1 =0, = 0, the determinant of the coefficients of

gy and o, in Eqgs. (365 ) and (366 ) must vanish. The following quadratic
equation for » results from setting the determinant equal to zero:

2 -
(D8H5 - 05H1)A + (D5H2 - DBHG + DGH1 - DgHS)A + (D9H6 - D6H2) =0

(367)

Solving Eq. ( 367) yields the following expression for i:

-c, * (c2 - 4¢c.c )]/2
Ap p o= —o——l 173 (368)
I,I1 2c1
where

¢ = 08H5 - DcH, (369)
¢y = DgH, - D8H6 + DGHl - D9H5 (370)
= D,H D.H (371)

37 Y = Y62
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Equation ( 368) yields two results for A, denoted by the subscripts
I and II corresponding to the positive and negative signs respectively.

As discussed in (22), if cg -~ 4c1c3 < 0, then no real solutions for &
exist, and the characteristic curves (directions) are imaginary. Differ-
ential equations that result in imaginary characteristics are called
elliptic. If cg - 4c]c3 = 0, one real characteristic direction exists
through each point on the solution surface, and the system of equations

is called parabolic. If cg - 4c]c3 > 0, two real characteristic directions
exist through each point, and the system is called hyperbolic.

The magnitudes of the coefficients Cys C and,c3 depend on the values
of r{4¢), M(r.¢), 6(r,¢) and y(r,¢) on the control surface. At this point,
the procedure presented in Appendix J was used to construct a number of
initial value 1ines in the supersonic, homentropic, isocenergetic, three-
dimensional flow of a perfect gas. The values of r, M and ¢ along
these lines were substituted into the equations for D5, DG’ D7, D8’ Dg,

H], H2, HS’ H6 and H7, )
using Egs. (369 ) through (371 ). In all cases the gquantity c5 - 4c]c3
was positive. Therefore, the set of equations, Egs. /348 ), (349 ) and
( 352), were assumed to be hyperbolic, and a numerical solution technique

and the coefficients s S and cy were evaluated

based on that assumption was written. The assumption that the set of
equations is hyperbolic is checked at every calculational point on the
solution surface since AL and Ay are calcuiated at each mesh point by
using Eq. (368 }.

Before the numerical solution is presented, a form of Eq. (364 ) is
derived which does not contain the parameters o1 and e Equation (365
can be solved for 02/01 to yield the following equation:

02/01 = - (DBK - Dg)/(H]A - H2) (372)
Substituting Eq. (335) into Eq. (364 ) yields the following result:

(DSA-DQ) (08A~Dg) (Dg-Dg)

DB—H] H]sz dM + D5+H5wd¢+ D7+H7 H]"Hz dl“‘=0(373)

In summary, Eq. ( 368) defines curves in the r¢-plane along which
£q. { 373) is valid. At each point in the r¢-plane there are two
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characteristic directions, one with slope rd¢/dr = A and one with slope
rdg/dr = My Along the curve with slope Aps Eq. (373) is valid with

A = 3, and along the curve with slope Ay, Eq. (373 ; is valid with

b= g Equations (368 ) and (373 ' are highly non-linear, total differ-
ential equations that can be solved by a finite difference technique.

2. NUMERICAL SOLUTION

It has been noted that Eq. (368 ) defines two curves through each
point on the solution surface, and Eq. {373 ) specifies one relationship
between M and y on each curve, In order to obtain two independent
relationships between M and ¢ at a point, a network can be devised wherein
the two families of characteristic curves intersect at a point so that a
single relationship between M and ¢ on each of the two characteristic
curves results in two relationships between M and 3 at the point of
intersection. Equation (348 ) can then be used to solve for the value
of 8 at the point of intersection. A finite difference solution technique
for an interior point on the control surface will now be developed.

An interior point is a point on the solution surface where data at
two points (points 1 and 2) can be used to solve for the properties and
location of the point determined by the intersection of the characteristic
curves through the two known points (point 3). Figures 4la and 41b
illustrate the physical situation. Writing Egs. (368 ) and (373 ) for
the geometry of Figure 41b yields the following four differential

equations:
rpdep = Agdry (374)
119911 = Ar1drg (375)
AjdMy + Bidy + Cldr) = 0 (376)
AppdMyp *+ Brydiyp * Cppdrpp =0 (377)
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where

. (Dgh - Dg)
A' = [01 + HI m] (378)
(Dgr - Dy)
v 8 9
and
' (DS?\ - Dg) (380)
C' = [D; +H; (% = A ]
In Eqs. {374) through (377 ) the differentials are replaced by
finite differences resulting in the following algebraic equations:
r1(¢3 - ¢1) = )\I(r3 = r-l) (38])
ripleg - ¢p) = aqplrg - r)) (382)
A'I(M3 - M]) + Bi(wB - w]) + Ci(r3 - r]) =0 (383)
ArrtMg = M) + Byplug - wp) + Cpplry - rp) = 0 (384)

There are five unknowns in the above four equations: ras ¢3, 3s O3 and
Y3 The value of 64 appears in the expressions for Aj, AiI’ Bi, Bil’

Ci and CiI and the expressions for A and M1 Thus, an additional equa-
tion is needed which will allow one to solve for 04 if M3 is known.
Equation (348 ) can be written in finite difference form and used for
this purpose; however, there is a more convenient relationship which can
be used. Equation {331 )} can be rearranged and rewritten in the follow-
ing form:

6=+ cos (———-)(M L+ I-‘zl-MZ)V2 (385)

where if 6 > u, the positive sign is correct, and if 0 < u, the negative
sign is correct. Equations (381 ) through {385) can be solved for the
properties and location of point 3 if the points 1 and 2 are known. For
a first estimate, all the coefficients in the equations must be evaluated
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at the initial points 1 and 2. This results in the classical Euler
scheme. Thus,

A = AI1 {386)
A\ = 1112 (387)
Ai = Ai] (388)
AiI = Ailz (389)

etc.
Equations (381 ) and (382 ) can be solved to yield the equations

{*112*1](r1 iy ' 2t T AN
$3 ~ A Fop = X4 T (390)
',z ~ M)
1 2
'3 = o rply - 4l (391)

which give a first estimate on the location of point 3. Equations (383)
and (384 ) can be solved to yield the equations

M, = [A' M, - Apg Bi My + B) BY; (4 - 4p)
37 (PP AP B Bt v

C; {ry = r3) + By C1p (ry - 1p) /(A‘ By - Arpr.Br) (392)
I] 1 3 11 II2 3 ] 2 II2 I

B'
I, 1

and
by = [Ci (k= ry) + AL (M, - M) + B! ¢]J/BI (393)
1 1 1 1
which can be used to determine a first estimate on M3 and y, since first
estimates of rs and 93 have been determined.
Equation (385 ) can then be used to calculate 93 by using the first

estimate of M3 if it is known that 63 > uy O that B3 < U3 If doubt
exists about which is the case, then another approach is used, Such a
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doubt exists when K is very close to the value of & and iy is very
close to being equal to 6. For the case of B3 approximately equal to
N Eq. (348 ) can not be used to solve for A when given M3 since
de/dM approaches infinity as kg approaches 8-

The procedure that is used in this case is to switch to using & and
Y as the dependent variables in the two partial differential equations;
Egs. (349 ) and (352 ) can be rewritten as follows:

Dm%%"”n?%%*”s%%*”aﬁ%*%’“ (394)
ng% H1]%%+H5%£+H6F%+H7=O (395)
where
Dy = Dg{dM/de) (396)
Dy = Dg(dM/de) (397)
Hig = Hq(dM/de) (398)
Hyp = H,(dM/de) (399)

and dM/de is given by Eq. (348 ). Equations {394 ) and (395) can be
numerically solved in a manner analogous to the solution of Eqs. (349 )

and {352 ). Once 04 has been estimated, then Eq. (348} can be iteratively
soived for M3. Since the iterative solution of Eq. (348} for M3 when
given 93 is not as straightforward as using Eg. {385) to solve for o3
given My, Egs. {349 ), (352 ) and (385} are used whenever possible.

Once the location and properties at point 3 have been determined
based on the Euler scheme, improved values of these parameters can be
obtained by evaluating the coefficients of the finite difference equa-
tions, Eqs. {381 ) through {384 ), using average values of the properties.
Such a technique is known as a modified Euler scheme, and its use results
in greater accuracy than the standard Euler scheme. Thus, for subsequent
trials,
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e s 0se s e (400)
AT =_A112 3(M2,3, 8, 35 ¥ 3> T 3) (401)
A= i 3(M1,3= 9,30 ¥ ,30 M3 (402)
Arr = P, 3(M2,3' 8,3 V2,3 T2,3) (403)
where
M3 My + Mj)/2 (404)
My 3 = (M, + M3)/2 (405)
etc,
Thus, with the modified Euler scheme, on each succeeding iteration
b = (XIAII(T'Z - I"-I) + AIIr]szp'l . }\Ir2,3¢2] (406)
3 (1,3 - 2% 2!
ry = rp 1y pleg = 4 A (407)

and Egqs. { 392) and (393 ) are combined with Eqs. (400 ) through (405 ).

This scheme is repeated as many times as necessary to obtain a
desired degree of convergence, Checks for convergence on iteration
step {n + 1) are made by checking to see that both of the following
conditions are satisfied:

(M) - (M,) | < specified value (408)
3 3/,

n+1

|(w3) - (v3) ‘ < specified value (409)
n

n+j
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The values of M, 8 and { for the entire optimal control surface are
calculated by repetitively applying the above numerical solution. Figure
42 illustrates the network of mesh points used in the solution technique.
The initial value Tine (J = 1 solution front} is divided into an appropri-
ate number of points (45 points at 2° increments is a practical number;
the figure shows 10 points), and then the numerical solution is advanced
to the J = 2 sotution front. Figure 42 illustrates a case with two
planes of symmetry, and thus two mesh points on the J = 2 solution front
must be reflected across the planes of symmetry. The solution technique
is continued until the optimal exit 1ip of the nozzle is sure to lie
entirely inside the last solution front {fifty solution fronts are
generally sufficient). The solution for the optimal exit lip is discussed
in Appendix L.

Once the solution for M, e, y, r and ¢ is complete, the value of the
function f at each mesh point can be determined by applying Egq. (337) in
the following finite difference form:

f, = fy = (r,-ro)(tan(etutn/2
2 = (rz r1)( an{e+u+n/ )Cosw)iaverage

(r'|+7'2)

—5 (¢p-6; ) (tan(e+utn/2)siny (410)

-

JIaver‘age

Equation (410) is applied between point 1 where o, u, v, f, r and ¢ are
known and point 2 where 8, u, ¢, rr and ¢ are known but f is unknown.
Equation (410) is applied repetitively between mesh points until f is
known at all the previously calculated mesh points.
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APPENDIX L
DETAILS OF THE CONSTRUCTION OF
OPTIMAL NOZZLE EXIT LIPS

It has been shown that for a particular initial value Tine a corre-
sponding solution for V(r,s), o{r,¢), w(r,¢) and f(r,4) can be numerically
determined. In this appendix the conditions which define the exit 1ip of
a maximum thrust, fixed length, three-dimensional nozzle are presented.
Also, the solution procedure which is used to satisfy these conditions and
determine the optimal exit lip for a given initial value Tine and optimal
control surface is described.

1. EQUATIONS WHICH DEFINE AN OPTIMAL EXIT LIP

Two conditions are satisfied by the optimal exit 1ip which lies on
the optimal control surface of a maximum thrust, three-dimensional,
supersonic nozzle designed for the restrictions of constant mass flow
rate and fixed length. First, the transversality equation derived in
Appendix F is satisfied along the exit 1ip, and second, the exit 1ip is
positioned on the optimal control surface such that the mass flow rate
across the control surface satisfies the mass flow rate constraint.

The transversality equation for a maximum thrust, fixed length,
constant mass flow rate nozzle is as follows:

[(P-Pa) + szsinetanu[- cose + Sin8sing dfe)]

Ve dée

=0 (411)

Te

This equation is satisfied by the variables pe(¢), pe(¢), Ve(¢), ee(¢),
we(¢), fe(¢) and re(¢) at all points on an optimal exit 1ip. The ambient
pressure p, in Eq. (411) is a constant. Since the overall design pro-
cedure is based on designing the optimal nozzle for a known kernel and
initial value line, the value of P, for which the nozzle is an optimal
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nozzle is part of the solution. The method used to satisfy Eq. (411) is
discussed in the next section.

On a plane of symmetry of an optimal control surface y = 0 and
the transversality equation, Eq. (411}, reduces to the following form:

H
o

((p-p,) - pvzsinecosetanu] (412)

Te
Thus, at the point that an optimal exit lip crosses a plane of symmetry
of the control surface, Eq. (412) is valid.
If we # 0 and ee # 0 along the optimal exit Tip, Eq. (411) can be

rewritten in the following form:

2
dfe oV

red¢e

sinecosetany - (p-pa)
{413)

Te

pvzsinzetanpsinw
[t is in this form that the transversality equation is applied to solve
for the optimal exit Tip.

Not only is an optimal exit 1ip located on a control surface such
that Eq. (413) is satisfied along Ty but also the mass flow rate across
the portion of the control surface bounded by the initial value 1ine and
the exit 1ip is equal to the total mass flow rate through the nozzle
minus that portion of the mass flow rate which passes interior to the
initial value 1ine. The total mass flow rate mT is known since the con-
ditions on the starting surface are known. The mass flow rate mIVL
which passes interior to the initial value line is known since the posi-
tion of the initial value Tine and the flow conditions in the kernel are
known. Therefore, the following condition must be satisfied by the
optimal exit lip:

Me.s, = M = My (414)
where
o Told)
e, - J j roVsinu/sin(e + u)drds (415)
. " 0 Y' ¢)

.i
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The design procedure to satisfy Eqs. (413) and (414) is now presented.

2. DESCRIPTION OF THE DESIGN PROCEDURE

At this point in the numerical solution, the values of V(r.¢},
e(r,¢), v(r,¢) and f(r,¢) are known on the optimal control surface out
to some radius which is greater than the unknown exit 1ip radius re(¢).
The design procedure for determining the position of the optimal exit
lip (and therefore, re(¢), Ve(¢), ee(¢), we(¢) and fe(¢)) is an iterative
type of solution and consists of the following steps:

1) 1In the ¢ = 0° plane {or some other suitable plane) choose

an initial point Q which is on the previous]y'determined
optimal control surface and is assumed to lie on the exit 1ip.

2) Choose a reasonable initial value for the ambient pressure P,-

3) Solve for fe(¢) using Eq. (323) in finite difference form.

4} Through an iterative process adjust the value of Py such that
the calculations in step 3 yield a closed curve for the exit
lip Ty

5) Determine the mass flow rate across the portion of the optimal
control surface bounded by the initial value Tine and the
generated nozzle exit lip.

6) Adjust the position of the point Q chosen in step 1 to satisfy
the mass flow constraint, Eq. (414).

7) Repeat steps 2 through 6 until the mass flow rate across the
control surface is equal to the required value.

Each step is now explained in more detail.

The first step is to choose some initial point Q on the given control
surface. This initial point should be at a radius such that it is a
reasonable choice of a point which could 1ie on the exit 1ip. Some idea
of where to choose Q can come from using Eq. (415) to calculate the mass
flow rate which crosses the portion of the optimal control surface
bounded by the initial value line and successive solution fronts (see
Appendix K); however, in general the solution fronts on the control
surface do not correspond to optimal exit lips.
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In step 2 a value of p_ is selected so that Eq. (413) can be used
to solve for a possible optimal exit Tip shape. Unless the initiail
point Q lies on a plane of symmetry of the optimal control surface,
there is no way to determine the correct value of p, to select., If
point Q does Tie on a plane of symmetry, then Eq. (412) is used to
determine the proper value of p, to use in Eq. (413).

Once a point Q has been selected and its corresponding Pa value
has been selected (or calculated), then Eq. {413) is applied in the
following finite difference form to solve for the shape of a possible
optimal exit iip:

average

roVesinscosetany - r{p-p,)
F,= fp +

2 szsinzetanusinw

where the exit 1ip must be a curve on the calculated control surface.

The solution of Eq. (416) on an optimal control surface is an iterative
process. The position of point T is known, and hence, the conditions

at point 1 are also known. The value of ¢ is selected so that (¢2 —¢1)
is such that Eq. {416) is an accurate approximation of Eq. (413)

[(¢2 - ¢]) = 2° has been found to be suitable}. Then the value of f, is
varied until Eq. @16 ) is satisfied. .This process is applied repetitively
for 0° < ¢ < 360°.

Unless the proper value of Pa at point Q was chosen, the curve
which results from step 3 is not a closed curve. In this case, step 4
consists of adjusting the value of P, at point Q and repeating step 3
until a closed curve is obtained. If point Q is on a plane of symmetry
s0 that £q. (412) was used to evaluate Py @ closed curve results from
step 3, and no iteration is necessary in step 4.

Not only is the exit lip of an optimal nozzle a closed curve along
which Eq. {416) is satisfied, but the exit 1ip also satisfies Egs. (@14 )
and (415). The values of ﬁT and ﬁIVL are known, and m¢ ¢ is determined
by numerically integrating Eq. (415} over the control surface using the
exit Tip calculated in steps 4 and 5 as the outer boundary. In general,
the value of m corresponding to the generated exit lip does not

C.5.
satisfy Eq. (414).
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If hc.s. is such that ﬁc.s. < (ﬁT - ﬁIVL)’ then the position of the
point Q selected '~ step 1 is moved radially outward some distance, and
steps 2 through € 3ve repeated until m s, is the required value. If
mc's' > (hT - mIVL)’ then the initial po1nt is moved radially inward and
steps 2 through 6 are repeated. The entire iteration procedure is
complete when a closed curve on the control surface along which Eq. (416)
is satisfied and p_ is a constant is found for which hc.s. satisfies
Eq. (414).

The results for a typical optimal nozzle with two planes of symmetry
are shown in Figure 43, The data along the initial value Tine and the
49 solution fronts are known at the start of the solution for the corre-
sponding optimal exit Tip. The first choice of point Q, 01, yields an
exit 1ip for which mC < (hT IVL) while the_firsF correction point,
point Qz, yields an exit lip for which m P (mT - mIVL)' The final
exit Tip shape satisfies the mass flow rate constraint as well as satisfy-

ing Eq. {416).
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‘Thd"problem of designing three-dimensional (nonaxisymmetric) supersonic nozzles which
prescribed upstream flow field, mass flow rate,
exit 1ip shape and position, and ambient pressure has been formulated and numerically

produce the maximum axial thrust for a

S

isoenergetic, homentropic flow of a perfect gas.
were written as integrals over a control surface which

olved. The formulation was written to consider a three-dimensional, supersonic,

the exit 1ip of the nozzle.

times a Lagrange multiplier.

The axial thrust and mass flow rate
was constrained to pass through
The functional to be maximized was formed by summing the
integral equation for the axial thrust and the integral equation for the mass flow ratg
The fixed Tength and fixed ambient pressure constraints

were imposed by substitution into the variational problem.

The set of partial differential equations and the algebraic equations which resulted
from setting the first variation of the functional e
olved. For a particular set of initial conditions the numerical
passes through the exit of the resulting
P, the magnitude of the axial thrust, and
s an optimal.

5

generates the characteristic surface which
optimal nozzle, the position of the exit 1i
the ambient pressure for which the nozzle i

The numerical solution technique was programmed for the CDC 6500 computer. The resu]tﬁ

for nine sample cases are presented. The results confirm that the three-dimensional

optimal nozzles designed using this technigue are si
dimensjonal nozzles

dimensions .

that have identical in
Furthermore, the results show
methods are not adequate for designing thre

qual to zero were numerically

gnificantly better than other

itial conditions and have comparable overall
that two- !
e-dimensional optimum nozzles.

dimensional or axisymmetric

soTution technique
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