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FOREWORD

This report was prepared by the Cornell Aeronautical Laboratory, Inc.
Buffalo, New York, for the Aircraft Laboratory, Wright Air Development Center,
Wright-Patterson Air Force Base, Ohio. The research and development work was
accomplished under Air Force Contract No. AF 33(616)-317, Project No. 1370,
‘Aeroelasticity, Vibration and Noise,’' and Task No. 13471, 'Subsonic and
Transonic Theoretical Flutter’'. Mr, Walter J. Mykytow éf the Dynamics Branch,
Aircraft Laboratory, is task engineer, Research started in 1954 and is
continuing. This is Part I of this report which will be published in two
separate parts, Part II will contain applications of the Lawrence-Gerber methed

of flutter analysis and will contain comparisons of theoretical and experimental

results,
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ABSTRACT

The method for determining the aerodynamic characteristics of low as-
pect ratio wings oscillating in an incompressible flow which has recently been
developed at the Cornell Aeronautical Laboratory (Refs. 1, 2) is combined
with the equations of motion of a vibrating wing to produce a relatively simple
flutter analysis procedure. The newly-developed method has been worked
out for both symmetric and antisymmetric wing mode shapes. The aero-
dynamic pressure on the fluttering wing is introduced into the final flutter
equation in the form of a nondimensional influence function which represents
the virtual work performed by the aerodynamic pressure due to one mode
shape acting on the displacements 6f the wing due to another mode shape,

The method is applicable to wings with straight trailing edges of aspect ratio

less than four.
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LIST OF SYMBOLS

R = wing aspect ratio, 4 B;/S

b, = total flap span, ft.

8, =  maximum semi-span, 8(</ , it.

B(X) =  wing local semi-span, ft.

< =  wing root semi-chord, ft. L ot

< = mean aerodynamic chord, E'o/ <¥v)ay |, .
,Fr. =  root mean square flap chord, ft.

Ch, = hinge moment /0.5 pU/ %b, 20

Cfa‘ =  rolling moment//)Uz.S' 500"

Cf,,, = rolling moment/pl S Boz 2

Cro = lift /0.5 pU%Sa

Crg = lft/0.25 pUSEa

Cep = lift/0.5 pU*Sd

Cu,, =  moment (about wing apex) /p/*§.¢

Cong, = moment (about wing apex)/0, 25 pU/S5c?a
C’mg = moment (about wing apex)/0.25 pUS £%¢
e(X) see Eq. (36)

£(X) see Eq. (43)

Fx) see Eq. (8)

FX) see Eq. (23)

gixJ see Eq. (9)
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gs(X} see Eq. (17)

G see Eqs. (19 through 21)

it

influence function, see Eq. (45)

H(@}, :B- see Eq. (22)

£ =  reduced frequency, WAC/U
Af,- = numerical integration coefficients, see Eq, (52)
L = lift force, lbs.
Lo = (AR x (Lift due to rotary oscillation about quarter root
chord).//JU“'Czﬂ'-& -
L, = - (AR x {Lift due fto vertical
translation oscillation)/p//z‘czﬂté
m(X) see Eq. (37)
mg (X) see Eq. (42)
Ma. = ~{ AR x {Quarter-root-chord moment due to rotary
oscillation about quarter root chord)//)uz-c"ﬂ';é
M, = -{AR x (Quarter-root-chord moment due to vertical

translatory oscillation)ﬁ) U2c3m#

X 8 ‘
M _'C-J —f,.@/ see Eq. (30)

N(@, %} see Fq. (29)
P

=  rolling angular velocity, radians/sec.

X 8
P Z—)?o;i@/ see Eq. (28)
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see Eq. (64)

mn
Q. see Eq. (26)
Qun see Eq. {65)
24 —{r'é' see Eq. (27)

T <

S = wing area, sq. ft.
S [Z] =  structural load per unit area, lbs/sq. ft,
7 = time in seconds
174 = free-stream velocity, ft/sec.
w =  angle of attack of oscillating wing, radians, Z'+ 1'2‘? <
w =  complex conjugate of 2, Z’ - { o Z
wr (4 =  induced angle of attack, radians
Z,4,2 = X/t, Y, Zfc, see Fig. 1

X,Y,Z = Cartesian coordinate distances, ft., see Fig, 1
a = wing angle of attack, radians
o = da/drT
'}’(/\" ¥) = mass per unit area of wing, slugs/sq. ft.
k;q = elements of inverted & matrix, see Eq. (19)
d = deflection angle of flaps and ailerons, radians
dmn = Kronecker delta, unity form = # and zero otherwise
Al ), =  difference operator, { Ju,; - ( oy
n = .;v,panwise variable, ft., see Fig. 1
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6 = cos ' (X/c)

M(R) see Eq. (18)
P =  air mass density, slugs/cu. ft.
z - cos”'(V/B(X))
;6 (X, V) = Perturbation potential, see Eq. (6)
w = angular frequency of oscillation, radians/sec.
Cl', S¢ = Cosine and sine integrals, see Ref. 5

v aC )/
( WCl= /oKX, () /0¥

[ ]

{ } o= column matrix

It

H

square matrix or function involving derivatives. and integrals
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INTRODUCTION

Estimation of the flutter characteristics of low aspect ratio wings in
incompressible flow is contingent on the solution of two problems: calculation
of the lifting pressures on an oscillating wing in an arbitrary mode shape, and
evaluation of the dynamic properties of the wing from its structural charac- .
teristics and mass distribution. For an oscillating wing of arbitrary plan-
form and mode, the most general method for computing the surface pressures
is the direct solution'of the two variable integral equation of lifting surface
theory (Ref. 3), Although this procedure would be expected to produce good
results, the labor necessary to evaluate the surface pressures for a range of
frequencies and mode shapes is prohibitive with the computing equipment’
available at present, . |

A number of approximate methods for calculating surface pressures by
reduéing the two variable integral equation to an integral equation in one
variable have been proposed both for the steady and unsteady case. This
technique reduces the labor to the point where numerical results can be ob-
tained rapidly with desk calculators.

The above technique has been applied in References 1 and 2 to the calcula-
tion of surface pressures on a low aspect ratio wing with a stré.ight trailing
edge oscillating in an incompressible flow. Excellent agreement between
calculations based on this theory and experimental data for the rigid body
modes of triangular and reétangular wings and control surface motion have
been reported (References 4, 5). Although the lack of experimental data
eliminates the possibility.of making direct comparisons between surface pres-
sures predicted by the theory and experimental results for nonrigid modes, the
‘evidence cited above appears sufficient to warrant the tentative use of the
theory in flutter calculations.

The dynamical properties of the wing will be considered as known and
expressed in the form of uncoupled normal modes and frequencies. However,

even when the normal modes and natural frequencies are known, the analysis

Manuscript released by the author May
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for low aspect ratio wings is considerably more complex than for high aspect
ratio configurations, In the high aspect ratio case, the normal modes can
usually be represented as combinations of bending and twisting deformations,
Thus, the virtual work performed by the aerodynamic forces arising from
one mode on the displacement in another mode may be expi-essed as a line
integral. In the low aspect ratio case, such a decomposition of deformations
is not known, so that the virtual work performed by the aerodynamic forces
must be expressed as a surface integral., Much of the complexity in the nu-
merical calculation of the flutter properties of low aspect ratio wings may be
traced to this source.

The method of estimating surface pressures on a low aspect ratio wing
which was first présented in References 1 and 2 is derived in a simplified
manner. The resulis of this analysis are then combined with the dynamic
properites of the wing as expressed in normal mode form to yield the f.lutte‘r
equations. The flutter equations contain the aerodynamic characteristics of
the wing in the form of aerodynamic influence coefficients which represent
the virtual work performed by the aerodynamic surface pressures generated
in one mode acting through the displacernents defining another mode. In
order to illustrate the physical meaning of the aerodynamic influence coef-

- ficients, a number of stability derivatives are expressed in this form.
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DEVELOPMENT OF THE THEORY

THE LIFT PER UNIT AREA ON A SYMMETRICALLY OSCILLATING WING

An approximate method for computing the aerédynamic forces on a
straight trailing edge low aspect ratio wing oscillating in an incompressible
flow have recently been developed at the Cornell Aeronautical Laboratory
(Reference 1). A modification of this work presented in Reference 2 will be
used in this section to evaluate the lift per unit area on a straight trailing
edge low aspect ratio wing oscillating in an incompressible flow.

The analysis will be carried out using the Cartesian coordinates X , _

Y . Z2 shown on Figure 1. The nondimensional coordinates X , ¥ ,¥
used commonly in Reference 1 are related to the displacements X,V ,

Z by the equations

x s X/e, ¥ = ¥V, Zz=2/c. ' (1)
where € is the root semi-chord (see Figure 1).

If a wing is oscillating with an angular frequency of @ radians per
second in a free stream of velocity { feet per second, the commonly used
reduced frequency, A , is defined as CWC/U . Defining the time variable
in seconds as 7 , the vertical displacement of the wing is found at any in-
stant by the real part of the expression Z (X, v)e (w7 Z(X) Y/e kU7 < R
where £ (X, y) is the maximum displacement measured positive down-
ward.

From Reference 1, the angle of attack of the oscillating wing is expressed

as
w (X,¥)= Z' (X V)i —f? Z(XY) (2)

where the prime denotes differentiation by the streamwise variable X
With the change of spanwise variable Y= B(X)COS T where B(X) is
the wing semi-span at the chordwise station A , the deflection shape Z(x V)

may be expanded in a Fourier series of the form
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4

Z(X,7) = Z (X)+ Z.(X)cosre (3)

r=2’4’...

The expansion coefficients Z (X) are given by the formula
Z,.(X) = —-/ Z(X,7)cos rvdr r=02.-» (4)
‘ . R
Thus, with the notation w,.{A) = Z, (X)+ ¢ = Z,(X], Eaq. (2)

may be rewritten as

w (X, z')--—-w-[X} L w'()(}cosr'r . (5)
r=24:-

One now seeks an expression for the angle of attack, W~ (X) Y) , from
the oscillating airfoil theory in Reference 1. It is desirable, in an effort ta
attach a maximum physical significance to the following derivations, to for-
mulate the theoretical expression for the attack angle in the manner éuggested
in Reference 2. Accordingly, one commences with the integral equation

(Reference 7) valid for a Jones {Reference 6) wing

Btx)
X,
w*(Xy)- "/ ’””( W an (5a)

s(x}

*
where W (Z,_l/}is the angle of attack of a Jones wing,.

For a finite-span wing, the value *(X, Y) as given by integration from
Eq. (5a) is less than the true wing attack angle, & (/\'_, Y) . If this difference
is denoted by w{"(x, Y) |, that is, if

w*(X,V)= w (X V)-w“(xy) (5b)

then wr")(X, Y) is the induced angle of attack and is representative of the
additional aerodynamic contribution due to the lifting surface elements., Con-
sequently, as the wing span and surface area shrink to zero, w(") (X, y)
approaches zero, and, by {5b), the actual attack angle becomes the attack

angle of a Jones wing.
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By inverting the integral equation (5a) and making use of the definition
(5b),

-7 8(X} 1/5 XJ- ,? )
g, (XV) = BT [m Ve [ (X,n)-w (X?Z)] d7.(6)

Eq. (6), when integrated over the span, gives the perturbation potential
valid over the wing surface and wake.
One now assumes that for the symmetrically oscillating wing % (”(X,VJ

is constant along the span. Then, substituting relation (5b) in Eq. {5a),

multiplying both sides of the resulting equation by 'fﬁz(/v} -V and

integrating over the span, one obtains

) (é)
w X, ) e w K] = =(x) —[r-g000] ()
1 ax} »
where (Reference 2) f(x)-'-"z; wX,Y)yB*(X)-Y?* dy (8)
-8(x)
1 8cx)
g(X) = g(Ay)ar. (9)
< ~8(x)

From the sirhplified Bernoulli relationship {Reference 3) that p(X, v)
= 2/.) Uic ¢X (X, yJ) one deduces from Eq. (9) that the lift per
unit chord of the wing in steady flow is given as Zﬁ U’«:‘g’(XJ . In the
limiting case of zero aspect ratio, the value of w"’(X, y)approaches Zero,
hence, by Eq. {7}, £IX) and Q(X) become equal, Thus,Zﬁ szzf’(X)
is the lift per unit chord of a Jones (Reference 6) wing in steady flow.

If the values given by Egs. {5) and {7) are inserted into Eq. (6} and the

indicated integration carried out, there results
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!
e B(X)sinT

8, (X, 7) = - /2—’-’ B(X) wr, (X) cos T

b .
- gb{X}Z w,, (X) [cos (r-1)T-cos(r+17) -r] (10)
re2, 40
-3

21‘-‘-) cosr[f{)()'-g(/\’)]/ .

| 4
Since # (x,vy) :/ By (X, n)dr (11)
-8(x)

where, & (XJ - 5(/\’)}3 a, Egq. (10) ina.y be immediately integrated to give

g (X, /=%X)w‘ (X)sintT -

[f(X) 9(1)] sin T (12)

B(X)
B(X) sin(r+ 1) sin(r-1) TJ
7l (X)[ rel r-7 ’

The value of Ff(Xx) may be found by performirig the indicated integration
in Eq. (8) with the aid of Eq. (5)., There results

Fix) = T2 [ (x) - wr, ()] (13

which, when substituted into Eq. (12), gives

B(X} snrr
B(X,7)-= 5”} g(X)sin -5 ,.235A - (X) (14)

where Aw,, (X)" ,.+/(X} w,, ,(X)Oﬂdwp*lfx) wpfz(X)EO,

From References 1 and 2, the lift per unit area on the oscillating wing

is expressed as

__é (x,g)zzﬁuzc.[gjx(x,y)u'é—;d(&)’)] (15)

WADC TR 54-412 Pt 1 6



The value of Eq. (15) may be determined at any point using Eq. {14},
when @ (X} is known.
The function y(t\') represents the solution of the integral equation

{Reference 1)

tx) =g gz [ 908 [1+ LESZ 20

Ry O S .. 2ic3::3

{15a)

for a low aspect ratio wing oscillating in an incompressible flow,
A solution for ¢ (Xx) satisfying the integral equation (15a) may be

written as (Reference 1)

9(X) = g5 (X) - (#)gs (<) (7+;§j (16)

where g (X) isa point function defined as the series (Reference 8)

N
.smr6
95(9)=(1T"9)(A0+A,)+Z:(A,._, '_”) (17)
r=/ — -
_A””-‘:A”: 0.

The angle & is introduced by the substitution X = €¢05 & , The
function (8} is defined as '
I 2%+ /4
'é = = '
M(R) = 57 427.7 . (18)

It will be observed that the series expansion for ¢ (X) given by Egs.
(16) and (17) satisfies the conditions that ¢ (X) vanish at the leading edge
(X = ~<) and that an integrated Kutta-Joukowsky condition be satisfied
at the trailing edge, i.e.,

. R '
9’ () + z;-:-*_q(—cjz- o . (18a)

WADC TR 54-412 Pt I 1



It is clear that a solution of Eq. (17) for the coefficients A. will
allow the determination of ¢(XJ) atall X and, hence, will enable
evaluation of Eq. (15) by means of Eq. (14). The determination of the coef-
ficients A, amounts only to the solution of that equation fesulting when
Eqs. (13),{(16), {17), and {18) are substituted into the integral equation (15a)
and the resulting equation rearranged and solved by collocation at N points.,
Such a collocation procedure satisfies any imposed conditions at the colloca-
tion points &, = jﬁ/N only and results in AN simultaneous algebraic
equations, involving certain tabulated definite integrals, which are solved
herein by matrix algebra methods. The details of the solution for the coef-
ficients A, may be found in Reference 1,but the results are stated in
the following discussion in a concise form so that the numerical work in-
volved can be carried out in a straightforward fashion.

The expression for the coefficients A, to be presented involves the

use of a square matrix, [quil , defined as
- - =/
(%] = [ec G,(0) —— — — G, (0)
77 7 ¥i4
G, (_AT) G, ( 7\7} _______ -1 A_f/
(19)
N-1 N-T N-1
GO(N 71") G,(TTT) —————— G-; I 77'}
where
G ('9')=£(5!h9-—9-)+ ij}+3+—-’- (fos r-1)H(8 o4 r)dTr 20
o 7T / / I o T J2 e J ( )

[=}
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G (8]

cos r&;

2 [sr'n (r+1)6; Jin(r-fjé’j] B(8;)
= - + 2

r+7 r-17 <
| (21}
(9]
- —/sm rrsintH(E;, o8 v)dr r>0

(o, ./3(6 ) o). V(wsT-cosg)* Bé(ej)/c?-af@//f.
- cosT - cos ;

and,

(22)

P9

Numerical values of the matrix elements of [/’ ] are given in Reference
8 when A = 6 and the wing is of the type depicted in Figure 1 (i.e., com-

pletely defined by a étated value of aspect ratio and taper ratic and with a

straight trailing edge). The matrix elements of [Fﬁe] are given directly

if the wing has an aspect ratio 0, 0.25, 0.5, 1, 2, or 4 and a taper ratio 0,
0.25, 0.5, 0.75, or 1. For other values of aspect ratio and taper ratio, one
can linearly interpolate between the given values. Reference 8 also contains

curves from which one can read off the matrix elements of the inverse matrix,

-7 .
[qu] ;, for any given wing shape, provided it has a straight trailing edge.
The elements of this latter inverse matrix may then be inverted, a task of

only three hours for the average computer,

If one now defines the column matrix {F (6_,-)} as

{Feop}-Z]rce)]- (8w )) -, (6,7 23

then, the results in Reference 1 for the determination of the coefficients A,

may be rearranged to give

{A"} [ #e] - 7¢q, +a{ }J: ]{F(e)} (24)

where the row matrix I:/;g + f,;:l is defined as

WADC TR 54-412 ¢ I 9



[Foe ! F’¢]

=[/';o+f;o,/" C;:"":G,N-:*C,N-f]’

The column matrix { 0,.} is given by the equation

(st (2 205 o, 2, )

The functions /Q(é": %{&/ and Pf— X Bo > ’@) are given as,

(Reference 1):

{/\’ B()U/ o«

o+~

25_1/(_,_(_//2 Y ]/[/r*,/ 520

B(X) g | BX) | BX)
sinh - - s

B(x)
X+t

sinh !

(2 Gra)- 2 o fe 2 w22 o)

and

e (f-—/]~{—--& W,_ ]}]

B,| r=_, | YF B et
’V/’@: z/=0/ e t@i@o*?' /,éba i) 4

(2 2 n) [ et e L SEEETE)

where the 7 and 5S¢

r £ 5B, /e

are the sine and cosine integrals of Reference 5,

(25)

(26)

(27)

(28)

(29)

(30)

Short tables of the functions R , P , and M may be found in Reference 1.

Rather complete tables of both the complete and incomplete Cicala functions,

WADC TR 54-412 Pt I
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X B,
/V(;@, % anda M =’ —; ié) have been compiled by the Harvard Computa-

tion Laboratory and will be published shortly.
it will be observed that as X/C. approaches unity the functions K and
F respectively approach positive and negative infinity; however, the sum,

R+ P » needed in Eq. (26), is finite and is given as (Reference 1)

227 [2/7 -—/ P(1, ——° ,@)] 5+V4+?—z -g[

(e )ty ere - 2—”]

(31)

where - Y = J.78]1072-——.

The solution of Eq. (15) for the lift per unit area on the oscillating wing
has now been fully indicated, although a more compact form for practical -
. analysis can be constructed. KEq. (15) is solved using Eq. (14) where the

values of Q(X} are determined from Eq. {16) et seq.

THE LIFT P.ER UNIT AREA ON AN ANTISYMMETRICALLY OSCILLATING WING

In a manner analogous to the symmetrically oscillating wing discussed
above, the deflection shape £ (X, }/) may be expanded in a Fourier series

of the form

Z(X,7) = Zn.(X)cosrr (32)
r=f385-- :

where, as before, Y=8B(X)cost, Eq. (32) differs from Eq. (3) by the use
of an odd series in 7 necessary to describe an antisymmetric deflection

shape. The expansion ccefficients Z,,. (/\’) -are given by the formula

2 7
o

WADC TR 54-412 Pt I 11



The antisymmetric angle of attack, similar to Eq. (5), is now
3

)= w,, (X)cos re (34)
r=1,35-""

where,
' . 2
2w, (X) =Z,,(X}+1—c-—Z,_(/\’} .

In order to integrate Eq. (6) for the perturbation potential, one requires
a value of the antisymmetric induced angle of attack, W(U(.X, Y) . 1
will be assumed that the antisymmetric induced attack angle varies linearly

in ¥ according to the equation

) _ Y (:',;z)
w (X, V) el (X) (34a)

Thus, substituting relation (5b) into Eq. (5a), multiplying both sides of

the resulting equation by Y V B*(X)-¥Y* and integrating over the span, one

obtains

i) 76 V’CJ
w (X:Y)=‘m[e (X)—m(X):I (35)
where (Reference 7 ),
7 Bix)
e(X) =5 [ w(xy)yyBHIVE v (36)
C€> S pex
/ 8(x)
m(x)== [ ve(xnviay. (37)
< -8(xX) _

By comparing Eqs. (36) and (37) with Eqgs. (8) and (9) respectively, it

can be seen that 2/) U2e?m’ (X) is the rolling moment per unit chord

of a low aspect ratio wing in steady flow, Further, as the aspect ratio ap-

WADC TR 54-412 Pt I 12



proaches zero, the induced attack angle approaches zero and €(X/) = m(X)

Thus, 2/9(/2-6 e’ (A) is the rolling moment per unit chord of a Jones
(Reference 3) wing in steady flow.

In a manner directly analogous to the evaluation of Eq. (12), the anti~
symmetric perturbation potential may be obtained from Egs. (6), (34), and
{35) as

5()()

& (X, )_ —— w, (X)sin2t -

4 T - .
m [e{X/-m(X}] Sn2r

(38)

B(X/ - (X)[sm(rff)r sén(r - Uz’] .

e re7 - r-7
rz35..

The value of € (X)) is easily détermined by performing the indicated
integration in Eq. (36) with the aid of Eq. (34). There results

[ - (X) - 3(,\')]- (39)

which, substituted into Eq. (38), gives

' vl
<? . 5(/\') SinrT (40)
LA _ 84 X
;é(X 7)= BZ(X) m((X)sin 2t v " Aw,, (X) ———
= 4L REE

where

X =y, (X)2 0 and Aw, (X) = w,, (X)-w,  (X).

]
The lift per unit area of the wing is found, as in the preceding section,

by evaluating Eq. (15) with the aid of Eq., (40) provided values of 7 (X)

are available, It can be shown (Reference 1) that the solutions of the sym- -

metric and antisymmetric wing oscillation equations are identical in form

80 that one need only substitute & {X) for #(X) and m(X) for g (X)

to get the antisymmetric solutions when the symmetric solutions are available. -

Thus, analogous to Eq. (16), one writes

WADC TR 54-412 Pt 1 13



m(8)=mg(6)- pu(#)m; (0)(7+cosb) (41)

where /7, (9) is a point function defined as the series

sinré

M (6)=(mr-8)(A,+A )+£(A,, (= Ap,) — {42‘)

n
|
o

The column matrix {f{@)} is now defined as

{5(9)} [e(e)J { am[ (6;) - w(@)]} (43)

which equation is used in the matrix equation below, analogous to Eqg. (24),

(R TRV TR

The functions needed to solve Eq. (44) are defined by Eqgs. (19) through
(31) which remain the same for both the symmetric and antisymmetric cases.

In summary, the lift per unit area on the antisymmetrically oscillating
wing is found from Eqs. (15} and (40), where the function (x) is evaluated
by Eqs. (41) through (44) and Egs. (19) through (31).

AN INFLUENCE COEFFICIENT FOR THE OSCILLATING WING

The aerodynamic influence coefficients #,,, which represent the
virtual work performed by the aerodynamic forces arising from the 7 ¢h
mode'acting through the displacements specified by the m*” mode are de-

fined as follows

(45)
Ho = 2ﬁu= 3//2 (xv; (z )dXay .

Using the value of dL/d5 from Eq. (15) in Eq. (45), one obtains
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7 8(x),< ' 2 _
bmn<ms [ 2, V)[gsx(/\’, v)ei 2 ¢(x,‘w] axdy

- B(x),~<

, 8(x) F , é (46)
L [z,,, (V) 8(eY)-| () [zm(,r, -1 %2, (5] a’X] ay
-8(x) -
since & (-<,¥V)s0 . Itisimplied that & (X,V) is evaluated correspond-
ing to the deflection shape Z, (A,Y) . The influence coefficient 4,,,

will be used subsequently for the determination of flutter characteristics.

THE INFLUENCE COEFFICIENT FOR A SYMMETRICALLY
OSCILLATING WING

When the wing is oscillating symmetrically, the deflection éhape Z,, (X, Y/

may be expressed in the form of Eq. (3). If ’L-l‘f'm,. (X) is defined ae

£

ic"r,,,,.(/\’)= Z:m,(X)" [ < Z,,,,.(A'), then tz_fm', (A7 is the complex conjugate

of w,,. (X) and, analogous to Eq. (5),

¥
W, (X,t)=05w,,,(X)+ w,, (K)cosrr .

"_—214’;.‘

(47)

Now substitute Eqs. (3), (14), and (47) into Eq. (46) to get

2 P+l

s == / [0. 5Z,,(c)+/ Z m(c)cosSz:J[g g,(c)sin T‘Z-T:g"B w, (<) jmrr] [5/}1 rd z']

m
o ol

5224 -0 #3350

2 ) ¥ 7

T.c v
“.cl/,Z;c [0.5-2?”’.0(/\’)*- ﬁMS(X)Cassr]l}zz-%(stmf_ g;{E%r(x)

5—:2)4]... f‘SJJF"'

sinrr

]Sl'ri TdXdT. ' (48)
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The integration of Eq. {48) with respect to T c¢an be written at once

by use of the formula

n 4
/cos.f‘rs:'nrr.s-/nrdr:.é_ when r=/l S§=0
o
=E when f'-'S-'—'/, 5#0
4
=-;:when 5-!":_’) f'fo (49)
= {0 otherwise.
Thus, al
Bz Aw, () DNZ,, . ()
- =—-——g” (c)AZ ,(c)+ 2 ”"{_f)' ik
r~35'“
(50}

A 71'52(/\’) Aw-,, (X) Az, (X)
+- f {0.5gn(x)A (X)= r - } dX

- r_'an"...

where Zm‘;k-l =zm,v:-2=zin,v1~l = Z' V+2—' 0

Now, the values of the function ¢, {X) are known by the collocation
procedure, Eqs. (16) through (31), at the specific values of X given by
x = €Cos 8, for 9_, < ﬂt//v . Hence, the numerical integration
indicated in Eq. (50) should be carried out by a method utilizing these -
selected values of the function. Such a method is the Newton-Cotes formula

(Reference 12) which, when used in Eq. (50} for the values of X , yields

a4
/ nB} Aw,,.(0)4Z, (0)
T =5 9 (VAL (002 53 ) " =2l

r=35 (51)
T 7B*(6,) ¥ Aw, (6,)A% (6))
Sis(osnsoen o) 1 [ arnlepomnte)
J=0 re3,5 .
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The values of the coefficients KJ' may be computed using Reference 12,
For the particular case where N =6, i.e., a six-point collocation procedure

used, the coefficients are

e, = o° 30° 60° 90° 120° 150°
(52)
K; = 1/35 16/63  16/35 164/315 16/35 16/63

Eq. (51) yields various values of the influence coefficient, hmn when
the deflection shapes Z, (X, ¥) and Zm (X, .y) are known along with the

geometry of the wing and the reduced frequency. The values of ¢, (X) are
solved from Eqs. (16) through (31).

THE INFLUENCE COEFFICIENT FOR AN ANTISYMMETRICALLY OSCILLATING
WING

For the wing oscillating antisymmetrically, the deflection shape Zm (X, Y)

may be expressed in the form of Eq. {32)., The value of ’E—C}m (X, T) is,
analogous to Eq. (34),

¥
1_0”,()(,7): 2 17/-',”,,()()(05/'1" (53)

#e135

Now, substituting Eqgs. (32), (40), and (53) into Eq. (46),

nrt
- st(c.) 60557[ m, (c)SmZ'r--—— 2 A, ( o) 207 ].ﬂ'ﬂt’dz'

1 T
e e (54).
"/X ;5 (X)cos.br[ 4;(/” m,(X)sin27 - 2{2’0 4? ”rijsmrz-]sm rdXdr

which, by using Eq. (49), yields
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./
; z
Amn= = m”(C)AZmz( )+7T5 A%r({)A :m-(C)
bo rzd 8, 4 (55)
1T K)e, o D) §H A (6) 8 @ (F)
+2,_/4,( AX] A, (X)- F oz Zﬁ — ax
rzd 6,

where Zm,;—’vsi"'-zml;-%z:z;n‘,:hvl: Zr‘n,;u-z =0
The values of #1, (X/ are found by the collocation procedure, Eqs. (41)
through (44) and Eqs. (19) through (31), at the specific value of £ given by
2L Cos Q, , for 9.,‘- = JTV,V . If the integration in Eq. (55) is
carried out by a method such as the Newton-Cotes formula {Reference 12)

for the selected values of X , there results

0) B2 N Aw,, (0/AZ,,,.(0
P mg{ Az, (0) T Z‘ w,,. (0 (0)

o 82 r (56)
_ red, 8,
M-t z prf —
3 K_{m,,(e_,-)c (6,)- nb*e Aw, (8,)Aw,,,.(6,) .
VA :’ 8(8;) iz 34_ r
J=0 rxd b0

As in the previous section, the values of the coefficients KJ‘ may be
computed using Reference 12, For the particular case where N = 6, the
coefficients are given by Eq. (52).

Eq. (56) gives values of the influence coefficient, }’mn ; when the de-

flection shapes Z, ()(, Y) ana Z,, (/\’, ¥) are known along with the geometry
of the wing and the reduced frequency. Values of M, (X} are obtained from
gqs. {41) through (44) and Eqs. (19) through (31).

CALCULATION OF THE WING FLUTTER SPEEDS AND FREQUENCIES

Consider a low aspect ratio wing to be in a state of undamped flutter at
a flight speed and frequency at which such a motion exists., The maximum
deflection of the wing is then Z (X, Y) which is either symmetric or antisym-
metric (or a combination of both) depending upon whether the lift per unit area

developed on the wing is symmetric or antisymmetric {or a combination of
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both). The structural load per unit area, S [_Z] which results from the wing
being deformed into the shape £ (X, Y) and the inertial force per unit area,

~Y (X‘, Y)w? <L (X-, y) are related to the aerodynamic lift per unit
area by the equation of motion of the wing

slz) s vxyrarzix Y)- (x v) (57)
where Y (X, Y) is the mass per unit area of the wing and @ is the flutter
frequency. The notation 5 [Z] indicates that the load function may contain

derivatives and integrals of £, as well as powers.
Introducing the reduced frequency 7é=al_4€/u » Eq. (57) becomes

5[2} 2" V" v (X,Y) Z(X, Y).-. [X Y). - (58)

Assume, now, that the deflection shape Z(X, y) can be expanded in a

series of the form

.
Z(XY)= 2 B, Zn(X,Y) (59)

where the functions Z,, (X, Y) are often taken as hormal oscillation modes
for simplicity.

It will be assumed that the structural force function S[Z] is a linear

function of the deflection < (X, Y/ and its derivatives or integrals, if any.

Then, R
_ . (60)
Z , B, 5[2,,}

The aerodynamic forces are known to be linear. Hence, with the notation
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dl dL
[—2—3 (X,Y)]n:[a—ls; (X, Y)] ,

z2Zy (61)

.

aL aL

2L XY s Z 5”[‘75 (, v;] :
n=1 7

Upon combining Eqs. (58) through {61), there results
R

Z 5,,{5[2,,] ”ézuzy(x Y)Z, (X w} Z.B [ 7 y)] (62)

Now, multiply both sides of Eq. (62) by Z,, (X, Y) and integrate over the
wing surface, which, using the definition given by Eq. (45), yields

£ 2 2 |
Zzs,.,// Z.(%, V){s[ 2 vz w] dXdY=2pU% Z.B b, . (63)
n=t 5

I, A -/ Z, (X, V)S[ }dXdY (64)

4’;",,=//7(X,Y}Z,,,(x,v)z,,(x,v)dmv (65)
5 .

then, Eq. (63} may also be written as

L3 £
£2U* i 66
2 B, Pun+ oz Q,,,,,/:Zﬁl/ ‘c'J./: B, hmn (6e)
=7 n=/

If the functions £, (X, Y) are coupled normal modes considerable
simplification is possible, For example, the function &,,, is now sub-

ject to orthogonality principles (Reference 17) and can be written as
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0 eri mn (6?)

where, Jmn the Kronecker delta, is zero when m# /7 and unity when #=m

Furthermore, when Z, (X Y) are normal modes, Eq. (58) will become

5[2,,} +/’f:uz YNV Z,(XY)=0 (68)

"

for, in a normal mode, the wing will oscillate with no external force applied
at one of its natural frequencies, '
If Eq. (68) is multiplied by £, (X,¥) and integrated over the wing

4
surface, there results

P

mn_

y//\’, Y)Z, (X Y)Z, (XY)dXdY =

420/@”:_ £ iy ) Qi

(69)

Thus, Eqgs. (67) through (69) can be used to simplify Eq. (66) to the form

R
By, Qpn(#=#5)= Z/c‘z B, h (70)
nsty

when the functions Z,., ('X, Y} are normal modes.
Eq. (66), representing the general case of arbitrary Z,, (X, Y) functions,

can conveniently be put into matrix form as

7 [~ 7@2(/2
s [P o 4] (8] - [Pnf () o
or
22> .,
Prn* ~gz = Omn = 2PpYC fpn| = O (72)
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In Eqs. (71) and (72), the functions &,, and #,,, are known
completely once the physical data for the wing and the functions Z, (XY

are specified. The function A is known, for a specific wing case, as

mn
a function of the unknown reduced frequencies £ . Thus, for a given wing
case at a selected reduced frequency, Egs. (71) and {72) 'may be solved for
the various critical flight speeds. At each of these results, the oscillation
frequency, W , is specified because of the preselected reduced frequency.
The method of solution of Eqs. (71) or (72) is left to the discretion of
the reader. Such methods as found in References 13 and 14 are frequently

employed.

COMPUTATION OF VARIOUS AERODYNAMIC COEFFICIENTS USING THE
A mn FUNCTIONS

In order to illustrate the physical meaning of the influence functions it
will be noted that they may be used to evaluate aerodynamic coefficients
(References 8, 15, 16). An outline is given on the opposite page for finding
various aerodynamic coefficients from the /7,,.,,, values computed by Egs,
(51) and (56) for the respective cases of symmetrically and antisymmetrically
oscillating low aspect ratio wings. No theoretical derivation is given, since
it is felt that the underlying principles are easily deduced,

Several other coefficients not tabulated may be evaluated by similar

procedures,
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1. Low aspect ratio wing in stead

symunetric flight,

Coefficient |& Z, (X, V) Z,, (X_, Y) |Equation ( Apnirom Eq.(51)
., 0 X < | CR/BZ)hy,=CLy
Cu 0 X c+X (<3R/2B,7) by, = Cu,
0 forX< X z '
(T O |y torxon < (c2*R/BE) by <(Coyino
=7/
0 forAzX
(Cogh=o | © X forX2 X: <X (" RI285) i =(Cu g0
Ofor X< X, | X-X, for X2X, 3/, —2
(Cf)d-)“, =0 0 X for X2 xf O for X< K'g (4C /bf‘cf)hmr:’= (Chd)a_:a
X-X, forX2X _
(Chiy., 0 X A py | @b, e[ hpn =(C ) g
' XX ' -
C',,,‘, 0 ?/E ¢ c/ <+ X -_Zﬂ{c/-c)‘?{c/ﬁa)’};m.-cmg

2. Low aspect ratio wing in steady antisymmetric flight.

Coefficient & Z, (/\’, V) Zm (X,v) Equation (A,,,from Eq. {56)
0for Xz X
i 3 '2B7)h =
Ce, 0 XY/IY | for X2X, 4 (€PR/2E]) bmn = Coy
7 < :
Ce, 0 Z./; Vd X Y —(—c“AQ/ZB:)hW,:Cep

3. Low aspect ratio wing in unsteady symmetric flight.

Coefficient & Z,, (X, V) Zm (X, y) [Equation (A, from Eq. (‘51)
L, £ | c3/28%8] < ~(2iR/r#)h,, =L,
M, b | <V2£2B2 | X+0.5¢ | -(2iR/mk)H,,, =M,
WADC TR 54-412 Pt 1 23



10,

BIBLIOGRAPHY

Lawrence, H.R. and Gerber, E.H., The Aerodynamic Forces on

Low Aspect Ratio Wings Oscillating in an Incompressible Flow, Journal

of the Aeronautical Sciences, Volume 19, No. 11, November 1952
pPpP. 769-781.

Lawrence, H.R., The Pressure Distribution on Low Aspect Ratio Wings

in Steady or Unsteady Incompressible Flow, Journal of the Aeronautical
Sciences, Readers' Forum, Volume 20, No. 3, March 1953,

Reissner, E., On the General Theory of Thin Airfoils for Nonuniform

Motion, NACA TN 946, April 1944,

Beals, V. and Targoff, W.P., Control Surface Oscillatory and

Stationary Aerodynamic Coefficients Measured on Rectangular Wings of

Low Aspect Ratio, WADC TR 53-64; Confidential; Title Unclassified

Scruton, Woodgate, Alexander, Measurements of the Aeronautic

Derivatives for an Arrowhead and Delta Wing of Low Aspect Ratio

Describing Pitching and Plﬁnging Oscillations in Incompressible Flow,
ARC Oscil, Sub-Com. Report 16, 210 Unclassified.

Jones, R.T., Properties of Low Aspect Ratio Pointed Wings at Speeds
Below and Above the Speed of Sound, NACA TN 1032, 1946.
Lawrence, H.R., The Lift Distribution on Low Aspect Ratio Wings at

Subsonic Speeds, Journal of the Aeronautical Sciences, Volume 18,
No. 10, October 1951. pp. 683-695.

Goodman, Theodore R., Calculation of Aerodynamic Characteristics

of Low Aspect Ratio Wings at Subsonic Speeds, Cornell Aeronautical
Laboratory Report No. AF-743-A-1 August 1951,

Johnke, E. and Emde, F., Tables of Functions with Formulae and

Curves, Dover Publications, 1943,
Cicala, P., Comparison of Theory with Experiment in the Phenomenon
of Wing Flutter NACA TM 887. February 1939,

WADC TR 54-412 pt I 24



11.

12,
13.
14,

15.

i6,

18.

Luke, Yudell L. and Ufford, Delores,  Tables'of £ ((3)=

a0 -ty 2 2 . N ' .
e {}42‘-V§ +t} }Z‘ ad , Midwest Research Institute, Kansas City,
-]

Missouri, (Available with supplementary tables for use in interpolation).
Whittaker, E.T. and Robinson, G., The Calculus of Observations.,
Third Edition, Blackie and Sons Ltd. Glasgow, 1942.

Smilg, B. and Wasserman, L., Application of Three-Dimensional
Flutter Theory to Aircraft Structures, AAF TR 4798. July 1942.

von Karman, T. and Biot, M. A. , Mathematical Methods in Engineering ,

First Edition, McGraw-Hill Book Co., Inc., New York. . 1940. pp.196-204.

Stone, H.N., Aerodynamic Characteristics of Low Aspect Ratio Wings

with Various Flaps at Subsonic Speeds, Cornell Aeronautical Laboratory

Report No. AF-743-A-2, January 1952,

Stone, Howard N., Aileron Characteristics and Certain Stability

Derivatives for Low Aspect Ratio Wings at Subsonic Speeds, Cornell

Aeronautical Laboratory Report No. AF-743-A-3, July 1952.

Den Harteog, I.P., Mechanical Vibrations. , Second Edition
McGraw-Hill Book Co., Inc., New York 1940, PP- 193-194
Jackson, Dunham, Fourier Series and Orthogonal Polynomials., The

Carus Mathematical Monographs, Number Six. The Mathematical
Association of America, University of Buffalo, Buffalo 14, N.Y.

WADC TR 54-412 p¢ T - 25



B(C)
B(X)
- |
>z, X
x =-f C . C ‘ R x =17
X=-C - X=C

Z (s positive downward

Fig. 1

COORDINATE SYSTEM FOR OSCILLATING WING
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