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NOMENCLATURE

generalized coordinates for displacements
coefficient of thermal expansion tensor
thermal expansion vector

generalized coordinates for stress
strain-stress constitutive tensor

gradient operator

variation symbol

body force per unit volume

prescribed traction on S

region occupied by the solid body
stiffness matrix

surface of prescribed stresses

surface of prescribed displacements
temperature above a reference temperature
stress tensor

coordinate functions for stress
displacement vector

prescribed displacement on Su

coordinate functions for displacement
Hellinger-Reissner functional

compliementary energy density
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SECTION 1

INTRODUCTION

A method often used for the solution of initial-boundary value problems in structural
mechanics has been the Finite Element Method (References 1, and 2). Many applications of the
Finite Element Method inlinear elastostaticshave beenderived from the Theorem of Minimum
Potential Energy or its equivalent, the Principle of Virtual Work (Displacements), Con-
sequently, the set of primary field variables ig the displacement field; strains and stresses
are then expressed as functions of the displacements through the field equations,

It has been assumed that the Finite Element Method yields displacements and stresses
which converge as the mesh size is decreased (References 3, 4, and 5), Smooth convergence
of the displacement field has been widely reported for many applications (Reference 2 a), some
violating certain of the compatibility conditions (Reference 1 a), On the other hand, smooth
convergence of the stress field has not always been observed; poor convergence and spatial
oscillations are found (Reference 6), Several authors have given stress ¢¢ averaging’’ techniques
(References 7 and 8), For many engineering purposes it must be recognized that a knowledge
of the stress distribution even in localized regions, is the desired result and the displace-

ments are of secondary interest,

Some of thesedifficulties canbe circumvented by mesh resolution and adoption of averaging
techniques mentioned above in localized regions withhigh gradients, However, for some prob-
lems this is impossible or impracticable and other alternatives must be sought, One alter-
native is to employ a higher order displacement expansion, Investigators have pursued this
approach with encouraging results (Reference 9 and 10); however, the stress vector remains
discontinuous over contiguous element interfaces, giving a stressdistribution with a histograph

appearance.

Another approach is to obtainthe stressdirectly as a primary variable through an applica-
tion of the Theorem of Minimum Complementary Energy. Investigators have had limited
success with the method, one difficulty being to establish a stress distribution identically
satisfying the equilibrium equations and expressible in terms of a convenient set of global
generalized coordinates. At present the method has not been applied with the same degree of
generality as the displacement method (References 2b, 11, 12 and 13), It is surprising that
applications of mixed variational theorems have not been explored in this regard since they
offer the generality of the displacement method and retain the stress field as a primary
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variable, To this end the present paper introduces a Finite Element application of the Hellinger-

Reissner Variational Theorem,

It is shownthat expansions for the displacement and stress fields can be made independently
in Finite Element analyses and that continuity of the stress vector can be maintained across
contiguous element interfaces, Stresses from a mixed variational theorem are shown to be
improved over those of comparable displacement models, The limitation principle (Reference
2b) is discussed in this connection and is shown to limit the scope of mixed variational
theorems,

A stiffness matrix for plane and axisymmetric solids is discussed and several examples

are presented with comparisons made toa frequently used displacement model {Reference 17),
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SECTION II

HELLINGER-REISSNER THEOREM

The functional in the theorem is expressed interms of the displacement and stress field*
(Reference 14)

-
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The theorem asserts that of all admissible** displacement and stress states, those states that
satisfy the stress equations of equilibrium, the strain stress equations and the boundary
conditions render the functional stationary

Sviu,r) =0 (3)

Unlike the minimum principles the stationary value cannot be shown to be an extremuum valtue
of the functional {Reference 14).

The form of the functional is such that separate expansions are possible without the
restrictions necessary in the minimum principles, The stress field need not gatisfy the equil-
ibrium or stress-strain-displacement equations in R, nor need either the displacement or
stress fields satisfy the prescribed boundary conditions. The Euler Equations are the stress
equations of equilibrium, the strain-stress lawand the boundary conditions, Since the stationary
value of the functional contains the constitutive equation as an Euler Equation, the stress
field obtained through the stress-strain-displacement relations may not agree with the stress
field given by the stationary value,

* Standard tensor notation isused and a cartesian reference frameis assumed; comma denotes
differentiation, repeated indices are summed, and parentheses denote the symmetric part
of a tensor. Interpretation of the symbols is given in the Appendix,

** Admissibility and convergence questions are beyond the scope of the present work (Reference
15).
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If independent expansions are used for both fields, where components of the displacement
and stress fields are adjoined across contiguous element boundaries using a system of common

displacement and stress nodal points, then a direct solution for the primary variables should
differ from corresponding applications of the minimum principles, However, the limitation

principle requires that the stress variables be left free (Reference 2b), The notion of con-

nectivity in the stress variables is central to this concept. To illustrate this, consider the
following*:

v =¢>r: (xp)on { 4}
n

-y

2 i {xp )by (5)

where the a’s and b’ s are the generalized coordinates for displacement and stress, respectively.

Suppose there exists a set of scalars 3 1;1 such that

n m m
Vi (xp1By =€y ) xp) (6)
Then if there is no interelement connectivity in the stress variables, Euler Equation of the

functional is identically satisfied, The stationary value yields, in part,

av ov
— 0= — =0 (7)
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Equation 7 becomes
n n m
fn [¢i'i % ~Cij Vi bn]\";jabmd" =0 (9
from Equation 6, if
m
Pq =Bn 9
then
m n am
- Yo =0 10
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* The superscripts refer to generalized coordinates and are treated as ordinary indices,
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Equations 6 and 10 imply that the stress is computed from the stress-strain-displacement
relations and

rij =cijk| uk'| {1n
thus

| -
- == 12
TV TWET e e G Y t12)

in which case Equation 12 and Equation 8 imply the functional in Equation 1 can be reduced to

= L -! --f P d
Viu) J; 5 ui,j cijkluk,l dv pi ui a. {13
Sl’

Equation 13 is the functional in the Theorem of Minimum Potential Energy.

The above is ademonstration ofthelifnitationprinciple which is seen to hold in the
restrictive case where the stress variables are not connected from element to element,
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SECTION III

A FINITE ELEMENT MODEL

Following the approach in (Reference 16) a linear expansion is taken for both the stress
and displacement, and a system of generalized coordinates is established at the vertices of
a triangular element for a plane stress or axisymmetric solid, Matrix notation is employed
for convenience. Displacement boundary conditions are to be satisfied in the usual fashion,
Derivation of an element stiffness matrix for a two-dimensional plane stress solid is given
for a linear triangular element, A more complete exposition for both plane and axisymmetric
solids is given in (Reference 16).

For the stated application, the functional in Equation 1 can be expressed

Viu,r) =fR (<r>{Vu} W) —<u> {f}) dv—fs <u>{-p~} do (14)
T

Wir) =<o>(o [c]{c} +{a}) (15)

and the brackets < > and { } areusedto represent row and column matrices, respectively.

where

The coordinate functions expansions are

{u}
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and the displacement gradients are

{vu}
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The generalized coordinates are expressed interms of the values of the physical components

of the displacement and stress fields at the element vertices, (Figure 1)

{vo} (2, ){e}
{ro} = [ @] {s}

where
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The functional becomes

R s I R
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The linear triangular elementis used to formthe quadrilateral element shown in Figure 1.
Condensation is then performed on the stiffness matrix in order to reduce the bandwidth of
the governing Equations 9 and 17, However, inthe case of the present mixed model this cannot
be effected directly due to a singularity found during the Gaussian elimination, What is done

Uy Vg
-Exxhs ry‘lk' T"yk

Uj,

Txxj ) ryyj ,rxyj

Ui, i
TKX'L' T.'wi,rxyi
LINEAR TRIANGLE FOUR-TRIANGLE QUADRILATERAL

Figure 1, TFour-Triangle Quadrilateral

480



AFFDL-TR-68-150

is to constrain the displacements at the center node to be the average of the four exterior
nodes

(31)

or
{vo b= [¥1{u, }c (32)
where
[\I/] : \I,] o] (33)
lo] ¥
and _ -
Il 0 ©0 o
o | 0 0
[¥]:{ o o 1 o (34)
0 0 o |
B .
. 4 4 4 4 |

The constrained stiffness matrix becomes

[sru]c= [sca][¥] (35)

Standard techniques are used to solve the resulting system of linear algebraic Equation
30. Although Equation 30 is not a positive definite system, no difficulty is encountered in
Gaussian elimination if nodal point stress are eliminated before the displacements,
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SECTION IV

EXAMPLES

To illustrate the method, two example problems are given with direct solutions obtained

using the mixed model and a comparable displacement model Reference 17,

A boundary value problem with an applied linear stress distribution is shown in Figure 2,
The problem is equivalent to combined extension and flexure in elementary beam theory, The
two-dimensional plane stress solution is

T =V rxy =ryy=rzz =0
_J L ) -
€x “E eyy = F e” =0 (36)
Xy I 2 2
ulx,y)ls —  vix, - —
y e (x,y) ZE“ + vy )

The linear stress distribution is contained withinthe expansion for the stress field in Equation

16, but the displacement field is parabolic,

Figure 2 shows a plot of the stress field along the top fiber of the beam and through the
depth at the edge of applied traction, The mixed model gives accurate values for the stress
field including those points on the boundary. The displacement model gives values for the
stress only at the element centroid. The mixed model also predicts the deformed profile
with considerable accuracy,

Figure 3 illustrates a finite length hollow cylinder, fixed at the outer radius and acted upon

by an internal pressure. The geometry and physical properties are

a:=4, b=6, =55

L oa (37)
E YT

A plot of the normal stress distribution along the fixed boundary is given in Figure 3 for the
two Finite Element models, The stress singularity is seen to be more severe in the mixed
model, the displacement model suppressing much of the gradient in the vicinity of the singular-
ity.

482



AFFDL-TR-68-150

y
‘r 7 —— EXACT
o o o o o o MIXED MODEL
o  DISPLACEMENT MODEL [17]
=
V=y
"'"—rxx
Q
X o

DEFORMED PROFILE ©

[+)

Figure 2, A Linear Stress Problem
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TMPE or incompressible Model

HRVT Model
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SECTION V

CONCLUSIONS

For the examples considered the present application of the Hellinger-Reissner Theorem
gives a more accurate field description of both displacement and stress than do existing
applications of displacement models, The mixed model yields solutions in which all
components of the stress tensor are continuous from elemsnt to element, eliminating the
histograph distribution often found in displacement models, The displacement vector ob-
tained from the mixed model is considerably more accurate than that given by comparable
displacement models, Results for the stress field are superior, but tend to be dependent on
material properties and mesh configuration, In part, this can be attributed to identically
satisfying the displacement boundary conditions, Since the stress distribution is the desired
result, it would be advantageous to bias the model in this direction. An alternate form of the
functional which accomplishes this is currently being studied,*

The mixed model is shown tobehighly effective in capturing steep stress or displacement
gradients that can occur near singularities in boundary value problems, These are often not
predicted by displacement models, The mixed model is most effectively used for this class of
problems since an excess of generalized coordinates can require considerable computational

effort for a general problem,

The present effort should be regarded as introductory, and considerable additional
research is indicated, Alternate forms should he considered, The number of generalized
coordinates should be reduced by employing other coordinate functions and element con-
figurations, Herrmann has shown that this can be done for plate bending (Reference 1b), and
Prager (Reference 18), has extended and systematized the relevant principles. What has been
clearly demonstrated here is that Finite Element Methods can be successfully used with mixed

variational theorems for direct solutions to boundary value problems in mechanics,

*This form has been suggested by S, Pawsey in private communications,

485



AFFDIL-TR-68-150

SECTION VI
REFERENCES

“Matrix Methods in Structural Mechanices,’’ Proceedings of the Conference held at Wright-
Patterson Air Force Base, Ohio, 1966,

a. Clough, R. W. and Tocher, J, L., ¢ Finite Element Stiffness Matrices for Analysis of
Plate Bending.”’

b, Herrmann, L. R., ‘A Bending Analysis for Plates.*’

Zienkiewicz, O, C, and Holister, G, S., Stress Analysis, John Wiley, 1965,
a, Clough, R, W,, ‘“The Finite Element Method in Structural Mechanics,'® Chapter 7,

b, de Veubeke, B, F,, ‘“‘Displacement and Equilibrium Models in the Finite Element
Method,’” Chapter 9,

Melosh, R, J., ‘‘Basis for Derivation of Matrices for the Direct Stiffness Method,’*
AIAA Jour,, 1/7, 1963,

Felippa, C. A. and Clough, R. W., ““The Finite Element Method in Solid Mechanics,*’
Symposium of the American Mathematical Society, Durham, North Carolina, 1968,

Johnson, M, W,, and McLay, R, W., ‘“Convergence of the Finite Element Method in the
Theory of Elasticity,”” JAM, 35/2, 1968,

Anderson, J. M., and Christiansen, H, N., ‘‘Behavior of the Finite Element Stiffness
Method for Nearly Incompressible Materials,”” Proceedings of the 6th Meeting of the
Mechanical Behavior Working Group, ICRPG, Jet Propulsion Lab, Pasadena, California,
1967,

Utku, 8., ““Best Fit Stress Computation in Displacement Methods,”” EMD Speciality

Conference, North Carolina State University, 1967,

Becker, E, H, and Brisbhane, J, J., * Application of the Finite Element Method to Stress
Analysis of Solid Rocket Propellant Grains,’’ Rohm and Haas Report S-76, Huntsville,
Alabama, 1965,

486



AFFDL-TR-68-150

10,

11.

12,

13,

14,

15,

16,

17,

18,

Felippa, C. A., A Refined Finite Element Analysis of Linear and Non-Linear Two-

Dimensional Structures, Structural Engineering Laboratory Report 66-22, University
of California, Berkeley, 1966,

Tocher, J. L, and Hartz, B. J,, ‘‘Higher Order Finite Element for Plane Stress,”
Jour, Engin, Mech, Div,, ASCE, 93/4, 1967,

Shubinski, R. P., Bounds on the Generalized Plane Stress Problem by a Method Related

to the Synge Hypercircle, Ph.D. Dissertation, University of California, Berkeley, 1965,

Hartz, B. J. and Watwood, V. B,, Equilibrium Stress Field Models in Finite Elements,
University of Washington Report, Seattle, 1967, (To be published)

Chan, S, T. K. Investigations of Finite Element Procedures based on the Theorem of

Minimum Complementary Energy, M., S, Thesis, University of California, Davis, 1967.
{To be published with L. R. Herrmann)

Reissner, E,, *“On A Variational Theorem in Elasticity,’” Journal of Mathematical
Physics, 29/1, 1950,

Prager, W., ‘‘Variational Principles of Linear Elastostatics for Discontinuous Displace-
ments, Strains and Stresses,’’ Recent Progress in Applied Mechanics Odgvist Volume,
Almgvist and Wiksell, Stockholm, 1967,

Dunham, R, 5,, Stationary Principles Appliedtca Class of Linear and Nonlinear Bound-

ary Value Problems in Solid Mechanics, Ph,D, Dissertation, University of California,
Berkeley, 1968,

Goudreau, G. L., Nickell, R, E., and Dunham, R, S,, _Plane and Axisymmetric Finite

Element Analysis of Locally Orthotropic Elastic Solids and Orthotropic Shells,

Structural Engineering Laboratory Report 67-15, University of California, Berkelyey,
1967,

Prager, W,, Variational Principles for Elastic Plates with relaxed Continuity Require-

ments, Technical Report No, 16, University of California, San Diego, 1968,

487






