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SECTION I

INTRODUCTION

Historical Background
It was during World War I that the first air-to-alr engagements

between friendly and enemy aircraft took place. Initially alreraft
were used only for reconnaissance purposes. Their role was to fly over
the enemy lines, determine the enemy deployments and strengths, and
then relay this information to the Army, Eventually aircraft from each
side came into visual contact., This resulted in the observers' carry-
ing rifles or handguns with which they fired at the enemy whenever the
opportunity arose. Since this type of armament was ineffective, the
observers started carrying machine guns,

Alroraft of this period were of two types, elither tractors or
pushers, Tractors had thelr engines mounted in the front whereas the
pushers had their engines located at the rear of the fuselage, Conse-
quently, the pushers could fire straight ahead, but they were less
maneuverable than the tractors. The problem with the tractors was the
danger of the machine gun bullets hitting the propaller and thereby
shooting their own plane down. There were four ways of averting this
catastrophe, The first way was to not fire tha machine gun; this
obviocusly was an unacceptable solution. The second way was to fire
forward., (Obviously the gumner's cockpit was situated behind the pilot,)

Por the third way the gunner was ahead of the pilot and stood up In hias



seat firing over the top wing of the biplane or triplane. The problem
here was that while the bullets missed the propeller, the gunner was
forced to stand in a slip stream of fifty to sixty miles per hour. In
addition the pilot was maneuvering the aircraft to get into position
for an effective shot, consequently there existed the hazard for the
gunner of maintaining his position in the aircraft, If he did not,
there was the risk of falling out of the aircraft, The fourth way
consisted of the gunner seated behind the pllot with the machine gun
attached to the coaming of the gunner's cockpit, The gun could be
aimed upwards or sideways in addition to backwards, The problem with
this approach was that when approaching the enemy from the rear the
pilot had to turn the aircraft away from the other plane or attempt to
fly alongslide the enemy.

Until 1915, the most advantageous position was a position
ahead of the enemy plane, This corresponded to firing the gun in
either the second or fourth way, and resulted in both a good offen~
sive and defensive position, The enemy could not fire for fear of
his bullets striking the blades of his propeller, Since the lead
alrcraft was firing backwards, there was no danger of hitting its
own propeller,

Early in 1915 the French developed a gun which could fire
through the propeller, Imagine the constemation of the German crews
when they managed to reach a position ahead of the French fighters
thinking they were in a favorable tactical position only to be shot
down by the French crews, At this point in the war the air struggle

swung in favor of the French, Unfortunately for the Allies, a French



fighter equipped with the device for firing through the propeller made
a forced landing behind the German lines. The pilot was captured bee
fore he could destroy his machine. The machine was taken to Berlin and
turned over to a Dutch airplane designer, Anthony Fokker. His instrucs
tions were to adapt the French idea to the German Parabellum machine
gun., Fokker recejved the French invention and the German machine gun
on a Tuesday evening and by the following Friday had adapted an im-
proved version to a German airplane. The French version had deflector
plates attached to the propeller blades, Consequently there was risk
of sghooting off the blades or the inherent danger of ricochets froa

the blades hitting the pilot, Fokker designed an interrupter gear that
resulted in the bullets passing between the blades, that ia, he
synchronized the propeller and machine gun,

These inventions resulted in the eventual disappearance of the
two man fighters, There was no need for an additional crew member to
fire the gun. The pllot flew the aircraft, almed it at the enemy, and
fired the gun, This also led to a change In fighter tactics. Two or
more alrcraft flew in formation. In pairs one fighter directed his
search in finding the enemy while the other’s duty was to protect his
partner. Today the situation remains essentially the same,

Starting with World War I, aerial combatants attempted to
defeat their adversaries, either through exploitation of thelr superior
skill or superior aircraft over the other's capablility or alrcraft,
History shows a small handful of fighter pilots were successful in
achleving a significant number of kills. These fantastic pilots wers

able to meet and defeat the snemies with aircraft in which other



pilots either fajled or had only moderate success, Thus only a small
fraction were able to operate their systems In a way which appears to
have approached optimal control. A fighter ace 1is defined to bes a
pllot that had five or more aerial kills, In this century, out of
45,000 pilots in World Wars I and II and the Korean conflict, there
are only 1300 aces, This amounts to approximately three per cent.
There seem to be several characteristics common among these
aces, Shooting ability rather than pllot skill was a pilot's most
Important asset, Few pllots achleved the ability of shooting from a
moving platform at a moving target., Good eyesight was an attribute
that resulted in attaining a favorable tactical position, Thisz was
more true in World War I where the speeds were slower than those in
World War II and the Korean confliect, The best fighter pilots knew
the strengths and weaknesses of thelr opponents as well as of their own
aircraft. In addition they were generally successful in escaping if
they were attacked, This could come about by thelr being taken by
surprise or by overshooting a target and thereby becoming the pursued
rather than the pursuer. As an example, the American Volunteer Group
known as the Flying Tigers In World War II achleved an exchange ratio
of tifteen to one, fifteen Japanese aireraft shot down for each U. §.
loss. The Flying Tigers flew P40's which fared poorly against the
Germans in North Africa. The P40 was a poor fighter in a dogfight,
which 1s the way that 1t was used in Africa, A dogfight is defined
as aorial combat involving many maneuvers between two or more aircraft.
In China, the Flying Tigers would make a high speed pass and then run

avay rather than engage in a dogfight. Consequently it was unlikely



that they could be placed in an unfavorable tactical position,
Another example of the significance of good tactics occurred when the
P38 was first introduced in World War II, P38 pilots that attempted
to dogfight with Japanese Zeros were shot down, The Zero had batter
turning performance, thus the U. S, losses were significant until dif-
ferent tactics were employod, This led to climbing to a higher speed
and altitude relative to the Zero., The P38 pilots then made high
speed dives and passes at the Zeros, It was due to the P18's dive
superiority and higher altitude celling over the Zero that resulted
in U, S. pilots turning the tables on the Zeros,

Another characteristic of the fighter aces was their aggres-
siveness, This proved to be one of the fighter aces' greatest psychoe-
logical weapons. A common denominator for a large fraction of the
fighter aces wvas that they had multiple kills in a single engagesment,
As examples, Fred Christenson shot down six aircraft on one mission,
Glenn Eagleston shot down three ME-109's in one day, Francis Gerad
shot down four planes in one aerial battle, David Campbell had nine
confirmed and two probable kills in a single mission, Kenneth Dahms
scored five victories in one mission, Stanley Vejtasa shot down seven
enemy planes in one engagement, Robert Murray shot down four aircraft
in one engagement, Kenneth Hippe shot down five aircraft in one mission,
Four Navy aces, Eugene Valencia, Harrils Mitchell, James French, and
Clinton Smith achleved the pinnacle of success when they took on
appraximately forty Japanese fighters on one single mission. The
result was sixteen Japanese kills and no U, S, losses, The number of

kills might have been higher if the Navy aces had not run low on fuel



and therefore were unable to chase the._enemy when they broke off the
engagement. Thus history shows that only a few achieved success vhile

many had limited success or completely failled,

Aerial Combat State-of-the-Art

Examination of the development of fighter weapon systems shows
that new systems designs either attempted to eliminate or improvs some
aircraft deficiency., The methods that were employed were based
strictly on experience and judgment factors, Consequently there was a
great deal of uncertainty as far as how well the system would perform
whan it entered Into air-to-air combat. Obviousiy the final test was
which system, friendly or enemy, came out the winner.

One of the fundamental problems associated with new fighter
designs past and present is the lack of analytical tools for assessing
how well the system would do in afir-to-air combat. There was no
attempt, up until approximately ten years ago, to formulate the engage-
ment problem és consisting of two or more opposing aircraft., Within
the past decade, howaver, considerable amounts of money and time have
been directed at developing methods for predicting the outcome of alr-
craft engaged in alr-to-air combat, By and large, emphasis has been
placed on the development of digital combat simulation and ground based
simulators, In the former the pilot's capability is ignored or at bast
grossly approximated, The ground based simulators on the other hand do
include pilots and are reasonable representations of cockpits and dis-
plays incorporated in fighters. The pilots employ typical fighter

controls and attempt to engage and defeat each other. The prodblems



assoclated with the ground based simulators are attributed to their
high cost and the uncertainty relative to the pllots' learning period,
Today a majority of the alrcraft companies, several research
companies, and many organizations within the department of defense have
produced digital air combat simulations., A common denominator among
these different groups is the bellief that thelr simulation is the best,
A little raflection on the developments along this line however, makes
ona wvonder if any of the simulations are any good, First it should be
pointed out that the major differences between the various simulations
can be related directly to the assumptions regarding the tactics em=-
ployed by each fighter, The fundamental problem is that the controls
are continuous functions over a relatively large range; hence there is
l1iterally an infinite choice of controls at any time during the course
of the engagement, There secems to be two approaches for reaching or
defining appropriate controls, The first is based on past pilot
experience, consaequently tactics are formulated which were used In
previous air-to~air engagements. The problem here is that the develop-
ment of a new fighter system ends up baing evaluated based on old
tactics. The second approach for formulating the controls is an
iterative approach which also 1s employed In the first approach. A
tactic or guidance scheme is selected, the results of the simulation
are analyzed, and the tactics are then revised based on the outcome
of the engagement. This is strictly a trial and error method with
the result that the revisions in the tactlics invariably end up showing
that the aireraft thought initially to be the best does indeed come

out on top, Consequently digital air-to-air combat simulations end up



favoring the new proposed fighter system, Although the new fighter ia
probably superfor to existing flighters there must be some suspicion as
far as the degree of improvement 1s concerned.

Another point about digital simulations, and probably the most
slgnificant one, has to do with the pilot's representation., It was
mentioned previously that the pilot's capabllity is either ignored or
grossly approximated. In general the constraints are elther not
prosent or at best a maximum normal acceleration for the pilot, In
real engagements, maneuvers are limited by both the pilot's physical
ability and the fighter performance constraints, All pllots are
treated as being equal. Since the pllot constrainta are often the same
or nearly the same as the aireraft, the pilot ends up at the top or
close to it as far as fighter skills are concerned. Thus every simula-
tion tends to be flown by a superior pilot, This clearly contradicts
history which shows that only three per cent of the fighter pilot force
were aces,

The queation then 1s,1f ground based simulators are expensive
as design tools and the results of digital simulations are questionable,
what other approaches are there for determining the characteristics and
tactlics for new fighter systems? There are soveral which should be
considered, The first is to take two existing aircraft, slightly
modify them, and let them engage in alr-to-alr combat. There are
several reasons why this approach is unsatisfactory, It is expensive
since several pilots would be needed in order to obtain a representa=-
tive sample, Also, one of the aircraft should be an eneny aircraft or

a4t least be representative. Clearly the likelihood of acquiring an



enemy aircraft is minimal. Obviously neither alrcraft could use 1ts
armament, hence the measure of effectiveness would have to be related
to the number of flring opportunities or the time during which one
alreraft fell inside the other's firing envelope, The paramount reason
why this approach would probably be unsuccessful is due to the problem
of applying the results to new conceptual systems, Therefore the
approach of employing alrborne systems can be dropped from further

cons idaration.

Another approach and the one that will be considered in this
endeavor is the analytical treatment of the significant factors in
alr-to=air combat problems, These factors consist of the aircraft
system parameters and the tactics employed in alr-to=alr combat, The
difference between this approach and those using digital simulations
is that the goal wlll be to determine optimal system parameters in
addition to the optimal tactics that a pilot should employ in alr-to-
aiv combat, Implementing these tactics ia another problem which will
not be considered here.

Examination of the technology available for addressing the
tactics optimization problem reveals that the developments of Isaacs
(1) in differential game theory are well suited to the problems to
be addressed hare., That only a small number of problems have received
attention to date can be attributed to the observation that the
developments by Isaacs occurred only within the past decade and that
two=player differential games are significantly different from one-
player games or optimal control problems, In games of two or more

Players each player in making a decision must take into account his



opponent's po}tendlng action and his opponent's similar wariness of
the first player'’s actlons, This situation has resulted in difficulty
in obtaining correct analytical or numerical solutions,

A differentinl game approach is appropriate since the motions
of the players are described by differential equations, The advan-
tages of addressing the alr-to-air combat problem as a differential
game are twofold, If a solution can be obtalned, then optimal tactics
are defined for each player. In addition the characteristics of one
player necessary to counter or capture the second player are defined.

Isaacs (1) considered only deterministic zero-sum two- player
games. Deterministic implies perfect information, Zero sum means one
player's loss is the other player's gain. Subsequent to Isaacs'
efforts, one can now find in the literature both theoretical develop=-
ments and applications of differential games for Zero sum games, non=
zero sum games, games with more than two players, and stochastic games,
The latter corresponds to games of imperfect information. Some of tha
studies employing differential game theory as related to aireto-air
combat will now be briefly discussed,

Two problems both of which are gross approximations of the aire
to-air combat have been studied by Isaacs (1), Breakwell and Merz (2),
Miller (3) and Lynch (4). The utility of these problems is that the
description of the motion and the perforpance characteristics results
in linear differential equattons, Consaduently analytical solutions
were obtalned. The problems are related to aerial combat in the sense
that the players have conflicting goals. The two problems were

originally called by Isaacs the homocidal chauffeur game and the game

10



of two cars, In the former game a chauffeur in a car travéllng faster
than a pedestrian attempts to run down the pedestrian, The pedestrian's
goal is to avoid the car. The pedestrian can change his direction
instantaneously, vwhereas the car is limited by its minimum turning
radius. Both pedestrian and car speads remain constant during the
engagement. The car has higher speed but less maneuverability relative
to the pedestrian.

The game of two cars is simllar to the homocidal chauffeur game.
The difference 1s that the pedestrian is replaced with a car of finite
turning rate. Changing directions instantaneously corresponds to an
infinite turning rate, Thus a maximum finite turning rate corresponds
to a nonzero minimum radius of turn. Like the homocidal chauffeur game
both cars remaln at constant speeds,

The dominant assumptions in both games are constant speeds for
each player and two dimensional engagements, Lynch (4), however, has
addressed the varlable speed case and some three dimensional engage-
ment problems. Lynch concluded that constant speed engagements are
good first order approximations to the variable speed case. For the
homocidal chauffeur game, Lynch showed that the optimal trajectories
are the same for both two and three dimensional engagements. For the
three dimensional version of the game of two cars, Lynch derived
approximate closed form control loglc,

The previous references were concerned with solving two types
of problems. The first problem was the determination of the character=
fstics of both players which would result in the pursuer capturing the

evader, Capture occurred if the separation between pursuer and evader
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ever reached a value less than some prescribed range. The utility of
the solutions was the delineatlon between the sets of initial positions
for capture and escape in the playing space, The respective objectives
of the pursuer and evader were to minimize and maximize the final
separation range. Isaacs (1) derived the solution for the homocidal
chauffeur game. Miller (3), later verified by Lynch (4), derived the
minimax range solution for the three dimensional constant speed case,

The second type of problem was concerned with determining
optimal controls for minimax time given that capture could occur., For
this problem the pursuer attempted to minimize the capture time whille
the evader attempted to maximize 1t. Breakwell and Merz (2) have
essentially solved the homocidal chauffeur game. Lynch (4) has studied
the two dimensional and three dimensional cases,

Othling (5) and Miller (6) studled two dimensional engagements
with variable speed alrcraft. The former effort assumed that the
engagement took place in the vertical plane, whereas the second affort
considered only the constant altftude or horizontal plane case,

Othling was able to synthesize closed leoop optimal or near optimal
control laws for deterministic two player games. Miller determined
optimal controls near the end of the game for the minimax range problem,

As far as nonzero sum games are concerned, Starr (7), Case (8),
Prasad (9), and Leatham (10) are worth mentioning. A nonzero sum game
differs from a zero sum game in that each player generally attempts to
minimize a performance function which is not related to the other
player's objective function. Starr demonstrated that analytical and

conceptual features are evident in nonzero sum games that are not
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found in zero sum games, He discussed at length the Nash equilibrium,
minimax, and noninferior or Pareto optimal strategies. He further
proved that the principle of optimality of optimal control theory does
not generalize in an obvious way to the nonzero sum game, Case, in
addition to Starr, was one of the first to explore the extension of the
zero sum game to the N player nonzero sum game, Case developed neces-
sary and sufficient conditions for the nonzero sum games, Prasad re~
lated N person games to problems of vector programming and decision
making under uncertainty. In addition, Prasad dealt at length with
the special switching surfaces which seem to be characteristic of
differential games. Leatham extended the theory of nonzero sum games
in which the nonlinear system equations have bounded linear controls,
He solved two aerial combat problems formulated as nonzero sum games,
Both were interceptor problems with the first involving two players
and the second three players. In addition, Leatham studied pursuit-

evasion problems with different pay-offs for each plaver,

Application of differential game theory to stochastic problems
or incomplete information problems has been very limited, The only
problems to date are classifled as linear quadratic cases., The
descriptions of the system dynamics are linear in the controls and
the state variables, The performance function to be optimized is
quadratic in both the state and control variables. There has been no

attempt to address the alr=-to-air combat problem as a stochastic game.

There have been efforts at extending the numerical algorithms
developed for solving optimal control problems to two player zero sum
games with perfect information. Noteworthy examples are due to the
efforts of Roberts and Montgomery (11), Graham (12), Lin (13), and
McFarland (14). Montgomery and Roberts developed a gradient technique
for numerically solving differential games and applied it to pursult-

evasion problems with control and state variable inequality constraints.
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Lin developed a neighboring extremal method for solving pursuite-evasion
problems., McFarland applied a differential dynamic programming method
for determining minimax and maximin solutions. These methods involve
the solution of the linearized forms of the state differential equa-
tions and Influence functions, The latter are like Lagrange multipliers
in the calculus of variations., All are iterative numerical technlques.
They differ primarily in the assumptions concerning the state differen-
tial equations, the derivatives of the Influence functions, the control
optimality conditione, and the boundary conditions, These methods are
particularly useful for solving differential games when the system

differential equations are nonlinear,

Purpose of thls Research

The purpose of this research 1s to address an area which has
not been presented anywhere in the literature to date., The differen-
tial games that have been solved have not considered the limitations
imposed by fighter weapons limitations, namely relative positions,
rather than separation range alone. One way of handling the weapon,
whether it be guns or air=to-air missiles, is to define the weapon
envelope within which it is possible to kill a target. In other words,
if a pursuer can maneuver such that the evader enters the pursuer's
launch envelope, then the evader can be killed.

The objective of this research is to determine the relation=-
ship between the system performance characteristics that separates the
playing space into two distinct parts = a capture area and an escape
area. This is called the barrier solution. The shape of the barrier

and the pursuer's weapon envelope provides the information necessary
for determining kill or escape,

The utility of the barrier solution is twofold, Imagine an
aircraft armed with machine guns attempting to shoot down an opponent,

Clearly the former attempts to maneuver such that the separation range

14



is a minimum since the gun effectiveness increases with decreasing
range. The aircraft under attack desires the opposite. For initial
separations falling in the escape area, which in general will be the
case, the barrier solution provides the minimum separation range under
optimal play by both aircraft. If the minimum separation range exceeds
the lethal gun range, then the likelihood of a kill is negligible, If
on the other hand the lethal range is greater, then the chances of a
kill are improved, Consequently the barrier solution along with the
weapon's capability determines those engagements wherein the aggressor
is successful or unsuccessful,

The second utility of the barrler solution is that of defining
the sensitivity of the minimum separation range to small changes in the
performance characteristics, As a consequence those performance
characteristics which yleld the biggest improvement are identifled.

Three problems will be studied. The first problem is like the
homocidal chauffeur game, the second 1ls like the game of two cars, and
the third is a two dimensional engagement between varlable speed air-
craft., The first two problems differ from the homocidal chauffeur game
and the game of two cars in the definition of the terminal surface,
that is, the surface on which the game ends. Previous studies treated
the terminal surface as a circle and a ¢ylinder for the homocidal
chauffeur game and the game of two cars, respectively. This research
will assume more realistic terminal surfaces as exemplified by guns
and alr-toeair missile envelopes.

In Section II, the background for the mathematical necessary
conditions for zero sum differential games is presented, In Section
111, the three problems are formulated, Sections IV, V, and VI pre-
sent the solutions of these problems., The optimal tactics and per-
formance characteristics are developed in these sections. Section VII

discusses the significant results,
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SECTYION 11

ZERO SUM DIFFERENTIAL GAME THEORY

Differential Games and Optimal Control Problems

The primary difference between optimal control problems and
differential games is in the number of players involved, In optimal
control problems one player selects his controls so as to optimize
his performance function. There may be two or more participants but
only one is free as far as selecting his optimal controla, In differ-
ential games at least two players select thelr controls optimally,
Thelr respective performance functions which each seeks to optimize
are not necessarlly the same.

A simple example illustrates the difference between the optimal
control problem and a differential game. Consider the situation de-
picted In Figure 1. Assume that a vehicle (such as a bomber) at
point A deslires to reach a target area in minimum time or come as
close to the target area as possible., In the absence of an inters
ceptor vehicle at point B, the vehicle at A should fly the path AC
which is the perpendicular distance between A and the target area,
This is the solution to the optimal control problem., If an inter-
ceptor initially at polnt B attempts to intercept the bomber initlally
at point A then the bomber should fly the path A0, The line 00" is

the locus of intercept points between the two vehicles. If the
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Fig, l.=«An Optimal Control Problem and a Differential Game
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bomber flew along the path AC, it would be intercepted by the inter~
ceptor at point 0'., Consequently, the closest that the bomber could
come to the target area is point O if both vehicles flew optimally,
This situation corresponds to a differential game, In which the
bomber attempts to come as close as possible to the target area de-
fined by an lnterceptor,.

Recall that the objective of this research is to determine the

relationship between the system performance characteristics which
separates the playing space Into a capture area and an escape area,
By definition, capture occurs if the terminal surface 1s crossed or
penetrated durlng the play of the game. The game ends when the ter-
minal surface is reached, Capture range 1s defined by the radius of
curvature of the terminal surface,

The answer to the question of a kill of the evader by the
pursuer 1s dependent upon the initial state of the game and the shapes
of the terminal surface and pursuer's weapon envelope. If the initial
state is in the escape area (generally it will be) and the weapon
envelope falls within the capture area, then ne kill can occur under
optimal evader play., On the other hand, If part of the weapon envelope
is in the escape area, then the pursuer may be able to achieve a kill,

Hereafter we refer to the pursuing player as P and the evading
player as E, It is necessary therefore to determine the hypersurface
in the playing space that delineates starting points from which capture
or escape occurs, Thla hypersurface is called the barrier by Isaacs
{l1). We now turn our attention to the necessary conditions for de-

termining the barrier.
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The Barrier

As an Introduction to the concept of a differential game
barrier, consider the following simple example, Imagine an air-to-
air engagement between two aircraft where one aircraft reaches a
position directly behind another aircraft. Thus, a tall chase situ-
ation ensues, Assume P has machine guns for weapons and his goal is
to shoot down E. 7To do this requires that P bring his guns to bear
on E; that is, E must fall within the lethal volume of his guns,

The lethal volume can be thought of as the volume inside a cone with
P at the apex and the base at the maximum effective range of the guns,
Assume that E detects P before P can bring his guns to bear on E,

E's obiective is to escape; that }s, stay outside of the gun's lethal
volume. Consequently E escapes if he can stay outside the lethal
volume; 1f not, he is shot down or captured. Thus their roles are
well defined.

Let the Initial time correspond to the time that E starts his
evasive maneuvers, Assume that are no constraints other than each air-
craft has a minimum radius of turn, If P has faster speed and smaller
turning radius, then P can capture E for all initial positions., If the
opposite holds and E is Initially outside the lethal volume, P can never
capture E, The outcome is the same If E is faster and has the larger
minimum turning radius since E can simply run away from P, If P has a
speed advantage and E a smaller minimum turning radius, then the out-
come is not as ¢lear. If E is initially very close to the lethal
volume, P will probably capture E, If E is far ahead of P, then E may
be able to force P into an overshoot and therebhy escape, Capture or
escape is dependent upon the speeds, the minimum turning radii, the
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Initial positions, and the lethal volume, Between those inltial points
which lead to capture or escape are Initlial points which result in E
only grazing the terminal surface. This set of initial points is the
barrier., This is the type of problem to be addressed in this research,

Another illustration of the barrier comcept is the encounter
between a bull and a bullfighter. The bull is much faster but less
maneuverable., If the bullfighter waits too long he is gored, If he
moves too soon he may also be gored, There are, however, separations
for wvhich he can escape. Thus, there is a set of initial points for
which the bull only grazes the bullfighter, This corresponds to the
barrier,

As a third example, consider the bomber=-interceptor example
discussed earlier. The bomber is the evader and the interceptor is the
pursuer. Assume that the initial interceptor position is fixed at
point B in Figure 2. The barrier then is the locus of the bomber
initial positions that results in the bomber and interceptor reaching
the boundary of the target area simultaneously., If the interceptor is
faster, the barrier is like that illustrated in Figure 2, For bomber
starting points outside the barrier, the interceptor reaches the bomber
before the bomber reaches the target area, The opposite occurs for
initial bomber points between the barrier and the target area,

The barrier has the following characteristics, It is never
crossed during optimal play. If it forms a closed surface in the play-
ing space, then the playing space is divided into two parts - a capture
set and an escape set. If the barrier forms a closed surface, then

initial states on the barrier lead to a neutral outcome. That is, the

terminal surface (the surface on which the game ends) is only grazed

and not penetrated under optimal play.
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Thus the closed barrier divides the playing space in two parts.
Outside the barrier E can escape and inside E 1s captured., As a con-
sequence, the barrier solution leads to the relationship between the
terminal surface, both relative range and angle~off, the speeds of the
two players, and their minimum turning radii. If the terminal range
exceeds the lethal range of the pursuer's weapon, then the pursuer can
not destroy the evader under optimal evader play. If the terminal
range falls within the pursuer's weapon envelope, then the pursuer may
be able to kill the evader,

A reduced playing space will be considered for the problems to
be addressed in this research, This is a coordinate space where the
states are measured relative to P, The justification for this is that
relative positions between P and E are ilmportant in air-to-air combat
problems. As a consequence, the playing space and the dimension of the
space is reduced relative to an inertial coordinate frame,

There are several problems assoclated with determining the
barrier surface., The first has to do with finding the proper terminal
conditions where the barrier meets the terminal surface. The second
problem is the evaluation of the necessary condlitions which define the
barrier at the points where it grazes the terminal surface. The

derivation of the necessary conditions for the barrier follows.

Construction of the Barrier

The reduced plaving space has dimension n, Let C denote the
terminal surface which has dimension n~l since it is a surface within
the playing space. As mentioned earlier, for pursuit-evasion problems
such as alr«to-air combat problems, the termlinal surface is an
envelope measured relative to the pursuer's position, Let the inside
of the terminal surface, the shaded area in Figure 3, correspond to
the volume inside the termwinal surface containing the pursuer's
position, The pursuer's (P) objective 1s to force the evader (E)

across the terminal surface C from evader positions outside the
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Fig. 3.--The Smooth Terminal Surface
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terminal surface. The evader seeks the opposite., Both natural and
artificial barriers will be defined and the necessary conditions for
their solutions established.

The natural barrier corresponds to smooth terminal surfaces,
e. g. a spherical terminal surface with the pursuer located at the
origin of the sphere. An artificlal barrier can result if the
terminal surface is not smooth, e. g. the intersection between a cone
and spherical surface with the apex of the cone and the center of the
sphere colocated at the pursuer's position as 1llustrated in Figure &,
An example of an artificial barrier is a fighter armed with a machine
gun which is not ateerable. The gun is effective only within a small
cone relative to the fighter's direction,

The state of the system is described by a system of first

order differential equations

Xwf 6;,;,;) (1)
where X is an n-~dimensional state vector, :'and v are m~dimensional
control vectors, f (;};;;) is a vector function of the atate and
controls, and i is the time rate of change X. Hereafter, (") means
the time derivative of ( ). If W and ¥V are known functions of the
time or state and n boundary conditlions are specified for the state
vector X, then Eq (1) can be integrated if £ (x,u,v) 1s continuous
and single valued., It may be extremely difficult to do so, however,
if the boundary conditions are split, i.e., some boundary conditions

are specified inicially and the remaining boundary conditions are
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Fig. 4.-~The Restricted Terminal Surface
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specified terminally., Fortunately, for the pursuit-esvasion problems
to be addressed here, the boundary conditions are specified on the
terminal surface. Thus the problems are terminal boundary value
problems,

The concept of the barrier is fundamentally quite simple, Its

construction, however, can be very difficult. Recall that one charac-
teristic of the barrier is that it is not crossed under optimal play,
Thus, if the barrier ls closed, then it delineates between the capture
and escape sets. Let the vector ; define the vector normal to the
barrier and extending into the escape set as illustrated in Figure 3,
If the pursuer can force the evader into the shaded region in Figure
5, then the pursuer will capture the evader, l.e., the pursuer can
force the evader to penetrate the terminal surface, KRecall that the
terminal surface corresponds to the relative positions at the end of
the game and is defined by the radius of curvature and an angle-off-
constraint, If the evader c¢an stay outslide the shaded region, he can
prevent capture no matter what the pursuer does. Since Eq (1) defines

the rate~-of-change of the state E relative to the state of P, then the

scalar product

Voo £ (X,u,v) ()

represents the rate of change of E's state normal to and away from the
barrier. Thus in the neighberhood of the barrlier, P desires for any

E control ;

min v ¢ £ (X,u,v) < 0O
u

which corresponds to relative motion towards the capture set.
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Fig. 5.==The Natural Barrier
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Contrarily, E seeks for any P control u

max v * £ (X,u,v) > 0
v

which corresponds to relative motion away from the capture set., It

follows that on the barrier for optimal play by both players

min max v * £ (X,u,v) = 0 )
u v
If the differential equations are separable relative to uand v

controls, then Eq (3} is equivalent to

max min v ¢ £ (x,u,v) = O )
v u
For the problems to be studied in thils effort, the differential equa-
tions will be separable in u and V. Eq (3) or Eq (4) then provides
the relation for determining optimal P and E controls, u* and v*,

respectively, in terms of the state x and the normal vector ;, namely
u* = u*(x,v) ()
v* = yR(x,V) )

At this point the differential equations have been defined and
the necessary conditions for optimal play, Eqs (5) and (6), have been
determined, The remaining steps Involve derivation of a relation for
determining V and definition of the boundary conditions. The neces~
sary condition for V will be determined first. Substitutlon of

Eqs (5) and (6) into Eq (3) gives
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a

minmax vV * £ = L vyfyX,ut,v¥) = 0 (7)
u v jel
Although the bars have been dropped from x, u¥*, and v* for convenience
it should be understood that they are vectors. In Eq (7) vy and f;
are the scalar components of Vand £. If any component of ;; say u,,

is interior then

n n of
< I vt (xuFvR) e 4 v, =t e 0 (8)
dug g P T a1 L 9%

A similar expression holdas for any component of v which is interlor.
If any component of :, u.s is on the boundary of the contrel reglon
and the boundaries are constant as they are in the problems to be

addressed here, then
uy = 0 9)

A similar relation holds for any component of v which falls on the
control boundary. Now differentiation of Eq (7) with respect to time

gives

n . n a af L4 n m af - af .
& vifl * & vy & -—ij’i‘. vy L ( u, ¢ i Vk) = 0 (10)
fm1 el jul %3 Tgal el Sﬁt v

Rewriting the last two ssries gives

m n
ZCZ v )G D (F oy 20

- v v
kml  jm) Vg kml  pop Vv 7 Yk (11)
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In light of Eqs (8) and (9) and similar forms for vy, Eq (11) is ezero.
Changing indices on the second series in Eq (10) and substituting
Eq (1), ii - £, gives
n n of
& *r 2 v 5;1 )ty =« 0 (12)
j=1 J=l i
If the f£; are linearly independent as they are for the problems to be

studied here, then the equations for determining the components of ;

The final step 18 the derivation of the boundary conditions
on the terminal surface, The reglon on the terminal surface bordering
the capture set as illustrated in Figure 5 is called the usable part
(UP) by Isaacs. The intersection between the barrier and the terminal
surface is called the boundary of the usable part (BUP)., The remain-
ing part of the terminal surface is called the nonusable part (NUP),
The UP, BUP, and NUP are important in the construction of the barrier
in that points in the nelighborhood and close to the terminal surface
load to elther capture, & neutral outcome, or escape,

Let the terminal surface, which has dimension n-l, be written

in the following parametric form

xl - hl (.l.nol‘.n-l) » l L lyon.’n (l“)

where the parameters s; designate points on the terminal surface.
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From Eq (14)

-a—xl - m‘ » "1,---,!\ ’ k-lgoon’n'l
ask a.k

vhich are the components of the tangent plane to the terminal surface
at the intersection of the barrier and the terminal surface, If the
terminal surface is smooth and has no discontinuities in its slope,
then the tangent plane is defined at every point on the terminal
surface, Since v is normal to the barrier and the barrier can not

penetrate the terminal surface, the following normality condition

holds
n oh
& Vi 'a"J' - 0 ’ k-lgooo'n'l (15)
=l k

These n~1 equations and Eq (7) provide n equations in the n variables
vy and the parameters 8;,...,8,. This then determines the boundary
conditions on the terminal surface and defines the boundary of the
usable part (BUP) since the barrier meets the terminal surface at

the BUP,

The conditions for barrier closure are problem dependent,
hence these conditions will be established when each specific problem
is addressed. Barrier closure results when the barriers meet and
separate the playing space in two parts.

Consider next the artificial barrier. The artificial barrier
may result {f the terminal surface has discontinuities in its slope,

The discontinuities result from angle~off constraints. Gun firing
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envelopes fall in this category since the gun is effective only within
a specified range of the target and within a small angle-off of the
target relative to the fighter's direction, Figure 6 illustrates the
two dimensional example where the barrier passes through a corner of
the terminal surfaca, If the barrler is tangent to the terminal
surface like that in Figure 5, then the barrier is natural and the
preceding equations hold., Eqs (7) and (13) must hold for both natural
and artificlal barriers since the barrier is never crossed under
optimal play.

The difference between the natural and artificlal barriers is
due to the boundary conditions for V on the terminal gurface, The
tangent plane to the terminal surface is undefined at the corner.

This can be circumvented by a construction whereby the corner is re-
placed with a circular surface of infinitesimal radius tangent to the
teraninal surface., The terminal surface now is continuous in its slope
and the tangent plane is defined. The boundary conditlions on the
terminal surface are the same as for the natural barrier. If the
barrier is tangent to the terminal surface at points other than the
corner, we treat the barrier as a natural barrier. If not, we replace
the corner with a smooth surface, employ natural barrier analysis, and
then let the infinitesimal radius approach zero,

In summary, the construction of the barrier involves the

solution of the state equations,

; -t Gta*’?*) (1)
the necessary conditions on the barrier,
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Fig, 6.-=The Artificial Barrier
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and the boundary conditions on the terminal surface

n oh
L VI '5""!' - O » k-ljcn-.n'l (15)
11 %k

The solution to these equations gives the relationship between the
range (the radius of curvature of the terminal surface), the final
separation between P and E, the speeds of both players, the minimum

turning radii, and the angle-off constraint.

We now turn our attention to the formulation of the problems

to be addressed in this research.

B4



SECTION IXI
PROBLEM FORMULAT ION

Three problems will be addressed in this research, They differ
primarily in the number of variables required to describe the systems
and the controls available to each player., The procedure will be to
start with the problem that has the lowest dimension and then add
additional state variables and controls in order to add more realism
in the system desecription. The first problem, Problem I, will be re-
ferred to as the limited pursuer simple motion evader. The problem

description follows,

Problem I

Both pursuer (P) and evader (E) have constant speeds with the
pursuer's speed Vp greater than the evader's speed Vg. The play is in
a two dimensional plane. The evader can change directions instan-
taneocusly, The pursuer's maneuvering 1s limited by his minimum radius
of turn., Consequently P can turn anywhere between a hard right and a
hard left turn, This includes flying straight ahead, The geometry of
the engagement is illustrated in Figure 7. The X'Y' coordinate system
is a fixed nonrotating frame. The xy coordinate frame is a relative
frame attached to the pursuer with the y axis always directed in the
same direction as P's velocity vector F@. The vectors f}, fﬁ, ard X

correspond to the position of P and E in the X'Y' coordinate frame
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Fig. 7.==The Geometry for Problems I and II
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and the position of E relative to P, respectively., The reason for
introducing a relative coordinate system is simply that only relative
positions are important in alr-to-air combat. The directions of the
velocities G} and ?E are defined by the angles Up and Oz, The dif-
ferential equations of state describling the motion of E relative to P
are derived in Appendix A, The differential equations and the c¢ontrol

constraint are:!

. v

x-vzstnw--k—::u.py (16)

- %

y-vEcosﬂ[-vP#Rru.px 17)
=l<ap<t (18)

where | i3 defined by

ll;-gs.qp

and is the evader's control; ap is the pursuerfs control, and Rp 15 P's
minimum radius of turn. Thus for Problem I there are two states and
two controls,

By introducing nondimensional variables it iz possible to
study a class of problems rather than a single problem. The nondimen-~

sional transformations are as follows

X o2
i (19)
y
Y = 20
L @0)
v
€= .-E
7 21)
Vet
. @2)
P
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where X and Y are nondimensional state variables, € is a nondimen-
sional parameter, and T is the independent nondimensional variable
time. Substitution of Eqs (19) through (22) into Eqs (16) through (18)
and then rearranging gives

X =¢aing-ap? 2%
Y-€cosf-1eapX @4)
'ISGP::.I (25)

where derivatives are with respect to T, The solution to these differ-
ential equations, Eqs (23) through (25), represents the solution to a
class of dimensional problems. That is, one solution of Eqs (23)
through (25) is the solution of all problems represented by Eqs (16)
through (18) 1f the value of € and the boundary conditions are the
same,

In addition to the description of the motion of E relative to
P the formulation requires the definition of the terminal surface.
The surface is illustrated in Figure 8, The terminal surface ¢ is a
¢ircular arc of radius L (nondimensional radius La L/Rp) constrained
by a maximum angle-off relative to the pursuer'’s veloclity of 6., In

Chapter 1V the solution of Problem I will be addressed.

Problem IX
In this problem both evader and pursuer have limited turning
capability, Nelither player can turn instantaneously. Consequently

y becomes a state variable rather than E's control, In Appendix A it
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Fig. 8.-=The Terminal Surface for Problem I
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is shown that the state differential equations and controls are

. VP
x-VEsinl]j--i-;aPy (26)
. v
y-VEcosw-VP'rﬂgﬂ.p_x @7
. ¥V v

e %

where Qp is E's control. In ¢comparison with Problem I it is seen that
one additional state variable results, namely {f, and a different con-
trol for E appears, namely Gg. Substitution of the nondimensional
variables, Eqs (19) through (22) into Eqs (26) through (30) gives the
following nondimensional state differential equations and constraints

Xw€singfy~ap ¥ (31)
Y- €costp~1sapk (32)
& - - ap + €R O (33)
«lgcapgl (34)
-1<apgl (35)

where R 18 an additional nondimensional parameter defined by

The terminal surface for Problem II is similar to Problem I ex-

cept that |f ranges from O to 2n, The surface is 1llustrated in Fig. 9,
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Fig., 9.--The Terminal Surface for Problem 1I
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Problem 111

The third problem addas considerably more realism to the
description of the alr«to-air combat problem, For this problem each
player is able to maneuver in three dimensional space. In addition,
each plaver has the potential for accelerating or decelerating. Conse-
quently the speeds vary with time. It will be seen that more state
variables and control varlables enter this problem relative to the
two previous problems,

The derivation of the state differential squations 1s dependent
upon the velocity of the reduced coordinate (equal to the pursuer's
velocity) and the external forces experienced by each system., In
Figure 10 {s 11lustrated the normal ;h and tangential acceleration :&
components, the angular veloeity 6, and the control angle f. In
Figure 11 is i{llustrated the geometry for Problem [II., The difference
between this problem and the previous two problems is that ip, i&, and
3 are measured in a three dimensional space,

In Appendix A are presented the details of the derivation of
the state differential equations. The velocity vectors Vp and Vﬁ and

the angular velocity of the relative u? coordinate frame are
Vp = Vp oy (36)
Vg = vE(Zg gein Yy cos o0 # ;& cOoB Y # :; sin vy sin o) (37)
Vp

0 = Rp op Gx cos Pp » :z sin fp) (38)

The position of E relative to P, namely X, can be written as

X=yer (39)
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Fig. 10,«<Problem III Vectors
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Fig. 11.--The Geometry for Problem III
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where T is the component of X in the xz plane. The vector ; makes an

angle § with the x axis. Introduce §; and §2 defined by
51 wg =4 (40)

Through evaluation of the acceleration components normal to and

parallel to F@, the following differential equations are derived in

Appendix A
. aNP
r=Vpsinycos, « ;;— y sin §, (42)
» aHP
y-VEcosY-VP-'FP—rBlnéz (43)
a SN
y N —R
. i + sl - (44)
Y=gy sin g e " singy- 4y)
. aN a
8 = vEE sin ¥ cos §f - % (Vg sin ¥ sin §; - ;Eg y cos §7)
(45)
. Kp W
E "E 2
VpmgC - a (46)
E s " g op sy N
. Kp Wp 2
Vo u g Cn = a (47)

vhere P's controls are ay,, 8z, and Crp; E's controls are 2 Prs
and CTE; g is the acceleration of gravity; K {8 an aerodynamic drag
parameter; W is the welght; Q is the dynamic pressure and S iz the
reference area for the aerodynamic drag parameters. The coefficient

Cr 18 defined by
(48)
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where T is the engine thrust and D, is the zero 1ift aerodynamic drag.

The control constraints are

CTMIN <Cr < CTMAX (50)

Consequently ay and Cp are bounded for both P and E. Eqs (42) through
(47), (49) and (50) define the state differential equations and control
constraints for Problem III,

Some comments are in order relative to the comparison batween
Problems II and III, If the speods are constant and the motions are
two dimensional, then it should be possible to reduce Problem 1II to
Problem 11, First the magnitude of the normal acceleration vector is

related to a in Eqs (26) through (30) by

2
ay = - La (51)
R
The negative sign results from the differonce in the direction of the
normal acceleration in the two problems. Equating the variables in

Problem III to corresponding variables in Problem II in the following

manner

(ry yo Bgy 6yy 82, Y)III = (x, ¥ ;I o, g‘i $)II

shows that Problem III reduces directly to Problem II. Also, whereas
Problem II has three state variables and two controls, Problem III has

six state variables and aix controlas.
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As in Problems I and II, nondimensi{onal variables are intro-
duced in order to study a class of problems. Similar to Eqs (19)

through (22), let

X r,RO (52)
T - gt/V, (54)
u = VP/VO (55)
e VE/VO (56)
a; = Vo2/g R, (57)
2Kg Vg
Qg = Ty 58
2 Pg Vo Sg G
o o 2K ¥
g - —— (39)
pp Vo Sp

where R, and V, are a characteristic length and speed which will be

defined later. Substitution of Eqs (52) through (59) gives

. llPY

X=ay Vsinycos §; + ——sin & (60)

. npX

Yooy Veosy=-ayu==r"sinf (61)

. n nP

Y - - 'vﬁ gin ﬂE L ] -G 'in(&zn 61) (62)

: - EE - ! np

o1 v siny cos fp @y x siny sin 5y 4--;—*00: &
(63)

Ve ng
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2
* P
us=- CTP - a3 ;ﬁ' (65)

-

whera differantiation 1s with respect to T. The control constraints

are

< ¢ (66)
Tewin = B = TRuax
c < Cp,. < C (67)
Teymy = “TP = “TRyax
0<np<n (68)
= "E = TEyax
(4 S np < nPMAx (69)

The terminal surface has dimension five, The constraint is
on the angle-off of the evader relative to the pursuer's velocity
vector,

Finally a comment on the significance of the Introduction of
the ralative coordinate frame attached to the pursuaer's position is in
order. In Problems I, II, and III, two, three, and six state varlables
resulted, If the descriptions were based upon a fixed non-rotating
coordinate frama, then five state variables would have resulted in
Problem I, two spatial coordinates each for P and E plus the heading
angle for P, 1In Problem 1Y, six state varlables would have resulted,
those in Problem I plus E's heading angle. In Problem III twelve
states would have occurred, six for each playver. The six varlablas
are the three spatial coordinates, the speed, and two angular displace=-

ments for defining the orientation of the velocity vector in the
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plaving space. Clearly the Introduction of a relative coordinate frame
results in a significant decrease in the number of variables required
to define the state.

Having formulated the three problems, we can now turn our
attention to obtalning their solutions. Sections IV, V, and VI will be

concerned with solving Problems I, II and 1II respectively.
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SECTION IV

PROBLEM I SOLUTION

Problem Definition

The differential equations of state and the control constraint
were derived in Appendix A and presented in Chapter III. Eqs (23),
(24), and (25) define the nondimensional state differential equations

and the control constraint, respectively:

Xw€siny ~ap¥ @3)
i w€cos~-1leapX (24)
-lgapsl. (25)

P's control variable 18 ap and w is E's control variable.

The Approximation of the Termlnal Surface

The terminal surface is illustrated in Figure 8. The corners
between the terminal surface and the two rays from the origin at the
angle~off § are smoothed like that illustrated in Figure 12, The rays
are perpendicular to the terminal surface and the terminal surface has
a constant radius of curvature L between the corners. Let the co-
ordinates X,,Y, correspond to the center of elther circle which is
tangent to both the ray from the origin and the terminal surface. The

radius of the circle is r which 15 assumed to be much smaller than L .
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Fig. 12.-=The Smooth Terminal Surface
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It is easily shown that the center for the right circle is located at
Xo = L sin 0 - r(sin 0 ¢ cos 8)
Y, = L cos 6 = r(cos 9 - ain 8).

Similarly for the left circle
Xo = = L sin 8 + r(cos 8 # sin 6)
Y, = L cos 8 = r{cos & - sin 8).

Any point on the arc of the right circle is defined by
Xmw Lgin® +r(sin s - 8in 8 - cos 8) (70)
Y= Lcosd ¢ r(cos s+ sind - cos 0) (71

where & is the angular displacement on the circles measured relative

to the Y axis. On the left circle
X==+L sin9 ¢ r(-sin s + sin 0 + cos @) (72)
Ye L cos 6 # r(cos s » sin 0 -~ cos 9), (73)

The necessary conditions for the barrier will be established next,

then the limit determined as r goes to zero,

The Necessary Conditions

The first necessary condition is the optimality condition,

Eq (7)., Substitution of Eqs (23) and (24) gives

52



min max [v){€ sinty = ap Y) ¢ v (€ cos s - 1 4 ap X)] = 0.

ap
(74)
The optimal controls for P and E are
sin ¢*- vy cos w*- 7] (75)
a; * 8gn A H A=V Y=vX (76)

where sgn is the sign function defined by

sgn A= it A>» 0O

= =] if A<O,

Eq (15) defines a necessary condition for the intersection of the
barrier and the terminal surface. The parametric representation of
the terminal surface 1s defined by Eqs (70) through (73) where s is
the parameter which defines the normal te the terminal surface. On
the right side of the terminal surface, substitution of Eqs (70) and

(71) into Eq (15) gives
r(vy cos s = vy sin 8) = O, 17)
Since v points awvay from the terminal surface, select

Vl = ain s

(718)

Vz = COo8 8.

On the left side of the terminal surface, Eqs {15}, (72), and (73)
give

r(-vy cos 8 - vy sin 8) = O, a9)
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For the proper orientation, select

vy = -sins
(80)
\!2 = ¢CO08 S5,
Eqs (78) and (80) define boundary conditions for the barriers on the
terminal surface. According to Eq (76), P's optimal control is

dependent upon the sign of A. On the right side of the terminal

surface (X > 0)

A= Lsin (3-8) + r [cos (8-9) = sin (s-0)] (81)
On the left side of the terminal surface (X < 0)

A== L ain (8-8) = r [#in (8-0) # cos (s-8)] (82)
In the limit as r goes to tero, then

A= =L sin (s-9)

If 8 < 9, then the corner conditions do not hold and we set € = s,
In this case

Aw (83)

and P's controls are undefined. We will come back to this situation
later. If 6 < 8, then A is positive on the right corner and negative
on the left corner. Consequently P's controls on the terminal surface
are +1 on the right corner and «1 on the left corner.

The boundary of the usable part (BUP) i1a obtalned from Eqs

(7), (70) through (73), (78), and (80). Substitution of the optimal

54



controls and Eqs (23) and (24) into Eq (7) gives

€-vy-apAe0 (84)
On the right corner in the limit as r goes to zero

€ -cos - Lasin (s-9) = 0, (85)
Similarly for the left corner

€ ~cos s = L ain (s=-8) = O {86)
The usable part (UP) of the terminal surface is obtained from

minmax v + £ < 0

ap Y

or

€-vy-apA<O, (87)

This inequality is satisfied by any point between the corners., Thus
the UP is the arc between the corners.
It will be convenlent at this point to introduce a new non-

dimensional time defined by

where T denotes the nondimensional time on the terminal surface,
Through the introduction of B, the terminal boundary conditions with
respect to T are Initial boundary conditions with respect to ., In

addition the differential equations of atate are integrated in a
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retrogressive sense, that is, backwards in time. The transformed
differential equations of state become upon substitution of the

optimal controls for E

x'--Evl-ra.;'t (89)
Y s-€EvyeleqpX (90)
*

Qp = 8gn A

where the primes imply differentiation with respect to §. The
differential equations for v, and v2 are obtained from Eq (13).
Introducing the new time variable results in a positive sign on the
right side of Eq (13). The differential equations for v; and vy are
therafore

v;' =ap v, 91)
v, = -ary (92)
2 P Y1l*

The boundary conditions are as follows with respect to §

X{0) = L sin 6 right corner (93)
- «L sin @ left corner

Y(0) = L cos & (94)

v1(0) = sin s right corner (95)
w »gin s left corner

v2(0) = cos s, (96)

If ¢ > 8, then § is replaced with s, In this case Eq (83) shows that

P's control is undefined. Through differentiation of A, it can be
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shown that
Al m vl (97)

Consequently on the right side of the terminal surface
A' msin s> 0

and on the left side
A' » - gin 8 < 0,

Therefors
a; - 4l right barrier (98)

_— left barrier (99)

P's controls are constant as long as A does not change sign. Thus
the boundary value problem for the two barriers is defined by Eqs

(89) through (96), (98), and (99).

The Trajectory Solution

The differential equations are linear with constant coefficl-
ents. They are, therefore, well suited to solution by means of Laplace
transforms. Let T(*) denote the Laplace transform of (°) and s the

Laplace transform variable, The transformed problem becomes
£T(X) - a; Lsingm- €T(vy) # d}T(Y)
2T(Y) « L cos 8 = « €T(vy) ¢ 1 - aj1(x)

£T(vy) - o} sin & = QFT(vp)
8T(v3) - cos 8 » - d}r(vl)

57



Four linear algebraic equations result. The latter two equations are
independent of T(X) and T(Y). Therefore, we solve for T(v;) and T(v,)
and then subatitute the solutions into the firat two equations and

solve for T(X) and T(Y). The result is

*
o
T(v )--""—'--,rfz T linsq--!-—,rp cos 8
M7 22 eap F s° ¢ ap

*

) a *
T(vz)--——-—-—-em l-T-r—!-°aPulnl
22 ¢ ap? s° »of

Yo =
T(X) = ap L ain 0 « €T{vy)
32 ¢ a;z [ P 1 J

*
a
. P

2

1
L cos 8 =« ET(vy) ¢ =
lZQG,*P r 2 S]

z "y 1
T(Y) = 3 (L cos & - €T(vp) » -;]
£ #+ ap

*
a * -
- —Z—-L*? EGP L ain 6 - GT(VI)]
A .G‘P

The inverse transformations are easily obtained by means of Laplace
tranaform tables and the convolution property of Laplace transforms.

The solution for the dependent variables is
VI(B) = sin C!.; (s » 8)

v2(8) = cos u.'; (s » 8)
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X(@) = L sin a;(@ *8)e G.;(l - cos apd) - €p sin ap(s ¢ 8)
Y@E) = T cos a;(e *B) e a.; sin a;B - € cos a;(s e §)

where & is the solution of Eqs (85) and (86), If & > s, then we set
¢ = S where

S = cos~l €

Since a; w 1 on the right barrier and a; = =1 on the left barrier, we
se¢ immediately that the barriers are symmetric about the Y-axis,
The solution for the values of the parameters L and € which

ssparate the playing region into two parts is deterained from

IG)&!O
X' (@) » 0

where 7 is the nondimensional time that the barrier reaches the Y-axis,
An alternative to using the rate equation X' (3') w 0 18 to use

Vo (a') = 0 gince ';(S) 1s perpendicular to the barrier which is tangent
to the Y-axis at time F. Three unknowns L s S, and E result. They
ars obtained from the previous two equations and Eq (83), thus for the

right barrier
'I:lln(045)1-1-::0.;-63:1:\(-1-5')-0 (100)
Lcos (O » 5') e8in B - € sin (s ¢ 3)-€B cos (s48) « O (101)

E-co-lnfsin(s-e)-o. (8%)
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Consider first the natural barrier, i.,e., 8 > S. For this case
cos S = €, (102)
Eqs (100) and (101) become upon aubstitution of 6 = §
(E-EE) sin (Svg)vl-oosgno (103)
(.I:-GE)cos(S#F)#sinﬁ-ésin(SvE)-G. (104)

Expansion of the last two terms in the latter aquation and substlitu~-

tion of Eq (102) gives
sin 5' =€ sin (S ¢ E) « gin E' - cos S5(sin S cos Ei‘ ¢ cos S sin E)
= sin g sinz S - 8in S cos S cos E
w - 8in S * cos (S#E).

Substitution into Eq (104) and rearranging gives

(L-€)cos (S+8)-8inS *cos (Se#B) =0
or

(L -€8 =8inS) cos (S B) = 0,

The solution is

S e E - g-
which also agrees with v, (fi') =« 0. Substitution into Eq (103) gives

I-G(%-s)tl-col(rz—'-s)-m
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Solving for L gives

E.E(g-cos'le)-1¢szns

w€sinle-1e,/.¢2 (105)

Eq (105) defines the relationship between the capture range E and
the speed ratio €, Flgures 13, 14, and 13 deplct the natural barriers
for € » 0,5, 0.9, and 0,999, respectivaly. With respect to the non-
dimensional time 7, the barrier trajectory starts on the Y-axis and
ends on the terminal surface.

The situation for the artificial barrier, 6§ < S, is clearly
more complicated relative to the natural barrler problem. From Eq

(85)

cos 8 =€ - Lsin (8 ~80) <€
since S > 9, Therefore

s » cos”l €

Recall that s defines the unit vector v normal to the terminal surface.
Un che natural barrter the unit vector eventually rotates away from
the Y~axis. At the tangency point between the barrier and the Y~axis
the vector is normal to the Y-axis, Therefore, we consider the
possibflity that the artificial barrier falls upon the natural barrier.
If so, the natural barrier 1s determined from the intersection of the
ray from the origin at the angle & and the natural barrier as

illustrated in Figure 16, If this is the case, then the time to
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Fig. 13.<«=Natural Barriers for € « 0.3
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Fig. l4.--Natural Barriers for € = 0,9
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Fig. l5.==Natural Barriers for € = 0,999
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— X

Fig. 16.-=Natural Barrier Intersection
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travel from the intersection to the Yeaxis should be the same for both
the natural and artificlal barriers. Let subscript A and N correspond
to the artificial and natural barrier, respsctively. Since the

trajectories are the same, It follows that

x-('iN-ea) sin (Sy +8) + 1 ~-conp
Y-(iN-GB) cos (Sy * 8) # 8in §

whare ; is the time to go from the interssection to the Y-axis and g 1is
the time to travel on the natural barrier from the terminal surface
defined by Eq (105) to the intersection X,Y. Substitution into Eq

(85) glves

€ = cos SA-.fAsin (SA-O)
-E-cosSA-'f:AsinSAcosOQIAcosSAsinO

-E-cosSA-YsinSAQXeossA

=€ « cos S, - [(EN - €8) cos S, ¢ sin ;i] sin 5,
+ L (Ly - €3) sin 5, + 1 - cos B] cos 5,
€ - cos (S5 - 8)

m € = cosg Sy
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From g (102) we see that Eq (85) is satisfied, Substitution into

Eq (100) gives

EA sin @ cos E » EA cos 9 sin ; ¢l ~cosg - EE
- E(Z& - €3) sin S, + 1 - cos B] cos 3
. L(z& -¢p)cos S, +sinB] sinB e 1 - cos § ~ €5
= (Ly - €B) sin (S, #+B) =cos G eB) el -68

mLy-€@E*8)-cos @ed)el,

But

B’-B--g'-ch
Thus Eq (100) becomes
T.N-e(g-s“)--msnoz.

Substitution of Eq (105) shows that Eq (100) is satisfied.

Substitution into Eq (101) gives

IA cos (6 ~ S, » Sy * E) + sin ( g - Sﬁ) - €
- Eh cos (9 - Sp g ) ¢ cos Sp " €

- - EA ain (@0 - SA) * cos 5, = €,

But this is equivalent to Eé (85). Therefore the assumption that the
natural and artificial barriers fall on each other is indeed correct.
Therefore, the artificial barrier solution, that is, L as a
function of € and 6, is obtained by first determining the natural
barrier solution and then by constructing rays from the origin to the

natural barrier at the angle=-off of 8. If the natural barrier is like
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that 1llustrated in Figure 15, then that portion of the natural barrier

for which

X > tan @
Y

is not used since these points result In reaching the natural barrier
terminal surface. As a consequente, the relationship for the non-
dimensional capture range 1 as a function of € and @ may have dis-
continuities. The relationship 1s presented in Figure 17, The
slgnificance of the relationship is that it delineates between the
capture and the escape sets In the playing space. If the evader is
anywhers betwaen the terminal surface and the barrier, as defined by
Figure 17 and illustrated in Figure 16, then the pursuer c¢an capture
the evader, that i3, eventually force the separation range to L.
Conversely, if the evader ls initially outside the barrier, then the
pursuer can never force the evader to reach f if the evader maneuvers
optimally., Also, if the relationship is as illustrated in Figure 17,
then the maximum initial separation with respect to T corresponds to
the point Y, where the barrier meets the Y-axis. For capture with

respect to time T, (T = 0, initial time),
Y. = Y(0) <Y @)
-EEN-E(?-SN)Jcolg-tlin(g-SN)

= CO08 SN

-E.
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Fige 17.==FProblem I Capture Range
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Consequently, if the pursuer captures the evader, then the separation
at the beginning of the game must be less than or equal to €, If
the game starts at Yo €, X » O, then under optimal play by both

players, the minimum separation range is L .

Capture Range Sensitivity

Consider next the sensitivity of the capture range to changes
in the performance parameters. If costs can be assigned to changes in
the performance parameters, then the optimal allocation of funds can
be determined such that the lmprovement in L (or L, the dimensional
capture range) is maximum, It should be clear that P wants to mini-
mize L 1f he can. The evader speed will be held fixed, thus the
changes in L are due only to changes in the pursuer's performance.

Now L can be written as
L=T (€,0) Rp (106)

vhere Rp is the pursuer's minimum turning radius. The differential

of L is
alL L -
d - F
LeRp 2240 4y LBVP davp » L dRp

The previous equation is based upon the assumption that the pursuer

could change 8, Vp, or Rp. Recall that
€m VE/VP

vhere Vg, Vp are the evader, pursuer speeds. Differentiation and

substitution into Eq (106) gives
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ak ol. davy -
LeRp = do « S RBe L .
dL = P 38 RP € 3€ vp * dRP
Dividing by Rp gives
dL _ 3L oL dVp _ - dRp
= i d - —— m—— L ——
Rp © 99 9 ¢ o Vp L Rp

There are two different equations for Rp. This results from the
relationship of maximum aerodynamic control as a function of speed
which is i1llustrated In Figure 18. The aerodynamic control must be
less than or equal to fyaxe V. 18 defined as the corner speed.

Below the corner speed the control 1s limited by the stall angle-of-
attack, that 1s, an aircraft would stall at higher angles of attack.
Above the corner speed the control is limited by the acceleration that
the pilot can stand or the structural load capability of the aircraft,

The minimum turning radiua R then has the following forms

{107)

where W 18 the weight, S is the refserence area on which the maximum
1ift coefficient CLMAX is based, g 1s the acceleration of gravity,
p 18 the atmospheric density, and ’Nmax is the maximum normal

acceleration, The relationships between au and MMAX is

.N - g nmo
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Fig. 18.=-Maximum Allowable Control

72




The parametors which are of iInterest in alrcraft design are W/S,
CLysx» and aNyax for constant speed aircraft. Differentiation of Eq

(107) and substitution into Eq (106) gives

dL o oL gg.coL ¥, Tas) T, v<v,
Rp 5L o€ Vp w/s CLyrn
wikdo e L -l SV T _Bux —
1) 13 VP ‘NMAK [+

In terms of sensltivity parameters, we can rewrite the previous

equation as

da

*s
*NUAX g

dc
dL dVp d (W/S Lvax
Rp Sg d0 « Svp vp W/s TuJs Claax CLyax

where Sy, SVP’ Su/s» S¢p s and SaNMAx are the sensitivity parameters
which are the multipliers on the differential changes in 6 and P's

performance characteristics, Clearly

Su/s = = Scy =k ’ V< Ve
Sy/s = Scp = 0 » V>V,
S.NMAK --1 ’ V> Ve

.0 , V<V,

Table 1 presents sensitivity data for selected values of € and 9.

The data were obtained from Figure 17.
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TABLE 1

PROBLEM I SENSITIVITY DATA

0.5 1° .39 -. 052 -.450 .338
0.5 50 290 -, 014 -.368 .212
0.5 10° .230 -. 007 -.328 .132
0.5 15° .200 -.005 -.298 .102
0.5 30° . 152 -.002 -.260 N A
0.9 "1° .760 -. 069 -.810 .620
0,9 59 .600 -, 022 -, 720 480
0.9 10° .530 -.011 -.702 .358
0.9 15° 480 -, 006 -.684 .276

There are sevaral points to be made about the sensitivity of L

the capture range to changes in the performance characteristiecs.

First of all if Vp < V, then a decrease in L occurs 1f Vp can be
increased up to V,. Conversely if Vp > V, then L decreases if Vp
can be decreased down to Vo. Thus in elther case V, is the best

speed for the pursuer as long as Vp > Vg. The second point is that
a one per cent decrease in wing loading W/S is equivalent to a one
per cent Increase in maximum lift coefficient if V< V., The same

holds for a one per cent increase in ANyax it V> V.. A direct

comparison beatwesn Sg and the other sensitivity parameters is
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impossible due to the differenca in units, Sg is the partial of L
with respect to 8, thus Sg has units degree”l,
The dimensional capture range L is important from a weapons
standpoint, As an example consider the following aircraft parameters.
W/S w 80 pounds/square foot
CLe1

p = 8.91 x 10*4 slugs/cubic foot (corresponds to
30,000 fest altitude)

DpMax = S
For this configuration

Vo = 948 feet/second
if

Vp = V,
then the minimum turning radius 1s

R = 5590 feat,
We will consider two speed ratlios, namely 0.5 and 0.9, If € = 0.5,
L = 2145 feat for & = 1° and L = 1590 feet if 8 = 5°, In order to
reach these ranges, the game would start when E was diraectly ahead of
P at a separation range of 2795 feet. 7This initial separation
corresponds to Y = € which is the point where the barrier reaches the
Y-axis, If € m 0.9 the capture ranges are 4140 feet and 3350 faet
for 0 = 1° and 5°, respectively, For this case the gzame would start
at a separation of 4930 feet. For a fighter armed with machine guns,
the gun is effective within approximately 2500 feet and an angle-off
less than 1° ro 3°, Consequently, the likelihood of achleving a kill
when € = 0.9 i3 nil. The chances are good if € » 0.3 and P can reach
2750 feat from E before the latter starts mansuvering.
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Problem I Conclusions

The solution to Problem I shows that P should operate as close
to V; as possible. In addition F must have a significant speed
advantage, on the order of two to one, in order to achieve a kill using
machine guns. These results, howaver, must be recognized as only a
gross approximation to realistic air«to-alr combat in light of E's
being able to change directions instantancously. We theraefors turn

our attention to Problem II which adds a little more realism.
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SECTION V
PROBLEM I1 SOLUTION

Problem Definition

The differential equations of state and the control constraints
were derived in Appendix A. Eqs (31) through (35) detine the non-
dimensional state equations and constralints

Xm€sin-0p Y (31)
Y = € cos y-1eapX (32)
W =-ap+€ R (33)
=l1gapsl (34)
-1gapst (35)

The control variables are ap and ag for P and E, respectively. The
difference between thls problem and the previous one iz that whereas
¢ was a control variable before, here it is a state variable. As a

result, one additional state variable appears.

The Approximation of the Termingl Surface

The terminal surface is illustrated in Figure 9, For any
value of ¢. the corners are smoothed like in Problem I and illustrated

in Figure 12, The difference is that the corners are replaced with
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cyiinders of infinitesimal radius. On the right cylinder (X > 0) any

point 1s defined by

u‘ - 52 (109)
Xw Lsin g ¢ r (sin s; = sin 6 = cos 8) (110)
Y= Lcos @ #1r (cos 8y ¢+ 5in 8 - cos §) (111)

where s; has the same interpretation as s did in Problem 1. On the

left infinitesimal cylinder (X < 0)

w - sz (112)
XweLsin @ » r (~sin sy * 5in 0 « cos @) (113)
Yo Lcos 0 #r (cos 51 + sin 0 ~ cos @) (114)

After developing the necessary conditions, the limit will be deter-

mlned as r goes to zZero,

The Necessary Conditions

Substitution of Eqs (31), (32) and (33) into the optimality

condition, Eq (7) gives

min max [vy (€ sin {§ ~ ap¥)+ vz (€ cos 1+ apk)e v3(-ap+€ R ag) =0
U-P G-E

(115)

The optimal controls for P and E are therefore
Gp = 5zn B, B = v1Y = voX + vy (116)
Qg = 88 V3 (117)
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Since v is perpendicular to the terminal surface, on the right

¢ylinder
vy = sin 8) (118)
V2 = cos 8y (119)
v3 = 0 (120)

and on the left cylinder

vy = - sin 8 (121)
Vo = cos 3 {122)

Clearly E's control is singular on the terminal surface in light of
Eq (117), Expansion of B in Eq (116) on the right cylinder and letting
r g0 to sero gives

Be L sin (s; - 0) (124)
Simllarly on the left cylinder

Be-~1L sin (s = @) (125)

If 8; < @, then the corner conditions do not hold and we set § = 8,
in which case B = 0 and P's control is undefined. This corresporis
to the natural barrier, the solution for which will be derived later.
The boundary of the usable part (BUP) is derived from Eqs
(7), (109) through (114), (118) through (123), (31), (32), and (33).

In the limit as r goes to zero
sin 3y (€ sin sy - af Lcos 9)4 cos 8) (€ cos sp-1¢ a; Lsin 0) « 0 (126)

on the right cylinder and
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~-gin sl(E sin 9y a.; Teos 8)s cos 31(6 cos s;-1- a.; Lsin ¢) « 0 Q27)

on the left cylinder,
As in Problem I, introduce the nondimensional time § defined

in Eq (88). The transformed differential equations of state are

X' «e-€sinfyrap ¥ (128)
Y'--Ecosd}#l-agx (129)
y' =ap - € Raf (130)

The differential equations for the vy are

v’ = aF V2 (131)
vo' = - ap vy (132)
vy' = €(v) cos | = vz sin Y) (133)

The boundary conditions on the terminal surface, § « 0, are

X(0) = L sin § right comer (134)
w <L ain ® left corner
Y(0) = L cos 9 (135)
Y(0) = sy (136)
v1(0) = sin sy right corner
(137)
= - sin 8, left corner
v7(0) = cos 8y (138)
v3(0) = 0 (139)

1£ 8 » sr then 6 ia replaced with 8. The natural barrier solution
will be determined first and then the artificial darrier problem will

be addressed and solved,
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Natural Barrier Solutlon

Set § to s;. Eqs (126) and (127) along with positive sy on
both boundaries of the usable part shows that the boundaries are
diametrically opposite since

tan "‘L = « tan BIR
The relationship for s, as a function of 87 and €, is presented in
Figure 19,
The optimal controls are undefined since both B and V3 are
zero on the BUP, However, differentiation of B glves
B' = vy
On the terminal surface
B' wsins; » 0 on the right barrier

= - sin 3 < 0 on the left barrier

Consequently, P's controls are
ap = #1 on the right barrier
- =1 on the left barrier.

From Eq (133) evaluated on the terminal surface

v3' = €(sin 8) cos 87 - cos 8 sin 82) right barrier

= €(~ sin s} cos s -~ cos 3) sin 83) left barrier.

Substitution of the relationship for s; gives

33' - E_fiﬂ_fl_. (coas 8y -~ €) right barrier
1-€ cos 87

€ sin s
. o et (coO8 5y - €) left barrier.
1-€ cos 8
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From Figure 19 on the right BUP sin sy » 0. By assumption € < I,
Since the two BUP are diametrically opposite, sin 87 < 0 on the left
BUP. Consequently, v3' is of opposite asign on the two BUP at the
same value of s; and therefore a; has opposite signs. Also, V3'
changes sign across s, = cos”! € and 8y » 2y - cos"l¢, Thus on the
two BUP E's optimal controls are as follows:

Right BUP Left BUP

0g s, <cos~l € *1 ~1
cos~} € < 83 < 211 - cos~1¢ -1 el
2n - cos~l€ < 83 < 27 +1 -1

Exanination at 8y = cos~1€ on the right BUP and 83 » 21 - cos~1¢ on
the left BUP shows that gaps occur since ' in Eq (130) is discontinue
ous, These voids in the barrier are filled as follows, The relation

for v3' is repecatedly differentiated until a}_" first appears, thus

vy = €lvy’ cos § - Y'vy ain §f = vy’ sin g« §'vy cos ¢)
€@p - Y')(vy ain § + vy cos i)
= 0,

Since v3' = 0, v; sin ¥ * v2 cos |f ¥ O, hence

ap - §' = 0.
Substitution for §' gives

G.;-lb.-ERaEuo.
Thus on the singular arcs, E's optimal control ias
G; - oo
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Right and lgft running arcs or tributaries emanating from the singu-
lar arc fill the void. Examination of Eqs (128), (129), and (130)
shows that the trajectory for the singular arcs are the same as
Froblem 1.

At the other switching point, s = cos"1€ on the left BUP and
87 = 217 - cos~1¢ on the right BUP the trajectories on each side inter-
ceopt each other. The arc of Interception is determined by equating
w. X, and Y. The trajectories are illustrated in Figure 20,

The differential equations of state, Eqs (128), (129), and
(130) are nonlinear since sin |y and cos Y are nonlinear, They are
Integrable, however, if ¢ is first integrated and then substituted
into Eqs (128) and (129). The detatls are presented in Appendix B.

The solution is
T % * H *
X« L sinap(s;¢3) ¢ ap(l-cos g)- EE [coa {§ - coalsye aps)] (140)
*
Y=L cos G;(llﬁi) ¢ s8inf » %ﬁ- (sin - sin (spe a.; 8)] (141)
* *
=8, ¢ (ap - €ERaf) B (162)
vy = sin a; (s; +B)
Vy = cos a;'»' (s; +8) (143)
ok
vy = EE [cos (s)- 83) - cos (sy- 33 + €R af B)]
On the singular arcs

Xe (L-€p)sinag(s +»3) »ap(l - cos g) (144)
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Y= (L -¢E) cosaf(s +3) ¢sinp (165)

Y = af(s + 8) (146)
vy = sin O.; (S »8)

v, = cos af (s + B) (147)
v3 = 0

S w cos”l €

For the tributaries

*
X = (L-€ ﬁo) sin 0.5(54- Ble a.;(l-cos B)= %E- [con Y~cos a;(.% a)]

(148)
- . af R
Y » (L€ Bg)cos GE(S+ B¢ sin B ¢ = [sin §=sin ap(se 3)] (149)
Y = af(se §) - €Rag @ - 8,) (150)
*
Vl w ain GP (S¢ ﬂ)
v2 = cos af (S ) (151)

ysu%gﬂl - cos ERAE @ - By)]

where §, corresponds to the time that the tributary leaves the singu-
lar arc.

It can be shown that the two barriers in the | = O plane are
symmetrical about the Y-axls, Let subscripts R and L denote right and

left barriers respectively. From Eq (142)

*g'*;"o
or
S2p ¢ (1 -€R)P @ 83, ¢ (<1 ¢ €R)B = O
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Thus

S2p = = S,
From the relationship for S;, it follows that

SIL - SIR

Eqs (140), (141) become
X = L sin (-S).- 8)-(1 = cos §) + L [1-con(=595- 8)]
. - Xp
Y, = L cos (-S13- B) ¢ sin B - % [0 - sin (-S2p° 8)]

Similarly on the singular arc, Eq (146) shows that
SzL » - SZR -$
Eqs (144) and (143) become

Xy = - €8) sin (~5-g) « (i-cos §)
-0xa
Y, = (L -~ €8) cos (Se B) ¢ sin §

For the tributaries, Eqs (148) and (149) become

X, = (L - €85) sin (-5-B)-(1-coe ) # § [1-c0s (Se 3)]

= Xp
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Yy = I - €8g) cos (S+ 3) + sin 3 - %-[0 - sin (-S-B)]

-YR

A sample trajectory is 1llustrated in the w = 0 plane in Figure 21,
Since the barriers are symmetric in the §f = 0 plane, it

suffices to examine the right barrier. The solutlion for L as a
function of E and R can be determined from the simultaneous solution
of

VZ(E)-O

X(B)=0

(B )=o

where E corresponds to the time at which the barrier meets the
Y-axis. Consider first the region =5 £ S < S. From Eqs (142) and
(143)

.B. = 121 -5 (152)
Spw (€R=1)F (153)
(2% )

stnes From B 71
1 = € cos Sy

\ita“ 1" T 5,

Substitution of Sp, rewriting, and combining terms gives
€ sin E€R ( g - $1) = cos Sy (154)
If Sj=S e cos~l ¢

€ sin €R ( E-- 51) wcos S = €
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Fig. 21.--Problem II Sample Trajectory in {f = O Plane
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Hence

En(g-s)-g (155)

This 18 the singular arc solution. Substitution of Eqs (152) and

(153) into X( 3 ) = O gives
Let-sins; -%[l-coail(guslﬂno
Thus, Iif = S < Sy < §, then the capture range 1s
Tactesinsg +5[1-cosér(]-sp] (156)

The iterative procedure 13 as followsi
1. Pick R>1, 0<€<1
2. Guess S
3. Substitute s; Into the left side of Eq (134) and
determine cos s;. Repeat this step until convergence occurs,
4, Compute s; from Eqs (152) and (153).

5. Substitute s; into Eq (136) and compute L.
For the tributaries, from Eq (151)
Balas (157)
From Eq (130)
SeB-€R @G-8m0
It follows that

Bopgns-nl'—n (158)
90



Substitution of B, and E'lnto Eq (148) and solving for L givea

- n n
Leé€ ( 3" S . 3eR )+ sin S -1 ¢ %

Since cos S » €

Le€ (rg""“"le'ilg'i“‘*/l-iz'“%

Note that

lta L€ (Jocosl @ asie? -1

Rew
which is the solution to Problem I. The relationship for L as a
function of € and R i3 presented in Figure 22,

There are saveral points to be made about the data in Figure

22, As the evader's turning radius increases, the capture range
decreases, If the turning radius ratio R is one, then the pursuer
can force the capture range to zerd under optimal pursuer play. This
physically makes sense because all the pursuer nesds to do 1s maneuver
until he is on the sama circular arc as the evader. The pursuer
due to his speed advantage and equal turning radius is then able to
drive the capture range to zero. The third point about Figure 22 is
that the nondimensional capture range is tero or increases with
increasing speed ratio., Another point is that the capturs range ia
gero for certain combinations of € and R. The relationship between €

and R can be assessed from Eq (154). Rewriting gives

£(S1) = € sin €R ( g - $1) =~ cos 5y
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Fig. 22.~«Problem II Natural Barrier Capture Range
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We seek the value of S; for which £(5;) = 0. Now from the BUP solu-

tion {llustrated in Figure 19

=

0ssS1s3

between the f§ w O plane and the singular arc, Differentiation of £(5))
with respect to 5; gives

%ﬂl-'EZRCOIER(g-SI)ftlnSI
1

Since

£(0) < 0
n
£(-2-)-o
'E - -lz
f(z) 1 « €°R

the relationship for £(S}) gives two roots if €R > 1 and only one
root if €2R € 1. The relationship is illustrated in Figure 23, Thus
tf €2R < 1, Sy = w/2. Substitutien of 51 = 1/2 into Eq (136) gives
L = 0; therefore, if €2R < 1, L= 0. This solution has physical
significance. Since the normal acceleration is V2/R, substitution of
the dimensional variables into €?R < 1 gives

( % )2 ?i <1

or



f(ll)

EZR > 1

n/2
Eanl

izn< 1

Fig. 23.~-The £(s;) Relationship




Consequently, whenever the pursuer's normal acceleration equals or
exceeds the evader's normal acceleration, the pursuer is assured of
driving the capture range to zero under optimal control,

The sensitivity of 1 to variations in the parformance parameters

will be addressed after thae artificial barrier solution is solved.

Artificial Barrier Solution

The optimal controls for P are obtained from Eqs (124) and

{125)., On the right barrier
n
053150‘-2-

It follows that c; = 1 on the right barrier and gf « -1 on the left
barrier. Since v3(0) = 0, E's optimal control is based upon vi(O).

From Eq (133) and the boundary conditions on the right barrier

v5 (0) » € (sin S; cos 53 ~ cos S3 sin S3)

lindh [cos S2 = € - L sin (6-5))]
- = = [+{-].] - - sin - 1
1-€ cos S;- 1 sin 6 \\\u_ﬁghC”*LJ
pe Z*

A simllar result occura for the left barrier. The singular arcs

result when

cos 5} e € =Lein (0 - 35) = 0 (159)
o)

For the natural barrlier, a gap occurs on each barrier which is

filled by a singular arc and tributaries. Between S; » 0 and the
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solution of Eq (159), S; = §i. uE = 1 on the right barrier, Similarly
ap = -1 between Sy = = Sy and Sy = O on the left barrier.

The evader optimal control en the singular arc is determined
from differentiation of v3 until GE first appears. This occurs for

93" since
H w
Vg = €E{vy siny » vy cos ) €R af
m 0

Since v3' = 0, the sum in the parentheses is not zero, hence aE -0
on either singular arc. Tributaries run from the singular arcs and
£1l1 the gaps.

The trajectory equations are determined in Appandix B. For

trajectories emanating from the BUP

X = L sin a;(e *B) ¢-q;(1 - cos B) - %ﬁ Ccon f-cos (Sz+ u; 8)]

(160)
*
Y=Lcosaj(d «p) ¢ sinp #%E[uinw - sin (S, + ap 8)]
Y =S+ G@p -~ €ROP) B (161)
vy = sinap (S; + B)
vy = cos ap (S ¢ B) (162)

*
Vy = %E Ecos (51 = 52) = cos (Sy - Sy + €R (IE 8)]

On the right barrier singular arc, Eqs (126) and (159) are satisfied
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S1= %2
where -5'2 is the solution of Eq (159). On the left barrier
51 =5
The trajectory for the singular arc 1is
x-fslna.i",r © +8) ta; (1 ~cos B) - €8 sina; (§2 * B)
Y-'I:cosa.; O «B) osin g ~ €8 cosa.g (gz*ﬂ)
* = ,
Y =ap (52 +8)

vy = sin af (S; + B)
vz - o8 G; (Sl [ ] a)

\'3 -0
For the tributaries of the singular arcs, the trajectories are
XeLsinag (@ ¢ 8) «0p (1 - cos B) = €8, sin A (5; + )
Cl*
- ﬁg [cos { = cos ap (S; + 8)] (163)
Y-feosmg (9 +B) »8inf - €8, cos (51 + §)

*
* %“- (sin § - sinap (S + B8)]

I = af (52 *B) e @p - €R ag) (B - By) gbégmj' (164)

vy = sinap (53 ¢ B)
vy = cos a; (5, + 8) (165)

*
us-%ﬁ[l - cos ERGE G - Bo)]
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where g, corresponds to the time that the tributary lesaves the
gingular arc,

As for the natural barrier, it can be shown that the two
barriers in the w = O plane are symmetric about the Y-axia, therefore
it is sufficient to examine the right barrier in the f = O plane. The
solution for L 1s derived in the same manner as before, namely,

satisfaction of the BUP

€ cos (S; - Sp) = cos S; ¢+ L ain (9 -5;) = 0 (166)
and

Y@ = 0

v @) = 0

X@) = 0

The relationship for L consista of trajectories emanating from the
terminal surface and tributaries emanating from the singular arc,

Consider the former first, Eqs (160), (161), (162) give
B - g -5
Sy = (ER - 1) B
T sin (0&5)01-“13-%[1-::0- (S, +8)] = 0 (167)

Substituting § and S, into Eqs (166) and (167) and then eliminating L

glves

t(sl) = = cos § » € sin A cos (e-s;){l-r’i-(l-co- A )]sln (8-51)

-0 (168)
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where AN\ = €R ( 72-1 - 5;)

The solution for S) as a function of € and R results in £(S;) » O,
Differentiation of £(S;) and evaluation at S; = 17/2 gives

255511 -« (1 - Ezk) cos (8 -0
ds, 2

The relationship for £(S;) is like that in Figure 23, If Ezk <1,
Sy = n/2 and Eq (167) shows that L = 0, This {s the same result as for
the natural barrier. The solution for S) when €2R » 1 is determined
by iteration using Newton's formula. The solution for Sj; substituted
into Eq (167) gives L as a function of €, R, and 0.

For the tributaries of the singular arc, Eqs (163), (164),
(165) give

rain(eqta-)ol-cosF-EBo-%-O e (169)

_ 6N Zizs.
Substituting g and 3, into Eq { f)' setting .s_,:ﬁz and eliminating

-

L from the resulting equation and Eq .(169) gives \ /k
(=1 -

£(5)) = -coo 0+ € con(8-5;) = (1€ (F - 5, - sZ= Fain (0 - 5))
n
-0

The correct solution for 5; yvields f(Sl) = 0. The relationship for i

is obtained from Eq (169). The sclution for L as a function of
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R, €, and 0 is presented in Flgures 24 anxd 253, For large values of R,
(R > 1000), the solution approaches that for Problem I. For R = 1.1,
L is essentially the same for the natural and artificlal barrier,

For R = 1.3 there is also little difference between the natural and
artificial barriers. The difference becomes more proncunced with
increasing R. An important point to keep in mind is that the artifi-
cial and natural barrier solutions are approximately the same for

small values of R, R < 1.5, This is likely to be the situation for

afircraft sngaged in alr-to-air combat,

Capture Range Sensitivity

The dimensional capture range has the following form
L=1(, 6, R) Ry

Only the sensitivity to changes in Vp, Rp, and & will be considered
since we are interested in the impac¢t on the capture range due to
changes in the pursuer's psrformance characteristics. The differen~
tial of L is

oL

dL-RPg']\;-";ﬂvP#RP 2

T
a0 » (S Rp + 1) dip

Substituting for € and R gives

€ 3L 3L Rp al , T
dL = « S~ R dVp # Rp 22 do ¢ (Edk o L ) ar
Vp T PP ag (Rgaa ) aRp

In nondimensional form

Ry € e 7;?. = 49 » (R T L) ™ (170)
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This form is slightly different from that derived for Problem I, The
relationship between Rp and W/S, CLHAX. and ANy Yt defined in

Eq (107), Differentiation and substitution into Eq (170) gives

E-E--Eﬂﬂ-g¢9-l-'d0¢(aﬁ-‘-'¢m(9%§-—-l-'m) , V< Vg
Rp € Vp 3 oR WS~ Tl

- aL ek =B 9oL, gk MAX
(2@ &+ D EBGJVP +55d0 - ®REpe D) = » V> Ve

In terms of sensitivity parameters, dL/Rp can be rewritten as

dL dvp dy/s dCryax danmax
L ws +Sgdd ¢+ 5 + S *S ———
Rp  VBVp 9 w/s wés “haax Cr,  MAX ay

By direct comparison, it follows that

2

Swfs = <S¢, wRExel » V< Vg

.o' "'(R%%#E),V>Vc

Sufs = Sty Samuax

Table 2 presents sample sensitivity data for selected values of
€, 9, and R,

The discussion of the significance of the capture range to
variations in the performance characteristics follows. For Vp < V,,
a one per cent Increase in CW is equivalent to a one per cent
dccz;nn in W/S., For values of R less than or equal to 5.0 the

biggest lmprovement in L occurs for an increase in Vp when Vp < V,.
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TABLE 2

PROBLEM II SENSITIVITY DATA

B o — L —
- LL bl
€ R 0 L 59 RGR™ L Sy

P Svp

0.99 1-1 1 0038 -noool -286 .1.32 "075
3 . 037 -, 0001 .278 =1.32 -, 76

5 037 -, 0001 273 -1.33 -, 78

0.9 1.5 1 .072 «,001 LA12 -1.03 =-.17
3 070 -,001 .399 =-1,02 -,22

5 .mg ..001 .391 -l.m -.2&

0.9 2.0 1 .18& -.om .63& '1-03 .2‘0
3 .180 -, 002 .618 -1,01 .23

5 .176 -, 002 .604 - .99 .22

0.9 5.0 1 .h3‘l -.020 .662 -~ .92 .‘IO
3 lala -.018 .619 - 089 .35

5 .397 'n015 n517 - 086 .28

When R € 2, the capture range is relatively insensitive to the
terminal surface constraint @. Since Sy, < 0 vhen Vp < V¢, the
pursuer should operate as close to V, as possible. This is not always
the case when Vp > V,. The data in Table 2 shows that if Vp > V,
then SVP changes sign somewhere between R = 1.5 and R w 2,0, Below
this value the pursuer should operate at maximum speed, Above it,
and as in Problem I, the pursuer should fly at V.. If R = 1,1 the
biggest improvement results from an increase in Vp as evidenced by
the Sy data in Table 2, If R > 2, however, the biggest improvement
results from an increase in aNyAx rather than Vp. This is consistent
with the results of Problem I.
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We can make some direct comparisons with the dimensional
range L computed for Problem I. Consider € = 0,9 and 9 = 1° and 59,
For the sample aircraft parameters in Froblem I, the capture ranges
were 4140 feet and 3350 feet, respectively., If R = 1,1, the corres-
ponding capture range is zero for both values of 8, JIf R = 1,5, the
capture ranges are 401 feet and 386 feet, respectively, For R« 2,0,
L = 1030 feet and 980 feet., For R = 5.0, L = 2420 feet and 2220 feet.
Consequently, if R < 5,0 the pursuer should be able to bring his

machine guns to bear within the lethal range of the guns,

Problem Il Conclusions

If R < 1.5, the pursuer should fly as fast as possible. If
R > 2,0, the pursuer should fly at the corner apeﬁd. The capture
range is relatively insensitive to § 1f R < 2,0, If Vp > V., and
R > 1,3 the biggest improvement in L results from an increase in
ANMAX " Finally, if the pursuer's maximum normal acceleration equals
or exceeds that for the evader, then under optimal play the pursusr
can realize a collision, il.e., zero capture range, with the evader.

The previous raesults are based upon the assumption that the
pursuer and evader can maintaln constant speod whlle maneuvering.

Since this is usuvally not the case in air-to-ajir combat, we next turn

our attention to the variable speed problem,
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SECTION VI

PROBLEM III SOLUTION

Problem Definition

The differential equations of state and control constraints
were derived in Appendix A and presented in Chapter IIl. Eqs (60)

through (69) define the problem to be addressed in this chapter, namely

x-alvamycosbl#%gl'sinbz (60)
Y-ulvcoay-alu-?xlinéz (61)
v “E 51n B + 2B sin(s 62
Y--;—ﬂn E#;—ln 2-61) (62)
[ ] n n

51.v—§llnvcosIs-al;-"lllnyninblcr;a%cubz (63)
v wC ng (66)

g~ % "3

2

* nP
U ® Cp, = Qq == (65)

Tp 3 uz
MIN Cr < Cp, < MAX Cpp (66)
MIN CTPSCTPS_HAXCTP (67)
0 < np < MAX ng (68)
Ostlrsmhp (69)
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The contrel variables are np, ng, CTP' CTE’ fg, and §,. This problem
has six state and six control variables., As was pointed out in
Chapter III, this problem reduces to Problem Il under certain sim-
plifying assumptions, Consequently, the solution to Problem II is a
special solution to this problem,

Whereas the angle«off constraint held for the previous
problems, it will not for this problem. The justification for this
follows from the results of Problem II. For a speed ratio around 0,9
and a turning radius ratio of 1.3 or less, the capture range ratio was
relatively insensitive to the angle-off. Consequently, if the speed
variation is small, then the angle-off constraint can be dropped

based upon the results of Problem II.

The Necessary Conditions
Substitution of Eqa (60) through (63) into the optimality

condition, Eq (7) gives

MIN MAX [vl(a.l v sin y cos 51 * b 4 Y sin 52)
(CTP'nPibz) «:TE’nE’pE) u

n n

* vy (a.lvcosy-a.lu-u—qunbz)t v3(-§§sln ﬂE¢;gsin(62-61))
n
-rv;.(;Ellnvcoaﬂg-al;‘:-sinysinbld-:-licosbz)
2 2
n n
*vg (Cp_ -~ @ ) * vg(Cpy = Gy ~b= )
5 (Crg - Gz =57 )+ ve ey - 6y 2

The optimal controls for CTE and CTP are

c}s = MIN Cp. iIf v5< 0 an)
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= MAX CTE It vs> 0
c’fp = MIN Cp If vg2> 0 (172)
= MAX Cp, It v <O

The situation for Y = O and Yy = O will be examined later. For

optimal 62. minimization requires that O, be the solution of

gIN Eg (B sin §; # C cos §;) (173)
2

where B » vy Y =~ vy X+ vq cos §)
C = Va_ % - V3 sin 61 . (174)

B is the same variable that appeared in Problem II when §; = 0. The

solution of Eq (173) is

B * c
sin §) = = ——me—— cos §, w - (175)
2 VBt o« c? ’ 2 ;Bz . C?

provided that both B and C are not gero, The situation when B w 0
and C = 0 will be examined later. For optimal P;, the function to be

maximized is

:Ax (-v3 sin f; ¢ v, sin Y cos ﬁE)
E

The solution 1is

v v, sin
sin l; - 3 , Gcos !; - 4 Y {(176)
45% . vi sin? Y 43% * V% sin? Y
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if v3 and v, are not zero. Agaln this situation will be examined

later. T7The function to be minimized for optimal np is

n n
MIN [ =5 (B sin & + C cos §) - @3 Vg — ] (177)
nP u

The second partial derivative of this function with respect to nj is
- 2 vg ag/u?

Thus if vz < 0, the second partial is positive, If vg > 0, then it is
negative and np is either equal to zero or MAX np. Consider first the

case vg < 0. Let n;*denate the minimum solution of Eq (177), namely

>0 (178)

it 3,C, and vg are not zero, Then the solution for optimal np is
nf = MIN (MAX np, np”) Af vg < 0 (179)

iIf vg » 0, then np = 0 substituted into Eq. (177) yields gzero., If

v > 0 and np « MAX np, Eq (177) becomes upon substitution for

optimal 62
MAX np B2 c2 (MAX np)?
( - - ) - (13 96 —-—-—-—2-—-
u W2 o 2 B2 4 2 u




Since np =« 0 gave zero for Eq (177), it follows that
W
np = MAX np 1f vg > O (180)

Eqs (179) and (180) define optimal np if B, C, and vg are not zero,
This possibility will be examined later, Finally, optimal ngp requires

the maximization of

n npe
2§x L ;E (= vy sin fg # v, sin ¥ cos Pg) « vg Oz ;g— ] @s1)

The second partial of this function gives
- 2 vy ay/v (182)

Thus Eq (181) has a global maximum if vs > 0. If vy < 0 optimal ng
is either np = O or ng = MAX np. Consider the situation where v = 0.

Dafine n; as

v 4&5 * J% sin? y
9 vg a2

if v4 and v, are not zero,. The solutlion for nE maximizes Eq (181)
if v¢ > 0, thus the optimal solution is

ng = MIN (MAX ng, ng ) 1f vs > O, (184)

1f v5 < O substitution of n; = 0 into Eq (181) gives zero. If

np = MAX ng, substitution along with optimal ’E into Eq (181) gives
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X va v sin® v (MAX np)?
MAX np ( . ) vsa, _—__i_ﬁ__
v 45% » v% sin? y 4@% » v% sin? y v
- MAX ng J 2 2 2 (MAX I'IE:)2
v vi ¢ v, sin® ¥ = v5 Q2 ")
>0
since vg < 0. Thus
*
ng = MAX ng if VS < 0 {185)

The situation when v4, v,, and v are all zero will be examined later,
The boundary conditions for the state variables on the terminal

surface are

X(0) = L sin s, (186)
Y(0) = L cos s, (187)
¥(0) = 5 (188)
6;€(0) = 0 (189)
v(0) = € (190)
u(0) = 1 (191)

whore nondimansional time zero is with respect to the variable 3
defined in Eq (88). The parameters f, 81, 82, and € have the same
definition as they did in Problem II except that 8) can take on both
positive and negative values. The phyaical significance of Eq (189),
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5,(0) = 0, 18 that the velocities of P and E are in the same plane,
Furthermore, the accelerations normal to and along the veloclity
vectors fall in this same plane. Since the normal acceleration is in
the vertical plane of symmetry for fighter aircraft, E may be above or
below P but not to the side of P, If §; does not change with time,
then the motion of P and E are in the same plane as that for the
terminal surface. Consequently, E will not be to the side of P if

&y = 0. From the definition of u in Eq (55), Eq (191) requires that

the characteristic speed V, be
Vo = Vp(0) (192)

Consequently, € is the speed ratio of the two players at the end of the
game. The characteristic length R, is now defined to be Rp(0), the
pursuer's minimum turning radius at the end of the gama, In light of
thesa dafinitions ay, as defined by Eq (57), has a physical interpre-

tation., Now

Voo _ VE(0)
AN (0)

a =

= np(0) (193)

Thus a; is the pursuer's maximum allowable load factor at the end of
the game.
The vector v is perpendicular to the terminal surface, thus

its components are taken to be

VI(O) = sin 8 (194)
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VZ(O) = cos 8) (195)

v3(0) = 0 (196)
v4(0) = 0 (197)
vg(0) = 0 (198)
vg(0) = 0 (199)

The rationale for Eqs (194), (195), and (196) is the same as that used
in Problem II, The justification for Eqs (197), (198), and (199) is
related to the boundary conditions for §;, u, and v as defined by Eqs
(189), (190), and (191).

The optimal controls are undefined in light of the boundary
conditions, But before addressing this problem, the boundary of the
usable part will be determmined since it will be used in establishing
the initial controls. Substitution of the differential equations and

boundary conditions into Eq (7) gives
€ sin s; sin 8, + cos Y (Ecos sy =1)= 0 {200)

which is the same as the natural barrier in Problem II.
Next introduce the nondisensional time 8 as in Eq (88) which
is sero on the terminal surface, The transformed differential equa-

tions of state are

*

X' w «a; v sin Y cos 6y - EB Y sin 6; (201)
*

Y' w =) Y cosy»Que EE X -sin 6; (202)
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% ¥
A I—:—E:- sin ﬂg - ':':2 8111(5;* &1) (203)
' nf o of Iy
61"‘ -‘—’-‘-‘-sin‘( cos ﬂaqali-siny sin&l -;f-l-%cos 62 (204)
n’e
v = - Crg » a2 :2" (205)
' se n152
u = = C7y * Q3 ;i-' (206)

whoere differentiation is with respect to g, Substitution of the
differential equations of state into Eq (13) gives the differential
equations for the vj. These differential equations differ in form
dependent upon whether or not the speed is above the corner speed,

as illustrated in Figure 18. The forms are different because MAX Cj,
is a constant below the corner speed and MAX n is a constant above V.

If V> Vo, then

nk ng * a1v
Vi--vz;-}?-sin 55’-\;4;3%2 coséztva-—iﬁ-slnysinbl {207)
' ng o ng 1 %
v =V, -ui sin 62 LA el COS 62 (208)
v; = V] G V €08 Y cos 61 =vpay Vv &in vy (209)

Lid
-rva(g-mcosvcos ﬂ;-alﬁcosysinbl)

¥
aqVv n s
Vi = = Vi &y vsin ¥ ain 61 - v *-}!'i— sin v cos 61-' V3 "‘f’ cos (5;-61)

(210)
] n¥% J
vs = V) G 8in Y cos §; ¢ va a) cos Y + v3 =% &in Pg (211)
v

s 2

ng a x

-V (== sin y cos ﬂE + 2 sin Y sin §;) + 2vsap e

v2 X v3
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o ve
n

I, e
Vg = *v; L Y sin BF - v2 ag # vy = X sin §)

ul ul

* 2

=

n
“v3 nE sin(&? - 51) - vy -£ E cos 55‘ ] 2"6 a3
ul u?

n

e~k

l

[
w

It V£ V,y then n is replaced with C; where

] oW
L™ yp sv2

(2Q12)

(213)

since Cp 18 inversely proportional to v the only changes when V < V,

are in vg and va

¥
n

: = sin B
Vs = Q1 vy 8iny cos §; « g vy cos Y - vy 72 sin Pg

L4

Ve

ng Gy n?
v, ( ;% sin y cos O - g sin Y sin 6,3 - 202 vs ;%—

) ¥

n

”*
-f-g.ﬁsinég-ulvzvvﬁ-?-%coség-za:;vﬁ%—- v3
4 )

u l.l2

The aerodynamic¢c constraints are

% pp Sg Voo (MAX CL) 2

0<ngg it VgV,
Wg
b % pp Sp vo2 (MAX CLP) 2
OsnPs u if VPSVc

Wp

From the boundary conditions, Eqs (196) through (199},

Sl

cos 6; sin 61

Y3» V4» V5. and vg are all zoro on the terminal surface. jince v, v, = 0,

Cw 0 from Eq (17‘.)0
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as defined by Eq (174) gives B = O on the terminal surface., Thus the
optimal controls are undefined or indeterminant on the terminal
surface. The controls can be determined on the terminal surface
however by examination of the derivativea of the appropriate variables,
Substitut;on of the boundary conditions on the terminal surface gives

the following results

B'(0) = a; sin 8 (214)
c'(0) = 0 (215)

v3(0) = a; € (sin S cos Sy= cos S sin Sp) (216)

v;,(0) = 0 (217)
v5(0) = g,(sin S; sin Sp¢ cos §) cos §3) (218)
vg(0) = = a) cos 5 (219)

From the solution for the boundary of the usable part, Eq (200), B'(0)
is positive (negative) on the right (left) barrier. Thus from Eq (175)
5;(0) = = 11/2 en the right barrier

(220)
- /2 on the left barrier
Substitution of the solution to Eq (200) into Eq (216) and combina~

tion with Eqs (176) and (217) gives the following results for ﬂE:

Range of So Right Barrier Left Barrier
0<s, <s* - /2 n/2
S* < 53 € 211 - §¥ n/2 - n/2
2n - S*¥ < S5 < 2n - /2 /2
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where cos S* m €, These results are directly analogous with the
evader's optimal control In Problem II. Substitution of the solution
of Eq (200) into Eq (218) and combining with Eq (171) gives the

following for optimal Crg

Range of Sj Right Barrier Left Barrier
0<sS < MAX C1p MIN CTE
m< 8§ <2 MIN CTE MAX cTE

Substitution for s; as a function of S into Eq (219) and combining

with Eq (172) gives optimal CT;. namely s

Range of Sg Right Barrier Left Barrier
0

< 52 < MAX CTP MIN CTP
n <S8 <2 MIN CTP MAX cTP

The combination of Eqe (214), (215), (219), and (177) daefines

optimal ngs

Range of S3 Right Barrier Left Barrier
0<sSy<m MIN (np*, MAX np) MAX np
m< Sy <2 MAX np MIN (nf*, MAX np)

where n;* is defined by Eq (178) except that B, ¢, and Ve are replaced
with their derivatives. Finally, optimal ng is determined by the

combination of Eqs (216), (217), and (182), namely:

Range of 82 Right Barrier Left Barrier
0<sp <N MIN (nf*, MAX ng) MAX ng
m< s <2m MAX ng MIN (ng', MAX ng)

117



where nE* ia defined by Eq (183) with v3, v, and ve replaced by their
derivatives., The pravious results define the optimal controls on the
boundary of the usable part on the terminal surface.

At s; = S* on the right barrier and S = 27 = 5% on the left
barrier the trajectories diverge as they did in Problem II, It is
easily verified, as it was in Problem II, that the voids are filled
with a singular arc 0; w O and tributaries.

As In Problem II, it can be verified that the Intercept of the
two barriers and the ¥ = 0 plane are symmetrical, Let subscripts L
and R denote the left and right barriers, respectively., In the range
=$* < 53 < S* and analogous to Problem IX, trajectories emanate from

opposite sides of the y = 0 plane for the two barriers, hence

825(0) = = 857(0) = - /2 221)
n,;;m) - ﬁE;"(O) » - /2 (222)
CTE;(O) - CTB:(O) = MAX Cpp (223)
cTP;(O) - cTP:(oy - MAX CTp (224)
ngp(0) = ngy(0) = MIN (ng", MAX ng) (225)
npg(0) = np(0) = MIN (np*, MAX np) (226)

it Szn - - SzL y then SIR - -8 From Eq (203)

L-
’ n* n*
- = -j ’ -l - - '
Yn v u YL
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The time to travel from the terminal surface to the ¥ = 0 plane
given SzR - . SzL is the same for the two barriera. Also, Yg = -YL-

From Eqs (204), (189), and the optimal controls

51(0) = 0
$1(0) = 0

thus §; remains zero. Based upon the earlier description of the
physical description of the physical significance of $;(0) « 0, §; = 0
as a function of time means that E does not maneuver to the side of P,
This will simplify the problem since if §;(0) = O, then §; as a
function of time is also zero. Eq (201), the optimal controls, and

the boundary conditions, Eqs (187) and (188) show that
X3(0) = - X[(0)
Similarly it can be shown that
Yp(0) = Y{(0).
1t can therefores be argusd that
Xp = = X;,
Yp= Y

and the conclusion 1s that the intercept of the two barriers and the
Y = 0 plane are symmetrical about the Y-axis. Consequently, it
suffices to examine only the right barrier for determining the relation-

ship between the parameters in the problem wvhich lead to the barrier
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grazing the Y-axis. The optimal controls on the terminal surface are
defined by Eqs (221) through (226).

Since §; = 0, Eqs (210) and (197) give v, = 0. Thus the
number of differential equations reduces from twelve to ten, For the
remaining ten differemtlal equations u' and v' can be integrated
analytically. Unfortunately, the resulting relations for u and v are
fmplicit functions of . It is impossible to solve for u and v
explicitly in terms of §. Thus the remalning differential equations
can not be Integrated analytically, Recourse t0 numerical integration
is required if the ten differential equations are to be Integrated.
Instead of this approach, however, two additional approximations will
be made which will allow the resulting differential equations to be

integrated analytically.

The Trajectery Solution

It will be assumed that both the pursuer's and evader's
acceleration are constant, That is, u' and v' are constant with time,
There are two reasons for assuming this, The first was mentioned
previously, namely analytical solutions can be obtajlned. The second
reason is that the results can be compared with the results from
Problem II. Recall that in Problem II the evader's speed as well as
the pursuer's speed was constant. Thus the impact of acceleration
capability by the pursuer, u' ¢ 0, can be compared with a constant
speed pursuer., The constant in u' (or v') will be called CTP (or CTE)
but 1t will be defined as the value of u'(0) (or v*(0)). If the change

in u(v) is negligible, then this should be a reasonable approximation.
120



The differential equations become

*

X'w-=qg,veinye Eg Y (227)
np
' - - 228
Y'=-apveosy+q u--iX (228)
* *
' -k g2 (229)
v u
*
vi' = vy £ (232)
u
Vz' m - vl P-E (233)
u
vy' @@y v (vy coa y = vy ainy) (234)
o
vs' =0y (v siny # v3 cos ¥) ¢ vy ) (235)
l'I.*
ve' = = =B =a; v (236)
u

* 2 * 2
np = as (MAX CLP)“ » N = 0 (MAX CLE)V

The previous formulation is based upon the assumption that the pursuer
and evader speeds are always less than or equal to the corner velocity
which 1s representative of past ailr-to-alr combat engagements., The
equations are easier to integrate if u ls taken to be the independent
variable and the nondimensional time § 1s a dependent variable. Inte-

gration of Eq (231) along with the boundary condition gives

wal-CpB 237)
121



Division of v' by u' gives

Q.E.C_TE.C
du CTP

Integration gives
ve€esC (u-l) (238)

Division of y' by u' gives

dy _ _1 . i
d-E - E;; Ecg (€ =C) » (CiC-Cslu ]

wvhaere

Cy »ay (MAX CI‘E)

Integration gives

Y5, § Leute-0) # (eye-cs)u I*- @ 6-c5)2f (239

1
2ch (C&C-Cs )
It is easlly verified that Yy satisfies the differential equation and
boundary condition. Let
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Ay = === (€ = C)

l3ﬂ——-

Division of X' and Y' by u' gives

dX
a—:-ﬁltkou)llnY-X:;ﬂY (2“0)
day
-&:-(o\lﬂr&ou)coav-lzutkaux (241)

Both of these differential equations are linear, Hence the general
solution is the sum of the homogenacus solution and the particular
solution, Let subscripts H and L denote homogeneous and particular

solutions, respectively. Then

dXy
— e Aq u Y (242)
du - 3 H

d
;..Eli - g u Xy (263)

Multiplying the first equation by Xy, the second equation by Yy and

then adding gives
dX dy
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or
d 2
L oxy o+ Y = 0

A solution is
xﬁ ] Yﬁ s C 2 = c¢onstant

Solving for Yy and substituting into Eq (242) gives

S W (T - )

du
This differential equation has two solutions, namely
X, =% C, sinkaqu’
H o 3

and

Xy=% C, cos ] Ay “2

We write therefore for the homogeneous solution for XH and Yy
Xg = Ap oin ¥ A, v » B, cos ¥ Aq u? (244)
Yqy= = A) cos kA4 w . By sin ¥ A, u? (243)

Eq (245) was obtained by substitution of Eq (244) into Eq (242).
Whether or not the solution is correct is determined by substitution

of Eqs (244) and (245) inte Eq (243), thus

dy
;;ﬂ miz u (A sin k Ay ul ¢ By cos ¥ Aq uz)
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The right side 1s equal to A4 u Xy; therefore Eqs (244) and (245)
satisfy Eqs (242) and (243),

The particular solution to Eqs (240) and (241) can be obtained
from the method of variation of parameters., The method replaces the

constants A; and By in Eqs (244) and (243) with unknown functions

vy{u) and vy(u)
Xp = vl(u) sin % Jt.3u2 + vy(u) cos % l3u2 (246)
Yp = =vy(u) cos % l3u2 + vp(u) sin % .\3u2 (247)

Substitution of Eqs (246) and (247) into Eqs (240) and (241) gives
2 dvl 2 dv2
(sin % Agu®) poal (cos % Aqu) === () ¢ Aqu) siny
-(cos ¥ Azu?) L 4 (sin & Ay?) 2 u )
cos qu ;;—4- 3 Sl g * Agu) cos ¥ ~ Aju

Solving these two equations for dv;/du and dv,/du gives

d

a_v.!. w =0y #Agu) cos (Y ¢+ & )Lsuz) * Agu cos % Aq u? (248)
u

d

a_?. = (g #Agw sin (Y + % Azu?) = A,u sin k& Az u? 249)

From the solution for Yy, Eq (239)

Y ¢ % Azu? @ Ay # Asu # Agul (250)

whore

1 — 2 2
= 2 v ) {Lc4(e-c>3 - (C4€-Cs) }
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Since

}sod

! Eedt 2 251
2);6 an Q“ L 15\! L lbu ) ( )

substitution into Eqas (248) and (249) glves

A
ﬁl...ﬂ.é‘m * A -tkzcuu tkutluz)
du 2&6 du (h4 54 6! ) 4 5 6

o2 (3u cos % h;uz)
A3

dv. A ‘
3 " Zig dau Qg * Agu » Asuz) sin Q4 * Agu ¢ Agu)

A2 2
- I; (kau sin % k3u )

Both equations are integrable, thus

Ao 2, A2 2
vl.-.z.:\_gain (&,‘-rksutlﬁu)irx;unihu

AQ 2, A2
"2""2-&"6“” uathsutkﬁu)vx;eosko\;;uz

Substitution into Eqa (246) and (247) and then adding Eqs (244) and

(245) gives the general solutions for X and Y
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2 2 *o A2
X = A; sin ¥ Azu® » By cos ¥ Aju” - EIZ cos Yy # v
Y = Ay cos % Aqu? ¢ By sin ¥ Aqul # Ao sin y
1 3 1 3 244

The constants A; and B; are determined from the boundary conditions,
Eqs (186) and (187). Evaluation of A; end B; and substitutioa intoe

the general solution gives

X = L sln(sy+ ¥ Ay - & k3u2)1$f- [cos (S¢% Aqu?)- cos v]
6

A2 -
* 5o [0~ cos kaz00 - u?)] (252)

- A
Y=1cos (Sp¢ Ay = ¥ Aqud)- 5%; [sin (Spe % Az- % Azu)=sin y]
+ 22 gin ] lg(l-uz) : (253)
A3
It was verified that the differential equations for X and Y and their
respective boundary conditions are satisfied.
The transformed differential equations for v; and vy are
dvy

AR

dvy
a';;-"v\._—, u vy

Thesae two differential equations have the same form as Eqs (242) and

(243). Therefore, their solutions are

Vi = Ay sin ¥ Ag u2+Bz cos ¥ A4 u?
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V) = =Ay cos k3u2 * By sin ¥ k3u2

Substitution of the boundary conditions determines the constants Aj

and Bp. Thus the solutions for vy and v, are
vy = sin (S; + ¥ Ag - ¥ A3 u?) (254)
vy = cos (51 » % A3 -k 13 uz) (255)
Both the boundary conditions and differential equations are satisfied

by Eqs (254) and (255).

The transformed differential equations for Vi is

d
3. JEi! (vy cos Y = v sin Y)
du CTP

Substituting v, Vi, and vy gives

d
352 - -(hl * Aoﬂ) sin <sl * & AS - *h - Lsu - Aﬁuz)

Subatitution of Eq (251) gives

dV3 ko
m—.- - -2'1-; (15 * 2*6“’ sin (51 * %‘3 - )t“ - A_r,u - kﬁuz)

.5-9—1-(5 # 3 Ay Aye Ague Agul) sin (Spe % Aq-A,-Agu-A.ul)
2Ag du 1 37 4% 25 6 ! 3706703 %6"

This equation is integrable

A
Vq = '2-3-6- [coa (514‘ k l3'haﬁls°k6)" cos (310 Y As-)ﬁan);su-lﬁuz)]

(256)
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It 15 easlly verified that v4 satisfies the differential equation and
boundary condition.

The transformed differential equation for ve 18

st 0.1 CQ
o o (vy siny + vy cos Y) T v3
Substitution for v;, v, and vq gives
ﬂiﬁ w Ay cos (S * A, - KA w? . Y}
du 2 1 3 3
Ao Sy
. cos (S ¢ % Ag=AgeAg-A)
T C'I‘p[ 1 3°A4-As-Ag
-~ cos (S; + ¥ A3~k4-ksu-louz)]
Since
Ag C
20 4. Ay
26 C1p
and

Sy # %A= B Azul- ¥ m Sy ¢ H Age Age Ague Agud
dvs/du reduces to

dv
atl,..--o\.z cos (511'%6\3-&6-&7'13)

Integration glves
Vg = = Ag(u-1) con (S) + ¥ A3 = Ag = A7 = Apg) (257)
which satisfies the differontial equation and boundary condition.
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In order to integrate dv,/du we need B, The relation for B
can be obtained elther by substitution of X, Y, v}, vz, and v3 into

Eq (174) or by integration of dB/du, Since
B' =y vy u

dB 2
vl Agu sin (81 vl Ay = L ] Aju )

This equation iz Integrablae

A
Bwa x% [cos (5 + & Ay = ¥ A3uz) - co8 51] (258)

Substitution into the transformed differential equation for vg gives

dy
;;-6-- Az coB (sl * K &3 -k A.3u2)

c
- _El._% [cos (S; « % Ag = X k3u2) - cOs 81]
&3 ch

Since

6
T " A2 cos S

this integrates to
Ve = Ag(u=-1) cos 8) (259)

Consequently, the assumptions that u' and v' are constants

have led to an analytic solution. It was verified that Eqs (237),
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(238), (239), (252), (253), (254), (255), (256), (257), and (259)
satisfy Eqas (227) through (236)., Also, all boundary conditions are
satisfied,

Before determining the relationship betwaen capture range and
parameters in the problem, some comments are in order concerning the
optimal controls, On the right barrier between 8; = 0 and 33 = 8* it

was derived in Eqs (227) through (236) that
CTE = MAX C'IE

CTP

MAX Cp,
Py = - m/2
6; w = 11/2
= MAX ng
n; = MAX np

It will be verified that the analytic solution ylields the previous
optimal controls. Clearly ng and nf are satisfled since a3 = Q in
Eq (178) and g2 = O in Eq (183). According to Eq (237) u < 1 if
C¢. » 0. Consequently, from EqQs (237) and (259), v and vg do not
change slgn along a trajectory emanating on the terminal surfaca.
It follows that CTP and CTE do not change along a trajectory.
Furthermore, on the right barrier in the range 0 < 8, <11, v < C
and v5 > 0, thus CTP - MAX CTP and Cpp = MAX CTE' From Eq (256)
Sy # Ay ~hy oA ~A6< Sy # KAz = A, - Agu = Agul
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i1f 0 <u< 1., Thus v, does not change sign between 8; = 0 and 8, = s*
on the right barrier, This substantiates that ﬁE w - 11/2 in this
range. A similar argument using Eq (258) verifies that B does not
change sign and therefore § = - m/2 everywhere on the right barrier,
The necessary conditions under which the two barrlers graze

but do not intercept in the Y » 0 plane will be derived next,

Barrier Closure Conditions

Recall that the intercept between the two barrlers and the
Y = O plane are symmetrical about the Y-axis, Barrier closure corres-
ponds to the two barriers balng tangent to each other in the Y = O
plane, Attention will be focused on the right barrier in light of the
symmetry. Lat E be defined as tha time that the trajectory emanating
on the terminal surface reaches the Y = 0 plane. Then the necessary

conditions are

YE) = 0 (260)
v @) = 0 (261)
X@) = 0 (262)

In addition the relation for the boundary of the usable part on the
terminal surface must be satisfied, The necessary condition, Eq (200},

~can be rewritten as

1 «¢€cos s
tan 8) = 2 (263)

€ ain 'ﬂ
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This is the equation for the boundary of the usable part on the ter-

minal surface. Let u be defined by
usl - Crp g (264)
Then Eqs (260) and (261) along with Eqs (250) and (253) give
Ay #Asue Og-%Ay) 0t a0 (265)
81#&13'&&3;‘2-0 7<Z /ﬂ/L (256)
-2
Eliminating the u terms in Eqs (263) and (266) gives a relation
batween 8;, 83, and u
.1./\1.24-/\24-21 (267)

vwhere

o7
1 ey12 . o237 .
Ao ™ T (CatCo) SU:c‘,,te €)]° - (Cc€-Cs) ,ﬁ%

A - ’kk3
boxagy - ag

/\2 - /\1(/\0 . 15;) - %X,
Substituting Eq (267) into the left side of Eq (263) gives

€ sin (s - AI. 8 - Az) e ~sin (A\;s; ’Az) (268)
Since
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substitution into Eq (265) and solving for s; gives
- -2
53 m =/\g = Asu = g = 5 A3) u (269)

Substituting sy into Iq (268) results in an expression for the unknown

u. Rewrlte £q (268) as follows
F(u) = € sin (s, = /\1 8y = /\2) * sin (/\1 8 ¢/\2) (270)

The solution of Eq (269) subject to 0 < W< 1 18 the desired solution.
This value substituted into Eq (269) gives s,. Since Y = 0, Eqs (261)

and (252) supply information for computing the capture range, namely

- AQ 2 A2 - )
v [1-cos (a3 # 543 = ¥azu’)] - ™ (1~cos % A3(1-u“)]

(271)
An iterative approach is required for solving Eq (270)., The approach
employed here is to decrease ¥ until Eq (270) is satisfled or u = 0.
The former leads to a solution for L » 0. The latter 1s interpreted
as f w O or the solution results from trajectories emanating on the
singular arc # = O, The latter is not solved in this problem; the
reason will be discussed later.

Having determined an analytic solution to the differential
equationa, we now turn our attention to deriving the relationship
batween capture range and the parameters in the problem, For the
first example a constant speed evader, CTE = 0, is considered. Both
pursuer and evader have equal wing loadings, W/S, of fifty pounds per
square foot, The corner velocity for both is 1000 feet per second.
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The altitude at which the engagement takes place is 20,000 feet, The
pursuer's speed on the terminal surface is 800 feet per second which
is less than the corner velocity. The remaining parameters are cTP
and Rp/Rg. The following combinations will be considered in deter-

mining the capturs ranges

it Rp/Re

-1 1.5
0 1.5
el 1.5
11 1.5
el 1.35
.11 1.35

A value of CTP = .1 or .11 is representative of a high performance
fighter. A value of CT? = =,1 is characteristic of a current fighter,
The values of 1.35 and 1,5 for Rf/RE fall within the turning perform-
ance capabllities of current and proposed fighter aircraft., The
numerical results are displayed in Figure 26 as a function of V. /Vp
evaluated at time §'whlch is the time that the barriers graze each
other in the ¥ =« 0 plane. The case CTP = 0 corresponds to the
solution to Problem 11, The agreement with the results of Problem II
15 excellent. The data in Figure 26 clearly shows an improvement
from the pursuer's standpoint 1f either or both ch is increased

and Rp/Rg is decreased.
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Fig. 26,==~Problem III Capture Range, cTE w 0
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For the second example the only change is that CTE = .l. The
results are presented in Figure 27, The case R = 1.5, CTP » 0 falls
botween R = 1.3, CTP = .1 and R =» 1.5, Crp = .11, The trends are the
same as the trend for CTE = 0,

A comment ig in order relative to the constant acceleration
assumption for the pursuer and evader. Based upon the results obtained
in Figures 26 and 27, tha change in u or v was generally less than
five per cent, Thus for the values of CTP and CTE considered here,
the assumption appears wall justified. Whether or not this holds for
accelerations larger than those considered here remains to be deter-
mined.

Another comment is offered relative to the utility of the
analytical solution derived in this research, The solution provides
a method for assessing the outcome of the terminal part of an air-to=-
alr engagement, For given evader and pursuer performance character=
istics, the itmplementation of the trajectory solution determines the
capture range under optimal control by both players. If the capture
range exceeds the weapon lethal range, the evader escapes. Otherwise,
the evader is subject to being destroyed. In addition, the trajectory
golution can be employed to determine the performance characteristica
of the pursuer necessary for capturing the evader., This is simllar
to designing a new fighter for engaging and defeating a given cnemy.
Consequently, the technology developed here can be used for designing
new fighters,

We consider next the sensitivity of the capture range to

changes in vE/vpé§). R, and CTP.
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Fig. 27.--Problem III Capture Range, CTE = 0,1
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Capture Range Sensitivity

The capture range L has the following functional form
Le1l(, Crps R) Rp

where

€ = Vg/Vp@), R = Rp(0)}/Rg(0)

The differential of L is

L oL R -
dL'RPg'G;dVP*RP%E;;dCTP"(—i—E;RP"L)dRP

If Vo < Ve which 1s characterlstic of air-to-air combat, then

2 w/s
g8 p (MAX Cp)

Bp =

Substitution of Eqs (272) and (274) into Eq (273) gives

MAX Cy

In terms of sensitivity parameters, dL/Rp can be written as

% " S dzi * Scrp 915 ¢ Swys _%'S' * Swax ¢ d’:;x c:.L
where
Syp = » € i—é&
oL
Crp * 3Cq,
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For € = 0.9, R = 1,5, and CTP = ,1 the sensitivity paramoters
are

scT - -0.200
P

Sw/s - "SMAK cL = 0.365

The data for determining the sensitivity coefficlents were obtained by
nunerical differentiation of the data in Figure 26, As in Problems
I and II, the biggest improvement in L results from an increase in Vp,
A onc per cent increase (decrease) in MAX Cp (W/S5) results in a bigger
improvement in L relative to the improvement realized by a one per cent
increase in CTP'

We can make some direct comparisons of the capture range from
Problems II and III. The solution for Problem Il corresponds to
CT? « 0. The pursuer's characteristics are W/S « 50 pounds per square
foot, altitude is 20,000 feet, and his maximum allowable load factor
18 4, This results in a minimum turning radius of 7750 feet. The

dimensional capture ranges are as follows for € » 0.9 and CTE = 03

Rp/Ry f_'fg L(feet)
1.5 0 490
1.5 .1 334
1.5 11 318
1.35 0 220
1,35 .1 86
1.35 .11 81

All combinations are within lethal gun range,
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Although only a small combination of performance character=
istics was considered, it is straightforward as far as determining
the capture range to other performance characteristics, Thus, glven
any set of evader performance characterisatics, the capture range can
be computed as a function of the pursuer's characteriscics, The
solution for the tributaries from the singular ”E w 0 was not de=
termined, However, the data of Figures 26 and 27 generally cover the

speeds and accelerations of interest.

Problem II1l Conclusions

The original Problem IIl consisted of six state differential
equations. Introduction of the assumption that the motion was planar,
f.e., 61 = O, reduced the number to five, Assuming constant accelera=
tions, u' = 'CTP and v' = -CTE, led to a set of differential equations
that were analytically integrable. The¢ solution defined the trajec-
tories emanating on the barrier of the usable part and the components
of the vector normal to the barrier. The barrier closure conditions
were established and the capture range relation L = L/Rp was deter-
mined for selected combinations of the parameters €, Rp/RE, CTp, and
CTE‘
that significant decreases in the capture range occurred if the

For the particular combinations examined, it was demonstrated

pursuer accelerated and decreased his turning radius.

The capture range sensitivity analysis demonstrated that for
the performance characteristics examined, the biggest Improvement in
the capture range resulted from an increase in the pursuer's speed,

A one per cent increase (decrease) in MAX Cp (W/S) resulted in a
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bigger improvement in the capture range relative to the improvement
realized by a one per cent increase in Crpe

The utility of che barrier solution is that it can be used for
determining the capture range as a function of the pursuver and evader
performance characteristics, In addition, the implementation of the
trajectory sclutions provides a means for determining fighter
characteristics necesaary to defeat a known enemy aircraft during the
terminal part of an air-to-alr combat engagement. In particular, the
following characteristics can be assessed: thrust to weight ratio,
walght to reference area ratio, maximm lift coefficient, and maximum

normal acceleration,
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SECTION VII
CONCLUSIONS

In this research the barrier theory of differential games
was first presented and then applied to three pursuit-evasion prob-
lems approximating aireto-air combat engagements., The emphasis was on
the terminal part of the engagement where armament like machine guns
is the primary weapon, The objective of this research was the de-
termination of the relationship between the capture range and the
performance parameters in the problem., The capture range which in
general 1z a function of the angle-off as well as the performance
parameters corresponds to the minimum separation between the pursuer
and evadar during the course of the game, Whether or not the pursuer
kills the evader is dependent upon how the capture range relates to
the weapon envelope. If the capture range exceeds or falls outside
the weapon envelope, then the pursuer can not kill the evader. If,
howaver, the capture range falls on the boundary or within the weapon
snvelope, then the pursuer stands a good chance of destroying the
evader,

The barrier is a surface within the playlng space which is
never crogsed during optimal play. If the barrier is closed, then
it separates the playing spaca into two parts = a capture set and an

escape set, The outcome i3 neutral for initial states on the barrier
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in that the terminal surface is only grazed, In other words, the
closed barrier does not penetrate the terminal surface. This require-
ment leads to the establishment of the necessary conditions on the
barrier. Consequently, the barrier solution for each particular prob-
lem provides the information for deriving the relationship for the
capture range.

The three problems were formulated in a reduced coordinate
frame, In this type of coordinate frame the evader's position and
direction are measured relative to the pursuer's speed, location, and
direction. The reason for using this coordinate frame is that a
fighter's weapon effectiveness is measured in a reduced coordinate
frame,

The first problem consisted of two differential equations
representing the position of the evader relative to the pursuer's
position and directlion, The controls were the turning rate for the
pursuer and for the evader, the direction of his velocity vector,

The evader could change directions instantaneously, The speed ratio
VE/VP was handled parametrically subject to the ratios being less than
one, The relationship between the nondimensional capture range,

L= L/Rp, and the speed ratio, € = Vg/Vp, was originally determined

bty Isaacs for the natural barrier. In this research the angle~off
constraint O was addressed and the artificial barrier solution derived.
It was proven that the natural and artificlal barriers are coincident.
As a consequence, the artificlal barrier capture range was easily

determined from the solution for the natural barrier, The sensitivity
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analysis demonstrated that the pursuer should fly as close as possible
to the corner velocity. The numerical results were that for a given
speed ratio, the nondimensional capture range increased with decrcas-
ing angle-off. Also, for a given angle-off, the capture range in-
creased with increasing speed ratio, In addition, the pursuer must
have a speed advantage of at least twice the evader's speed in order
to achieve a kill using guns,

The second problem consisted of three differential equations
and one control for each player., The differential equations repre-
sented the position and direction of the evader's veloclty vector
measured relative to the pursuaer's position and the direction of his
velocity vector. The difference between this problem and the first
problem was that the evader could not change directions instantaneously.
Thus the angular difference between the directions of the two velocity
vectors was a state variable whereas it was the evader's control
variable in the first problem. Both pursuer and evader were con=-
strained by their respective minimum radius of turn. The speeds were
congtant with the pursuer's speed greater than the evader's speed,

Isaacs originally derived the natural barrier trajectory
solution, Miller determined the natural barrier capture range as a
function of the speed ratio and turning radius ratio. In this
research the angle-off constraint @ was introduced and the artificial
barrier capture range relationship derived. Unlike the first problem,
the closed artificial barrier and closed natural barrier are not
coincident. Consequently, the artificial barrier capture range could

not be determined from the natural barrier solution,
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The relationship for the artificial barrier capture range as a
function of the parameters €, R » Rp/Rg, and 8 was similar to the solu-
tion to the first problem., The difference was that the nondimensional
capture range decreased as R decreased., If Rp decreases for fixed Rg
or Rg increases for fixed Rp then R decreases. It was proven that If
the pursuer's maximum normal acceleration equaled or exceeded the
evader's maximum normal acceleration, then the capture range was rero,
Also, the capture range was zero if the pursuer's minimum turning radius
vas ‘less than or equal to the evader's minimum radius of turn,

The numerical results for the nondimensional capturse range
showed that for large values of R (» 5), the capture range was sensl-
tive to the value of the angle-off, Contrarily, when the ratio of the
turning radii was less than 1.5, the capture range was relatlvely
insensitive to the value of the angle-off. The sensitivity analysis
indicated that {f the speed ratio was 0.9 and the turning radius ratio
less than or equal to 1.3, then the pursuer should fly as fast as
possible. This is different from the firast problem wvhere the pursuer
should fly as close as possible to the corner velocity,

The formulation of the third problem resulted in six state
differential equations and three controls per player. This formula-
tion vas a reasonable formulation of the terminal portion of an air-
to-air combat engagement. The s8ix variables defined the position, the
direction, and the magnitude of the velocity vector of the evader
relacive to the position, direction, and magnitude of the pursuer's

velocity vector. The controls wers the throttle setting for engine

146



thrust, aerocdynamic load factor or lift coefficlent, and the angular
displacement that defines the direction of aerodynamic 1lift vector.
It was demonstrated that If the velocity vectors were c¢oplanar at the
beginning of the engagement, then they remained coplanar thereafter
under optimal control by both players, This assumption applied for
the remainder of the study of the third problem., Additional assump-
tions were then Introduced, First, the accelerations along the
valocity vectors were assumed to be constant, Numerical results showed
that the speeds changed by five per cent or less, hence the approxi-
mation was considered to be justified. The final assumption was that
the difference between the artificial and natural barrler capture
range relationship due to the angle-off constraint was negliglble,
The justification for this assumption was based upon the results of
the second problem and the observation that the change in the speed
was small, Thus for the speeds and minimum turning radii of interest
for air-to~air combat, this assumption also appeared to be justified,
An analytic solution for the natural barrier was obtained
subject to the assumptlons regarding coplanar velocitles, constant
accelerations, and no angle~off constraint, The relationship for the
nond imensional capture range followed a pattern similar to that for
the first two problems. Increasing acceleration along the pursuer's
veloclity vector resulted in a decrease In the captura range. Conse-
quently, an improvement in turning performance (decreasing minimum
radius of turn) and acceleration potential gives a decrease in the

capture range. The sensitivity analysis showed that for the sample
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performance parameters that were considered, a decrease in wing loading
or an Increase in maximum lift coefficlent was more significant in
decreasing the capture range when measured relative to the improve=-
ment gained by increasing only the pursuer's acceleration.

Uncertainty has existed up to the present time relative te the
derivation of the necessary performance characteristics for new
fighter systems engaging a known enemy aircraft, In other words, even
though the performance charaétorlstics of an enemy aircraft were known,
there was no sound technical basls for deriving new system performance
¢haracteristics. The solution to the third problem offers potential
for being able to define such characteristics as wing loading, thrust
to weight ratio, and the relation between maximum lcad factor and
speed for the terminal part of the engagement., The solution can be
employed for sltuations where the new system is either the pursuer or
evader. If the new system is the evader, then he must be able to stay
outside the enemy's weapon envelope., The opposite holds if he is the
pursuer. Thus the utility of this solution will be in assessing per-
formance characteristics for the terminal part of air-to-air combat

engagements,
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AFPPENDIX A

DERIVATION OF THE DIFFERENTIAL STATE EQUATIONS

Problem I. Differentlal Equations of State
Refer to the geometry in Figure 7 for Problems I and II., An

X y coordinate frame is attached to the pursuer with the y axis co.
linear with the pursuer's valoclity vector, This coordinate frame
translates and rotates with time. Let -ip, iE' and X denote vectors
where Xp and -fg are measured relative to the fixed coordinate frame
X'Y' and X is the relative position of E as seen by P, By vector

addition

Differentiating gives

L] L[] -

ig--ipf'f-rﬁxf (A-2)

where X is the relative velocity of E as observed by P and (';J' is the
angular velocity vector of the x y coordinate frame, Since (-n- is

perpendicular to the x y and (X'Y') coordinate plane, let
®=wF, (A-3)
where &, is a unit vector normal to the x y plane. The magnitude of

(T)la
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m--aP

Vp
- - % 0P -l1gapg? (A-4)

Where Rp is the minimum radius of turn for P and ap is his control.

Hard right and left turns correspond to ap = 1 and ap = - 1, respec-

tively, The velocitlies of E and P are

Xg = Vg (B¢ sin s + & cos )
. (A-5)
EP-VPEY

vhera ey and ;y are unit vectors along the x and y axes and

Y =0z - 0p (A=6)

Solving Eq (A-2) for X and then substituting Eqs (A-3), (A-4), and

(A=5) gives
X =Fg-Xp-Gx¥

= Vp(ex sin |y # e, cos lp)-VPeyi' % ap ©; X (eyx # eyy)

: A v
— P iy
“ ey (Vg sind,t-'f{';al: y) # ey(Vp cos §f - Vp#‘ﬁ%dpx)

Equating scalar components ylelds

. VP
x-VEsinw-ﬁ;aPy
(A-7)
. Vp
y-VEcostp-vpe--i-;apx

=lgapgl
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P and E controls are ap and f, respectively, Eq (A-7) defines the

state differential equations for Problem I.

Problem II, Differential Equations of State

If E's turning performance 1s constrained by a nonzero radius

of turn, as in Problem II, then

. VE
O'E"R'Eagg -1<(I.E51

where Qg 1s E's control. Then from Eq (A~6)

- Vg Vp
Consequently for Problem II, the state differential equations amd
control constraints are

. VP

X=Vesinits2a

E ] Rp *P y
. vP
y-VEcoaljy-va-ﬁ-;apx (A-8)

. v v
A £
¥ = Rz @£ - R @P

Problem IlI, Differential Equations of State

The situation for Problem III is considerably more compli-
cated, The approach here is very similar to that employed by
Lynch (4). Figure 10 illustrates some of the variables in the problenm,

The acceleration components along and normal to V are :V and ;N'
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The angular veloclity 5 i{s normal to the acceleration components and V

and is produced by :N' The magnitudes of the accelerations are

-

l'Evl -V (4-9)
l'é'ml -%Ea, 0<ag1 (A-10)

The angular velocity vector of the reduced coordinate frame is

W = 'E'i'ap (;x cos Pp + 'Zz sin £p) (A-11)
where ¢P is an angle controlled by the pursuer and defines the orlen-
tation of G in the x z plane,

The evader's velocity is obtained by two angular transforma-
ticns relative to the x y z reduced coordinate frame. Let ¢ denote
the angle of the first transformation as fllustrated in Figure 28,

The linear transformation from the X y z coordlinate frame to the

X;Y5%g coordinate frame 1s
Xg cos O 0 sin ¢ X
Zy -g8in ¢ () cos G z

As a result of this transformation, VE falls in the x5;y; plane. A
rotation about z; of angle Yy relative to y; as illustrated in
Figure 29 results in VE falling along Yye The transformation from

Xg¥g%g tO XyyyZy 1is defined by
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-0 Y= Y¥g

Fig. 28.-=The 0 Angular Transformation
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Fig. 29.,=-=Tha Y Angular Transformation
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Xy cos Y -sin Y 0 Xg
Yy = sin ¥y cos Y 0 Yo (A=13)

2y

The velocity vector “FE is

e = VE Sy,
» Vg (ex 8In Yy c08 G # ey Cos Y ¢ €, sin ¥ 5in @) (A=14)

Now the evader's angular velocity vector can be written in two different
forms; the reason for doing so is to obtaln differential state equa-
tions for v and ¢. The first form is

- Vg - - .
Wg = i-E- ag (oxY cos Pp + ezY sin £g) (A-15)
where ap and ”E are controls available to the evader. The other form

for E;E results from the rotations ¢ and Y

{-!).E‘;*v*a
--Ge,-Yeo, +3 A=16
ey = Y O, t W (A-16)

Eq (A-16) follows from the relative rotations ¢ and Y in the rotating
coordinate frame x y z which 1s rotating at the angular velocity, t:)-.
Substitution of the transformations Eqs (A~12) and {(A-13) and Eq (A-11)

into Eqs (A=15) and (A-16) gives

L d V — - -
W -EEU'E [(ex €08 Y c08 0 =~ ey sin Y # e, cos Y sin 0) cos P

+ (-e, sin 0 ¢ e, cos o) sin Py ] (A-17)
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and

mE--ézY-';(-zxsino#:zcoso)

v -— -
+ ﬁ ap (ey cos Pp + e, sin Pp) (A~18)

Equating components in Eqs (A=17) and (A-18) glves

v

. v
E -
Rg OF (cos Y cos ¢ cos Pg = 8in 0 sin Pg) =Y sin o + Rp 4P ©08 #p

Vg -
-EgaasinYcos fpm-0

VE y Vp
Rg OE (cos ¥ 8in g cos Pg + cos o 8in Pg) = - Y cos G * g OF sin fp

Multiplying the first equation by sin 0 and the third equation by

-c05 G and then adding gives
Y Vg Vp
Y-""EEGE sin ﬁEfEP'aP sin (pp'a)

Eq (A-19) and the equation for ¢, namely

. v

E
g = EE ag 8in Y cos Py (A~19)

then provide the state differential equations for defining the evader's
velocity vector in the reduced coordinate frame,
Eqs (A=1) and (A~2) still hold, thus solving for relative

positional rates gives

Since



it follows that

X = Vp(ox sin Y cos 6 # eg cos Y # ¢ siny sin o) = Vp oy

. ex ey ez

P

" Rp 0P cos Pp 0 sin 9p
x y z

- v
= ¢, (Vg sin ¥y cos g #+ E;';'G.P y sin #p)
* _e'y [vg cos ¥y - vp - %%ap (x sin Pp = z cos ﬂP)]

- v
+ 0o, (Vgsiny sing - EI:G'P y cos Pp)
P

Equating scalar components gives

» VP

x-VEslnYcosad--E;aPysin Pp

. Vp

y=Vgcosy=-Vp- -E;CLP (x sin #p - z cos Pp) (A-20)

[~

yp
= Vg sin ¥ sinc--i-;apycos $p

Let A denote the angle that the projection of X onto the X z plane
makes with the x=axis. The angle A and the projection r are illus-
trated in Figure 30. The goal is to replace X and z with r and A.

Since

X » rcos A

z =1 gin A
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Fig. 30.~=The Projection r and Angle A
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differentiation gives

-Qcosa-résina

e

-i-slnAtrAcosA

solving for rand r ;3 gives
;'-:'ccosA-r;slnA
rd=-%x68ind ¢z cosd
Substitution of Eq (A-20) glves
L] vP
r=Vgalnycos (0 -4) +-E;u.?ysin (Bp - L)
. v
rA=Vysinysin (6 -~ 4) - -ﬁ-E ap y cos (fp = A) (A-21)

. VP
y-VEcosy-VP--E;a.Prsln Bp - &)

Introduce the angular transformations
Sy ~0 - A
52 - ’p - A

Differentiating §; and substituting Eqs (A-19) and (A-21) gives

61-&'5
-Y-Ea. sin ¥ cos P - £ (Vg sin y sin § --Y-I:a. cos &)
Ry OE Y £~ Ve 1°RpoPY
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The differential equations for r, y, Y, and 61, are therefore

. VP
r = Vg sin y cos 61-&'&—;&1:3 sin &

. vP
y-VEcosy-Vp--ﬁ;rxPrsinbz

. Ve Vp (A~22)
Y=o EEU’E sin fg + Rp 0P sin (8, - &)

. v

E
61-§-E-am sin vy cos Pp - L

e
+ (Vg sin ¥ sin &) - %p O ¥ ©08 87)

The pursuer controls are ap and §, and the evader controls are ag
and Pp.
In addition to BEq (A-22), Vg and Vp are state variables.
Their differential equations can be approximated by
(A-23)

’ Tp Dp
V;:'s(ﬁ;-"?;)

wvhere g is the acceleration of gravity, T is the thrust, D is the
aerodynamic drag, and W {s the welght., The weight is assumed to be
constant, the thrust is controllable between minimum and maximum
engine throttle settings, and the drag is a function of the normal
accelaeration, the speed, the altitude and speed brake drag., The rates
‘.’E and ;’P are the longitudinal accelerations identified in Eq (A-9),
In general the equation for {r contains an additional term which i3 a

function of the weight and the flight path angle relative to the
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horizontal plane, This term {s negligible for small flight path
angles, however, Therefore thls analysis 18 restricted to situations
wherein the difference T-D is dominant. The aerodynamic drag is re-

lated to the normal acceleration in the following way
1
D=3p sV (Gp_ +kep)) (A-24)

wvhere p 18 the atmospheric density, S 1s a reference area on which
CDO (the zero 1ift drag coefficlent) and k (the Induced drag parameter)
are based and Cj, 1s the aerodynamic lift coefficient, The normal
acceleration is controlled by the magnitude of C;. Rewriting Eq (A-24)

gives
D =D, 4+ %g- (qs ¢p)?
Do = @3 Cp,,
where Q is the dynamic pressure defined by
Q=3p v
The aerodynamic 1lift L is defined by
L=gs Cp

L is related approximately to the normal acceleration by

D becomes



Substitution into V gives

- T - a
W T g2qs N
- g Cp = B 4.2 (a=25)
8 b1 " gqs O
where
.z-no
i Sl w

is a control function dependent upon the throttle setting and speed

brake setting, Cp ls constrained by

Coypn < ©T S CTwax -

The normal acceleration and a are related according to Eq (A-10),

Solving for g gives

Q= %f aN
Subatitution into Eq (A~22) gives the following set of state differ-

ential equations:
. a
r = Vg sin y cos §, *;-Egysinéz
. a
y-VEcosY-Vp-—t‘j—’ralnbz
vp

» aN aN
Y = o B gin ¢ 5 gin(5y = §)
Vg B v, 2= 61 (A-26)

B.N BN
8y -;;E-lnycos 'E"%(VE sin vy sin §, -;—f-yco- 67)
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. k Wy

v kpWp 2
VP -g CTP - -;—Q-;—P- EHP

The control constraints are

Eqs (A=26) and (A=27) constitute the state variable differential

equations and control constraints for Problem III.
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APPENDIX B
PROBLEM II TRAJECTORY SOLUTION
The differential equations are
X' m-€Esinf+apy
*
Y --Ecoswvlaapx
Y' =of - € Rog

Let X5, Y, i, correspond to initial or reference values.

Integration of 1|J' gives
Y=o+ @p-€RAY B

Application of Laplace transforms to X' and Y' gives
ZL(X) = ap L(Y) = - EL(sin {) + X
0 L(X) # EL(Y) = = €L(cos ) # = ¢ ¥,

The solutions for L{(X) and L(Y) are easily obtained

a*
(X} = ‘:*2 [~ €L(ain y) x‘,] + ;2-:5,1—;5 [[~€L(cos g + -i- + Yo]

52 P

¥
L(Y) = ~2—TegLicos ) ¢ L ¢+ Y] aP_ er(siny) + X
5210_§2 [ "‘ z 0] 32.,. a;z [ sin w 0]
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For the natural barrier, set § = S = § = cos"l €,

On the tributaries replace § with B ~ B, where §, is the time
of travel on the singular arc. The values X, and Y, are X{8,) and
Y({,) on the singular arcs, Substitution of the singular arc solution

glves
- * e ow L3
X, =Lsinap (6 # 8,) + ap(l - cos ap Bo) = €84 sinap (Sy + B,)
Yo ™ L cos “'*P @ +8,)» a; sin a‘; By = €Bg cOB a;(sl + B,
i b4
Yo =ap (Sy + B,
The tributary trajectory equations are
- s * #* *
X =L sinap(d # 8) + ap(l = cos ap B) = €8, sinap (Sy + B)
o
- EE [cos | - cos a; (s +8)]
Y =T cosap (8 # 8) #0p sinap 8 = €8, cos ap (5; + 8)
af *
+* 3 [sln { - sin ap (S; » B)J
* ¥
Y =ap (Sp #B) - € RagB -8y Ok

For the natural barrier set @ = 8§, = S,

Laplace inversion formulas and the convolution property gilve
* * & o
X «X,cos apd ¢ Y, sinap 8 + ap(l ~ cos ap B)

a*
- EE [cos § = cos G, + ap 8)]
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¥ * * *
Y-uxosina;.;s'b YocosaPsi-apsina.pB
af .
v-ﬁ*[slnw - sin (Y, + Gp B)]

The situation on the singular arc is different since o,g = 0, The

convolution property gives

A= Xocoa;B¢Yosina;5 4-0.;{1-::090:;8)

- €5 sin (o »ap B)

Y--xonlna;B+Yocosa;B *a;sina;B-EBcos (Ufo‘ﬁf"ﬁ)

Tha boundary conditions for the artificlal barrier can be written as

follows for trajectories emanating on the BUP.
- ¥
xo = L sin ap 9
- #
Yo =L cos ap @
Yo = S

The equations for X, Y, and |y bacome

Y
X = L sin ap (8 +B) + u;(l - cos ap g) - %‘E [cos ¢ - coa(Szoa;B)]

”
Y - L cosa;(B«bB) #a;aina;B #%E[sinl]j-sln (S, +a;5)]
=5 +@p-€RrRap B

For tha natural barrier simply set 8 = Sy On the singular arcs
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I %
Ko- lenaPG

Y, = fcosﬁe

q’o'a;si 'a;sl
The trajectory equations are
X = Letnaf (@ ¢8) ¢a) (1 - cosapB) = €8 sinap(s; +8)
Y = Ecosa; (9 +B) +a;sina;5 -€f cosa.; (s; *+ 8)

Y =af (5p + )
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