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ABSTRAC?

An experimental investigation and correlative analysis were conducted
to determine the preassure distribution over the surface of parachute
oanopies during the period of infleation for the infinite mass case and
to correlate pressure coefficients with inflating canopy shapes.
Parachute canopy models of Circular Flat, 10% Extended Skirt, Ringslot,
and Ribbhon designa were tested under infinite mass conditione in a

9 x 12 ft low speed wind tunnel. External and internal pressure values
were maeasured at various loocations over the surface of the model cano-
piee throughout the pericd of inflation, and generalized canopy profile
shapes were obtained by means of photographic analysis.

Pressure coefficients derived for the steady state (fully open canopy)
are guite comparable to the results of previous measurementis. Peak
pressure values durlng the unsteady period of inflation were found to

be up to 5 times as great as pteady state values.

The relationships between the pressure diastribution and time for each
of the canopy models deployed at free-siream velocities between 70 and
160 ft/sec are preasented in detail and correlated with changing canopy
shape. A complete shape analysls is made and a mathematical model isa

proposed,

iii



- putiadis

Approved for Public Release



TABLE OF CONTENTS

Section

1.

2.

5

Introduction + « « ¢ o o o o 4 2 2 2 o & 4 & s »

Test Conditions . « o +« & & ¢« o o ¢ & o s o s

A, Parachute Models . « « ¢ « o« & 4 o o ¢ » o

B. Teat Facilities and Test Method . . +» «+ «+ + &

C. Test Procedure O T T S T T T T S TR T T S S

Results and An‘ly!iﬂ " s & 8 8 % ¢ P s e 2 o s ®

A. Canopy Pressure Distribution . . « . « + +

B. Canopy Shape Analysis . . . ¢« + ¢ ¢ o « &+ & &

Summary and Recommendations . +» « ¢« & ¢ ¢ & &

References

Appendixes

* L . . * L] . L] v L] L] - [ ] L3 L] L] 4 L] -

I. Parachute Canopy Modela . . . .

11, Comparative Pressure Coefficient
Versus Time Relationships
(plottinge and original

recordings) « + + + s 0 . s o+

III. Pressure Distribution on Gore

Center Line . . « ¢« ¢ ¢« o & & «

0 [+ ~3 W n

98
99

100

105

121



Figure No

1.
2.

3.

4,

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

ILLUSTRATIONS

Test arrangement in the windtunnel . . . « + . . &

Pressure tranasducer . . . .

Error in % of 0.3 psi output versus g-loading for

the 3 axes of attack . « +

[ ]

L] »

Frequency response cof pressure transducer .

Linearity and calibration of pressure transducer

Reproducibility of experiments . . .

°pd and

vD = T0

c and

pi

Vo ™ 70
¢ and
pe

vo = T0

°pd and

filling versus time,

Circular Flat,

ft/aec - - L - L] - L] L] L] L L] L . -

filling versus time,
ft/BQC-onuuuu

filling versus time,

Circular Flat,

L]

Circular Flat,

ft/sec . L) . . L] L] - . a - L) - [ 3 L]

£filling versus time, Circular Flat,

v, = 100 ft/eec . . . . .,

cpi and

filling versus time, Circular

v, = 100 ft/sec + « + « o«

ope and

filling versus time, Circular

v, =~ 100 ftfsec . o . . . .

°pd and

f£illing versus time, Circular

v, = 130 ft/sec .« « v 4 o

upi and

filling versus time, Circular

v°-130ft/500aonlco

vi

Flat,

10

16

17

18

19

20

21

22

23



16,

17.

18,

19-

20.

21.

22,

23.

24,

25.

26.

27.

26,

8

ILLUSTRATIONS (cont.)

cpe and filling versus time, Circular Flat,

Vo-130ft/'e°|luoo-uooooooonnol

Gpd

Vo‘160ft/SBCQc-ooooa¢-u-oooooo

and filling versus time, Circular Flat,

c and filling versus time, Extended Skirt,

pd

VDQTOft/Bec.--o-ooa.ca---oono

Cpi

and filling versus time, Extended BSkirt,

vo-TOft/ﬂoc...............-..

c and filling versus time, Extended Skirt,

pe

vo-70ft/sec.--------...----.-

cpd and filling

Vo " 100 ft/sec

op1 and filling

v, = 100 ft/sec

cpe and filling
Vo " 100 ft/aec

cpd and filling

v, = 130 ft/sec

cp1 and filling

v, = 130 ft/sec

cp. and filling
v, = 130 ft/sec

°pd and filling
v, = 160 fi/sec

py &nd filling
v, = 160 ft/sec

cpe and filling
v, = 160 ft/seo

versus time, Extended

vii

Skirt,

Skirt,

L] [ ] [

Skirt,

Skirt,

skirt,

L] L] *

Skirt,

Skirt,

Skirt,

Skirt’

24

25

26

27

28

29

30

n

32

33

54

35

36

31



ILLUSTRATIONS {cont,)

Figure XNo Page
29. ° 4 and filling versus time, FIST, v = 70 ft/se0 38
30, ®oy and filling versus time, FIST, v_ = 70 £t/sec 39
31, 0 e a0d fi1ling versus time, PIST, v_ = 70 ft/aec 40
32. °ha and filling versus time, FIST, v_ = 100 ft/nec 41
33, ®p1 and filling versus time, FIST, v_ = 100 ft/sec 42
34. °pa and filling versus time, FIST, v, = 100 ft/sec 43
35, ®pa and filling versus time, FIST, v_ = 130 ft/sec 44
36. Cpi and filling versus time, FIST, v = 130 ft/sec 45
37. © e and filling versus time, FIST, v_ = 130 fi/sec 46
38. ©g4 and filling versus time, FIST, v, = 160 ft/sec 47
39, °5y and filling versus time, FIST, v_ = 160 ft/sec 48
40. ®he and filling versus time, FIST, v_ = 160 ft/eec 49
41. °sa and filling versus time, Ringslot, v_ = 70 ft/sec 50
42, ©py and filling versus time, Ringslot, v_ = 70 ft/sec 51
43, ®e and filling versus time, Ringslot, v = 70 ft/sec 52

44. °pa and filling versus time, Ringslot, v_ = 100 ft/sec 53

45, c¢_, and filling versus time, Ringslot, v_ = 100 ft/sec 54

pi o
46. c , and filling versus time, Ringslot, v, = 100 ft/sec 55
47. ¢rd and filling versus time, Ringslot, v, = 130 ft/sec 56
48, Cpy and filling versus time, Ringslot, v, = 130 ft/sec 57
49. ®he and filling versus time, Ringslot, v« 130 ft/sec 58
50. °ra and filling versus time, Ringslot, v_ = 160 ft/sec &9
51. L3 and filling versus time, Ringslot, v_ = 160 ft/sec 60
52. ®pe and filling versus time, Ringslot, v_ = 160 ft/sec 61

viit



ILLUSTRATIONXNS (cont.)

Figure Ko
53, o, versus Dp/?o for Ciroular Flat, v = 70 and
100ft/..°o-|onco--o---o---oo
54, o, versus np/no for Circular Flat,
V°-15°md160ft/’.°soaalcoloonc
55, o versus np/no for Extended Skirt, v = 70 and
100!'t/800..-...............
56. o _ versus np/n° for Extended Skirt, v, = 130 and
160ft/8e°ocanouon-o-ocooou.o
57. o, versus Dp/Do for FIST, v_ = 70 and 100 ft/se8c
58, o, versus DP/DD for FIST, v, = 130 and 160 ft/nec
59. o, versus Dp/Do for Ringslot, v = 70 and 100 rt/sec
60. o, versus Dp/l)o for Ringslot, v, = 130 and 160 ft/dec
61. Photographic Shape, phase I for Circular Flat . ., . .
62, Photographic Shape, phase II for Circular Flat . . .
63. Idealized Photographic Shape symbols . + + « ¢ » o« o
64. Parameters of Idealized Phototgraphic Shape versus
time for Circulsr Flat, v = 70 ft/see « « o ¢ ¢ o o
65. Paramsters of Idealized Photographic Shape versus
time for Circular FMat, v, = 100 fi/se¢ ¢ « o o o
66. Parameters of Idealized Photographic Shape versus
time for Circulsr Flat, v, = 130 ft/eec + o« . . o
67. Parameters of Idealized Photographic Shape versus
time for Circulsr Flat, v = 160 ft/860 v o o o« 4
68, Parameters of Idealized Photographic Shape versus
time for Extended Skirt, v_ = 70 fi/86C « « « 4 o
69. Pirameters of Idealized Photographic Shape wversus

time for Extended Skirt, v = 100 ft/sec o + « « &

ix

62

63

64

65
66

67
68

69
15

76
11

78

79

a0

81

82

o3



ILLUSTPTRATIONS (cont.)

Figure No

70, Parameters of Idealized Photographic Shape versus
time for Extended Skirt, v_ = 130 ft/sec « + o 4

71, Parameters of Idealized Photographic Shape versua
time for Extended Skirt, v = 160 ft/eec . . . . .

72. Parameters of Idealized Photographic Shape versus
time for FIST. vo = 70 ft/aec P T R T T

735. Parametera of Idealized Photographic Shape versus
time for FIST, Vo - 100 ft/sec P

74. Parameters of ldealized Photographic Shape versus
time for FIST’ vo - 150 rt/sﬂc e & e & 2 & & ® @ =

75. Parameters of ldealized Photographic Shaps versus
time for FIST, vo = 160 ft/ﬂ‘c R T T R

76, Parameters of Idealized Photographic Shape versus
time for R1n881°t’ Vo - 70 ft/a‘c [ T T T S S S

77. Parameters of Idealized Photographic Shape versus
time for Ringslot, v = 100 ft/aec « v o v 4 4 4

78. Parameters of Idealized Photographic Shape versus
time for Ringelot, v = 130 ft/eec « v 4 ¢ o 4 .

79. Parameters of Idealized Photographic Shape versus
time for Ringslot, v = 160 ft/sec « « v 4 4 o« 4

80, Parameters of Idealized Photographic Shape versus
time for Circular Flat, v, - 70, 100, 130 and
160 ft/s@c $ & % 8 & B 8 B 8 8 & 8 8 & & % & ® ¥ »

81. Parameters of Idealized Photographic Shape versus
time for Extended Skirt, Vo " 70, 100, 130 and
160 ft/.ec ® 3 8 8 B B & B 8 B ® F & 8 e B * & b &

82. Parameters of Idealized Photographic Shape versus
time for FIST, v = 70, 100, 130 and 160 ft/sec . .

b 4

84

85

a6

87

88

89

90

91

92

93

94

95

96



Figure No

83.

B4.
85.
86.

87.

&8.

89.

90,

91-

92.

93.

9.

95,

96.

97.

98.

ILLUS

TRATIONS (cont.)

Parameters of Idealized Photographic Shape versus
time for Ringslot, v, = 70, 100, 130 and 160 ft/aec

53.5" model of a Circular Flat parachute . . . . . »

62.0" model of a 10 % Extended Skirt parachute . . .

53.5" model of a Circular Flat FIST parachute . . .

53.5" model of a Ringslot parachute . +« « « & s + &

¢_ versus
P

presaure,

¢_ versus
P

preasure,

c_ versus
P

pressure,

c_ versus
P

pressure,

c_ versus
P

pressure,

c_ versus
P

pressure,

c_ versus
P

pressure,

¢c_ versus
P

pressure,

c_ versus
P

pressure,

¢_ versus
4

pressure,

c_ veraus
P

pressure,

tige for

Circular

time for

Cirocular

time for

Circular

time for
Extended

time for
Extended

time for
Extended

time for
Extended

time for

FIsT, Yo

time for
FIST, v
o

time for
FIST, Vo

time for
FI37, Yo

differential, internal and external
FQEt. vo - 70 ft/aec P T T R S )

differential, internal and external
Flat, vo « 100 ft/ﬂec L )

differential, internal and external
Flat, v = 130 ft/Bec +« « v o 4 4

differential, internal and external
Skirt, v = 70 ft/sec o« « v o o o &

differential, internal and external
Skirt, v = 100 ftfeec « o v o 4

differential, internal and external
Skirt, v = 130 ft/86c + v o 4 o &

differential, internal and external
Skirt, v = 160 ft/sec « « o« 4 4 &

differential, internal and external
- 70 ft/ﬂec e & & ® & & ¥ & € &

differential, internal and external
= 100 ft/aec L T T T S T S S T

differential, internal and external
- 130 ft/ﬂeo P N L T T T

differential, internal and external
- 160 ft/a.c & # & & B2 B 8 & &+ v @

xi

97
101

102
103

104

106

107

108

109

110

11

112

113

114

115

116



ILLUSTRATIONS (cont,)

Figure ¥o Page

99. op versus time for differential, internal and
external pressure, Ringslot, v, * 70 ft/sec « « 4 . . . . 17

100, cp verpus time for differential, internal and
external pressure, Ringslot, Vo " 100 ft/sec " s e e e 118

101, cp versus time for differential, internal and

extarnal pressure, Ringslot, v, = 130 ft/sao . v s s s s 119

102. op versus time for differentlial, internal and
external pressure, Ringslot, v_ = 160 ft/sec « o . . . . 120
103, °ha and filling versus time, Ringslot, v_ = 100 ft/sec 122
104, c , and filling versus time, Ringslot, v = 100 £t/sec 123
105, ®pd and filling versus time, Ringslot, v = 100 ft/ses 124

TABLES
Iable Page
1. Peak and steady state values for °p and Dp and

corresponding times . . . . . . . 4 . 4 4 b 4 e .. e s . 14
2. Approximations to the 4th power for phase II . . . . . . 73

xii



4. INTRODUCTION

Minisum weight and packing volume are basic requirements for
parachute canopies for any application. To meet these require-
ments, knowvladge of the stiress distribution in the canopy ia a
prersquisite for the parachute designer. This applies in parti-
cular to the period of transient force generation, the parachute
filling or opening process. In order to accomplish a valid deter-
mination of the canopy stress distribution and since attempts to
measure the acotual stresses in parachute ocanopies during the
transient atate have not been successful, the pressure distridu-
tion over the surface of an inflating parachute canopy must be
known to yield a basis for the calculation. In addition, the shape
and shape changes which a parachute canopy undergoes during the
period of inflation must be known so that the caloulation procedure

may be generalized.

For the steady state condition, that isa for .the fully inflated
parachute canopy, the cslculation of stresses in the canopy has been
attempted by Jones [1] and by Topping et al [2] » Only recently, an
approach was developed by Hainrich and Jamison [3] to predict the
canopy stress distribution for the transient state. Although this
calculation approach conaiders synthesized canopy profile shapes
through which the cancpy evolves during the period of inflation,
pressure coefficients were based upon results obtained during steady

state measursments on these synthesized cancpy shapes,

A great diffioulty for all stesdy state considerations is that
maximum stresses occur during the rapidly ocourring canopy shape
changes of the filling process, and pressure and stress values can

vastly exceed steady state values,

A number of attempts have been made in the past to measure the actual
Pressure versug time relationshipe Quring the process of inflation.
These attempts, however, have been unsuccessful primarily due to the
non-availability of a pressure senaing method or device which would

yield accurate results under the accceleration levels encountered



during canopy inflation.

By means of a specially develcoped pressure transducer it has now
become possible to measure pressure values at various locations
on the cancopy. In addition, an analysis was made of the changing
canopy ahape and related to the changing pressure distribution, .
The experimental investigation and correlative analysis were con-
ducted for the case of parachute opening under infinite mass con-
ditions, the case where there is no or only a relatively small
velocity decay during the period of canopy inflation. Although
the results of this investigation do not apply to all cases of
parachute application, they do represent s major step towards a
better knowledge of the parachute opening dynamics.

2, TEST CONDITIONS

A, Parachute Canopy Models

The investigation was performed on parachute canopy models of 4
basic types or designt

1. Solid cloth, circular flat type

2, So0lid cloth, 10% flat extended type

3. Ringslot type

4, Plat circular ribbon (FIST) type
The solid cloth, circular flat type cancopy model was based upon
the design of the personnel type (C-9) canopy, incorporated 28
gores, and had a nominal diameter (Do) of 53.5 inches.,

The design of the solid cloth, 10% flat extended skirt type canopy
model was based upon that of the troop type {T-10) canopy. The model
incorporated 30 gores and had & nominal diameter (Do) of 62,0 inches.

The ringslot and flat circular ribbon (FIST) type canopy models were
fabricated of 24 gores with a geometric porosity of 16% for the
ringslot and 18% for the flat circular (FIST) types. The ringsiot
type canopy model was constructed of % cloth rings and 1 vertical
tape in each gore, the FIST type canopy model was constructed with

27 horizontal ribbons and 4 vertical tapes in each gore. These models
had a nominal diameter (Do) of 53.5 inches.



The cloth used in the fabrication of the canopy models met the
German Kennblatt 1004 (Perlon; nominal cloth permeability at
1/2 inch B,01 130 cfm/ftzg weights 1.45 oz/ydz).

Drawings of the four models are included in Appendix I.

B, Teat Facilities and Test Method

All experimental Investigations were performed in the 9 x 12 ft
low speed wind tunnel of the Deutsche Forechungsanstalt fiir Luft-
und Raumfahrt e.V. (DFL) in Braunschweig.

A schematic presentation of the teat srrangement is shown in

Figure 1, The canopy models were mounted in the wind tunnel test
section in a stretched-out position, but prevernted from inflating
by two leather clamps, one enclosing the skirt and the other enclo-
8ing the middle section of the canopy. The wind tunnel was then
brought up to specific speeds (70, 100, 130 and 160 ft/sec) and

the clamps wers suddenly released by burning a thin wire and

by the actlon of springs attached to the clampes. Upon release of
the clamps, the canopy models were free to inflate.

The distribution of the local pressure (internal, external and
differential) over the canopy model from skirt to vent was measured

by strain gage type pressure tranadﬁcera attached to the canopy
purface at specific locations., The presaure tranaducers ware developed
by the Deutache Forschungsanstalt fiir Luft- und Raumfahrt. A view of
the pressure transducer is shown in Figure 2. Tie phyesical specifi-
cations of the sensing element are: weight 0.2 oz, diameter 1.2
inches, thickness 0.35 inches, capacity + 0.5 pei.

Each sensing element is temperature and acceleration compensated,
Errors in per cent of output under applied pressures of 0.3 psi as

a function of g-loadings applied statically in three mutually perpen-
dicular planes are shown in Figure 3. The influence of accelerations
up to 200 g's is below 3% of the full scale output of the transducer.
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Since accelerations experienced on the parachute canopy during in-
flation are not static but dynamic, that is portions of the cloth
surface may move or oscillate with frequencies up to 100 cps, the
frequency response of the transucer must be considered in order

to determine the total introduced error under dynamic condlitions.

As indicated in Figure 4, the point of resonance of the transducer
is approximately 250 cpe with a maximum error of 9 % of the total
output at an applied pressure of 0.3 psi. Up to an applied frequency
of 170 cpes, this error ie only 1.5 %. Output voltage and linearity
of the pressure transducer over a range of applied pressures are

shown in Figure 5.

In addition to the pressure values, the forces generated by the
parachute canopy were also recorded as measured by a strain gage

type tensiometer. Hottinger carrier systems were used for the elec-
tronic measurements and the resulting signals recorded on a light-beam

oscillograph Honeywall VYisicorder,

€. Teast Procedure

A total of four pressure transducers were located along the cord
center lines of the canopies and distributed 90 degrees apart

around the aurface of the cancpies hecause of weight influences. In
addition, the location of the transducers was staggered in a manner
shown in Figurea T through 52 to obtain pressure measurements near
the skirt, near the vent, and at two intermediate popitions on the
canopy. Additional measurements were made for comparative purposes
with the transducers located along the gore center line (Figures 103
thru 105).

The complete filling process was photographed from one side by a
high speed camera with 100 frames per second. From the photographiec
record, canopy profile shapes and projected canopy diameter values

were Obtained.

At the time of removal of the clamps setting the canopy free to
inflate (time t = 0), a time base signal of 50 cps wae initiated



and recorded on both the oscillogram and the photographic film for
synchronization purposes.

The internal, external, and differential pressure values were measured
and recorded during different runs. For the measurements of the in-
ternal and external pressures, the barometric pressure was conducted
by tudbings to the outer and inner pressure taps of the transducer,

respectively.

A total of four separate measurements were made for each condition

in order to determine the repeatabiliiy of the measurements and obtain
valid average data. Thus, four equal teast runs for each of the four
canopy types at four different speedes to obtain three different pressure
(differqntial, internal, external) versus time relstionshipa were per-
formed for a total of 192 wind tunnel test runs,

In order to obtain background data on the acceleration distribution
over the parachute canoples during the period of 1nflation, accelera-
tioﬁ measurements were performed on each of the four canopy types

for each of the four deployment speed conditions., For thie purpose,
miniature atrain gage type accelerometers of spproximately the same
pize and weight as those of the pressure transducers were located at
the same points on the canopies where pressure measurements were taken.
Maximum values were measured on the sclid cloth flat ciroular type
canopy models at a location near the canopy skirt which at the largest
deployment speed (160 rt/sec) is accelerated at the beginning of in-
flation at approximately 50 g's and decelerated at the end of infla-
tion at approximately 200 g's,

3. RESULTS AND ANALYSIS

The two major objectives of the program weret

1. To determine the characteristic reletionships between the pressure

end time for each of the four canopy types,

2., To correlate the preasure values and canopy shape at any point

during canopy inflation.



In addition, a detailed analysis of the canopy shape development
for the period of canopy inflation under infinite mase operating
tonditions was to be attempted.

A, Cancpy Pressure Distribution

Reproductiona of actuel oscillograph records obtained from the

teats are shown in Figure 6. Thess records represent the registra-
tion obtained on a flat circular ribbon type (FIST) canopy during
four. different test runs conducted at the same deployment condition
of 130 ft/aec. Analyzing these reglstrations, two general statements

may be made:

1. The reproducibility of the four measurements made at any one
test condition was relatively good. This applies in particular
to the m0lid cloth type canopies. Therefore, since no significant
deviations occurred the results of only one measurement for each

canopy type and deployment condition are included in this report.

2. As the original recordings illuatrate, the pressures fluctuated
during the steady state period (canopy fully inflated) due to flow
conditions. During the unsteady period (canopy inflation), some
fluctuations can occur due to ithe unsteady movement of the canopy
material, in particular in the skirt area; however the mean values
show increasing pressures with a more or less prominent peak. The
determination of mean steady state values wap sometimea difficult
due to fluciuations in the pressure values and since actuel steady
state conditions were not reached immediately after canopy inflation,
but several seconds later. To avoid cable breakage and other damages
to the test set-up, especially at the high deployment velocity, the
wind tunnel was shut down immediately after canopy filling was com-
pleted. To obiain more mccurate steady state values, readings should
he taken for at least five seconds during the steady atate period.
In general, however, the msteady state values obtained are guite

comparable to the results of former measurements [4] .
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The loocal pressures messured on the surface of the cancpies

were differential pressures, dp, since atmosheric pressure vas
conduoted by tubing to one of the ports of the pressure transducers.
For opan test section wind tunnels, the atmospheric pressure can be
assumed to be equal to the static pressure of the airflow, The pressure
values measured are expressed in occefficient form by relating these

tc the dynamio pressure of the airflow, Thus

oy - 20,

q
As mentioned sbove, the differential, internal, and external pressure
distributions were measured. For each of the canopy types and test
conditions, the differential, internal, and external presasure coeffi-
cients (cpd. °p1’ and dp.) for the four locations on the canopy wers
generalized (smoothed) and are plotted as & function of time in
Figurea 7 thru 52. In order to correlate pressure valuea to canopy

b

shape, the inatantaneous projected canopy diameter, Dp' was evaluated
from the photographic recordings, Therefore, the relationship between
projected canopy diameter ratio, np/no. as & function of time is shown
also for eaoh test run. A presentation of all three pressure coeffi.
cient (cpd’ epi’ op.) versus time relationships for each test condition
together with reproductions of the original oscillograph recordings is
included in Appendix II,

In genseral, the pressure peak occurs first in the canopy vent area
and travels very rapidly towards the skirt area. The pressure—peaks
occur slightly prior to the time at which the canopy reaches its
fully inflated shape for the first time. For the solid oloth type
canopy models, the pressure peaks from vent to skirt follow very
rapidly one ancther, being separated in time only approximately 1/100
of 8 second. The last peak in the akirt area cccurs at almost exactly
the time at which the canopy is fully inflated. For the geometric
poroeity type canopies, the peak separation time is somewvhat greater,
for the FIST type canopy approximately 5/100 to 1/10 of a second, for
the ringslot type canopy 1/10 of a second or more., The last peak in

11



the area of the canopy skirt is again close tc bhut before the fully
inflated projected canopy diameter is reached for the first time.

Aside from the determination of pressure versus time relation-

ships and pressure diastributions, the determination of the magnitude
of the pressure peaks is & significant result of this program. For
comparativé purposes, a pressure factor, Fp, can be defined which

is the ratio between the maximum value of the pressure coefficient,

cpmax' and the value of the steady state pressure coefficient,
°pat' or
o
‘ pmax
F = .
P pat

A compilation of all maximum and steady state pressure coeffi-

cient values (& and cpst) atlihe four locations on the four

canopy types, tgza:ime increment between occurrence of pressure
peaks in the areas of canopy vent and skirt, and the time at which
the fully inflated projected canopy - -diameter, Dp’ is reached for
the first time is given in Table I for each of the four deployment

spesd conditions, Vo

The steady state pressure coefficients, cp't, in the area of the
canopy skirt are approximately 1.0 for the internal and-0.7 for

the external pressures, resulting in a differential pressure
coefficient of 1.7, This is true for the extended skirt, FIST,

and ringslot type canopies. These values are comparable to the results
obtained by Heinrich [4] . For the circular flat type canopy steady
state pressure coefficients of up to 1.5 for the internal, -1.0 for the
external, and 2.5 for the differential pressures were Oﬁtained. These
values are high and there is a wide variation ¢f all values acquired
on this canopy type. More tests appear to be necessary to verify the
findings.

On the circular flat type canopy, peak differential pressuréa during
inflation reached approximately three times the ateady values at full

canopy inflation, In cne test, a pressure factor of 5.4 was even

12



obtained at a location near the canopy skirt. At the higher deploy-
ment velocities of 130 and 160 ft/sec, the pressure factor decreased
alightly due to the slightly lower peak pressure coefficient and

the somewhat higher steady state pressure coefficient values.

-For the extended skirt type canopy, differentisl preassure factors
from 2.5 at a location near the canopy vent to 3.6 at a location
near the canopy skirt were found. Again as for the circular flat
type canopy, the pressure factors decreased with increasing deploy-
ment velocity. At a deployment velocity of 160 ft/msec, the pressure
factors varied from a value of 2,1 to 2.8 from the location near

the canopy vent to one near the skirt,

For the geometric porosity type canopies, the pressure factors

are remarkably lower, The maximum pressure factor obtained on the

flat circular ridbon (FIST) type canopy Qaa 2.3, decreasing to

1.7 at the highest deployment veloociiy. For the ringalot type canopy,
the maximum preessure factor was approximately 1.6, with no significant
differences between the low and the high deployment velccities, For
the geometric porosity type canopies, there was no aignificant diffe.-
rence in the magnitude of the pressure factor for locations near the
canopy vent or the akirt,

Abasolute filling times of each of the cmnopy types decrease with
increasing deployment velocity as can be seen from the Figures and

from the tabulated data in Table I. The filling times are shortest

for the circular flat type canopy, become longer for the extended skirt
and FIST ribbon type canopies, and are longest for the ringslot type

canopy.

A correlation between pressure changes and changing canopy shape may

be obtained from Flgures 53 thru 60 in which the pressure coefficients
(npd' Ope up.) are plotted as a function of the projected canopy
diameter ratio, Dp/Da. These diagrams clarify the presaure-shaps
relationship, For the oircular flat type canopy, the curves for the

four locations of the pressure sensing elements run very close together,
thus indicating a very quick filling of the canopy. These relationships

13
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show & slow increase in pressure at the beginning of inflation, with
& rapid build-up in presaure immediately prior to achieving first
full canopy inflation. A different characteristic is observed on

the ringslot type canopy. The four curves representing the four
preasure points from the canopy vent to the skirt are spread.
Although the curves show a rapld increase in pressure at each loca-
tion, they indicate that the canopy shape change does only slowly
follow increasing pressures. The trends for the extended skirt

and FIST ribbon type canopies are located between these two extreme

trends.
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B. Canopy Shape Analysis

The objective of a "Shape Analysia" for the filling period of the
parachute canopy was the mathematical description of the canopy
shape as a function of time. Since the canopy is approximately
rotational aymmatrié, it is sufficlent to consider the profile

views of the canopy.

To obtain representative profile views, specific frames of motion
pictures taken from the side were analyzed. The profile views thus
obtained yield a somewhat irregular and unsymmetric shape, as illu-
strated in Figures 61 and 62 by the solid lines which show an example
for the circular flat type canopy. Theae shapes, however, can be
graphically made symmetric, as is shown by the broken lines. The
resulting shape shall be called the Symmetrized Photographic Shape.

Thia shape can be idealized in the following manner and then be
described by means of specific parameters. This shape shall be
called the Idealized Photographic Shape. The entire proceas of
canopy filling may be divided into two phases, During Phase I, the
canopy fills from the skirt towards the vent. The canopy shapes
during this part of the filling period can then be described as
consisting of four bodles of revolution depicted by the profile
views in Figure 63:

1. A conical frustrum with lower base 2r, upper bﬁse 28,
and height p,

2. An added half-ellipsoid with major semi-axis a and minor
pemi-axis b,

3. An added cylinder,
4. And an added hemisphere. The height of the cylinder and
added hemisphere along the axis of revolution is QOy» and

the diameter of the c¢cylinder is 2r,.
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At the time where

O =Ty = b (1 -‘VQ. - r,z/uz)

the cylinder disappears, and only the hemiaphere remains added
to the halfwellipscid, meeting it with a secant equal to 2R.

As defined by o, and r_,, the radius of the hemisphere is then
r = (62 + 1'.2)/20 ]

where

d=p, +b (1 -V - r*z/a.a)

Phase II of the filling procesa begina at that point of time

at which the cenopy shape has assumed the shape of a conical
frustrum to which is added a half-ellipgoid. From this point on

the canopy fills from the vent towards the skirt. For the descrip-
tion of the canopy shape during this portion of the filling period,
only four parameters are required: the lower base 2r, the upper
base 2a, the height g of the conical frustrum, and the minor
half-axis of the ellipsoid, b, During Phase II the canopy fills
completely and opens with resulting rapid changes of 2r and 2a,
Phase II]l may be defined as the steady state period in which the
canopy shape no longer changes significantly and the values of each
of the four parameters only fluctuate about their steady mean values,

An approximated deecription of the Idealized Photographic Shape

a8 a function of time is possible by plotting the parameters of
the shape versus time. For comparative purposes, the parameters
are made dimensionless by dividing by the nominal canopy diameter,
Do' In eddition, the time parameter is made dimensionless by divi-
ding the time by & fictitious filling time t,. This fictitious
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filling time is the time from burning the wire which held the
leather clamps around the stretched-out canopy to the point where
the steady state mean valuee of the parameters were reached for the

firat time.

The parameters of the jidealized oanopy shape are now made a function
of t/t*. With this, the ldealized Photographic Shape can be construc-
ted for any value of t/t* for any specifioc deployment condition and
correlated with the pressure distribution for the same time t/t*.
Figures 64 thru 79 are plottings of the parametere of the Idealized
Photographic Shape obtained by this method for the four types of
parachute canopies. A qualitatively similar behavior can be meen

for all four types of canopies.

The parameters 2a/D°, 2r/D°, b/Do and g)/Do increase in value during
Phage I, indicating a filling of the canopy from the skirt towards
the vent with aimultaneous enlargement of the shape. During Phase II
the values of the parameters Za/Do, 2r/DO and b/Do are incressing
further until they reach the final steady state value at t/t* =1,

On the other hand, the value of the parameter Q/D° decreases after
reaching a maximum value. By plotting all parameters for one type

of canopy for the four different deployment speeds on one graph, all
peints for one parameter lie relatively close together as may be
seen from Figures 80 thru 83. Therefore, 1t may be concluded that
for the infinite mass case the development of the canopy shape is
primarily dependent upon the dimensionless time ratio t/t,. This
egrees with findings by Berndt [5] which indicated that for the
finite mass case the growth in projected canopy'area as & function
of the time ratio t/t* follows an identical relationship for a given
canopy type regardless of speed and altitude of deployment.

The spread of the measured points in Figures 80 thru 83 is probably
due to the inexact reproducibility of the filling process of a

parachute canopy.
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Table 2  Approximations to the 4th power for phase II

£, s a (450« s (/) s .,(m,)’ o 2, (t/8, )4

1 s ol *2 *3 “s
v, =70 [ft/eed] 2a/D -46.34 +217.05 -119.25 +294.30 -85.02
ty = U.25 [wes] 2:/110 -120.12 +594.60 -1092.50 +884.31 -265.51
0.72 = t/t, = 1.00 /T, -65.69 +309.04 =543.30 -423.51 -123.36 |
Bum Bs. 182 '/no +61.72 -288.99 +508.6T -306.75 115,42
v, = o [£4/awa)] zq‘no +56.84 -284.83 +531,73 -436.45 +133,42 A
t, = 0,20 [se0] 2/n +80,29 +395.86 +129,51 -594.,03 180,81
-] .70 = £/t = 100 1'/1»n +18,21 -85.69 +149.49 =113.51 +32.11
L s ve. 103 e/5, -49.59 -243.51 441,61 +352.68 -104.92
e |7, =% [ft/sec] 2-,/9.I +3.64 =-19.17 +38.77 -33.71 +11.21
'_; t, = 0,16 [se0] &=/, 1338 +98.74 T T +146.26 ~42.66
o 0.69 = 4/, » 1.00 b/B 379 +18.01 -32.11 +26.15 -8.04
G |Run mo. 187 e/t, 421 +25.98 -46.29 +38._66 -12.06
v, =180 [Tt/ae0] 2-/nn -18.14 +83.92 -141.37 +103.65 -21-35 ]
t, = 0.14 [mac] a/n +34.57 -169.80 +314.18 -258.92 +80.76
Q.64 = t/t, = 1,00 Ifbn =1.64 +40.04 -T8.03 +67.47 -21.64
Bun Bo. 191 e/, +10.54 -52.78 +101.50 ~86,96 +27.38
¥, =T0 [ft/ume] 2;/1:° ~40, 68 -60,42 -122,67 +108,67 -34.90
1. = 0,34 [sno] 2!/D° +5.52 -27.46 +55.40 ~-49.94 +17.54
0.5 = t/t, = 1.00 v/D, =1.64 11,36 -26.42 +26.24 -9.30
Kun Fo. 139 #/D, +5.13 -27.88 +59.61 =55.24 +18.45
v, = 100 [fr/ueq] 2a/D, -3.1t +19.36 -42.07 ~AD.62. =13.95
h t, = D.29 [aec] 2r/n° -6.81 +43.21 -97.39 +94.51 -32.68
% G.48 = /t, = 1.0 ¥/ -1.62 +13.42 -35.38 +38.80 14,98
- Pun No. 144 e/3, 2.1 +10.19 =11.71 +2.50 +1.42
3z v, = 1% [ftfead 20/ «0. 60 +3.52 -5.21 +3.59 -0.47
S [+ =0.23 [ses] /D T +26.56 ECTNT) TN L) -15.09
% [c.as = w2, = 100 ®/D, -1.91 z.11 AT 27,51 «9.97
N PN TRETT) /v, 2196 +15.79 7.3 0.70 2730
v, =160 [rt/ued] /D, +9.58 ~56.65 +124.29 »117.1% +40.71
t, = 0.2% [se0] /o 17,57+ -96.64 +206 .45 -188.95 «64,38
0.52 = t/t, = 1.00 v/D -3.68 “21.96 -48.37 +47,55 -17.10 ]
Run Ao, 153 mc -0, 80 +6.02 -9.51 +5.05 0,62
¥, =70 [[t/eec] /3, -1.06 +38,82 -75.99 +65.86 -20.94
t, = 0.36 [see] /D, +0,54 +0,55 -5.54 +9.56 4.7
0.5 = 1/t = 1.00 hfn° 2.4 +11.51 -21.78 +18,10 5,52 ]
Run Bo. 72 e/D, +3. 28 -17.98 +3B.2¢ -34.87 w1143
v, =100 [fifsed] /D, -4.62 +25.04 ~47.19 +40.97 -12.686 N
ty = 0.26 [anc] 2r/'1]° ~0.65 +6.27 -16.31 +18.36 :5799
C.50 = tft, = 1.00 b/no -2.36 +12.42 -23.36 +19.53% -6.05
G Run ¥o. T ¢,_/n° =0.10 +1.79 -2.40 +0.62 +0,22
w v, =13 [rt/asc] 2a/B, -3.27 +21,60 -50.76 +53. 34 -20.23
t, =0.22 [men] EER ~4.03 5397 ~73.50 7.1 -30.24 ]
0.50 = t/t, = 1.00 v/D, -6.07 +36.20 -78.25 +13.87 -25.39
Bun No. B2 e/o, +8.78 -49.33 +105,94 -99.63 +34.34
v, w60 [rt/aea] 2a/D, +1.39 ~4.90 +6.,50 -2.05 -0.2%
A, = 0.20 [mac) /8, 13,37 AR =VH0. 53 +132. 54 -42.48
0.55 = t/¢, = 1.00 b/DB -0.%9 +5.05 ~12.81 +13.71 =516
Run No. 86 ./l:n =-1.2% +6.54 Y «8.99 +3.91 011
v, =70 [ft/eeq :m/t;n -0,64 +4.37 =892 +8.91 -4.04
t, = 0.42 [eeq) zz/nn +1.52 146 +14.40 -9.83 +2.07
0,52 = t/y, = 1,00 %D 446 +24.39 -48.46 +42.38 ~13.67
Rup No, 7T ‘/Dn +0.98 -4.56 +11.04 -12.06 +4.67
v, =100 [ft/ees] 2a/D, “2.02 «12.85 +30.23 -21.97 +3.69
t, = 0.32 [awc] /D, +3.54 -21.22 +48.54 -45.56 +15.35
0.40 » t/t, = 1,00 EN -1,08 +B.24 -21.52 +24.37 -9.66
Run ¥o. 10 #/3, =1.67 +10.T4 -20.55 +15.37 3.7
§ v, = 130 [ft/nec] 2a/D, +5.23 -19.94 +4T.81 -46.59 +16,13
8 |t = 0.29 [aeq] 2=/ +2.49 -15.06 +36.53 -35.82 +12.53
5 D.49 = £/t, = 1,00 /B, +8.34 ~49.90 +109.95 +104.07 +35,83
Run No. 4 FYEN -5,28 +34.77 -78.96 +75.98 26,41
VAL [£4/neo] /B, +0.38 -2.70 L 4+11.63 ~14.75 +6.08
t, =4.25 [seo] 2/D +1.08 -6.54 +18.55 -1y, 1 +6.75
0,28 = t/t, = 1,00 B/D_ 43,15 0,67 +2.57 3. 2T 1. 53
Fun Jo. 18 '/no +U. 18 +1.29 478 +5.6% Y-
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The parameters of the Idealized Photographic Shape can also be
mathematically expressed as a function of t/t* forming a polyncmial
in t/t,. The coefficients of this polynomial are obtained by the

method of least squares.

4 regression to the fourth power was made for Phase Il of the filling
process for all four types of parachute canopies and for the four
deployment velocities., Table II shows the results for each parameter
in the form

f=a +a t/t, + 8, (t/t*)2 + ag (t/t*)3 + 8, (t/t*)4

The shape can be deascribed approximately by the parameters of the
Idealized Photographic Shape stated in graphic form or in terms of
& polynomial,
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4. SUMMARY AND RECOMMENDATIONS

The change of the pressure distribution over the surface of four
different types of parachute canopies during the period of inflation
was experimentally determined for the infinite mass operating condition
during low speed wind tunnel tests., The changing canopy shape during

inflation was also determined and correlated to the changing pressures,

The results are presented in detail and provide for the first time a
good knowledge of this vital relationship. In order to develop an
analytical relationship between the changing pressure and the changing
canopy shape, many more experimental tests will be required. These

are necessary to eliminate sabnormal variations in test conditions and

canopy deployment.

In order to substantiate the findings obtained on canopy models,
additional measurements of the dynamic pressure distribution
should be performed on full scale canopiea during free-flight
tesats,

For the finite mass operating case, quite different results and
relationships may be sxpected. The two different operating modes
should therefore be separated during further investigations.
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APPENDIX 1

PARACHUTE CANOPY MODELS

Detall drawings of the four canopy models used during the experi-
mental test program are shown in Figures 84 thru 87.
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APPENDIX II

COMPARATIVE PRESSURE COEFFICIENT VERSUS TIME
RELATIONSEIPS

A éomplete pioture of the pressure versus time relationships for
each canopy type and deployment velocity is presented in Figures
88 thru 102 in which the differential, internal and external
pressure coefficients are plotted versus & common time base.
Since the plottinga are based upon smoothed data, reproduction
of the original oscillograph traces are presented alsc to show
the fluctuations in pressures actually encountered.

As may be seen on the original traces, a recording of the force
generated by the cancpy model during inflation was made during

each run. Although a numerical evaluation of the force traces

was noct performed, they are presented here for correlative purpases,
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APPENDIX III

GORE CENTER LINE PRESSURE MEASUREMENTS

Additional wind tunnel tests were conducted to determine the
magnitude and time relationship of local pressures at locations
other than along the canopy cord centerline., During these tests,
the four pressure transduceras were located on the gore center
line, spaced 90 degrees apart over the surface of the canopy, and

arranged in a similar manner as for the previous tests.

Analyzing all data obtained, no significant difference in either
the magnitude or time relationship of the pressures as compared to

the measurements along the cord centerline were detected.

A typical example of the pressure data obtained during this test
series is presented in Figures 103 thru 105. These graphs show the
relationship between the differential pressure coefficient, °pd'
and time for each of the four locations on a ringsloet type canopy
deployed at a free stream velocity of 100 ft/aee.
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