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ABSTRACT

The discrete element energy search method of structural analysis is
extended to predicting the geometrically nonlinear behavior of plate and shell
type structures. Numerical results for example problems exhibiting nonlinear
bending-membrane coupling and stable post-buckling behavior are presented. The
results of a laboratory type experimental program, designed to provide data for
comparison with analytical behavior predictions, are reported. It is shown
that displacement patterns formed from products of one-dimensional interpolation
functions can be used to generate a useful class of shell discrete elements,
including geometric nonlinearity. These conforming elements can be joined
together at arbitrary angles, although the current computer program is Timited
tc tangential and right angle joining. While the major portion of this
research program was based upon the principle of minimum potential energy, a
rectangular plate discrete element exhibiting bending membrane coupling is
developed within the Reissner energy framework. Energy search methods of
structural analysis based on potential energy formulations and gradient mini-
mization algorithms are found to be computationally competitive with conven-
tional solution procedures. A variable scaling technique that has a strong
effect on the convergence of the gradient minimization algorithms is presented.
Using this variable scaling-technique it is found that the conjugate gradient
algorithm often converges in substantially less than n cycles for over-discre-
tized linear problems, where n is the number of independent degrees-of-freedom.
A computer program that draws together most of the important separate contri-
butions made within the potential energy framework during the course of this
research program, is described. This computer program implements discrete
element finite deflection analysis of a class of structures that can be
modeled as assemblages of plate, cylindrical shell, and annular plate elements
connected together tangentially or at right angles.
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SECTION 1
INTRODUCTION

The well known energy formulations of structural mechanics have until
recently been used primarily as one means of deriving the equations govern-
ing static structural behavior. The energy search approach to structural
analysis is based upon the application of mathematical programming methods
to appropriate energy functions. Under Contract AF 33(615)-1022 an
exploratory study of the energy search approach was carried out and the
results of this research were reported in Refs. 1, 2 and 3.

Implementation of the energy search approach for three dimensional
structures that can be represented by straight truss and frame members
using a potential energy formulation is reported in detail in Ref. 4. Further
study including solution of several interesting example problems and a users
guide to the computer program are reported in Ref. 5. The results of this
previously reported research were encouraging and this document reports on
the results of a continuing research effort aimed at (a) extending the
applicability of the energy search approach to nonlinear structural analysis
of stiffened plates and shells, (b) carrying out a laboratory type experi-
mental program to provide data for comparison with current and future
analytical behavior predictions.

The static structural analysis problem, viewed in terms of a total
potential energy formulation, is mathematically equivalent to finding a set
of values for the generalized displacement variables such that the total
patential eneragy is a minimum. Therefore algorithmic tools for seeking the
unconstrained minimum of a function of many variables may be brought to bear

on the structural analysis problem by using total potential energy formulations.



It should be noted that minimization algorithms can be used in conjunction
with any one of several discretization procedures including finite differ-
ence, assumed mode and discrete element methods. It should also be mentioned
in passing, that the structural analysis problem viewed in terms of a comple-
mentary energy formulation is mathematically equivalent to finding a set of
values for the statically independent generalized force variables such that
the complementary energy is a minimum (see Ref. 6). A major portion of the
research effort reported herein deals with the generation of a capability

for discrete element finite deflection analysis of plates and shells using
unconstrained minimization algorithms to seek minimum total potential energy
solutions numerically. The principal limitations on the total potential
energy formulations presented are that the rotations of the deformed structure
relative to the undeformed position of the structure must be small (i.e.

sin 6 ~ ¢ and cos o = 1) and the material behavior is assumed to remain
elastic. Extension of the work reported herein to any material behavior

law that can be represented by a strain energy density type of potential
function is relatively straight forward in principle but its implementation
will require substantial effort.

Several significant developments generated in the course of this
research program have already been documented in detail and these will only
be summarized herein. Thus, for example, Section 2 summarizes the work
on flat plate and cylindrical elements using a total potential energy
formulation previously reported in Refs. 7, 8 and 9. The extension of the
sixteen degree of freedom linear plate bending element to skew coordinates
was reported in Refs. 10 and 17 and this contribution is also treated in

summary fashion in Section 2,



The static structural analysis problem viewed in terms of the Reissner
energy formulation is mathematically equivalent to finding a set of values
for the generalized force and disptacement variables such that the Reissner
energy is stationary. An adequate algorithm for finding the stationary
point of Reissner energy functions of many variables was not found in the
course of this investigation. An alternative formulation based on seeking
the minimum of a residual function was found to be inefficient and numerical
solutions were obtained using the Newton-Raphson method. A rectangular
plate element exhibiting bending-membrane coupling was developed. Linear
membrane and linear bending elements, within the context of a mixed force-
displacement formulation, are obtained as specializations. The mixed
force-displacement discrete element developments documented in detail in
Ref. 12 are presented in Section 3.

By and large this program has drawn on existing algorithmic tools for
unconstrained minimization of a function of many variables. However, effort
has been expended in adapting these tools to the class of probiems at hand
and in particular, scaling techniques have been generated, improvements in
the one dimensional minimization scheme have been made, and termination
criteria have been explored. A major portion of this aspect of the
research program was reported in Ref. 13 and it is treated in summary fashion
in Section 4.

Section &5 presents the development of an annular plate discrete
element. This formulation is carried out in terms of the potential
energy and these elements used in conjunction with the plate and cylindrical
shell elements previously discussed will provide a capability for post-

buckled elastic analysis of integrally stiffened cylindrical shell panels.



In Section 6 & computer program that draws together several of the
important separate developments made in the course of this research program
is discussed. The repertoire of discrete elements in this program includes
linear and geometrically nonlinear 48 degree-of-freedom rectangular plate,
cylindrical shell, and annular plate elements. Emphasis has been placed
upon ease of data preparation and optimization of coding and storage alloca-
tion. Operational flexibility is provided by a variety of options including
a selection of alternative solution methods.

The experimental program is reported in Section 7. The laboratory
models, testing procedures, and experimental results are described. Efforts
to correlate experimental and analytical results are also discussed. The
data obtained from the tests is given in numerical form in Appendix C.

Finally, conclusions and recommendations are set forth in Section 8.



SECTION 2
POTENTIAL ENERGY FORMULATION FOR PLATE AND SHELL DISCRETE ELEMENTS

2.1 Introduction

In this section potential energy formulations for various discrete
elements are outlined. The potential energy for an assemblage of elements
representing a structural system can be formed by simply summing up the
energy contributions from each of the discrete elements. An approximate
analysis of the structure can then be carried out using mathematical
programming algorithms (unconstrained minimization methods) which seek the
minimum of the total potential energy with respect to the independent
degrees -of -freedom.

The development of a potential energy formulation for a discrete
element begins with the selection of strain-displacement relations. This
is followed by the adoption of a strain energy density potential function
consistent with the stress-strain behavior to be represented. The potential
energy for the discrete element is then obtained by integrating the strain
energy density over the element volume and adding the potential of any
external loads applied to the element. The true displacement functions for
the element are in general unknown and selecting the assumed displacement
patterns for the element is a crucial step. In selecting assumed displace-
ment functions consideration should be given to geometric admissibility
requirements, completeness, and rigid body displacement states (see pp. 17-28
Ref. 7). Substituting a particular set of assumed displacement functions
into the potential energy expression for the element leads to the discretized

form of the element potential energy.



It should be noted that for the special case of linear stress-strain
and linear strain-displacement relations the discretized potential energy

expression for an element is of the form

1 2T

>
'ne=-2-X X-X

T =
e K2e e e F (2.1)

e

where K2e is the element stiffness matrix, ie is the vector of element
degrees of freedom and Fe is the work equivalent load vector. Thus it
follows that development of discretized potential energy formulations
yields element stiffness matrices and work equivalent load vectors as an
ancillary result. Furthermore, the discretized kinetic energy maximum in

harmonic motion is

M, X (2.2)

where Me is the element mass matrix consistent with the assumed displacement
patterns and w s the frequency of the harmonic motion. While dynamic
analysis was not an objective of this research effort, element mass matrices
consistent with the element stiffness matrices for several linear cases have
been generated.
2.2 Plate Elements

Several discrete element potential energy formulations have been
generated in the course of this research program. Most of these are avail-
able as options within the computer program described in Section 6. The
basic finite deflection strain displacement relations employed in the plate

work are
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behavior, the strain energy density (U) is given by

Assuming a linear elastic isotropic material and plane stress
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which implies the following well known stress-strain relations
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The potential energy for an isotropic elastic rectangular plate element of

uniform thickness h (see Fig. 1) is given by



. = U - W (2.6)

where the element strain energy Up is

h
ab+§
= E 2 2 1-v 2
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h
00 -5

and wp is the work done by external loads applied to the element.
2.2.1 Rectangular Bending-Membrane 48 Degree-of-Freedom Element
The most widely used rectangular plate element generated in the course
of this research program has 48 degrees-of-freedom and is based upon assumed
displacement patterns expressed in terms of products of first order Hermite
interpolation polynomials and undetermined corner displacement parameters.

The assumed displacement state for this plate element is of the form

2.2y (1 (1) M ()

wix,y) = 7} [H (x) H{y)w,. + H{x)H(y)w.. + H{x)HI(y)w..
i1 jE] oi oj M 1 o0 XM oi 15 M

(n ()
+ H (x) H(y)w

o1 WA ] (2.8)

with similar expressions for the u and v displacements. The Wiss W zss W

3’ "xii’ Tyij
and wxyij denote 16 undetermined parameters, "namely the displacement
2
w and the derivatives 2, ¥ apg & W of the displacement at the corners (see

ax? ay? 3XDY
Fig. 1 for the corner identification numbering scheme).



The first-order Hermite interpolation polynomials are given by
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and they are shown graphically in Fig. 2. Similar expressions for the y
directions are obtained by replacing x by y and a by b. Every two point

Hermite interpolation polynomial of order N, H (x), is uniquely determined

pi
by the following properties,
2 {N) _ . ko=
p,e =0, 1, s N
where
) d*
p* = — (2.10b)

The interpolation points, Xy s in Egs,2.9 are Xy = 0 and X, = 2 and the order,
N = 1 gives the highest derivative interpolated. Because of these properties
the assumed displacement states and their first derivatives along any
particular edge depend only upon degrees of freedom associated with that
edge and the satisfaction of interelement geometric admissibility conditions

is facilitated.



Substituting these assumed displacements into the strain-displacement
relation (Eqs. 2.3) and then substituting into Egs. 2.6 and 2.7 leads to

the following discretized form of the element potential energy

= + - 2.1
where
1 7 >
U2p = = Xp sz Xp (2.12a)
1x48 48x48 48x]
1 T >
= K Y .12
U3p i Xp 3p b (2.12b)
Tx48 48x136 136x]
1T 270 7
U = — .
ap 3 Yp K4p Yp (2.12¢)
1x136 136x136 136x1
and
> T >
W = .
b Xp Fp (2.12d)
1x48  48x1

-
The vector Xp contains the 48 corner degrees of freedom, 16 from each of the

three displacements approximated [i.e. u(x,y), v{x,y) and w(x,y)]. The
vector ?p contains as its elements the 136 possible products of the 16

degrees of freedom in the w(x,y) assumed displacement function taken in pairs.
The vector Fp contains the work equivalent loads associated with each of the

48 degrees of freedom. Explicit formulas for the elements of the work equiva-
lent load vectors due to several of the more common types of loading are

given in Ref. 7 (see p. 118, Table 4). The matrix sz is the ordinary

10



stiffness matrix associated with the quadratic strain energy of the linear
formulation, K3p is a rectangular matrix associated with the third degree

contribution to the strain energy, and K4 is a square matrix associated

p
with the fourth degree contribution to the strain energy. A more detailed
description of the discretized strain energy will be found in Appendix A of
Ref. 7 or Appendix B of Ref. 9.

This 48 degree of freedom rectangular plate element is attractive in
many applications because it provides a good approximation of the membrane
stress state and because it makes the joining together of plate elements at
any angle possible (see Section 2.4.1).

The ordinary stiffness matrix (sz) associated with the quadratic

strain energy (U2p) of the linear formulation may be written in partitioned

form as follows

— T _
(u) (vu)
sz sz 0
_ (vu) (v)
sz = sz sz 0 (2.13)
(w)
0 0 sz

and explicit formulas for the elements of each submatrix are given in Ref. 7
(Pages 45 and 46). The zero submatrices in Eq. 2.13 reflect the fact that
there is no coupling between membrane and bending behavior for a linear
plate element. The ordinary stiffness matrix sz shown in partitioned form
in Eq. 2.13 may be viewed as a thirty-two degree-of-freedom rectangular
membrane plate element stiffness matrix and a sixteen degree-of-freedom

rectangular bending plate element stiffness matrix.

1



The element mass matrix consistent with the assumed displacement states (see
Eq. 2.8) used to derive the ordinary stiffness matrix sz {see Eq. 2.12a) may

be written in partition form as follows

wlu) 0 0
M 0 mv) 0 (2.14)
| 0 0 uw)

where the elements of the submatrices are given explicitly by

L., M..
(u) _ v} _ (5) 1§ i

2 2 Li: M.,
Mﬁﬁ) = J—-—ng [12 Ggg) + (%) Ggg) + (.E.) Gg?] g 13 (2.15b)

and the numerical coefficients Ggg), G&?), Ggg) as well as the exponents Lij’
Mij are listed in Ref. 7 (see table 1, p. 114). Note that the second and

third terms inside the square bracket in Eq. 2.15b represent rotary inertia
h h

terms which are very small for thin plates (i.e. 5 << 1 and B << 1},
2.2.2 Rectangular Stiffener Specialization
The plate element discussed in Section 2.2.1 may be used to represent
integral stiffeners of rectangular cross section of the type shown schemati-
cally in Fig. 3. In situations characterized by high aspect ratio %—>> 1,
a long free edge, and no bending in the stiffener, it has been found that

setting U - 0 over the entire element represents a useful simplification.

3x
The arguement in favor of this approximation proceeds as follows.

12



Consider a panel-stiffener system as shown in Fig. 3 with system
coordinates x, y, and z aligned with stiffener coordinates y, z, and x,
respectively. The system displacements u, v, and w correspond to the
stiffener displacements v, w, and u, respectively. View this system as an
equivalent shell which is thick enough so that transverse shear deformations
must be accounted for, but not so thick as to allow the transverse displace-

ment w to vary through the depth of the system, i.e.,

Moo (2.16)
Y2

These assumptions are commonly employed in sandwich shell analysis. Trans-

formed to the stiffener coordinate system, Eq. 2.16 becomes

L) (2.17)

The transverse shear strain which must be accounted for is that in

the plane of the stiffener, namely

au awW
v = == + = (2.18)
Xz 37

Transforming the stiffener coordinates, this strain is

v au
ny = X + 3y (2.19)

A rectangular plate element subject to the simplification expressed in Eq.
2.17 will thus fulfill the foregoing assumptions when used to model a

straight stiffener, since the shear strain is non-zero in such an element.

Having adopted the simplification that %%—= 0 over the entire element,
the implementation of this condition is straight forward. Since the basic
assumed displacement state for u(x,y) is given in terms of products of

first-order Hermite interpolation polynomials it follows that:

13



- 8u - BHS}) (1)
xy) =1L I Hogy) Ui
i=1 j=1 J
SO a1
Foa o ey b
J
Setting eight degrees of freedom to zero
uxij = 0 for i
uxyij = 0 for i

and Tinking four

it follows that

degrees of freedom

U T Uy
Y2 T Y2
Yy T Yy
Uyr2 = Yy22

14

n

e

)

200100 uy

9 0
H(1)

) 1§y) Uyyis

1,2; = 1,2

1,2; = 1,2

+

J

(2.20)

(2.21a)

{2.21b)

(2.22a)

(2.22b)

(2.22¢)

(2.22d)



By = 0B )+ =25 ) Tuy
(1) (1)
(1) oH aH
PO [ (0 ¢ 525 (0 T, (2.23)
(1) aH(T) aH(1)
) [ (0 + 525 (0 Ty
(1) okl o))
+ H]éy) [’ér (x) + —a;(""'(x) ] uy]z = 0
since it can be seen from Egs. 2.9 a,b that
(1) (1)
aH aH
L) o+ 22 = 0 (2.24)

For elements with high aspect ratio, a long free edge and negligible bending
this stiffener element specialization reduces the number of unknowns from 48
to 36. It should also be noted that for elements with high aspect ratio

the stiffener element specialization may help to improve the conditioning of
the ordinary stiffness matrix by eliminating the u,

\J
2.2.3 Rectangular Bending-Membrane 24 Degree-of-Freedom Element

i3 degrees of freedom.

A rectangular plate element with only 24 degrees-of- freedom can be
generated by using bilinear assumed displacement states for the
inplane displacements u{x,y) and v(x,y) while retaining the bicubic sixteen
degree- of -freedom assumed displacement statement given by Eq. 2.8 for wix,y).
The assumed u{x,y) and v(x,y) displacements expressed in terms of products of
zeroth-order Hermite interpolation polynomials can be written in the follow-

ing form

15



22 0 (O

ubay) = F 1 RO H ) oy, (2.25a)
=1 g=1 00O
22 o

vixay) = 3 ) H(x) H(y) v, (2.25b)

: \ ij
j=1 3= 01O

The zeroth order Hermite interpolation polynomials are given by

(0)
H{x) = - (x-a)/a (2.26a)
01

(0)
H{x) = x/a (2.26b)
02

and the corresponding functions for the y direction are obtained by replacing
x by y and a by b. The displacements along an edge depend only upon degrees-
of-freedom associated with that edge, the edges remain straight, and satis-
faction of interelement geometric admissibility is easily achieved. The
discretized total potential energy for this 24 degree-of-freedom rectangular
bending-membrane element has exactly the same form as that given by Egs. 2.11
and 2.72 except that the matrix dimension 48 in Eqs. 2.12 is replaced by

the dimension 24.

This 24 degree-of-freedom rectangular element has been used to obtain
solutions for variocus finite deflection plate problems with satisfactory
deflection results. However, the assumed displacement states used for
u{x,y) and v(x,y) yield a relatively coarse approximation of the membrane
stress state. A more serious limitation of this 24 degree- of-freedom

discrete element is that it does not lend itself to idealizations where

16



plate elements are joined together at an arbitrary angle.

The 24 x 24 ordinary stiffness matrix sz associated with the
quadratic strain energy of the linear formulation may be viewed as an 8
degree-of-freedom rectangular membrane plate element stiffness matrix and a
16 degree-of-freedom rectangular plate bending element stiffness matrix.
The 8 degree-of-freedom membrane stiffness matrix is given explicitly in
Ref. 2 (see p. 421) and the 16 degree-of-freedom bending stiffness matrix
is given explicitly in Ref. 2 (see p. 441) or in Ref. 7 (see p. 46). Note
that this is the same 16 degree-of-freedom uncoupled bending stiffness
matrix referred to in Section 2.2.1. The element mass matrix consistent
with the 8 degree-of-freedom membrane stiffness matrix is given explicitly
in Ref. 2 (see p. 422, Eq. A-2) and the elements of the mass matrix consis-
tent with the 16 degree-of-freedom bending stiffness matrix are given by
Eq. 2.15b of this report.

2.2.4 Rectangular Linear Bending 36 Degree—of-Freedom Element

The strain displacement relations of small deflection plate bending

theory may be specialized from Eqs. 2.3 and they are

2
3 W
e = -z3¥W (2.27a)
X ax2
2
e = - z—a—g- (2.27b)
y 2y
2
_ a W
.ny = - 22 5X0y (2.27C)

For linear elastic isotropic materials the potential energy for a
rectangular plate element of constant thickness is given by Eqs. 2.6 and 2.7,
This 36 degree-of -freedom rectangular plate bending element is based upon an

assumed displacement state for w(x,y) which is formed from products of second

17



order Hermite interpolation polynomials and the undetermined corner displace-
ment parameters. The assumed displacement state for this plate bending

element is of the form

22 ) (2 (2)  (2)
wixoy) = ] L [H (x}H (y)wyy + H ) H {y) wgs
j=) j=1 01 0] 1 0]
(2)  (2) (2)  (2) (2)  (2)
+ Hogx) H]§y) Wig * H1§x) H]gy) Weyij * Hzgx) Hogy) Wyxi
(2)  (2) (2)  (2)
+ HO§X) Hzgy) Wovij + Hng) H1§y) Wy j
(2)  (2) (2)  (2)
+ H (x) H (¥) H (x) H (y) w ] (2.28)

W ..t .
W2y WY it gy XYl

where the W, , and w

3t Mxigr Myige Mxyig Maxige Myyis® Mxo0dr Mayyi xxyyi]
represent 36 undetermined nodal parameters, the subscripts x and y denote
partial differentiation and the double index corner identification number-
ing scheme is shown in Fig. 1. The second order Hermite interpolation

poiynomials are given by

(2)
Hogx) = (@ -10a5% +15ax" - 6x°) (2.29a)
a
(2)
H (x) = —}-(10 a®x3 - 15 a x* + 6x°) (2.29b)
02 a _
2y
ngx) = (' - 6% + 8a x* - 3x°) (2.29¢)
a
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(2)

H{x) = ~%-(-4a2x3 + 7a x4 - 3x5) (2.29d)
12 a
@ 1,32 .23 4 5

H{x) = — {a"x" - 3a°x” + 3a x' - x") (2.29%)
21 2a
(2) 1,23 4 5

H({x) = (a™x” -~ 2a x " + x7) (2.29f)
22 2a3

and similar expressions for the y direction are obtained by replacing x by y
and a by b. These interpolation polynomials have the basic Hermite proper-

ties given by Eqs. 2.10, that is

(2) ani2) a2ui?)
} . i - . i )

Hm(xk) = ﬁik ) dx (Xk) =0 H ;[;(T— (Xk) =0 (2.30&)
(2) an!2) d2x(2)

HI(xk) -0 dx1‘ x) = 84 s ;{Egl“*xk) =0 (2.30b)
1 X
(2) ’ dHé$) ] | dzHéﬁ) )

Hzgxk) 0 Ix (xk) =0 y > (xk) = & {2.30¢)
1 X

for i = 1,2; k = 1,2 where it is understood that Xy = 0 and Xy = a.

Because of these properties the assumed displacements, slopes, and curvatures

(Bzw 82W

2
R R CA ) along any particular edge depend only upon degrees of
3XJY sz ay2

freedom associated with that edge. As a result of this, the satisfaction

of interelement geometric admissibility conditions and the additional con -
ditions of curvature continuity are easily satisfied by one to one variable
linking.  Substituting the assumed displacement (Eq. 2.28) into the linear

strain-displacement relations (Eqs. 2.27) and then substituting into Eqs. 2.6

19



and 2.7 leads to a discretized total potential energy expression of the

form

m = U - K (2.31)

where

13T ip (2.32)
1x36 36x36 36x]1

i
|
>
ne)

> 7 >

X 2.33
b Fp (2.33)

1x36 36x1

=
1}

The vector'ip contains the 36 corner degrees-of-freedom, 9 at each corner.
The matrix sz is the ordinary stiffness matrix for this Tinear rectangular
plate bending element based on the assumed displacement state given by Eq.
2.28 and an explicit formula for the elements of the stiffness matrix is
given in Ref. 2 (p. 442, Eq. 64). The work equivalent load vector is
represented by Fp and explicit formulas for the elements of this vector for
several common loading conditions are given in Ref. 2 (Table 9). The element
mass matrix Mp, consistent with the assumed displacement state (Eq. 2.28)
used to derive the stiffness matrix, is given explicitly in Ref. 2(p. 442,

Eq. 65), however the rotary inertia terms are omitted.

2.2.5 Parallelogram Plate Linear Bending 16 Degree—of-Freedom Element
The sixteen degree-of-freedom rectangular plate bending element
originally set forth in Ref. 2 (see p. 441, Eq. 60} exhibits at least two
important characteristics. First, the assumed displacement state is
expreséed in terms of products of first-order Hermite interpolation poly-
nomials which facilitate the satisfaction of the geometric admissibility

conditions. This assures monotonic convergence of the total energy as the

20



modeling is refined. Satisfaction of geometric admissibility assures
monotonic convergence of the total potential energy, however it does not by
itself insure convergence to the correct solution. Hence the second
important characteristic of the assumed displacement state is that this

set of functions can be shown to be complete (see Ref. 14, p. 119).
Satisfaction of both geometric admissibility and completeness assure mono-
tonic convergence of the total potential energy and .convergence to the true
displacement state as the modeling refinement is carried to the limit. The
high accuracy and excellent convergence characteristics of the sixteen
degree of freedom plate bending element has been illustrated by a variety of
numerical examples (see Ref. 2, p. 443 and Ref. 15, p. 82).

In this section a sixteen degree-of-freedom total potential energy
formulation for a parallelogram plate element, obtained by extending the
work reported in Ref. 2, is discussed. This work was briefly reported in
Ref. 10 and is documented in greater detail in Ref. 11. The total potential
energy for the isotropic, elastic, constant thickness, parallelogram plate

element shown in Fig. 4 is given by

T (2.34)

where

U = U dz dy dx (2.35)
K3

and NS is the work done by external loads applied to the element. The strain

energy density ﬁ is given by Eq. 2.4 and, assuming small deflection plate

bending behavior, the strain-displacement relations are given by Eqgs. 2.27.

[t is apparent from Fig. 4 that the coordinate transformation relations are
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X = x - ysing (2.36a)
y = ycos B (2.36b)

The strains et Ey and Yy can be expressed as follows in the oblique

coordinate system

2
ey = -2 E%%; (2.37a)
ax
2 2 2
g, = - Z[ET%' tanzs +2 2 ¥ ec g tan g + a~w seczs] (2.37b)
y 5X axay 2y
32w 32w
=~ 2 t + L5 2.37
Yay z [;if an g g sec 8 ] ({ c)

Substituting Eqs. 2.37 into the strain energy density, ﬂ, then substituting

the strain energy density into Eg. 2.35, replacing dy by cos 8 dg, dx by

dx and integrating through the thickness yields the following results

o 2

b

2 2 2 2
D 3 W 5w . 2 23w 3w
U, = ——5 (= + == + 2(sin“g + v cos“R) = =5
s 2 cos™R 00_:2- a—_y—f ;ay
2 2 2
+ Asing (BH o« &H 2 (2.38)
X oy’ axay
2 2 o
+ [4 sinzs + 2(1-v) COSZBJ [ } dx dy
3X3y
where
3
E h
D = — (2.39)
12(1-v°)

22



The assumed displacement of the parallelogram plate element is expressed in
terms of products of first-order Hermite interpolation polynomials in the
obligue coordinate system. The assumed displacement function is therefore
given by Eq. 2.8 with x replaced by x and y replaced by ;. Substituting
the assumed displacement function into Eq. 2.38 and then substituting this

expression for US into Eq. 2.34 yields the discretized form of the element

potential energy

F (2.40)

The vector is contains the 16 corner degrees of freedom, ?s is the work
equivalent load vector and Ko represents the ordinary stiffness matrix.
Explicit formulas for the elements of the stiffness matrix K25 are given

in Ref. 11 and the elements of the consistent mass matrix M, are given by

_ pchab cosg (7)) -*ii :Mij
Mij = p_ﬁzs_ 9;5' 2 b (2.41)
(7)

where the coefficients qij n;: are listed in

13° 13
Table 1 of Ref. 1TT The rotary inertia terms are omitted in Eq. 2.41,

and the exponents ¢

It is noteworthy that the explicit formula for equivalent Toad vectors
given in Ref. 2 (p. 439 Table 9) for rectangular plates may be used for
parallelogram plates provided a and b are understood to represent the plate

edge lengths a and b parallel to the oblique coordinate system (see Fig. 4).

T e L L e e la bl bl e L L L L L T T T

* Note that the factor cosg, incorrectly omitted from Eqs. 14 of Ref. 11,
is included in Eq. 2.41 of this report.
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2.3 Cylindrical Shell Elements

Much of the research pertaining to the development of discrete elements
for the analysis of shells has been focused on closed cylindrical or conical
shell segments for modeling shells of revolution. Another approach that has
been employed is to model a shell with flat plate elements. In Ref. 16 it
was shown that the bending behavior of a curved arch is not adequately
represented by flat bar elements and it was suggested that the development of
retiable curved elements would be a significant contribution to the discrete
element method of structural analysis. The use of plate elements to model

shell structures introduces a modeling or idealization type of error. The

consequences of this modeling ervor are likely to be particularly serious when
buckling or post-buckling behavior is of interest, because the original shell

is in effect replaced by a flat faceted shell.

In Ref. 7* a general theoretical development for constructing the
discretized total potential energy for a rather general class of shell
discrete elements was presented. The general development is given in terms
of orthogonal curvilinear coordinates for any shell element bounded by Tines
of principal curvature. Finite displacements are included in the strain-
displacement relations and the assumed displacement states for u, v and w
are formed from products of first-order Hermite interpolation polynomials
leading to 48 degree-of ~freedom potential energy expressions.

2.3.1 Hermite Interpolation Polynomials - 48 Degrees-of-Freedom

The most widely used cylindrical shell element generated in the course
of this research program has 48 degrees-of-freedom and is based upon assumed
displacement patterns expressed in terms of products of first-order Hermite

interpolation polynomials and undetermined corner displacement parameters.

* It should be noted that Ref. 7 represents an interim report on research
carried out as a part of this program (i.e. Contract AF 33(615)-3432).
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The development of the discretized total potential expression for this
cylindrical element has been previously reported in Refs. 7 and 8, however a
brief summary will be given herein for completeness. The strain displace-

ment relations employed are

2 2
- AU 1 /3wy 3w
SS = 3s Vi (35 Z a?' (2.42&)
e = LAV oW1t 2 (_Bzw-ﬁl (2.42b)
8 r o oae r 2r2 Y ;? Be2 36
Sow o, law 1w w2z W oy (2.42¢)
Tso 3s r 56 Y 35 a6 r ‘3536 35S ’

2
Note that the corresponding linear case is obtained by neglecting %'(%EJ s

1 (ﬁﬂ)z d L 2w ow
PVARFT r as as °

and plane stress behavior the total potential energy for the cylindrical

Assuming a Tinear elastic isotropic material

shell element (see Fig. 5) is given by

noo= U - M (2.43)

where the element strain energy U. 1is

2,48 h
v = B e+ i e+ (Y, P rdzdods  (2.44)
c 2 L5 6 s 5 2/ Tss :
2{1-v)
h
00-h

and wc is the work done by external loads applied to the cylindrical element.
The assumed displacement states are given by approximations similar to Eq.

2.8 by replacing x by s, a by ¢, yby n=re and b by ras. That is

* Note that the subscript ¢ refers to the cylindrical shell element and
not to complementary energy.
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2

: (1) (1)
wson) = 1 [TH (s) K {n)ws,
=1 j=1 OV 0
(. ) (1) M
+ H (s) H(n) Weis + H(s) H(n)w i (2.45)
1i 0j 0i 15"
H(1) (1) i
+ 1$S) H]gn) We i ] where n = re,
with similar expressions for u and v. The degrees of freedom wnij and wsnij
can also be expressed in the following alternate form
W o= oW (2.46a)
ni] r o] ’
W o= 1w (2.46b)
snij r soij :
Furthermore, it is to be understood that wij’ wsij’ wnij and wsnij represent
16 undetermined nodal parameters, the subscripts s, n, and & denote

partial differentiation and the double index corner identification scheme is
shown in Fig. 5. Because of the special properties of the first order
Hermite interpolation polynomials given by Eq. 2.10 the assumed displacement
states and their derivatives along an edge depend only upon degrees of
freedom associated with that edge and the satisfaction of geometric admissi-
bility between elements is facilitated.

The discretized potential energy expression for the cylindrical shell
discrete element is obtained by substituting the assumed displacement states
into the strain-displacement relations Eq. 2.42 and then substituting these
into Eqs. 2.43 and 2.44. This expression is similar to that for the plate

element discussed in Section 2.2.1 and is given by Eqs. 2.11 and 2.12, with
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p replaced by ¢. A more detailed description of the discretized strain
energy will be found in Appendix A of Ref. 7 or Appendix B of Ref. 9. Work
equivalent load vectors for several common loadings can be obtained by
adapting the information in Table 4 of Ref. 7. The ordinary stiffness
matrix K2C associated with the quadrétic strain energy of the linear formula-

tion may be written in partitioned form as follows

ety

’_'( ) T T
K3e et )
T
om0 D (2.47

(wu) (wv) (w)
Ko Koo Ke

e e

and explicit formulas for the elements of each submatrix are given by Eq. 12*
of Ref. 8. There are no zero submatrices in Eq. 2.47, indicating that
bending-membrane coupling exists even for the linear case in a cylindrical
shell. The mass matrix consistent with the assumed displacement states
used to derive the ordinary stiffness matrix (ch) may be written in parti-
tioned form and explicit formulas for the elements the mass matrix are given
by Eq. 18 of Ref. 8. It should be noted that Eqs. 18 of Ref. 8 includes
rotary inertia terms that can usually be neglected for thin shells. Two

other linear cylindrical shell discrete elements have recently been reported.

. i b AR e e el R M G A e A A

* The expression for ngv in Eq. 12 of Ref. 8 should be corrected to read
as follows: J
2 2
{wv) D 129788 A(11) . 2 (12) _ (13)
Kii T me b2 G4 P S 2(1-v} a6 Gy

L.. M. .
v A8 G$}4) 1 (rae) Y
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In Ref, 17 a twenty-four degree-of-freedom cylindrical shell element based
upon bilinear assumed displacement states for u, v and a bicubic assumed
displacement state for w is presented. An eigenvalue analysis of this twenty-
four degree-of-freedom cylindrical shell element indicates that the assumed
displacement patterns admit only four linearly independent displacement

states (eigenvectors) that produce essentially zero strain energy relative to
the elastic states.f Thus, the absence of an adequate approximation for
two rigid-body modes 1imits the usefulness of the element reported in Ref. 17.
In Ref. 18 a 24 degree-of-freedom cylindrical shell element is reported

based upon assumed displacement patterns that can be shown to contain the six
rigid-body modes exactly. Successful inclusion of the rigid-body modes was
also confirmed by eigenvalue analyses as reported in Ref. 18,

The 48 degree-of-freedom cylindrical shell element discussed in this
section has three noteworthy features. First, it is theoretically possible
to join this element at any angle with other 48 degree-of-freedom plate or
cylindrical shell elements and satisfy interelement geometric admissibility.
Second, this element provides a good approximation of the middle surface
stress state which can be particularly important when seeking to predict
buckling and post buckling behavior. Third, for practical subtended angles
(say a6 < 30°) it can be shown by eigenvalue analysis of the stiffness matrix
that there exist six Tinearly independent displacement states which produce

very little strain energy compared with the elastic deformation modes.

W N e e e b e e R M i e R N e R R A S PR PR N vk TR SS R A W PR R O R e e e e ke O G A e

# The zero strain energy displacement states are often called the rigid-body
modes. However, it should be understood that these rigid-body motions are
approximations to the general rigid-body displacements of kinematics which
take the form of a general orthogonal transformation and a translation.
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2.3.2 Rigid Body Modes

In order for a discrete element to represent the behavior of a portion
of a structural system it is necessary that the assumed displacement pattern
be capable of approximating both rigid- body and deformation inducing displace-
ments. In dealing with flat elements it has been common to approximate the
displacements with polynomial expansions. Polynomials naturally contain the
plate rigid-body modes and hence their representation has not presented a
problem. However, polynomials can not in general be specialized to give the
rigid-body modes when dealing with curved elements. As is pointed out in
Ref. 19, it is not necessary that the element assumed displacement states
represent the rigid-body displacement states exactly but rather the assumed
displacement states must admit the six Tinearly independent rigid-body modes
in the limit as the element size is reduced. On the other hand, for an
element to be useful, the rigid-body modes (as well as the deformation
behavior) must be adequately approximated for elements large enough to limit
the system degrees-of-freedom to a practical number. The following remarks
are intended to give some further explanation of why the 48 degree-of-freedom
ordinary stiffness matrix K2C discussed in Section 2.3.1 provides adeguate,
although not exact, representation of the rigid-body modes.

For a specific set of strain-displacement relations it will often be
possible to determine the analytical form of six independent displacement
states which produce zero-strain. For exampie, the linearized strain-
displacement relations for a cylindrical shell given by Egs. 2.42 omitting
1 (%%)2 and 1 ow 5w

1 /3w . . .
the terms 2—(550 s E;? v 3535 imply the following zero-strain

displacement states
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TR C] sin g + C,cos o +Cg (2.48a)
_ S , .

v F'('Cl cos § + C, sin g) + Cysine+ Cy cos & + Cg (2.48b)
_ 5 . } .

W = ?-(-C] sin ¢ - C2 coS 0) C, cos e + C4 sin 6 (2.48¢c)

Sometimes the assumed displacement patterns are such that they can be
specialized to represent the six zero-strain displacement states exactly
(see for example the assumed displacement given by Eqs. 4 of Ref. 18 or those
given by Egs. 2.61 in Section 2.3.3 of this report). In such cases, it can
be said that the rigid body displacement states are represented exactly by a
specialization of the assumed displacement states. It may be of interest,
however, to compare the zero strain states with the rigid-body displacement
states for the element when subjected to a general orthogonal transformation
and a translation. These should agree provided the basic simplifying assump-
tions made in the derivation of the strain-displacement relations are also
invoked when comparing the general rigid-body displacement states with the
zero strain states.

The Tinearized strain-displacement relations imply six linearly
independent zero-strain displacement states (see Eqs. 2.48) and it is
apparent that the displacement states used to generate the 48 degree-of-
freedom cylindrical shell element described in Section 2.3.1 cannot be
specialized to yield the rigid-body modes exactly. Nevertheless, eigenvalue
analysis of the 48 x 48 stiffness matrix based on the polynomial interpolation
functions indicates that for practical subtended angles there exist six
Tinearly independent displacement states which produce "very little" strain

energy compared with the other states.
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Some qualitative insight into why the zero strain displacement states

(Eqs. 2.48) are adequately approximated by the cubic interpolation is afforded

by examining Taylor series expansions of sin 9 and cos 8.

If the angle s

is small enough so that sin e may be replaced by (s - %TJ, and cos ¢ may be

2

replaced by (1 - gTJ then the zero-strain energy displacement states (Egs.

2.48) may be expressed as follows

63 62
u = C (o - §T) + ¢, (1 "ET) + C6

2 3 3
voe 2001 - 5P+ Cole - $P1 + Cyle - 5P + ¢, 00 -

r

=
12

Since n = re it can be shown that

(1) (1)
H(n) = H (o)
0J 0j
and
(1) (1)
H(n) =rH(e)
13 1]

(2.49a)

82
?T) + Cg (2.49b)

3 2 2 3
2 L-Cqle = 37 = C(1 - 391 - €3(1 - 5P + €06 - 37) (2.49¢)

(2.50a)

(2.50b)

for j = 1,2 and employing Eqs. 2.48 it follows that the expression for w(s,n)

given by Eq. 2.45 can be expressed in the following alternate form
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2 2
w(s,n) wis,e) = ] ]
i=1 j=1
H(})) H(}))

8 .
115 03 "s1

1
+ H1§s) nge) W]

with similar expressions for u and v.

) )
S W .
03 o
+ H(z)) H(}))
0} W_ ..
Ois 15 W
] (2.51)

Thus, it is apparent from Eq. 2.51

that the assumed displacement states used in Section 2.3.1 (see Eq. 2.45)
are bicubic in s and 8 and they can therefore be specialized to represent the
approximate rigid-body displacement states exhibited in Eqs. 2.49,.
2.3.3 Circular Interpolation Functions - 48 Degrees-of-Freedom
The use of interpolation functions to generate assumed displacement

states need not be restricted to polynomial type functions. For exampie,

let
g{e) = Co+Cpot C2 sin g + Cy cos 6 (2.52)
and evaluate g{s) and %%—(e) at the end points of a region[e = 0 and o = ag]
then
g(0) Co + Cg (2.53a)
g(a0) = Cq + Cy(a8) + C, sin (a8) + Cy cos (as) (2.53b)
Loy = ¢ + ¢, (2.53c)
Hlae)= €, + €, cos (28) - Cy sin (ae) (2.53d)
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Introducing the notation
d _ d -
g(0) = 97> g(as) = Gps a%{o) = 941 and Hg(ae) = 949

and solving Eqs. 2.53 for Co> C1, 62 and C3 yields

(2.54a)

Ja2 ~ 941
% =9 Sin 48
(992'991) sin A + g61(1-cos A8-A8 Sin AB)- 962(1-cos 46) (1-cos £8)
2 . . ] sin A8
(1-cos a0)° - sin ae{ae - sin a8)
¢ =g+ ['(92'91) sin £6-0 (1-cos Ae-Ae sin as) + 992(1'C°S £8)
[ 2 (1-cos 59)2 - sin as(as-sin as)
(g,-9,) sin a8 + gy (1~cos A6-A8 sin ae) - g., (1-cos A9)
Cz - 2 21 . 81l 82 (2.54¢)
(1-cos 28)° - sin ae (ae-sin ap)
992 = 9a1
3= - [ sin A6 ]
[-(92—91) sin £8-0 1 (1-cos ag-ae sin ag) + 942 (1-cos as) (1-cos 8)
+ n
(1-cos Ae)2 - sin ae (2a8-sin ao0) sTn 48

] (2.54b)

(2.54d)

Substituting CO, C], C2 and C3 from Eqs. 2.54 into Eq. 2.52 and regrouping
terms, g(¢) can be written in a form analogous to the first-order Hermite

interpolation expression, that is
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2

(1)
gle) = } IS (e) g + S (8)g,.] (2.55)
= 0o ¢ 13 J
j=1
where
S(}g) -1 - (1-cos as)(1-cos &) - sin ae {p - sin @) (2.56a)
01 (1-cos AB)Z- sin A6 {(ae - sin A9)
S(}g) - (l-cos a8)(i-cos ) - sin as (8 - sin o) (2.56b)
02 (1-cos AG)Z- sin ag (a6 - sin ag)
(1) _
11
4 Ll-cos_ae-ag sin AB)!(]-COS 28){1-cos 6)~ sin ae {s5-sin 8)]
sin a0 [{1-cos 28)° - sin a6 (a8 - sin a8)]
(2.56¢)
S(.‘(g) = ]'COS a8
]2 s1n A8
(1-cos 28)[(1-cos a8)(1-cos 8)- sin ael{e-sin 8)] (2.56d)

sin a8 [(1-cos Ae)2 - sin ae{ao-sin 49)]

It can be shown that the interpolation functions defined by Eqs. 2.56 have

the following properties:
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S (ek) = 8a s ji=1,2; k=1,2 (2.57a)
0j J
dsth)
3594—{ek) = 0 j=1,2; k=1,2 (2.57b)
{1
S {8,) = 0 j=1,2; k=1,2 (2.57¢)
1 K
ds. .
__.]_J_ = . 1 = . =
T8 ) S5k 3 j=1,25 k=1,2 (2.57d)

Now let f(s) be expressed in terms of first-order Hermite interpolation

polynomials as follows

e) (1)
fls) = Y [H (s) f. + H (s) fei ] (2.58)
i=1 0i 1i

and assume the usual product form

wi(s,s) = f(s) gle) (2.59)

where f(s) is given by Eq. 2.58 and g{s) is given by Eq. 2.55. Solving for
Z
W W 3w r

the corner values of w, 35 38 and 530 it is found that

Wij = w(si, ej) = f, gj (2.60a)

= W =
Weis T 3s (Si’ ej) fsi gj (2.60b)
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_ oW _
azw
Wsoij = 3am (Si0 830 = fgg gy (2.60d)

and therefore the assumed displacement state w(s. ) may be expressed as follows

22y 1 ()
wisie) = ) ] [H (s)s () wyy + H(s)S (8) wgyy
je1 5 0 03 i 0j
+ H(]()) S“()) + H“()) S(})) ] (2.61)
s 0) W .. s B) W s .
oi 15 oW 1 1 seu

with similar expressions for u(s,8) and v(s,6).

The six linearly independent zero strain (rigid-body) displacement
states exhibited in Eq. 2.48 are implied by the linearized strain-displace-
ment relations for the cylindrical shell. A notable feature of assumed
displacement states having the form given by Eqg. 2.61 is that they can be
specialized to represent the rigid body displacement states given by Egs.
2.48 exactly.

The development of the discretized total potential energy expression
for a 48 degree- of -freedom cylindrical shell element based upon assumed
displacement states for u, v, and w of the form given by Eq. 2.61 follows the
same steps as the development outlined in Section 2.3.1. That is, substituting
the assumed displacement states (see Eq. 2.61) into the strain-displacement
relations (Eq. 2.42) and then substituting into Eq. 2.43 and 2.44 yields a
discretized total potential energy expression. The discretized total
potential energy for the cylindrical shell element is similar in form to
that for the plate element discussed in Section 2.2.1 and can be represented
by Eqs. 2.11 and 2.12 with p replaced by ¢. Although explicit formulas for
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the elements of the matrices , and can be generated,

48x58 43x?§6 136x?36

they are too cumbersome to reproduce here.

The 48 degree-of ~freedom cylindrical shell element discussed in this
section exhibits the following attractive features: (a) it is theoretically
possible to join this element together at any angle with the other 48 degree-
of freedom plate and cylindrical shell elements described herein (see
Sections 2.1.1 and 2.3.1)*, {b) the 16 degree-of-freedom expansions used to
represent the u and v displacements provide a good approximation of the
middle surface stress state which can be important in dealing with buckling
and postbuckling behavior, and (c) the assumed displacement states can be
specialized to yield the six linearly independent zero-strain displacement
states implied by the Tinearized strain-displacement equations exactly.
Eigenvalue analyses of ordinary stiffness matrices (KZC) based upon
assumed displacement states of the form given by Eq. 2.61 yields six zero
eigenvalues and six linearly independent eigenvectors representing the
rigid-body modes.

In deciding between the cylindrical shell element described in this
section and that described in Section 2.3.1 consideration should be given
to the fact that the generation of the matrices K2c’ K3c’ and K4c is more
time consuming for the element described in this section. This is due to
the increased complexity arising from the use of mixed polynomial and circular
functions and to the necessity for double precision arithmetic in evaluating

the elements of the matrices K2c’ K3c’ and K4c' The need for double precision

e T - T T A Y A PR T S AU 6 M 4 e N A e S e S S b R L R g M e W e

+ Note that interelement geometric admissibility cannot be satisfied along a
common arc line interface between cy11ndr1ca1 shell elements based upon

different forms of o interpolation [i.e. H( (o), H(])(e), or S(])(e),
si)(e)1.
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arithmetic appears to be related to the fact that the transformation which
carries the functions 1, 6, sin o, cos 8 ({see Eqs. 2.52) into the inter-
polation functions Ségg) and Sigg) (see Egs. 2.56) becomes singular as

the subtended arc of the element (4As) vanishes. The existing program (see
Section 6) always employs double precision in evaluating the elements of the
matrices K2c’ K3C and ch? However, in view of this difficulty, use of
the cylindrical shell element described in this section is not recommended
for cases where the subtended angle a¢ 1is Jess than 5°. This

situation is not restrictive because it is known that the difference

between the cylindrical shell element described in this section and that

discussed in Section 2.3.1, vanishes in the 1imit as a6 approaches zero.

For 5° < As < 30° either element may be used. For as > 30° the element
described in this section is recommended while for 26 < 5° the element

described in Section 2.3.1 is recommended.

2.4 Implementation

The total potential energy for a structural system represented by an
assemblage of discrete elements can be viewed as the sum of the contributions
of the individual elements. The numerical prediction of the behavior of an
assemblage of discrete elements may be viewed as a mathematical programming
problem; that is, numerical solutions are to be generated by minimization of
the total potential energy subject to certain equality constraints, The
principie of minimum total potential energy states that of all possible
geometrically admissible displacement states, those which locally minimize
the total potential energy satisfy the equilibrium conditions, the natural

o R E e e A R . e g e G SR SW e e e mm W W R e e ke A O S R e e A

* Double precision is used only in computing the elements of the matrices
K2 , and K, ; the subsequent energy search phase of the program is

c’,Kac . . .
carried out in single precision.
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boundary conditions (stress or force} and the stability condition 52H > 0
and are therefore stable equilibrium positionsf The total potential energy

of an assemblage of discrete elements

T (2.62)
1

=
n
n t~— =

k
where N is the total number of elements, is a function of all the degrees of
freedom of all elements subject to the interelement geometric admissibility
conditions and the displacement boundary conditions®. The satisfaction
of geometric admissibility requirements leads to a set of linear equality
constraints. These linear equality constraints reduce the number of
degrees of freedom in the total potential energy expression.

Prior to seeking the minimum of the total potential energy, it may
often be useful to further reduce the number of independent degrees-of-free-
dom by imposing additional conditions based upon an engineering insight into
the anticipated behavior of the structure. For example, between two
tangentially joined elements, continuity of middle surface strains may be
anticipated in the absence of 1ine tractions and curvature continuity may be
expected in the absence of line moments. Force boundary conditions* may
also be viewed as optional additional conditions. It should be clearly
recognized that the use of additional conditions is not strictly required,

however, employing them when appropriate, reduces the number of degrees-of-

e L L L T L R el e L Ly e A g S e ——

# This statement recognizes the possible existence of relative minima in
nonlinear_problems and points up the fact that only "stable" solutions
(in the §21 > 0O sense) will be found by minimization of the total
potential energy.

+ Displacement boundary conditions are the essential or imposed conditions
of the variaticnal formulation.

* Force boundary conditions are the additional or natural boundary conditions
of the variational formulation.
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freedom without a substantial change in the results obtained.

Imposing the interelement geometric admissibility conditions, the displace-
ment boundary conditions and appropriate additional conditions Jeads to the
total potential energy as a function of the independent degrees-of-freedom,
Thus any of several powerful algorithms for the unconstrained minimization
of a function of many variables may be employed to find a numerical solution

to the structural analysis problem (see Section 4).

2.4.1 Geometric Admissibility
Since the assumed displacement states for u and v are continuous and

the assumed displacement state for w is continuous and has continuous first
W

5}')
within the plate and shell discrete elements discussed in this report. To

derivatives (%%-, , it follows that geometric admissibility is satisfied
complete the satisfaction of the geometric admissibility requirement it is
necessary to impose the interelement admissibility conditions and the
displacement boundary conditions.

The assumed displacement states used here facilitate the satisfaction
of interelement admissibility conditions. For example, consider the assembl-
age of two rectangular 48 degree-of-freedom thin plate elements joined at an
angle ¢ as shown in Fig. 6. In this case geometric admissibility at the

interface between elements I and II requires that

uII(O,yz) = cos ¢ ul (a7.y¢) - sin ¢ w! (a.¥7) (2.63a)
Vo, = vy (2.63b)
w(0,y,) = sin ¢ ulfa, .y )+ cos ¢ wl(ay,yq) (2.63c)

Yo ¢ a1,y]) o wilag,y, .63c
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IT 1
aw - v
(0,y,) = 5;;—(a1fy]) (2.63d)

3o
Ignoring the distinction between ¥y and Yo along the interface between the
elements and defining Y1 =¥ 7Y the assumed displacement functions (see
Eq. 2.8) reduce to the following expressions along the interface for the

displacements appearing in Eq. 2.63a.

11 S RS N
uw(0,y) = ] [H{y)u: + H{(y)ugq:] (2.64a)
o 03 13 15 Y3
: 2 m. (1
u (a1,y) = .Z] [Hogy) ups + H1§y) Uyos ] (2.64b)
J=
: S m M.
W {apy) = .21 [Hogy) Wyy * H]§y) Wi ] (2.64c)
J=
1 1
Substituting Eqs. 2.64 into Eq. 2.63a and noting that H;(;) and H((;) are
J 1]

linearly independent, it is apparent that the geometric admissibility condi-
tion represented by Eq. 2.63a is satisfied along the entire common edge by

imposing the following four equality constraints:

IT  _ 1 . I .=
Uy = cos ¢ Upj - sine woe 5 J= 1,2 (2.65a)
uII. = CO0S ¢ uI .- sin ¢ W .,. 3 Jj=1,2 (2.65b)
VAN y2j y2j ’

In a similar manner the interelement geometric admissibility conditions
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represented by Eqs. 2.63 b, ¢ and d yield equality constraints as follows:

from Eq. 2.63b

5 S | . .
V]J— - V2j 3 J
I _ I . .
Yy1i 7 Yy .

from Eq. 2.63c

| A I
Wy; = osin & Up; + COS ¢
I1 . I
, = 4+
wy]g sin ¢ usz cos ¢

and from Eq. 2.63d

Im _ 1
15 T Wx25 ¢ J

I _ 1 . .
Wey1i & Wxy2j @ J

Note that when the elements are joined

= ]‘2 (2.65&)
- 1.2 (2.66b)
W = 1,2 (2.67a)
2j ] J ] .
I N
Mg s 3= 1.2 (2.67b)
= 1,2 (2.68a)
= 1,2 (2.68b)

by a hinge line then geometric

admissibility does not require that the relative rotation between elements

[ and II be zero and the equality constraints due to Eq. 2.63d, that is

Eqs. 2.68, are omitted. The equality constraints arising from the

admissibility conditions represented by Egs. 2.63a and ¢ lead to linear

combinations of the degrees- of-freedom, namely Eqs. 2.65 and 2.67. On the

other hand, the admissibility conditions represented by Egs. 2.63b and d

lead to simple one to one linking conditions, namely £qs. 2.66 and 2.68.

A1l of the degrees-of-freedom involved in the equality constraints (Egs.

2.65 through 2.68) implementing the interelement admissibility requirements

(Eqs. 2.63) are on the common edge between elements I and II (see Fig. 6).
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Two important special cases can be dealt with by specializing the
foregoing relations. First consider the case where the elements I and II
are joined tangentially so that the angle ¢ =0 , cos ¢ = 1, sin ¢ = 0 and
the geometric admissibility requirements (Eqs. 2.63) can be simplified
accordingly. The equality constraints (Eqs. 2.65 through 2.68) implementing
the interelement admissibility conditions are, for this special case (¢ = 0),
all simple one to one linking conditions. The second special case is when
the elements I and Il are joined perpendicularly so that ¢ = 90°, cos ¢ = O,
and sin ¢ = 1.  Again the geometric admissibility requirements (Eqs. 2.63)
can be specialized and the equality constraints (Egs. 2.65 through 2.68)
reduce to simple one to one Tinking conditions. The computer program
described in Section 6 of this report is currently limited to assemblages
of discrete elements connected together either tangentially (¢ = 0) or
perpendicularly (4 = 90°),

The assumed displacement states employed herein facilitate the
satisfaction of a variety of imposed displacement boundary conditions. For
example, consider implementing the requirement that the edge Xo = @y of

element II (see Fig. 6) be fully restrained, that is

Hag.y) ; TN RPN AW L R (2.69a)
u dq, = U, U . = .0Ja
2y e ij 23 ]jy y2j
2
(1) (1)
11 11 11
y) = H . H .1 =0 2.69b
R CPRD jz] [ Ogy) Vos  * 1gy) Vyoi 1 ( )
2
(1) (1)
11 1 11
y) o= H(y) wye + H{( ] = 0 2.69c)
W (a,,y) JE] [ij W33 ]J_y) Wy2s] (2.69¢
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and )
L II
IW N
3;5- (azsy) = Z
j=1

(M 1 M 1
[Hoéy) W23 + H1§y) Wey2i ] =0 (2.69d)

where for convenience Yo has been replaced by y. These displacement bound-

ary conditions (Egs. 2.69) lead to the following simple equality constraints:

upi = Uy = 0 i=1,2 (2.70a)
Vé; g V;%j =0 j=1,2 (2.70b)
w%j = W;éj = 0 3 j=1,2 (2.70¢)
”iéj N wi;Zj =0 j=1,2 (2.70d)

In the case of full membrane restraint but simple support with respect to
bending, the zeroing conditions exhibited in Eq. 2.70d would be ignored. 1In
the event that membrane displacement tangent to the edge Xy = 2, of element
Il is not restrained, the zeroing conditions given by Eq. 2.70b would be
ignored.  Ancther useful displacement boundary condition is the requirement
that uII(aZ,y) be uniform along the edge but of undetermined magnitude.

By examining Eq. 2.6%9a it is found that this boundary condition can be

implemented by imposing the following simple equality constraints:

upi = ug (2.71)
and
T _ I _
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Finally it should be noted that any prescribed displacement expressable in
terms of a linear combination of the osculatory interpolation polynomials
employed can be imposed by assigning appropriate numerical values to the

degrees of freedom involved in the edge displacement relations (Eq. 2.69).

2.4,2 Additional Conditions

The previous section explains the procedure for assuring that the
displacement state over an assemblage of discrete elements satisfies the
gecmetric admissibility requirements. In this section a similar procedure
for introducing optional additional conditions is ocutlined. In many situa-
tions the engineer in-charge will have some physical insight regarding
the anticipated behavior of the structure being analyzed. By introducing
appropriate additional constraints it is possible to reduce the number of
independent degrees-of-freedom for a given modeling (idealization) without
significantly changing the results of the analysis. For example, consider
the case of two plate elements tangentially connected such as elements I and
IT in Fig. 6 when ¢ = 0., The elements lie in the same plane and in the
absence of line tractions on the common edge, it can be anticipated that
the middle surface strains (ex, €

3V _ B,

(ez O Ty

y and yxy) as well as the rotation

will be continuous. Satisfaction of the interelement
geometric admissibility requirement is achieved by making u, v, w and %%
continuous along the interface as previously described (see Egs. 2.63 with

¢ = 0}). In order to require continuous middle surface strains and rotation

(ez) along the interface between elements I and II it is only necessary to

introduce the additional conditions
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LTI I

"éu _au
8)(2 (0,)!2) = ax.‘ (a] ,.Y']) (2.723)
2!££ (0,y,) = E!E_{a ) (2.72b)
Xy Y2 Xy 197 .

which yield the following equality constraints between the degrees- of- freedom;

“i%j = “;I(;zj : j=1,2 (2.73a)
“i;1j ) uiij 5 =1,z (2.73b)
from Eq. 2.72a and
"Hj = Vi2j 3 j=1,2 (2.74a)
013 = Y j=12 (2.74b)

Vayli & Vxy2j o}

from Eq. 2.72b. Note that the implementation of middle surface strain and
rotation continuity conditions involve only degrees of freedom associated
with the common edge and simple one to one Tinking.

The geometric admissibility conditions and additional conditions
where appropriate, have the effect of significantly reducing the number of
independent degrees-of-freedom. For exampie, consider an assemblage of
four coplanar 48 degree-of-freedom rectangular plate elements (see Fig. 7).
At the outset there are 48 independent degrees-of-freedom associated with
the interior node common to all four elements. It can be shown that by
imposing the geometric admissibility conditions between the four elements,
the number of independent degrees-of-freedom associated with the interior
node is reduced to 22. Furthermore, if the middle surface strains and
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rotations are made continuous between the four elements, by using the additional
conditions, it will be found that the number of independent degrees.of- freedom
associated with the interior node is reduced to 12.

More complex additional conditions may invelve linear combinations of
degrees- of- freedom not necessarily associated with the common edge. For
example, consider again the case of two plate elements tangentially connected
such as elements I and II in Fig. 6 with ¢ = 0. In the absence of line

moments ,continuity of the bending moment Mx and the twisting moment Mx along

Y
the common edge between elements I and II (see Fig, 6) may be anticipated.

Satisfaction of the interelement admissibility conditions is sufficient to

insure
2 11 21
oW _oaw
3Xn3Y 5 (O’yZ) - 3X13Y (a1,y1) (2.75a)
and
aZWII (0.y.) = aZWI ( ) 275
2 s.yz = 2 a-l ,y-l . )

Therefore it is only necessary to introduce the following additional condition

2 11 2 1
g
2 (0,y,) = S (aguyy) (2.76)

~

aXy 1

in order to have continuous bending moments Mx along the common edge between
elements I and II. Implementation of the continuity condition on the curva-
ture normal to the common edge can be shown to involve linear combinations
of several degrees- of -freedom some of which are not associated with the

interface line.
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Since force boundary conditions are natural boundary conditions
within a total potential energy formulation, they are usually treated as
applied loads and are dealt with using the work equivalence approach.
However, force boundary conditions may also be considered as optional
additional conditions. For example, the requirement that the bending
moment M, along the edge x, = a, of element II equal a constant value ﬁ;
may be introduced as an additional condition
2 11 2 11
M (8p,yp) = -D[E— (ap,y,) + v T (a5,y,)] = W, (2.78)
3X, 3y
If the edge x, = a, of element II is simply supported then wII(az,yz) =0
and the additional condition representing the uniform bending moment boundary

condition reduces to

M (a5,y,) = -D [ﬁ'—’?— (a,,¥,)1 = M, (2.79)
X,

Implementation of this optional additional condition will also involve linear
combinations of several degrees-of-freedom some of which are not associated
with the edge X, = 3 of element II.
2.5 Examples

In this section some example problems are reviewed. These numerical
solutions have been obtained using discrete element representations generated
in the course of this research program. Three types of example problems are
discussed. The first type exhibits nonlinear bending-membrane coupling and
is characterized by the increasing siope of the load deflection curve {see
Fig. 10). The specific example of this first class is a square clamped
plate subject to a uniformly distributed transverse load. Example problems of

the second type also exhibit nonlinear bending-membrane coupling, however they are
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characterized by decreasing slope of the load end-shortening curve (prior to
snap-through, see Fig. 13). The examples in this second group are flat, slightly
curved, and curved panels subject to prescribed end-shortening. An interest-

ing additional feature of the two curved panel examples is that they exhibit
snap-through buckling. The third class of example problems is linear. One
linear example problem is discussed, namely the pinched cylindrical shell of
finite length. This example is included to illustrate numerically the

influence of including exact rigid body modes in comparison with a good
approximate representation.

It should be noted that solutions for other example problems have been
documented. Linear clamped plate and linear pinched cylinder examples were
reported in the interim report (Ref. 7). The influence of systematic
refinement of the modeling was examined in both of these cases. The excell-
ent convergence characteristics of the 48 degree-of-freedom plate (see
Section 2.2.1) and cylindrical shell (see Section 2.3.1} elements were
illustrated numerically in Ref. 7. Results for the pinched cylinder
problem, including geometrically nonlinear terms in the strain displacement
relations, were also given in Ref. 7. Static deflection results for skew
cantilever plates subject to uniform transverse load were presented in Ref.
10, Additional static linear bending examples for cantilever and clamped
rhombic piates were reported in Ref. 11.  Some natural frequency predictions
for clamped and cantilever rhombic plates were given in Ref. 11. Static
deflection results for a uniformly loaded square clamped plate example,
based on the 36 degree of freedom linear bending element (see Section 2.2.4)
were given on p. 443 of Ref. 2.

2.5.1 Transversely Loaded Clamped Plate Example

Consider the clamped plate shown in Fig. 8 subject to a uniformly

distributed transverse loading P, The clamped boundary conditions require
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that u, v, w and the slope normal to the edge be zero on all four
edges. The example plate has dimensions 20" x 20" x 0.1", modulus of
elasticity £ = 10.92 x 106 1bs/1‘n2 and Poisson's ratio v = 0.3. Since the
problem is doubly symmetric only one quadrant of the plate is considered.
Four 48 degree-of-freedom discrete elements are used to represent a single
quadrant of the plate (see Fig. 9). Imposing the boundary conditions and
using additional conditions such that the middie surface strains and the
rotation (ez) will be continuous between elements the number of independent
degrees-of-freedom for this example is found to be 47. Solutions were
obtained for each of several load intensities by applying the Fletcher-Powell
algorithm for unconstrained minimization (see Section 4.1.1) to the total
potential energy function. The midpoint transverse displacement (wc) is
given for load intensities (pz) ranging from 0.2 psi to 2.0 psi in Table 1.
The results obtained by a Ritz technique solution (see p. 421, Ref. 20) are
also listed in Table 1. The agreement between the two solutions, exhibited
in Table 1, is seen to be excellent. The load intensity versus midpoint
transverse deflection data listed in Table 1, is presented graphically in
Fig. 10. The increasing slope of the curve in Fig. 10 indicates that as the
transverse displacement increases the membrane action grows in importance.
It is apparent from Fig. 10 that Tinear theory would over estimate the deflection
due to a particular load intensity with rapidly increasing error for higher
load levels. A more detaiied summary of the nodal displacements obtained
using the 41 degree-of-freedom discrete element finite deflection analysis
will be found in Table 11 of Ref. 7.
2.5.2 Panel End-Shortening Examples

Consider a simply supported rectangular panel subject to prescribed

uniform end shortening § (see Fig. 11). The displacement boundary conditions

imposed are:
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u(-A, y) = ¢ (2.80a)
u(+A, y) = -3 (2.80b)
W+, y) = w(x, +B) = 0 (2.80c)
v(+A, y) = wv(x, #B) = 0 (2.80d)

The imposed displacement boundary conditions represented by Eqs. 2.80a and
2.80b imply that the edges x = +A remain straight, that is %%—(iﬁ, y) = 0.
Doubly symmetric behavior of the panel is assumed and a single quadrant is
modeled using four discrete elements (see Fig. 12). By linking degrees of
freedom to insure geometric admissibility of the displacement pattern for the
assemblage, using additional conditions so as to assure continuity of middle
surface strains and rotation‘(ez), imposing the displacement boundary condi-
tions and the symmetry conditions:the number of independent degrees-of-
freedom reduces to 52. Numerical solutions were obtained for each of several
prescribed end-shortening values (&) by applying the Fletcher-Powell algorithm
for unconstrained minimization (see Section 4.1.1) to the total potentia]
energy function.

The Toad versus end-shortening plot obtained is represented by the solid
line in Fig. 13 for the particular case where A = B = 12 in., h = 0.1 in.,
v =0.3, and E = 30 x 10° 1b/in®.  The ordinate N is the equivalent uniform
load reguired to maintain the displacement pattern induced by the imposed
end-shortening ¢ and it is evaluated from the following expression:

B B

= ] _ Eh
N = B NX x==A dy = r_é-i_ (ex + v Ey) .X=-A dy (2.81)



where €y and ey are given in terms of the displacements by Egs. 2.3. The
discrete element analysis predicts a panel buckling Toad of 142.5 1bs/in while
the formula given by Timoshenko in Ref. 21 (see p. 413) yields 144.5 1bs/in.
The slope of the load vs. end-shortening plot decreases abruptly at the
buckling load, however the elastic post-buckling behavior of the initially
flat plate exhibits considerable additional load carrying capacity.

The second example problem in this group is a slightly curved
cylindrical panel that differs from the previously discussed flat plate in
only one respect; namely the radius of the panel is r = 500 in. rather
than r = », The displacement boundary conditions are given by Egqs. 2.80
with x replaced by s and y by n = r8. The panel 1is simply supported
and the circumferential displacement of the edges ro = +B and s = +A is
prevented while uniform longitudinal end-shortening (+s} is imposed on the
edges s = +A.  The behavior is assumed to be doubly symmetric and four
cylindrical shell discrete elements are used to model one quadrant of the
panel. Imposing interelement admissibility conditions, displacement bound-
ary conditions, symmetry conditions, and additional conditions for middle
surface strain and rotation continuity,numerical solutions are obtained by
seeking the minimum of the total potential energy with respect to 52
independent degrees-of-freedom. Using the Fletcher-Powell minimization
algorithm for each of several prescribed end-shortening values (8) the
displacement state throughout the panel was predicted.

The load versus end-shortening plot obtained is represented by the
dashed Tine in Fig. 13 for the particular case r = 500 in., A = B = 12 in.,

h =01 in., v=0.3 and E = 30 x 106 ]bs/inz. The ordinate is the
equivalent uniform end load given by Eq. 2.81 with x replaced by s and y
by n = ro. As the imposed end-shortening is increased the load required to

maintain equilibrium increases along the prebuckled portion of the curve to
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the point denoted by "a" in Fig. 13. Along the portion of curve between the
origin and point "a" the slope of the curve is decreasing and clearly nonlinear.
When an attempt is made to introduce additional end-shortening beyond point "a",
a point on the post-buckled portion of the curve is obtained. This is a mani-
festation of the snap-through phenomenon. Additional points on the post-
buckled portion of the load vs. end-shortening curve can be obtained by either
increasing or decreasing the magnitude of the prescribed end-shortening. Note
that when an attempt to generate a peint on the post-buckled portion of the
curve to the Teft of point "b" was made a jump to the prebuckled portion of

the curve resulted. Furthermore, it was not possible, by energy minimization;
to obtain points on a curve between "a" and "b" connecting the prebuckled and
post-buckled portions of the load vs. end-shortening curve. This is because
points on such a curve are associated with equilibrium displacement states

that are not stable and therefore, do not correspond to Tocal minima of the
total potential energy.

The third example in this group is the same as the case of the slightly
curved cylindrical shell panel except that the radius if 150 in.. As the end-
shortening & was increased, starting from the origin in Fig. 13, points on
the curve joining the origin and point 1 were obtained; when an attempt was
made to impose an end-shortening beyond point 1, a jump occurred to the
curve 2-3.  An attempt to extend this curve to the left of point 2 resulted
in the generation of a point on curve 0-1, whereas an effort to extend this
curve to the right of point 3 gave a point on the curve 4-5. Point 4 is as
far to the left as this branch of the curve could be extended without a jump
to curve 2-3 occurring.  Curves joining points 1-2 and 3-4 could not be
generated since displacement configurations corresponding to points on these
curves are unstable and therefore do not correspond to Tocal minima of the
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total potential energy function. Some further insight into the behavior of
this curved panel is offered by Fig. 14, which qualitatively illustrates
displacement configurations corresponding to various portions of the load vs.
end-shortening curve., The displacement patterns shown in Figs. 14a and b
are essentially the same except that in Fig. 14 b the "dimpling inward"
phenomenon has progressed to such a stage that the center deflection fis
negative. Figure 14c shows the displacement configuration after the first
stage of the snap-through buckling of the panel manifested by a change in
sign of the slope at the center of the edges r6 = #+B. In Fig. 14d the
buckling pattern of the panel has undergone slope sign changes at all bound-
ary points shown except at (+A, +B/2). The displacement configuration
illustrated in Fig. 14d  suggests that another isolated portion of the load
vs. end-shortening curve may exist; however, the generation of the curve has
not been carried to an extent beyond that shown.
2.5.3 Pinched Cylindrical Shelil

Consider & complete cylindrical shell of finite extent subject to
self equilibrating concentrated loads as shown in Fig. 15. The loading
P = 100 1bs.; dimensions L = 10.35 in., r = 4,953 in., h = 0.094 in.; and
material properties for the particular example analyzed (E = 10.5 x 105
1bs/1‘n2 and v = 0.3125) correspond to those for which experimental results
are available (see Ref. 22 and Section 7.3 of this report). Taking advantage
of symmetry, only one quadrant of the cylinder is modeled using cylindrical
shell discrete elements. The displacement under the load for the particular
example at hand s wp = -0.1084 in. based upon the inextensional shell theory
solution given by Timoshenko in Ref. 20 (see p. 501). Results for the
predicted displacement under the load, for various idealizations shown in

Fig. 16, are summarized in Table 2. For each of several modelings the number
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of independent degrees-of-freedom as well as the displacement under

the load obtained using each of the two distinct cylindrical shell

elements described in this report, are summarized in Table 2. ATl of these
results were obtained using additional conditions that require continuous
mid-surface strains and rotation (ez) in addition to satisfaction of
geometric admissibility conditions. It should be noted that for a fixed
number of degrees of freedom the results obtained using the element discussed
in Section 2.3.3, which permits an exact representation of the rigid body
displacement states, offers only slightly better results. Furthemmore, the
solutions obtained using the element given in Section 2.3.1, which contains
a good approximation of the rigid body modes, approach the alternative
solutions as the modeling is refined. Based on these results, it does not
appear that the additional computational effort involved in using the
cylindrical shell element described in Section 2.3.3 is particularly reward-
ing in terms of improved prediction of the displacement behavior. It should
be noted that the magnitude of the predicted displacements using modelings
F, G and H exceed the displacement magnitude based upon the inextensional
shell theory solution {i.e. wp = - 0.1084 in.). This is not surprising,
since the finite element analyses permit nonzero middle surface strains that
are precluded in the inextensional shell theory solution. Finally, it is of
interest to note that the displacement under the Toad for modeling G using
the element described in Section 2.3.1, including geometric nonlinearity,

was found to be -0.111487311in. (see Ref. 7, p. 150).
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SECTION 3

REISSNER ENERGY FORMULATION FOR A
RECTANGULAR PLATE DISCRETE ELEMENT

3.1 Introduction

Each of the three commonly used formulations of the structural
analysis problem is associated with a corresponding energy principle. The
displacement method is related to the principle of minimum total potential
energy, the force method is equivalent to the complementary energy approach,
and the mixed force-displacement formulation corresponds to the Reissner
energy principle (Ref. 23). The variational principle set forth in Ref, 23
states that of all possible states of stress and displacement that which
makes the Reissner energy stationary satisfies the equilibrium equations and
the force-displacement relations as well as the natural boundary conditions
(both displacement and force) and is therefore the actual state of stress
and displacement. It should be emphasized that the Reissner variational
principle is a stationary principle rather than a minimum principle, there-
fore algorithms for seeking the minimum of a function of many variables may
not be brought to bear directly.

The combined force-displacement approach is of interest for several
reasons. In this approach both force and displacement unknowns are expressed
in terms of assumed functions and therefore, force distributions are not
obtained by differentiating approximate displacement results (as is the case
in the displacement or potential energy method). Another characteristic
of the combined force-displacement formulation is that both the equilibrium
and force-displacement relations are satisfied approximately over the

structure. It is also interesting to note that both force and displacement
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boundary conditions are natural boundary conditions in the Reissner energy
formulation and therefore the option to treat ail boundaries conditions
approximately exists. Qualitatively, the mixed force-displacement
methods tend to treat force and displacement variables in a balanced or

untiform manner.

3.2 Formulation

In this section of the Reissner energy formulation for a rectangular
discrete element, including finite deflection bending-membrane coupling, is
set forth. A Tinear membrane plate element and a linear bending plate
element are in fact useful special cases of this formulation. Note that
the Reissner energy for a typical interior element does not involve boundary
condition contributions, however, these terms are important for elements on
the boundary of the assemblage and they are therefore included in this
development.

Assuming elastic isotropic plane stress behavior, the Reissner energy

formulation for a rectangular plate element (see Fig. 1) is given by

]
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2

where it is understood that the strains Ex? €y and Yyy are expressed in terms
of the displacement variables (see Eqs. 2.3), W is the work done by external

loads applied to the element, S1 is the contribution due to force boundary
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conditions, and 52 is the contribution due to displacement boundary
conditions. Introducing the strains in terms of the displacements (using

Eqs. 2.3), expressing the stresses in terms of the force resultants

N
X 12
o T ® tT 2 M (3.2a)
X h F X
=ﬁ!+2]—2-M (3.2b)
%y h pd oy .
ez, (3.2c)
“xy By .

and integrating through the depth leads to the following expression for the

element Reissner energy in terms of force resultants (Nx, Ny, ny, Mx’ M.,
Mxy) and the displacements {(u, v, w):
'TTR = Cm+cb+cc-w's'| -52 (3.3)
where
arh
_ au W U, v
Cn = {Nx X Ny 3y * Ny (ay t X
0/0
1 2 2 2
-~ SR [Nx + N'y - 2v Nx Ny + 2(1+v) ny 1} dy dx (3.4)
ach
2 2 2
- 2w 3w W
Ch {Mx ;;? * Hy ;;? v 2 Mxy XYy
0/0
6 2 2 2
+ Eh3 [Mx + My - 2v Mx My + 2{1+v} Mxy 1} dy dx (3.5)
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and the significance of W, 51, and 52 was previously discussed. Note that

for a typical interior element the terms S] and 52 vanish.  However, for
discrete elements on the boundary of an assemblage the contributions to

the Reissner energy of the terms S] and 52 must be considered assuming that

the option to treat the corresponding boundary conditions as natural boundary
conditions has been elected. Expressions for the contributions of the boundary
conditions to the element Reissner energy are given in Appendix A.

Before generating a discretized form of the Reissner energy for a
typical interior element it will be useful to remark on the physical signifi-
cance of the first four terms in Eq. 3.3, namely Cm, Cb’ CC and W. The term
C, represents the contribution of the membrane forces (Nx, Ny, ny) and
displacements (u, v) to the discrete element Reissner energy. This term
taken by itself can be used to represent Tinear membrane behavior. The term

Cb represents the contribution of the bending moments (Mx, , Mxy) and the

MY
transverse displacement (w) to the discrete element Reissner energy. This
term taken by itself can be used to represent linear small deflection plate
bending behavior. The term CC represents the bending-membrane coupling
contribution to the discrete element Reissner energy and it involves only
the membrane forces N, Ny, ny and the transverse displacement (w). It
should be noted that Cm and Cb are quadratic while Cc is third degree. This
should be compared with the total potential energy formulation given by

Eq. 2.11 which is seen to contain quadratic (Uzp), third (U3p), and fourth

(U4p) degree contributions. The term W represents the work done by loads
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applied to the discrete element. Once the assumed displacement functions
are selected, the generation of work equivalent load vectors for any
particular loading on the discrete element is straight forward, the procedure
being the same as in the potential energy formulation. The W contribution
to the element Reissner energy is linear in the displacement unknowns.

The discrete representation of the Reissner energy for a typical
interior rectangular discrete element is obtained by selecting assumed
force and displacement patterns and then substituting these approximations
into Egqs. 3.4, 3.5 and 3.6. The membrane displacements {u, v) and forces
x’ Ny
are expressed in terms of products of zeroth~order Hermite inter-

(Nx’ Ny, ny) are bilinear over the discrete element, that is u, v, N

and ny

polation polynomials as follows

(0 (0)

H{x) H{(y) u,, (3.7)

u(x,y)
, 0 0j 1

N e~ ™~
e~ M

i=l

with a corresponding expression for v{x,y) and

e (o (o)
NOGY) =D H(x) H (y) NXg (3.8)
=1 g=1 010 !

with similar expressions for Ny(x,y) and ny(x,y). The inj represents 4
undetermined nodal parameters and the double index corner identification
scheme is that shown in Fig. 1. Note that the zeroth order Hermite
interpolation polynomials are given by Eqs. 2.26. The transverse displace-
ment (w) and the moment resultants (Mx’ My, and Mxy) are assumed to be bicubic
over the discrete element, that is w, M, s My, and M,

¥
of products of first-order Hermite interpolation polynomials. The assumed

are expressed in terms

displacement pattern for w(x,y) is the same as that given by Eqs. 2.8. The
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bending moment Mx(x,y) is approximated by

2o (1 ()
Mx(x,y) = Y [H (x) H (y) Mxij + H gx) H (y) Mxxij
i=1 j=1 0i 0j 11 0J
(1) (m (1 (1)
+ H0§X) H1§y) Mxyij + H]gx) H]§y) Mxxyij ] (3.9)

with similar expressions for My(x,y) and Mxy(x,y). 1t should be noted that

Mhigs Meigs Mhys xyij

the subscripts x and y denote partial differentiation, and the double index

MX MX and MX represent 16 undetermined nodal parameters,

corner identification scheme is the same as that shown in Fig. 1. The

first-order Hermite interpolation polynomials are given by Eqs. 2.9
The discrete form of the membrane contribution to the element Reissner

energy (Cm) is obtained by substituting the assumed functions for u, v, N_,

X

and N, (see Egqs. 3.7 and 3.8) into Eq. 3.4 and integrating over the

N
y Y
element. The result is

T X 3.1
¢, = %' o X (3.10)

1x20 20x20 20x1

where the vector of membrane unknowns is defined by

+T _
o= L Yggs Uggs Uaps Vaps s Vo NEyps e NGy,

NY qs es Ny NXYo Loy NXY,, | (3.11)

11°
and explicit formulas for the elements of the matrix Qm are given in Appendix
C of Ref. 12. The discrete representation of the bending contribution to

the element Reissner energy is obtained by substituting the assumed functions

for w, Mx, My and Mxy (see Egs. 2.8 and 3.9) into Eq. 3.5 and integrating over the
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element. The result is

o= X' Q, ?b (3.12)
1x64  64x64  64x]

where the vector of bending unknowns is defined by:

.
;
Koo = LWps Means Mrne W11 Wizs e W

Wogs »oes Wyyoos Wops oo Weyoys

MX cony MX MY]], cees MY

11° Xy2l’ xy21°®

MKYpps oo MRV, oy ] (3.13)

and explicit formulas for the elements of the matrix Qb are given in Appendix
C of Ref. 12.

The discrete form of the bending-membrane coupling contribution to the
element Reissner energy is obtained by substituting the assumed functions
for w, Nx’ N, and ny (see Eqs. 2.8 and 3.8) into Eq. 3.6 and integrating

y
over the element. The result is

. v
Cc = N Qc Yr (3.14)

1x12 12x136 136x1

where vector of membrane force unknowns is defined by

r!-T ~
NT = LNXgps NXpps NXops NXoqs NYqqy coey NYoyy NXYqg, ouny NKY,, |

(3.15)
e
and the vector ﬂ,contains as its elements the 136 possible products of the

16 degrees of freedom in the w(x,y) assumed displacement function taken in
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pairs of two, that is

ST, 2 2 2 2
Voo = LWy Bqquyqps Woqps 2WqqWpqys 20w g Woqpe s Wyoq ]

1x136
Explicit formulas for the elements of the matrix QC are given in Appendix
C of Ref. 12.

Combining the various contributions (Eqs. 3.10, 3.12, 3.14) the
discrete representation of the Reissner energy for a typical interior

rectangular discrete element is given by

—>T > - T > T -> -)-T -

-
R A O o * % Q X * N Qc Vv - X P

1x20 20x20 20x1 Ix64 64x64 64x1  1x12 12x136 136x1  1x24 24x]

(3.17)
where X contains the twenty-four displacement degrees-of-freedom that is

;T

1x24

= Lugps tgps Upps Upys Vips voes Vs Wyps Wqps Woqps Wyqes

Wygs ees Wyylps Mps sees Wyypns Waps cees Wyoq | (3.18)

_).
and the elements of the vector P are the work equivalent loads associated
with each of the displacement degrees-of-freedom.
3.3 Implementation
The Reissner energy for a structural system represented by an assembl-
age of discrete elements can be formed by summing the contributions of the

individual elements, that is

ot I (rp) (3.19)



Numerical solutions predicting the behavior of such an assemblage of discrete
elements are to be generated by seeking a stationary value of L subject to
certain equality constraints. The equality constraints linking together
various degrees-of-freedom arise as a result of imposing interelement
geometric admissibility conditions and optionally requiring continuity of the
force resultants between elements. The Reissner energy effort was Timi ted
to structures that could be represented by rectangular finite elements in a
common plane and both displacement and force continuity between elements

was always imposed.

Consider the interface between the coplanar elements I and II shown

in Fig. 7. Continuity of the membrane displacements is expressed as follows
uI (x,b) = uII {x,0) (3.20a)
I ox,0) = v (x,0) (3.20b)

S?bitituting the assumed displacement functions (see Eq. 3.7), noting that the
0

H (x) are linearly independent, it is apparent that Eqs. 3.20a and b will be
01

satisfied along the entire common edge between I and II when

I 11 .

Uip = U7 3 i=1,2 (3.21a)
I _ 11 . . _

Vip = Vi1 i=1,2 (3.21b)

Continuity of the membrane forces between elements I and II is expressed as

follows
Ny = N (x,0) (3.22a)
X X
I - I
Ny (x,b) Ny {x,0) (3.22b)
I _ II
ny (x,b) = ny (x,0) (3.22c)
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and these conditions can be implemented using the following simple equality

constraints:
wh, = gy i=1,2 (3.23a)
wh, = owva i=1,2 (3.23b)
NKVD, = NXYID s i=1,2 (3.23¢)

At a typical interior node, such as that common to elements I, II, III and IV
in Fig. 7, the number of unknowns associated with the membrane behavior is
reduced from 20 to 5 as a result of introducing displacement and force
continuity conditions between discrete elements.

Continuity of displacement w and its first derivatives between the

elements I and II is expressed as follows

Wl (x,b) = wII (x,0) (3.24a)
I 11
é%}- (x,b) = 2; (x,0) (3.24b)

Substituting the assumed displacement function (see Eqs. 2.8), noting that

(1) (1)

H (x) and H (x) are linearly independent, requiring that Eqs. 3.24a and b
i 1i

be satisfied along the entire common edge between I and II leads to the

following simple equality constraints:

W, = il i=1,2 (3.25a)
Weip = Wiin i=1,2 (3.25b)
Wiiz - wig] i=1,2 (3.25¢)

! L1 i=1,2 (3.25d)

Wxyi2® Wxyil
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In a similar manner the undetermined nodal parameters involved in the expan-

sions for M,, My

following additional continuity cenditions between elements I and 11

, and Mxy are linked thus assuring satisfaction of the

mI(x,p) = MiI (x,0) (3.26a)
X
I 11
aM aM
X = X 3.26b)
S () F— (x.0) (
! = w! (x,0 (3.26¢)
My (x,b) My (x,0)
I 11
M 3M
¥ = X (3.26d)
S b= g (00
L = pil 3.26e)
My, (x:b) My (:0) (
I 11
. oM aM
-@ﬂ—(x,b) = a—yﬂ (x,0) (3.26F)

It may be noted that conditions 3.26e and d assure continuity of the trans-
verse shear resultant Vy while conditions 3.26a and f assure continuity of

the transverse shear resultant Vx, that is:

I I 11 11
M aM aM aM
I - My y - Xy y . oyll
V(,0) = 22 (b) + ¥ (xub) = B (,0) + X (x,0) = ¥ 1 (x,0)
(3.27a)
and
I I Il IT
M M aM aM>’
I _ 9 X X _ X X _ I
Velnb) = 5% 00b) + 2 () = 25 (,0) + B (,0) =V (x,0)
(3.27b)

At a typical interior node, such as that common to elements I, IT, IIl, and
IV in Fig. 7, the number of unknowns associated with the bending behavior is

reduced from 64 to 16 as a result of employing the displacement and force
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continuity conditions discussed.
The Reissner energy for a structural system represented by an
assemblage of coplanar rectangular discrete elements may now be viewed as a
_).
function of a reduced set of independent variables (Z). The problem to be
solved may be stated as follows:
. >
Given HR(Z)
-
Find Z*

-»>

such that HR(Z*) is stationary.

An algorithm for seeking the stationary value of a function of several vari-
ables was set forth in Ref. 24 and further efforts along this same line were
reported in Ref. 25. In the course of this investigation Powell's method
(Ref. 24) was programmed and successfully tested on various simple (two
variable) problems (see Ref. 12). Attempts to apply this algorithm to the
solution of linear membrane plate problems formulated using the discrete
element Reissner energy were unsuccessful. No satisfactory method for
seeking the stationary value of Reissner energy functions of many variables
was found in the course of this research program.

The Reissner energy formulation can be cast as an unconstrained minimi-
zation problem. This is accomplished by forming a residual function e(E),
which is defined by
R (312 (3.28)

[321.
1

4 _ T
8(Z) = g VIp =

N~ =

i
-+ -
Clearly e(Z) is positive for all Z and its minimum value will be zero when
-+ > -+
Z = 7* such that vnR(Z*) = 0 which corresponds to the requirement that HR(Z*)
be stationary. Thus the problem may be stated in the following alternative

form:
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Given HR(Z)
Find I N

o T R 312 -
Such that o(Z) = vnp - vip =} [57~ (Z)] s a minimum.

i=1 !
Both the Fletcher-Powell and Fletcher-Reeves minimization algorithms {see
Section 4.1.1) were employed in conjunction with this residual type formula-
tion. Numerical results for some simple linear membrane problems were
obtained, however, long running times were required and this approach was
abandoned as prohibitively inefficientf

The Reissner energy formulation can be used in conjunction with the

Newton-Raphson technique. In effect the Reissner energy provides a con-

venient formulative device and it should be noted that the gradient VHR(Z)

32llp

3 ;aZ,
LR

and the matrix of second partial derivatives (f) employed in this

computational scheme can be formed by summing the contributions from each of

the discrete elements taken one at a time. The Newton-Raphson technique

> - -

+
generates a sequence of vectors Z], 22, cees Zq, Zq+1 g v

seeking the stationary value of the second order Taylor series expansion of

obtained by

Tp about the current trial solution. That is given the trial solution

- e
vector Zq the next vector in the sequence Zq+1 is given by

R e L L R I e b T T L iy o

* It should be noted that the residual formulation using unconstrained
minimization algorithms was abandoned before the profound influence of
the scaling transformation set forth in Section 4.2 was recognized.
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and AZq is determined so that

-+ >T > 1 - T 32 HR - -
7 +42) = HR(Zq) + AZq VHR(Zq) tx AZq [SE;EEE'(Zq)] AZq (3.30)

-
is stationary with respect to AZq, that is such that

- 32 HR - - 33
vnR(Zq) + [aziazj (Zq)] AZq = 0 (3.31)

Symbolically qu may be expressed as follows

2
3 T

- _ R > -
Azq = = [SE;EEE (Zq)] VHR (Zq) (3.32)

however it should be recognized that AEq can be computed by solving the

set of linear algebraic equations (Egs. 3.31) and numerical inversion of the
matrix of second partial derivatives is not required. The iterative
procedure continues until vnR(E) approaches zero and thus the change AE
approaches zero (see Egs. 3.31). Note that in the case of a linear membrane
or bending problem the Newton-Raphson procedure converges in a single iter-
ation. For the nonlinear problems discussed in the next section the method
usuaily converged in 4 or 5 iterations. The principal shortcomings of using
the Newton-Raphson methodare that the procedure requires the storage of an nxn

matrix and the solution of n simultaneous equations at each stage in the

jterative procedure.

3.4 Examples

In this section numerical results for several example problems are
discussed. All of these results were obtained using the discrete element
Reissner formulation given in Section 3.2 and continuity of displacement and

force variables was imposed in all cases as discussed in Section 3.3. A
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Tinear membrane example, a linear plate example, a nonlinear transversely
loaded plate problem, and a nonlinear prescribed end-shortening case are
discussed.
3.4.1 Linear Membrane Example
Consider a beam of narrow rectangular cross section and unit width
(h =1 in.) supported at the ends x = +& and subject to a uniformly
distributed load of intensity q on the surface y = -c, as shown in Fig. 17.

The force boundary conditions on the upper surface of the beam are

Ny {(x,c) = 0 (3.33a)

ny(x,c) = 0 (3.33b)
and on the lower surface

N.y (x,-c) = - qgh (3.33¢)

ny(x,-c) = 0 (3.33d)

The force boundary conditions on the ends of the beam at x = +¢ that corres-

pond to the theory of elasticity solution are

N, (+2.y) = 2—“% &y -EPy (3.33¢)
c .
ny(ﬂa,y) = --:3—2;?& (c? - y2) (3.33f)
N, (-2,y) = %q% (§y3 - % ¢ y) (3.33g)
C
_ .3qhs 2 2
Ny (Foy) =+ —2:% (c” - ¥9) (3.33n)
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The "exact" theory of elasticity solution of this problem is given in Ref.

26 (see p. 40). Numerical results for the particular case when h = 10 in.,

£ =100 in., ¢ =81in., E =30 x 10® 1bs/in®, v = 0.3 and q = 0.480 Tbs/in’
were obtained using the "exact" solution {Ref. 26). An approximate numerical
solution for this particular problem was generated based on a discrete

element Reissner energy analysis using a single step Newton-Raphson iteration.
Considering symmetry about the y axis, the right hand side of the beam (see
Fig. 17) was idealized using an assemblage of 8 rectangular discrete elements.
A11 the boundary conditions were treated as natural boundary conditions with
the exception of the two symmetry conditions ny(o,y) =0 and u(0,y) =0
which were imposed. The displacements are measured from the reference
coordinate system x-y attached to the undeformed structure and therefore the
v displacement of node 3 (see Fig. 17) is set to zero. For this modeling

the Reissner energy is a function of 64 independent variables.

The displacement {u,v} and force (Nx’ N , ny) results for the exact theory

Y
of elasticity solution (Ref. 26) and the approximate discrete element

Reissner energy solution are both exhibited in Table 3. Note that the

node numbers used in Table 3 correspond to the node numbering shown in

Fig. 17. Comparing the two solutions tabuiated in Table 3 it is seen that

the approximate results are in substantial agreement with the exact results.

The quality of the force results is gratifying. It is particularly interest-
ing to note how well the force boundary conditions are satisfied even though

they were treated as natural boundary conditions rather than as imposed boundary
conditions. For example at nodes 5, 10 and 15 it is seen that the approxi-

mate solution gives Ny = -0.491 1bs/in., Ny = -0.49 1bs/in. and Ny = -0.491bs/in
respectively, as compared with the exact value N, = -0.48 1bs/in. Also at nodes

¥

1, 6, and 11 along the free edge y = +c it is seen that both the Ny and ny

values generated by the approximate analysis are small.
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3.4.2 Linear Bending Example

Consider a fully clamped square plate subject to a uniformly distri-
buted transverse load (see Fig. 8). A small deflection theory solution
for this problem is given by Timoshenko in Ref. 20 (see p. 197). The example
plate has dimensions 20" x 20" x 0.1", modulus of elasticity € = 10.92 x 106
1bs/in2, Poisson's ratio v = 0.3, and is subject to a load intensity
P, = 1 ]b/inz. The approximate solutions generated using a linear bending
discrete element Reissner energy approach are compared with those given by
the reference solution (Ref. 20). In view of the double symmetry a single
quadrant of the plate is modeled using 4 square discrete elements (see Fig.
18). The approximate solutions were computed using a single step of Newton-
Raphson iteration. An approximate solution was first obtained imposing the
displacement boundary conditions along the clamped edges and then a second
approximate solution was obtained treating the displacement boundary condi-
tions along the clamped edges as natural boundary conditions (employing 52
terms see Appendix A, Eqs. A9). In both of these approximate solutions
the symmetry conditions were imposed on both the force and the displacement
variables. A sampling of key results for this example is shown in Table 4.
Complete results for the discrete element solutions will be found in Tables 4
and 5 of Ref. 12. When the clamped edge displacement boundary conditions
are treated as natural boundary conditions, the force results predicted by
the discrete element Reissner energy analysis are much closer to those given
by the reference solution {Ref. 20). It should be noted that treating the
clamped edge displacement boundary conditions as natural boundary conditions
yields a discrete element formulation with 110 unknowns as compared with 86
unknowns, when these boundary conditions are imposed. For this example the

displacement response was essentially insensitive to whether the clamped edge
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displacement boundary conditions were treated as natural or imposed.

Finally, it should be recognized that although the reference solution
and discrete element sclution are in essential agreement the maximum deflec-
tion predicted is twice the plate thickness and is therefore well beycnd the
range of validity for small deflection plate theory. In the next section
nonlinear finite-deflection theory results for this example problem are
discussed.

3.4.3 Nonlinear Plate Bending Example

The fully clamped plate subject to uniform transverse load discussed
in Section 3.4.2 was also analyzed using nonlinear finite deflection plate
thegry which includes bending-membrane coupling action. The four element
idealization depicted in Fig. 18 was used, the displacement boundary
conditions along the clamped edges were treated as natural boundary conditions,
and symmetry conditions on both force and displacement variables were imposed.
This four element idealization has 144 unknowns. Using the discrete element
Reissner energy formulation in conjunction with the Newton-Raphson iteration
scheme a numerical solution for this example with the transverse loading
intensity p, = 1 1b/in2, was generated. This solution can be compared with
the approximate nonlinear solution available in Ref. 20(see p. 421). Using
16 of the 48 degree of freedom nonlinear plate elements described in Section
2.2.1, to model a quadrant of the plate (see Fig. 19) a minimum potential
energy solution was also obtained for this problem. The 16 element potential
energy representation has 177 independent degrees-of-freedom and the results
were obtained using the Fletcher-Powell minimization algorithm. A sampling
of key results for this nonlinear plate bending example is shown in Table 5.
Complete results for the discrete element Reissner energy solution will be
found in Table 12 of Ref. 12. Examining Table 5 it is seen that the maximum
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transverse displacements predicted by the three methods are identical to three
significant figures. Maximum stress predicted by the discrete element
Reissner energy solution is within 2% of the value predicted by the
approximate solution in Ref. 20. The maximum stress predicted by the
discrete element potential energy solution is about 6% under that given by
the discrete element Reissner energy solution and about 8% below that given
by the approximate solution in Ref. 20. A more detailed comparison of the
Reissner energy results with the potential energy results for this example
will be found in Tables 7 through 11 of Ref. 12. Finally, the nonlinear
discrete element Reissner energy analysis was carried out for load intensities
of p, = 0.5 ]b/in2 and p, = 2.0 1b/in2. The transverse displacement is
plotted versus load intensity in Fig. 20. The potential energy results
discussed in Section 2.5.7 and the results due to Timoshenko Ref. 20 listed
in Table 1 are both represented by the dashed line in Fig. 20. It is clear
that these nonlinear Toad-displacement results are in very close agreement
for all three methods and they are all substantially different from the
results predicted by linear theory.
3.4.4 End-shortening of Flat Plate

In this section the flat plate subject to end-shortening previously
discussed in Section 2.5.2 and shown in Fig. 11 is treated using a discrete
element Reissner energy analysis. The displacement boundary conditions are
given by Egs. 2.80. The particular panel for which numerical results were
obtained is identical with that treated in Section 2.5.2 that is A = B = 12,
h=0.114n., v =0.3, and E = 30 x 106 lbs/inz. Taking advantage of the
doubte symmetry one quarter of the panel was modeled with four identical
discrete elements. Imposing symmetry conditions and treating the edge

boundary conditions as natural boundary conditions the number of unknowns in
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the 4 discrete element Reissner energy formulation is found to be 142. The
requirement that the edges subject to end-shortening (x = +A in Fig. 11)
remain straight is enforced by linking u displacement degrees of freedom
however the magnitude of the end-shortening is not specified. The equivalent
uniform end load is specified and then treated as a natural force boundary

condition that is

(3.34)

where u is the undetermined uniform end-shortening. For various specified
equivalent uniform end loads N solutions are obtained using the Newton-
Raphson iteration procedure. A plot of equivalent uniform end (N) versus

midpoint transverse displacement w_ as shown in Fig. 21, based upon the four

0
glement Reissner energy results. The dashed curve marked n_ in Fig. 21

p
shows the corresponding result based upon the 4 discrete element potential
energy minimization solution discussed in Section 2.5.2. The buckiing
loads predicted by the Tp splution, the np solution and the Ref. 21 (see p.
413) solution are respectively; Ncr = 140 1b/in., Ncr = 142.5 1bs/in and
Ncr = 144.5 1b/in. The finite element results are thought to be more nearly
correct because they are based upon analyses involving more degrees of

freedom (142 for Tp and 52 for np) than that given in Ref. 21. More

detailed results for this example will be found in Ref. 12.
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SECTION 4
MINIMIZATION ALGORITHMS

4.1 Introduction

The motivation for much of the work in energy search methods arose
from the need to solve the highly nonlinear equilibrium equations associated
with geometric nonlinearities caused by cubic and quartic displacement terms
in the potential energy. By virtue of the principle of minimum potential
energy many of the minimization algorithms from mathematical programming
were directly applicable and an extensive bibliography through 1965 is
contained in Ref. 1. After some initial work with relaxation type direct
methods (Refs. 1 and 5), most recent efforts have been with gradient methods
(Ref. 9) and in particular with the variable metric (Fletcher-Powell) and
conjugate gradient (Fletcher-Reeves) algorithms. In general,gradient methods
tend to be more efficient than non-gradient methods especially when the
gradient is a computational byproduct of the function evaluation. The experi-
ence gained over a period of time in applying these algorithms to structural
problems has led to some recent advances (Ref. 13) and new schemes that are
reported in this section.

4.1.1 Gradient Methods

The conjugate gradient and variable metric algorithms can be viewed
as unconstrained minimization methods or as procedures for solving systems
of linear and nonlinear equations (see Refs. 13, 27 and 28). Mathematically
these points of view are entirely equivalent although computationally there
are subtle differences which will be discussed in a later section. Both
methods proceed by minimizing the energy in a sequence of directions each
somehow related to gradients of the energy function. The steps in the
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-
conjugate gradient method from an initial guess vector Zo, are

N
ﬁo = -, = - vi{Z,) (4.1a)
- - >

Ligg = I3+t Py (4.1b)
V4 = VI (Z1+]) (4.1¢)
> >

Pig] = Wiy *+ By P (4.1d)}

where B is a positive scalar determined by an orthogonalization criteria
and ti is the smallest positive root of the directional derivative

r4
P

-
minimum of I (Zi +t 31) considered as a function of the scalar t.

- -+ - -
. vn(Zi +t Pi) for prescribed Zi and Pi and thus corresponds to the

The one dimensional (1inear) search for this root is the subject of the next
section. In the case of an ordinary stiffness matrix Kf a closed form
solution for t; is possible (Ref. 29) and a number of algebraically equivalent

expressions may be formed, namely

'vn | F.T VIl, F.T il
t. = - L i . 1_ 0o (4.2)
i 3 Tk 3 EiT K B, 31T KB,

The scalars B, are determined by the K-orthogonalization of the
residual vectors (negative of the gradient)in the linear case and again a

number of equivalent expressions are possible (Ref. 29), namely

_---_-—-—_--_—_-_.-___—_—___.__—.__._-.-..__—..-——— ——--————-———-—--——--Ih-----—--—-——

# The potential energy is then simply 1 = E-iT KZ-ITF
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| 2 vnT K ; -vnT K vn
- I i+1[ﬁ _ 41 io_ T (4.3)
i 2 T,2 : RS ’
]vnil 31 K P, 31 K Py

If the orthogonalization is considered a separate process starting from vIL,

-
then a recursive formula is generated for VI 41 in terms of K and Pi’

Wi = oW o+t K Pi (4.4)

However, the usuai gradient definition of vn(fi+1) results when 31 is the

=

direction used to generate 1.

i1 and vit, is vn(ZO). A1l numerical

results in this report use the current gradient vn(fi+1). In nonlinear
problems, as Eq. 4.7c 1indicates, the current gradient must be used by
the definition of the algorithm. It can be shown in the linear case (Ref.
29) that the gradients are mutually orthogonal and as an important consequence
the procedure converges in at most n steps where n'is the dimension of K .

The variable metric method (Ref. 28) also used K-orthogonal direc-
tions but these directions are determined in quite a different manner. A
square matrix Hi is computed at each step which accumulates information about
the function H(f) and ultimately converges to the inverse of K in linear
problems.  This matrix is used as a metric to transform the gradient

directly into a new search direction and gives the method its name. The

formulation of this procedure as given by Fletcher and Powell (Ref., 28) is:

N
P.

; - H; v (Ei) {4.5a)

- <>
Si = ti Pi (4.5b)

- L3 - - » - + + [l _>
where again t. is determined so as to minimize 1 (Zi + t Pi) for given Z,

3

and Pi s
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- a - - 5

Zi+1 = Zi + Si {4.5¢)

_\; + -+

; = VI (Zi+1) - vn(Zi) (4.5d)
and

H1+] = Hy + A1 + B1 (4.5e)
T T -

Ay = 8L Si/S: Yy (4.5f)
_ > >T = T >

B1 = - Hi V1 Vi Hi/vi Hi Vi (4.5¢)

The initial Hi is any positive definite matrix and the identity matrix is
often used. The monotonic reduction of H(E) at each step can be shown
(Ref. 28 ) and n step convergence in linear problems follows from the
K-orthogonality of the gi‘ In nonlinear problems Hi converges to an
approximation of the inverse of the matrix of second partial derivatives
so that in the limit its convergence characteristics resemble Newlton's
method. In the course of applying it to a wide variety of structural
problems the method has proved very stable with storage and manipulation of
a full H matrix its most serious handicap.
4.2 Scale Effects on Gradient Methods
4,2.1 Linear

A recent improvement in the efficiency of gradient methods (Ref. 13)
was achieved not by finding better search directions but rather by transform-
ing the function space itself. The characteristic invariants of the space
for a linear problem are the eigenvalues of the stiffness matrix. These are

proportional to the square of the principal axes of a constant energy
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ellipsoid in the space. It is clear geometrically that an n-dimensional
sphere is the optimal function space since one gradient move from any point

in the space reaches the minimum. In general the conditioning number CN

of the matrix of second partials [azagz ]
177
CN - ]Amaxllmin. (4.6)

where  denotes an eigenvalue, is also a measure of the deviation of a
function space from optimal. The closer CN is to unity the better the
space. As reported in Ref. 13 the presence of mixed derivative displace-

ment terms, like W, s Can cause huge variations in this number with simple

\
changes in the physical units used. A solution to this dilemma was found to

be a scaling transformation which by reducing CN improves the efficiency of
gradient methods. To understand the rationale of this transformation

consider the before and after situation shown in Fig. 22 with respect to the
Gerschgorin circles. Recall that Gerschgorin's theorem guarantees that

every eigenvalue of the matrix A T1ies in at least one of the disks centered

at a;; and of radii R, = 3;1 |aiji so that the circles in Fig. 22 indicate
the possible range of eigenvalues. In the unscaled case the circles are not
only large but are centered at widely different points which is the key to the
solution. The circles for the scaled matrix are all centered at the same
point and their radii are tightly bounded above. This was achieved by a

scaling transformation which will now be described.

To minimize a positive definite quadratic form of the potential energy
> -+ ->
MZ) = 5 1'KZ - 7 F (4.7)

operate in the scaled coordinates
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1) = ¢ VkV-VF (4.8)
where
=0V, Fo=oF
(4.9)
1 (M= 1@, k= Dk
and
0 iF
dij = 4 (4.10)

Ll/(c/ki_i) i=

The circles for K are all centered at 'l/c2 and since ¢ cancells out in
the eigenvalue ratio for CN, the particular value of ¢ cannot effect the
conditioning number for K.  However by choosing ¢ = vm, where m is the
maximum number of nonzero elements in any row, the spectral radius of K can
be shown (Ref. 13) to be less than one

o(K) = max [2:] < 1 (4.11}

i 1|
This scaling transformation does not in general achieve the optimum CN but
does represent a standard form for positive definite matrices that eliminates
il1-conditioning characterized by a large variation in the diagonal elements.
A study of the influence of this transformation on the variable metric and
conjugate gradient algorithms was made for the case of a linear plate bending
problem using ¢ = 1. A nine element idealization was used as shown in Fig. 23
with 8ys 8y, dg equal te 70, 70, 60. The convergence characteristics of
the conjugate gradient method.as illustrated in Fig. 24 indicate rapid

convergence in less than n cycles (n = number of independent degrees of freedom)
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while the unscaled problem failed to converge in 4n cycles. The same data
for the variable metric method are shown in Fig. 25 and indicate a significant
improvement. However, in this case the unscaled probiem does
converge and in approximately n cycles.
4.2.2 Nonlirear

The shapes of constant energy surfaces in a nonlinear space are not
only more complex but are often not even convex. However, Taylor's theorem
indicates that in the neighborhood of a relative minimum of the potential
energy having positive definite second variation, the matrix of second

partial derivatives

2 2
9 1 P _ 5 _
[aziazj (1)1 = [35;323 (Uy + Uy + Uy - W)] (4.12a)
that is
> a2
[Kij (2)] = [Kij + -———aziazj (U3 + U4)] (4.12b)

dominates the potential energy. Hence it is possible to define scaling for
the nonlinear problem which is similar to that for the linear problem. In

the nonlinear case, however, the scaling transformation is a functionof

-

Z. In the geometrically nonlinear problems which have been studied, the

diagonals of (Z) differed by factors of two or three with respect to the

K.iJ
linear Kij but they were the same order of magnitude. Computational experi-
ence to date indicates scaling based on Kij to be as good as scaling based on
K43 (E) in such situations. The present scaling procedure thus removes
gross ill-conditioning but does not appreciably change the conditioning for
variations in €3 (E) that are less than one order of magnitude.

There has also been some use of linear scaling for problems with

material nonlinearities (Ref. 6) in conjunction with the variable metric

82



method.  The diagonals of the flexibility matrix were used in this case
since the complementary energy functional was being minimized. The
improvement in the convergence characteristics of the variable metric method
was comparable to that obtained in geometrically nonlinear problems.

Results of these and other applications lead to the conclusions that:

(1) Convergence of the variable metric method can be significantly
improved by linear scaling in both Tinear and nonlinear
problems.

(2} The conjugate gradient method is a reliable algorithm in

scaled coordinates for plate and shell problems.

4.3 Convergence Studies
4.3.1 Over-Discretized problems.

The conjugate gradient algorithm was applied to a linear plate
bending problem to numerically study convergence vs. the number of degrees
of freedom used for a square element grid. All numerical work employs the
scaling transformation with ¢ = 1. The 16 degree of freedom plate bending
element of Reference 2 is capable of representing the energy and maximum
displacement of a simply supported plate under uniform pressure with a
very few elements. As more elements are used the problem quickly becomes
"over-discretized" in the sense that only a fraction of the degrees of
freedom present are needed to represent accurately the displacement field.
The number of cycles required by the ceonjugate gradient method as a function
of the number of degrees of freedom in this situation is shown in Fig. 26.
The relationship is nearly linear with a slope considerably less than one.
Since only square elements (i.e. uniform grids) were used in these cases,
the rate of convergence is probably greatest for this particular element
stiffness matrix. Typical run times on the 7094 for N = 100, 256 and 400 are
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15, 81 and 180 seconds including formation of matrices. These results
indicate that convergence occurs with n << n for over-discretized problems.
A study made by Kowalik (Ref. 30) using a plane stress (membrane} element
produced a similar result when he obtained convergence in 280 cycles for
680 degrees of freedom. This result was obtained without any reported
scaling; however, most plane stress element stiffness matrices have equal
diagonals if their planform is square and in general should not suffer
seriously from scale effects. It is important to note that the conjugate
gradient method storage requirements were only one (16 x 16) element stiff-

ness matrix and a few vectors of dimension n for these square grids.

4,3.2 I11-Conditioned Probliems

The convergence characteristics of the variable metric and conjugate
gradient methods in problems with essential i11-conditioning was investigated
using four irreqgular element grids. These grids are shown in Fig. 23 and
have the same (uneven) spacing in the x and in the y directions. These
grids were chosen so as to produce stiffness matrices with high conditioning
numbers independent of scale effects. The scaled and unscaled conditioning
numbers (CN) are given in Table 6 identified by the maximum element aspect
ratio (a/b) for the grid.

For this study, convergence was defined as the cycle at which no
further reduction could be made in the potential energy even in the direction
of steepest descent. The number of cycles so required by the variable
metric and conjugate gradient methods are plotted in Figs. 27 and 28 vs.
Tog;o Cy and maximum element (a/b). These results indicate that (1) aspect
ratio is a good measure of conditioning in these problems and (2) the number
of cycles increases approximately linearly with both parameters. As Fig. 28

shows, well-over n cycles (45 vs. 36} were required by the conjugate gradient
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method for the case with Targest CN' In such ill-conditioned problems it

is crucial that the sequence of conjugate directions be continued beycnd cycle
n and not aborted in favor of a steebest descent move at cycle n+l. The
reason is that the very slow rate of convergence typical of many of the

cycles at the beginning of an ill-conditioned problem will be repeated and
ultimate convergence thereby significantly delayed. These remarks, of
course, pertain to Tinear problems and the suggestion in Ref. 27 to return
periodically to a steepest descent move may be well taken for nonlinear
problems.  Further results concerning the accuracy of the displacement field

found in these linear cases may be found in Ref. 13.

4.4  The Linear Search Problem
4.4.1 Step Size Estimates
A factor strongly affecting the efficiency of gradient methods in
nonlinear problems is the linear search that must be made in each new
direction. The object of this search is to find the first positive root,
t*, such that the directional derivative (dn (t)) at E + t E in the

- ] -+
direction P,

3T

dn(t) . vn(f +t 3) (4.13)

vanishes or eguivalently the first minimum of H(E +t F) on 0 <t. A closed
form solution for this root is known for linear problems so that an iterative
search is requiredonly in nonlinear cases. In the widely used cubic
interpolation scheme of Davidon (Ref. 27, 28) and in a new scheme to be
presented in the next section, the root is first bracketed by taking ever
larger steps, hi’ until the directional derivative reverses sign. At every

step, hi’ in this process a function and gradient evaluation are required.
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The true computational cost of a gradient method then depends not only on the
number of cycles (directions) but on this number weighed by the cost of
each linear search.

A method for generating the first step size, h], in each new direc-
tion so that the bracketing can usually be accomplished in one or two steps
has been developed. The essence of the scheme lies in making the process

adaptive. The infinity norm of the current vector

Z;1] = max |z (4.14)

is used to generate h1 as

s oo ML (4.15)

where c; is a parameter dependent on the history of all i-1 linear searches

previously performed.

¢, = 1
(4.16)
;. = @7 (»° Ci1
with
r = the number of increments required to bracket the root
in cycle i-1.
s = the number of decrements required to insure |dn(ta)| > 0.01 [dn{t,)|;

plus 1 if the search results in t* < t, + 0.1 (tb - ta) at cycle 1.
Within a few cycles, usually two, the value of C; has adapted to the space and
any further changes are infrequent. Because of this property the initial h1
at cycle one is not critical. If for some reason a new direction does

produce a drastic change in the Tinear search, the machinery necessary to adapt
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to such a change is present. The object of this procedure is to bracket the
root, t*, with a minimum effort subject to the constraint that the resulting

interval be reasonably small in the sense defined by s.

4.4.2 Iterative Solution
Once a zero of the directional derivative has been bracketed the
cubic fitting scheme of Davidon works reasonably well and is in wide use.

The most common difficulty encountered is in satisfying the condition,

dn {t*)

e = = < E (4-17)
1811, - 1t + o)l

Geometrically this is the cosine of the "angle" between ; and vn(% +.t*3)
which provides a convenient frame of reference in choosing ¢ for computa-
tions. Literally ¢ 1is a convergence criteria for accepting t* as a zero
of the directional derivative. Since the cubic fit scheme seeks t* indirectly
by interpolating the function 1n(t), it will have difficulty in those cases
where the directional derivative crosses zero with a steep slope. A new
iterative scheme has been developed based directly on dn(t), the slope of
m{t). With t* bracketed as previously discussed in Section 4.4.1 the problem
of finding the crossing is relatively straight forward. A combination
Regula Falsi-Bisection procedure has been developed that works well under
these starting conditions. If the function is quadratic the procedure is
exact and if the function space is nonlinear but convex the procedure will

always converge to the root. Let te be the current estimate to t*,
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"ta"‘tb _
dn(ta)—dn(th

1. t, = ta - dn(ta)

2. If du(ty) - dn(t.) <0

then
tb+ta
te+tb
else
ta > ta
te M tb
3. t = l—(t +t)
e 2 ' a h

else

The iteration steps are 1, 2, 3, 4, 1, 2, 3, 4, ... until convergence as
defined by Eq. 4.17 is achieved. Step 1 is basic Regula Falsi,steps 2 and 4
insure that the interpolation points always bracket the root and step 3 insures
against slow convergence for strongly nonlinear problems. This is illustrated
in Fig. 29 and clearly shows the need for step 3 when steps 2 and 4 are used.
The flat part of the curve corresponds to a region in which the quadratic term
in I dominates. As t becomes large the higher order terms dominate; causing

the directional derivative to sweep up in direct proportion.
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It is this behavior that necessitates step 3 to maintain a good rate of

convergence.

4.5 Termination Criteria
4,5.1 Minimum Function vs. Minimum Gradijent in Finite Arithmetic
To discuss termination criteria for energy search algorithms it is

helpful initially to distinguish between linear and nonlinear problems. In
lTinear problems most gradient methods, like the conjugate gradient or variable
metric, theoretically converge in at most n steps where n is the number of
degrees of freedom. The proof of this results, when the gradient after

n cycles is shown to be orthogonal to n linearly independent vectors and
hence is the null vector. In actual computations with finite arithmetic,
the chances of the gradient vector being null are nil. What one usually
assumes is that when the energy is converged to n digits, the norm of the
gradient is small enough to give a solution of the equilibrium equations
accurate to £ < n digits. With n a finite value there are a number of
displacement states that yield the same energy to n digits, but differ from

th place. For example in some problems there may be

each other after the ¢
several displacement states that are equal to only 4 digits but give the

same energy to 8 places and it is impossible in such cases to get 5 digit
accuracy with a termination criteria based entirely on the energy. On the
other hand components of the dispiacement vector rarely converge at the same
rate and the larger displacements are usually accurate to more than £ places
which tends to support an energy criteria. The same line of reasoning applies
equally well to nonlinear problems except that the process theoretically
converges (and the gradient becomes the null vector) only in the Timit.

Thus in most problems the choice of a termination criteria becomes a matter

of picking a suitable value of n. As noted in Ref. 13 for linear plate

bending problems it is possible to take n equal to the working precision of the
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arithmetic without adding many extra cycles to the search. In practice
both 1inear and nonlinear structural problems are usually run until no
reduction in the energy can be made in the direction of steepest descent.

There occasionally are cases when the gradient is not as small as
one would like even after the energy is converged to n places. If n is the
working precision of the arithmetic then either a higher precision must be
used or some alternative scheme employed as a terminal option to drive the
gradient to zero independent of an energy criteria. While this last
statement may sound paradoxical it is simply a recognition of the fact that
several displacement states have the same energy to n places but have
different gradients. To get from one of the states with a higher gradient
to one with a lower gradient the iteration should be such that the norm of
the gradient decreases monotenically. This iteration may cause the energy
to increase initially, however, the values cannot change significantly from
that previously found, since the equilibrium position is stable. One such
scheme is presented in the next section.

4.5.2 Functional Iteration as a Terminal Option

The object of the energy search is to find the i that solves the
equilibrium equations vn(f) = 0, Consider the problem of solving this
system of nonlinear equations starting from the E found by the energy search
algorithm. This may be viewed as a cleaning up operation for problems
difficult to solve accurately by energy search. In this context it seems
Togical to ask that the algorithm used be free from any large matrix operations
and that it be computationally less effort than the energy search. A form of
functional iteration that is a nonlinear anaiog of Jacobi iteration fits these
requirements and a strong argument for convergence can be made if nonlinear
scaling is used. Define a functional iteration to solve the problem f = 3(3) by
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L, = 9(zy) i=0,1,2, .. (4.18)

The contracting mapping theorem (see Ref. 31) implies that

If

P >

la(zy) - Z,1 < (-L)yr
and

> > > -+ >

[1g(z) - go(W)|| < L [|[Z-Y]]| (4.19)
for all

> > > > e >

Z, Y such that [|Z - Zolls 1Y - Il =< r
with

0 <L < 1, r>20
Then

Lim 2, - Z (4.20)

'i+m

-+

In other words if the initial guess Z_isn't too bad and if_a has a Lipschitz

0
+

constant less than one in the neighborhood of Z0 then the iteration converges

to the unique solution in that neighborhood. If the component functions, g;s

of a are differentiable then Taylor's theorem gives as a Lipschitz constant
0Q.
L =  max H[#]H (4.21)
> > :
[1Z-Zy! | <r ’
In the present problem,

- =

0@y = - W@ (4.22)

-3
where 1(Z) is the potential energy function so that
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9. s i
[EE?] = [553-(21 - 55;) ] (4,23a)
39; ! k4
—] = [&,, ~ (Z)] (4.23b)
[azj ij 9292
[Egii = 1 - () (4.23¢c)
azj '

and K(E) is the matrix of second partials which in linear problems is simply
the ordinary stiffness matrix. The eigenvalues of [;%% Jare 1 - Ai(E)
where xi(E) are the eigenvalues of K(E). Now if «(Z) is such that
>
m?x A (Z) < 1 (4.24)
then since K(E) is positive definite by virtue of the principle of minimum

potential energy,

0 < g, < 1 (4.25)

where I 1 - A, are the eigenvalues of [;;; . Using the scaling criteria
of Section 4.2 on K(%) insures that Eq. 4.24Jis satisfied so that a Lipschitz
constant less than one has been shown at 3. If the starting vector Eo from
energy search is near the solution then this indicates the following noniinear
Jacobi iteration is convergent in properly scaled coordinates,

- -+

-3
Z_i+'| = Z_i = VH(Z_'-) 1= 0,], s (4.26)
In the Timited computational experience to date the scheme has always converged

monotonically in the sense

Ilvﬂ(zm)ll2 < IIVH(Z,-)H2 (4.27)

The energy usually increases slightly the first few cycles and then decreases

to a value very close to that found in the energy search.
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SECTION 5
ANNULAR PLATE ELEMENT

5.1 Introduction

In this section the work reported in Section 2 is extended to the
case of o flat plate element in the shape of a sector of an annulus. These
elements may be joined with the rectangular plate and cylindrical shell
elements reported previously. A special case of the annular plate element
in which the circumferential dimension is large compared with the radial
dimension is useful as a rib stiffener attached to cylindrical shells.
Numerical results are presented and compared with known solutions for
several linear example problems.
5.2 Development of the Element

The plate element developed in this section has the shape of a sector
of an annulus, bounded by the arcs r = " and r = ) and the rays 6 = 9, and
8= 8, n a plane polar coordinate system (see Fig. 30). This shape makes it
necessary to transform the strain-displacement relations for a flat plate in

Cartesian coordinates (Eqs. 2.3) into polar coordinates, yielding*

2
e = My %.(%%) -z %Y (5.1a)
' ar
- 1l oav,u, 1 (_'O‘.Vi)z_.z. L 32W+§E) (5.1b)
i rode v 5,2%8 ¥ ' 2 ar )
r 56
2
1 u v v Toawaw 2z 3w 1w
Tee T ¥ 30 13 r P Y orae v (arae Y ae) (5.1c)

Here r, o, and z are polar coordinates with corresponding displacement

functions u, v, and w, and plane strain components €t Egs and Ypg* The

A R A W B SR e T S O e S P Ak P4 e T A S Sy A B A o e ek

* Alternatively, these equations may be derived from the set given in Ref. 7.
for an arbitrary shell in curvilinear coordinates by suhst1tq§4ng the appro-
priate expressions for the Lame parameters and principal radii of curvature.
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assumptions implicit in these equations are:

(1) normals to the middle surface of the plate remain straight and
normal during deformation,

(2) transverse shear deformation is negligible,

(3) the normal displacement w is constant through the thickness, and

(4) quadratic terms in u and v are small compared with quadratic
terms in w,

Assumed displacement modes for the interior of this element are taken
as sums of products of one-dimensional interpolation formulas, in the spirit
of the work reported in Section 2. Thus, if f stands for either u, v, or
W, we have

2 2 1 1

flean) = 1T 1 1 1 Fpile) 6g4(n) f
i=1 j=1 p=0 q=0

pgij (5.2)

Here £ and n are arc lengths in the radial and tangential directions,

respectively; that is, £ = r and n = re. The f are undetermined

pgiJ
coefficients, and Fpi(g) and qu(n) are osculatory interpolation functions

with the following properties:

FOi (gk) = 6.“( s GOj (ng) = ng (5.33)
afF . G .
o1 = . 0] =

Fii (8 = 0 Gy {ng) = 0 (5.3¢)
] aG,
1 - . i i} -

e (B = 8y s s (ng) = 8y, (5.3d)
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where E = Tpo Mg = T8, Gik and 5§Eare Kronecker deltas, and i, k, j, £
take on values 1, 2.

A set of functions which satisfy the foregoing requirements is

(e) = (PP (p) (5.4a)

F o

pi

6g5(n) (0d)d Sqj (®) (5.4b)

where the non-dimensionalized radial coordinate p = r/d has been introduced,

with d = ro-ry.  The Ppi () are first-order Hermite interpolation poly-

nomials given by

Porle) = 922(-391 * oo + 6pjege - 3(py t 0yp) p2 + 2 03 (5.5a)
02 D) = 01 (302 = D]) - SD]PED (D] + 02) p - ap (S-Sb)
p ( 2 2 3 5.5
11(e) = =oyeo” +oplen * 204)e -(205 + g} 07+ 0 (5.5c)
p - 2 2 2 3

12(e) = - 0y py * prlog + 205)p (207 + 0p) 07+ o (5.5d)

Here o1 is r]/d and Po is r2/d. These polynomials interpolate a function
over the interval py to ey, in terms of the function values and first
derivatives at the stations Py and po-

The functions qu(e) may be chosen either as trigonometric inter-
polation formulas (written out in Eqs. 2.56 for the case 6y = 0) or as
first order Hermite interpolation polynomials. With the properties expressed
in

in Eqs. 5.3 in mind, it is easily verified that the coefficients quij

Eq. 5.2 are the values of
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PHa ¢
5P and

evaluated at the corner ¢ = Ess M = LEE Substituting Egs. 5.4 into Eq. 5.2

and choosing f = w for the sake of illustration yields

2 2

wip,8) = z Z [P01(Q) Soj(e) wij
i=1 j=1

+ (d) P]i(p) SOj(e) ngj

+ (Qd)P11(p) S]j(e) wnij

2
+ (Dd )P]i(p) S]j(ﬁ) w&nij ] (5-6)
wij is the displacement, wgij and wnij are the radial and tangential sTopes,
and wgnij is the twist at the corner ¢ = Eis M T nje Along the edge & = 8y .

Eq. 5.6 becomes, in light of the properties expressed in Egs. 5.3,

W(p,ﬁ]) = [Pﬂi(p) wi] + (d) p]i(p) wEi1] (5-7)

1

n -~ ™

i
Thus the value of w along this edge depends only on the corner variables Wips
Wo1s w511 and ngI’ so that continuity of w between two adjacent annular
elements is assured by matching appropriate pairs of variables at the corners
which bound such an edge. Furthermore, continuity of w between the straight
side of an annular element and a rectangular plate element or a straight side
of a cylindrical shell element can also be assured, since the latter two

elements yield the same expression for w on such an edge as does Eg. 5.7.
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Similarly, the slope I%aj;%%- along an edge g = &y is given by

2
TI_)%T %% (p’e]) - Z [P01(p) wn'i] + (d) P'H(p) wEn'ﬂ] (5.8)

i=1

so that slope continuity between adjacent elements can also be assured by
matching appropriate corner variables. Similar properties hold on edges
D= pys that is, annular elements can be joined together along curved edges
(provided they have the same center of curvature), or they may be joined to
cylindrical shell elements at right angles.

Continuity of the u and v displacements is also assured by matching
corner variables. It is not necessary to match derivatives of u and v
across element boundaries, but this can be done in order to insure continuity
of middle-surface strains on boundaries between annular elements when appro-
priate. However, when a rectanguiar element meets an annular element,
these strain continuity conditions imply a linear constraint equation rather
than a simple one-to-one linking of corner variables. This arises from the

extra term in the tangential strain-displacement relation for the annular

element. At the middle surface of a rectangular element,

2
= ) aw
sy 5y + 2‘(3y (5.9)

while in an annular element,

1 U ] W
Ea‘?ﬁ*?*ijz(sa’ (5.10)
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The potential energy of an annular element, assuming linear elastic
isotropic material behavior is
h
2% 2
'1T=E E [e +€2+2\)E€ +l('|-\)) z]rdrdedz*w
a 2 r i) r'g 2 Trg a

h’ e, r
5 11 (5.11)

in which E is the modulus of elasticity, v is Poisson's ratio, h is the plate
thickness (assumed uniform), and W, is the work done by loads applied to the
discrete element. Substitution of the strain-displacement relations, Egs.
5.1, into Eq. 5.11 yields quadratic, cubic, and quartic terms for the

strain energy:

u. = U

a 2a t U

33 T U4a (5.12)

In principle, substitution of the assumed displacement modes and
formation of stiffness matrices is carried out in the same manner as for the
rectangular plate and cylindrical shell elements discussed in Section 2.
However, the explicit appearance of the variable r in the strain-displacement
relations and in the potential energy expression, the non-zero lower limits
of integration,and the non-integer coefficients in the Hermite interpolation
polynomials present complexities and numerical difficulties for the annular
element which do not occur for the former elements.

A special case of this element in which the outer radius To is not
much Targer than the inner radius, r is useful in modeling rib stiffeners
attached to cylindrical shells. The basic assumption made is that the
radial strain Ep = 0 over the entire element and the specialization then

follows steps similar to those for the rectangular plate stiffener {see

Section 2.2.2).
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Application of this element to specific test cases is discussed in
the next section.
5.3 Examples

Two test problems illustrating applications of the annular plate
element to problems with linear, axially symmetric behavior are discussed.

A thick walled hollow cylinder subjected to internal pressure,
illustrated in Fig. 31, is discussed in Article 26 of Ref. 26. A slice of
the cylinder cut out by two adjacent cross sections can be treated as a plane
stress problem. The cylinder has been modeled by a single element, by two
elements (as shown by dotted lines in Fig. 31}, and by five elements stacked
radially. The condition of axially symmetric deformations, when imposed
on the assumed displacement modes, eliminates all Vij’ Vgij’ Vnij’ Vgnij’ unij’

and u variables and requires that Upp = Uyps uEH = ug]Z’ Upy = Upgs and

gnid
ug21 = Uppos Teaving just two independent degrees-of-freedom for the one-element
case. Table 7 lists maximum displacements and maximum stresses for three
different cases, with approximate solutions for the three modelings compared
with the exact solution of Ref. 26. Case 3 shows that more elements are needed
to achieve good results as the ratio rz/r1 grows. This is due to the term
(rz/r)2 which appears in the exact solution. As the size of the outer diameter
relative to the inner diameter grows, more and more degrees-of-freedom are
necessary to approximate this term well by polynomials.

An annular plate subject to various lateral loadings and support
conditions is discussed in Article 17 of Ref. 20 (see in particular Fig. 36,

p. 62, Ref. 20). Figure 32 shows the annular plate with the loads and

support conditions for the first of ten cases for which solutions were
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obtained. In each case results {obtained by two-element models) agree

closely with the exact solutions reported in Ref. 20 as shown jn Table 8.
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SECTION 6
DESCRIPTION OF THE COMPUTER PROGRAM

6.1 Introduction

The computer program described in this section implements both the
potential energy search method and the direct stiffness method of structural
analysis for plate and shell structures which may be modeled adequately by
assemblages of certain discrete elements. Geometric nonlinearities may be
incorporated directly within these elements so that finite deflection,
buckling and post-buckling behavior may be predicted. The Fletcher-Powell
and Fletcher-Reeves function minimization algorithms are employed for the
potential energy search. In addition, matrix inversion is available for

linear solutions.

6.2 Program Capabilities and Limitations
6.2.1 Available Elements.

At present, this program contains six kinds of four-sided isotropic
Tinear elastic plate and shell elements. Each is bounded by parametric
curves in an orthogonal curvilinear x,y coordinate systemf Displacement
states within each element are represented by assumed modes with certain
generglized corner displacements as undetermined coefficients. Satisfaction
of the geometric admissibility requirements of the principle of minimum
potential energy is assured by assigning the same independent degree-of-
freedom number to corresponding displacement variables where two element

corners meet. With certain exceptions, enumerated below, the assumed modes

are osculatory interpolation formulas, and each displacement function f(x,y)

# Throughout Section 6 and Appendix B the arc lengths are denoted x,y rather
than g£,n because the Tower case Greek symbols are not available alpha-
numeric characters for computer input-output.
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has as undetermined coefficients the values of f and its derivatives with
respect to x, y, and xy at each corner, for a total of sixteen. Here, f
stands for either of the in-plane displacements u and v, or the transverse
displacement w. Sixteen is the smallest number of modes assumed for
interpolation of the displacement w. For u and v the smallest number of
assumed modes is four. This choice is available as an option with certain
elements. However, osculatory formulas (which interpolate a function and
its first derivative} are preferred for interpolation of u and v for two
reasons: first, this makes it possible to join elements together at right
angles, and second, it has been found that the extra investment in computing
time entailed by this choice pays off in better solutions (most notably,
better membrane stress predictions). Similarly, an improvement in results
for the bending displacement w is obtained by resorting to hyperosculatory
interpolation formulas, with a total of thirty-six degrees of freedom. This
optiaon is available for certain elements, but its use with non-Tinear strain-
displacement relations is not feasible.

Descriptions of the six available elements, illustrated in Fig. 33
follow.

6.2.1.1 Rectangular Plate Elements

Membrane displacements u{x,y) and v(x,y) may be interpolated over the
interior of this element using either Lagrange (zeroth-order Hermite) poly-
nomials with eight corner degrees-of-freedom or osculatory (first order Hermite)
polynomials with thirty-two degrees of freedom {counting both u and v), or
membrane action may be suppressed entirely. In the case of Lagrange
interpolation, the four corner values of u and the four corner values of v
are the undetermined coefficients. The bending displacement w(x,y) may be

interpolated using osculatory polynomials with sixteen degrees of freedom or
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hyperosculatory (second-order Hermite) polynomials with thirty-six degrees
of freedom, or may be suppressed. In the case of hyperosculatory inter-
polation, the undetermined coefficients are w and its derivatives with
respect to X, y, Xy, XX, Yy, XXy, Xyy, and xxyy. It is recommended that
only osculatory interpclation be used unless the structure is a simple
unstiffened rectangular flat plate. Hyperosculatory interpolation is not
allowed with non-linear problems.
6.2.1.2 Cylindrical Shell Elements

This element is bounded by two generators and two parallels of a
circular cylindrical surface. Both membrane and bending displacements are
interpolated using osculatory formulas, with a total of 48 degrees-of-
freedom. Hermite poiynomials are used in the axial direction, and either
Hermite polynomials or circular interpolation functions may be specified for
the circumferential direction. The latter include the functions sine and
cosine, and contain exact representations of the zero-strain modes for the
linear case. The polynomial interpolation functions give a good approxi-
mation of the zero-strain modes which improves as the circumferential
dimension decreases. The trigonometric formulation becomes il1l1-behaved as
this dimension decreases. Consequently, polynomial interpolation is
recommended when the subtended angle falls below 5° while circular function
interpolation is recommended when the subtended angle is greater than 30°.

6.2.1.3  Annular Flat Plate Elements

This element is bounded by two concentric arcs and two rays. As with
the cylindrical element, either Hermite polynomials or circular functions are
available for osculatory interpolation in the circumferential direction. The
assumed modes for this element become ill-behaved as the ratio of the outer

radius to the inner radius grows.
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6.2.1.4 Rectangular Stiffener
Rectangular stiffener elements have been formulated as a special
case of the rectangular flat plate element as discussed in Section 2.2.2.
The stiffener is viewed as a plate attached at right angles to the panel
being stiffened, with one edge coincident with the panel's middle surface.
Since elements may be joined only along their edges, panels may be stiffened
only along element boundaries.
6.2.1.5 Cylindrical Stiffener
This element bears the same relationship to the cylindrical shell
element as the rectanguiar stiffener does to the rectangular plate. Thus a
cylindrical stiffener is a special case of the cylindrical shell element with
the circumferential dimension much larger than the axial dimension. This
element is used only for stiffening annular plate eiements.
6.2.1.6  Annular Stiffener
This element is a special case of the annular plate element with its
outer radius not much larger than its inner radius. It is used as a rib
stiffener on a cylindrical shell element.
6.2.2 Connection of Elements
When two elements meet along an edge, the corners which bound that
edge on one element must coincide with those which bound it on the other
element; that is, element edges may not overlap. Elements may be joined
either tangentially or at right angles, and as many as four elements may have
a single edge in common. If two elements share a curved edge, then they must
be geometrically compatible. For example, the only elements which could
abut a curved edge of a cylindrical shell element are (1) another cylindrical
shell element with the same axis, radius of curvature, and circumferential

dimension, or (2) an annular plate or annular stiffener element joined at right
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angles, with the side joining the cylinder having the same radius as the cylinder,
and the same circumferential dimension. When elements are joined at right
angles, only osculatory interpolation should be used; otherwise interelement
continuity will not be assured.

6.2.3 Specification of Boundary Conditions and Loads

Boundary conditions may be prescribed either as edge restraints or
corner restraints. Symmetry conditions are included as possible edge
restraints so that only a portion of a symmetric structure with symmetric
Toads need be modeled.

Various loadings may be prescribed on the faces of elements, along
their edges, or at corners. Work equivalent load vectors are automatically
calculated for a class of common Toadings including point loads at corners,
line loads along edges, and surface loads. For less common loadings, work-
equivalent load vectors will have to be calculated by hand., A1l loads are
considered positive in the direction of corresponding positive disp]acements.
Multiple load conditions including automatic incrementation may be specified.
Also, displacements may be imposed.

6.2.4 Solution Methods

The principal numerical tools in this program are the Fletcher-Powell
and Fletcher-Reeves algorithms for minimization of an unconstrained function
of n variables (Refs. 27 and 28). The Fletcher-Powell routine develops an
n by n metric for the space, which is computed from information about the
gradient of the function from previous iterations, while the Fletcher-Reeves
routine accumulates this kind of information in a vector. The large matrix
needed by Fletcher-Powell is generally a disadvantage. On the other hand,
for problems exhibiting essential ill-conditioning Fletcher-Powell tends to

converge in significantly fewer cycles than Fletcher-Reeves (Ref. 13).
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Both routines exit when they find that searching in the negative gradient
direction does not reveal a function value smaller (within the computer's
single-precision limit) than the value at the current occupied point. This
seemingly strict criterion has not led to wasted iterations in probiems
studied to date, except for problems so small that the time for an iteration
is negligible.

As with most iterative solution methods, hitches can develop, even
though the routines have been extensively tested. In particular, they should
be given a "reasonable" starting solution. For most problems, either a zero
solution or the solution of a slightly different load set will be used,
which should eliminate this problem. For some types of buckling, however,

a perturbed solution must be given. Otherwise, since this is a gradient
method, an unstable "saddle point" might satisfy the exit criterion.
Experience has shown that the best way to obtain a perturbed solution is to
apply a small lateral load, which plays the same role as an initial imperfec-
tion in the laboratory. This Jateral load can be removed once buckling has
occurred.

The user should examine the intermediate output from the minimization
routine and decide whether satisfactory convergence has been reached. In
those rare cases where convergence is not satisfied, an inordinately large
gradient vector usually makes this apparent. What constitutes a "large"
gradient vector can best be learned by studying the results of converged
problems.  Another test of convergence is the amount of change of the function
value in the last few iterations. This change should be in only the seventh
or eighth decimal ptaces. The program generates a scaling transformation

which has handled adequately all conditioning problems studied to date. An
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estimate of running time is almost impossible to give for this routine,
since running times vary so widely from one case to another, depending on the
amount of non-linearity in particular. The best advice in this regard is
to study the running times of previous problems.

A matrix inversion routine is also incorporated in this program(Ref. 32}.
[t can be used either to obtain solutions to linear problems, or to generate
initial linear solutions to nonlinear problems, which are then turned over to
one of the minimization routines for energy search. In the latter case,
the inverse of the master stiffness matrix is used as an initial metric by
the Fletcher-Powell routine. Running times for matrix inversion vary
approximately with the cube of the number of degrees of freedom. Univac 1107
Fortran IV running time for a 210 x 210 matrix was 340 seconds.

6.2.5 Program Phases

The program is divided into three phases: setup phase, which reads
the description of the problem, assigns independent degree-of-freedom numbers,
and generates stiffness matrices; input/output phase, which reads and analyzes
Toad specifications and prints displacements, strains, and stresses; and
analysis phase, which seeks numerical solutions. For problems with linear
strain-displacement relations either matrix inversion or energy search may
be used. Nonlinear problems must use energy search; however, a linear
solution may be obtained first, either by inversion or energy search, and this
linear solution is used as a starting point for non-linear energy search.
Note that non-linear problems are solved by a single call on a minimization
routine so that no load incrementation is necessary. Nevertheless, incre-
mentation may be desirable so that a load-deflection curve may be traced out.
Furthermore, it is usually much more efficient to use incrementation so that

energy search for each load can begin at the solution for a slightly smaller

Toad.
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6.2.6 Storage Limitations

As many as 50 elements and 250 independent degrees- of- freedom can
be handled. When storage requirements exceed core capacity, the program
automatically sets up temporary external storage on drum {disk). On the
IBM 7044/7094, matrix inversion problems are limited to 200 degrees of freedom.
For nonTinear problems, running times rather than storage requirements are
the real limitations.

6.3 Modeling Structures

6.3.1 Choice of Element Properties

The user should model his structure with as few elements as possible
consistent with his insight into the anticipated behavior. Often, the
spacing of stiffeners is so close that only one element is needed between
stiffeners. Another consideration is the shape of expected buckling modes
(recall that osculatory interpolation fits a cubic in each direction). A
small number of elements should be tried first, and the grid refined if this
seems advisable. Sometimes non-linearity can be suppressed in some elements
(such as stiffener elements), and this can cut running time substantially.
However, no intraelement membrane-bending coupling will be effective in flat
plate elements unless nonlinearity is specified.

6.3.2 Specification of the Layout of the Structure

The elements of the structure are to be numbered consecutively (1, 2,

..} » with a right handed orthogonal curvilinear x-y-z coordinate system

attached to each element in accordance with the following rules, which are
illustrated in Fig. 33:

6.3.2.1 Rectangular Plate and Stiffener Elements

Attach an x-y-z coordinate system at any corner, with the element

lying in the first guadrant of the x-y plane. For stiffener elements, the
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x axis must lie on the short side.

6.3.2.2 Cylindrical Shell and Stiffener Elements

Attach the coordinate system at either of two corners such that
the x axis lies on a straight edge, the y-axis on a curved edge, and the z-axis
points outward from the axis of the cylinder. They coordinate measures
distance in the circumferential direction, not an angle,

6.3.2.3 Annular Plate or Stiffener Elements

Attach the coordinate system such that the x-axis points outward from
the pole, the y-axis points counterclockwise along the inner arc, and the
Z-axis is perpendicular to the plate. Again, the y coordinate measures
distance, not an angle. For this element, an r-s coordinate system is more
convenient for some purposes. In this system, r is equal to x ptus the
inner radius, and 9 is y/r, the angular coordinate.

Next, the corners at each element must be numbered from 1 to 4,
beginning from the origin of coordinates and proceeding clockwise as viewed
from the positive z side. The edges are then numbered clockwise from 1 to
4 starting with the left edge. Edge 1 will connect corners 1 and 2, edge
2 corners 2 and 3, etc, These rules are illustrated in Fig. 33.

Perhaps the most difficult input problem is specifying the topology
of the structure. The convention adopted herein is believed to be fairly
easy to use, while still allowing elements to be joined tangentially or at
right angles. Imagine cutting the structure into elements and then putting
it back together element by element. A first element would be chosen, and a
second element would be attached to it along some edge. A third element
would then be attached to one of these, and perhaps to both. Continuing in

this manner, the entire sturcture would be assembled. If three elements meet
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at an edge, it is not necessary to prescribe three relationships, although
this would produce no error. It would be sufficient to say that element A
joins element B and element B joins element C, and this would automatically
imply that A joins C. Each time an element is added this way, the
following information should be recorded: which two elements are joined,
the corner numbers that bound the edge on which they are joined, and the
relationship between the coordinate axes of the two elements (for further
details, see Appendix B.1, data set S1)}, Using this information, the
program automatically imposes the constraints necessary for geometric
admissibility and assigns degree-of-freedom numbers. In addition to
admissibility, it normally imposes some additional continuity between
elements. For osculatory interpolation of membrane displacements, the
program imposes continuity of normal and shear strains at the middle
surface across boundaries between coplanar elements. It may sometimes be
desirable to suppress this continuity, however, and an option is provided
for this. In particular, whenever two coplanar elements are met by a third
perpendicular element along their common edge, this third element will in
general cause a discontinuity in strain between the coplanar elements by
picking up some of the load. For hyperosculatory interpolation, continuity
of bending moments between elements is also imposed. No option is provided
to suppress this. There is an option to specify that two elements are
joined by a hinge, however,

6.3.3 Choice of Loadings and Boundary Conditions

The goal of most runs will be to generate some sort of lToad-displace-
ment curve. O0Often this curve will have many branches, and a number of runs
will be required to trace out all the desired branches. It is suggested

that fairly small load incrementation steps be taken. During linear
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portions of a curve, this should not consume excessive time if the solution
vector is extrapolated 1inearly aloeng with the load vector. Users who
cannot see their output until the run is finished should prescribe only a
small range of loads for each run unless they are fairly sure of the

points where bifurcation or snap-through will occur. Restart procedures
are provided to facilitate this.

Boundary conditions sufficient to preclude rigid-body displacements
should always be prescribed, even when loads are seif-equibrating. Symmetry
conditions should be specified wherever possible.

6.4 Input Data

Input data decks are divided into two groups: specification cards,
which describe the structure and prescribe certain program options, and
Toad cards, which define a set of forces and imposed displacements to be
analyzed. For each problem to be run in a given job, a set of specifica-
tion cards is provided, followed by one or more sets of load cards. These
sets are punctuated by a separator cards, which are of five kinds:

The title card identifies the current problem. Control is
passed to the setup phase, which reads either a specification group or a
restart card (see Section 6.4.2)}. Upon exit from the setup phase,
independent degrees of freedom will have been assigned and stiffness
matrices will have been generated and written on drum {(disk).

The restart card may take the place of the specification
group, and indicates that the resuit of the setup phase of a previous

run is to be read from tape.
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The loads card passes control to the input/output phase of the
program which will read a group of load cards and generate a work-equivalent
load vector, after which the analysis phase will take control.

A new problem card indicates that an entirely different problem
is to be run next. It is followed immediately by a title card.

The stop card is the last card of the deck. Detailed rules for
punching separator cards, specification cards, and load cards may be
found in Appendix B.

The flow chart in Fig. 34 illustrates the use of separator cards,
and how they control flow among program phases. Note that a specification
group may be followed immediately by a stop card or a new problem card, in
which case no analysis will be performed. This can be useful: the user
can examine the output from the setup phase, and if it seems in order, run

the problem with restart option, with very little lost time.
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SECTION 7
EXPERIMENTAL PROGRAM

7.1 Introduction

One of the primary practical applications of the analytical research
reported here is the development of a capability for analyzing the behavior
of a structure under loads above those at which buckling first occurs in some
element or portion of the structure. For example, in indeterminate trusses
the structure's behavior is often satisfactory above the load for initial
buckling. The same statement is true for stiffened panels. Thus, a more
reasonabie limitation on structural behavior is to 1imit deflections rather
than to prohibit buckling. Thisholds for all structures having substantial
reserve stiffness and strength above the first buckling load.

Capability for the nonlinear analysis of structures has been developed
in this project and its previous phase. Verification of this capability is
difficult because "exact” solutions are available for only the simplest cases.
Only a 1imited number of tests have been carried to loads substantially above
first buckling. Test results have been presented in Refs. 33 and 34 for
some frame structures. Most of the specimens tested could be described as
"fixed-jointed" trusses. That is, they consisted of members assembled to
form triangles and arranged so that if the ends were pinned they would be
determinate trusses. Nome of the tests reported in the foregoing references
were on structures having substantial post buckling stiffness.

The goal of the experimental portion of this research program was to obtain test
results to compare with the analytically predicted behavior. All tests were
designed specifically to verify particular aspects of the analytical capa-

bility. Usually specimens having substantial post-buckling stiffness and
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strength were selected. The procedure was cyclic in character. A test

was conceived, designed and performed. The test results were compared with
the analytical results. If agreement was not satisfactory the test and the
analysis were examined critically and modifications were made. In some cases,
it was necessary to modify the test several times. The test results reported
were those from the last cycle in this process. Some of the difficulties

are discussed and the unsuccessful specimen designs reviewed,

The experimental structures may be divided into three categories;
planar trusses and frames, a cylindrical shell and integrally stiffened
plates. The trusses and frames consisted of a shallow two bar truss, a
three bar truss and a simple frame with a diagonal brace. Most of the tests
were concerned with nonlinear behavior due to buckling and finite deflections.
Nonlinearities of material behavior were avoided. The direction of loading
was unchanged through large deflections.

The two bar truss was designed so that "snap-through" could occur
with the material remaining in the elastic region. Due to the large member
rotations involved the analysis capability is severely challenged. Since
the load-deflection curve for this structure has a region of negative slope,
stability of the specimen and test system must be considered. Displacements
were induced using a test fixture which was effectively rigid. Considerations
for the testing of such systems are discussed in Ref. 35. A simple three bar
truss was tested with proportions such that one member buckles much earlier
than the others. Thus, a substantial porticn of the load deflection curve
is beyond the first buckling load. The planar frame was designed so that

a wide variety of loading conditions could be applied.
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A single cylindrical shell was tested under the action of self
equilibrating, concentrated loads acting along a diameter (see Fig. 54). This
test will be referred to in the subsequent discussion as the "pihched cylinder".
It was performed to correlate measured and computed strains. Finite element
analyses have often been substantiated by comparing measured and analytical
deflections. For many design applications strains constitute a more useful
comparison. It should be noted that the current computer program does not
permit the introduction of curvature continuity between elements as an
additional condition therefore the analytical results will exhibit small
surface strain discontinuities. The pinched cylinder specimen was available
from a previous test reported in Ref. 22. However, in the previous test
only deflections were measured. The same specimen was instrumented for
selected strain measurements.

A number of stiffened plates were tested under the action of either
transverse or in-plane Toads. The specimens were proportioned so that stiffen-
er buckling occurred in the linear range of the material. Extensive deflec-
tion and strain data are reported and are available for correlation with
results generated by future computational effort.

7.2 Truss and Frame Tests
7.2.1 Design and Construction of Specimens

The snap-through planar truss was proportioned so that only one member
buckled as the node point was displaced. Thus, the center node essentially
traversed the arc of a circle centered on the support of the unbuckled bar.
The structure was displaced from its unloaded position to the point where the
buckled member becomes straight again. At this point the member forces shift
from compression to tension and some deflection will occur due to unavoidable

slack in the joints. The configuration tested is shown in Fig. 35 and a
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detailed drawing with important dimensions of the specimen and test setup is
shown in Fig. 36. A general view of the test is shown in Fig. 37.

The node of the truss was held between two bars parallel to the non-
buckling member with a closed rectangular yoke. It was attached to the
yoke between two tension force transducers and a prestress force was induced
in the system such that the transducers always remained in tension. The
three parallel bars consisting of the unbuckled truss member and the two
guide bars, all hinged at their ends, were then rotated by inducing a displace-
ment at the yoke, The force regquired to hold the truss in a particular
position can be determined by monitoring the two force transducers. This
system assured that the direction of the applied load remained unchanged
over large displacements. The testing frame was effectively rigid so that
considerations mentioned in Ref. 35 for system stability were satisfied.

A single buckled member was used because a symmetric buckled configuration
could not be maintained without some guides for the displaced node point.
Attempts to test a structure in which both members buckled simultaneously
and equally were unsuccessful. However, the unsymmetric system worked very
well,

The truss members were constructed of a heat treated steel having a
yield point of 140 kips/inz. Considerable care was exercised to maintain
member straightness during heat treating. Since the members had to be hung
vertically from one end during the process only a 1imited member length
could be treated. A high yield stress which permits large elastic strains,
was necessary to permit significant member curvature during buckling. The
member ends were clamped into end fittings containing precision bearings to
provide the hinged ends. The end fittings were of steel to reduce the

fitting flexibility to the minimum. The entire system was attached to a
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one inch thick aluminum plate. The buckled structure is shown in Fig. 38.

The three bar truss configuration was designed so that one member
picked up more force than the others and then buckled at an applied load
considerably below the applied load required to buckle the next member. The
specimen selected is shown in Fig, 39. The members were of aluminum alloy
7075-T651 and the end fittings of mild steel. The joint at the point of
load application was constructed using miniature precision bearings similar
to those used in the two bar truss. The member ends at the support nodes
were constructed of hardened steel knife edges.

One of the most difficult problems faced in the truss experimental work
was the slack and flexibility in the pinned joints. For the original design
of the three bar truss the structural deformation characteristics were
dominated by flexibility of the joints. Pinned joints constructed using
bearings were usually too fiexible for use in truss structures in the linear
regime. In the first of end fittings designs aluminum was used for ease in
manufacture. The use of steel increased the joint stiffnesses. Finally,for
this specimen, bearings were replaced by the steel knife edge supports. They
proved to be quite stiff and were easier to adjust than the bearing joints.
The very small amount of slack in precision bearings (about 0.001 in) was in
excess of that which could be tolerated. It was difficult to avoid slack at
the knife edge supports. Thus, when the structure was loaded assembly forces
resulted. These forces were not easily detected due to the very low member
buckling stresses. The use of knife edge supports made it possible to adjust
the fitup by introducing shim stock between the knife edge and its support.

A photograph of the structure and test setup is shown in Fig; 40.
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This system was quite successful in dealing with most of the problems
met in attempting to test an indeterminate truss; Steel was used for the
earlier specimens but the lower modulus of elasticity of aluminum was
found to be desirable because larger members could be used to produce larger
strains prior to buckling but no increase in the buckling load. The very
small deflections occurring at the node prior to buckling made the structure
difficult to test.

The configuration used and the Toading conditions for the frame
specimen are shown in Fig. 41. The configuration was selected for its
simplicity and for the variety of possible loading conditions. The member
thicknesses permitted large deflections of the structure without exceeding
the yield point of the material. Also by using slender members the end
forces were kept small and it was possible to construct end connections
which were essentially rigid. However, the use of slender bars for the
horizontal member and the two vertical members resulted in rather small
structural stiffnesses after buckling of the diagonal member. The members
were fabricated of 7075-T651 aluminum and the end fittings of steel. The
structure was attached to a heavy aluminum plate for testing. Details of
the specimen are shown in Fig. 42.. Figure 43 is a photograph of the
test setup. The buckled structure is shown in Fig. 44,

7.2.2 Instrumentation and Test Procedure

The most difficult instrumentation problem in this portion of the
project was accurate measurement of very small deflections. In the linear
range of truss behavior the accuracy of displacement measurements had to be
of the order of 100 microinches. Since the applied loads were small it was
important that the displacement measurement device not apply a force to the

structure. The most successful system involved the use of an LVDT. Friction
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was eliminated and the force applied to the structure by the transducer
during displacement was certainly small. The ocutput was taken either on
a meter or inte an X-Y plotter with the output of a force transducer. The
use of dial indicators was attempted but they were only satisfactory

for large displacements.

A number of force transducers were constructed for specific applications,
They had a U-shaped configuration with foil resistance strain gages on both the
inside and outside at the base of the U. The transducer can be seen in Fig.
43. It is possible to obtain almost any desired sensitivity along with
substantial stiffness using this device. Output was taken either on a
manual balance strain indicator, a self-balancing digital indicator, or with
an X-Y plotter with the displacement output from the deflection transducer.
A1l specimens were loaded by inducing a displacement rather than a force at
the loaded node.

The snap-through specimen was tested to a displacement equal to twice
the rise of the structure. Displacement measurements were made with a dial
gage. Due to the arrangement of the force transducers the dial gage did not
apply any force to the structure since it measured the displacement of the
yoke. The force transducers were stiff enough so that there was no important
difference between the yoke displacement and the truss node displacement. The
displacement was applied in increments and readings of force and displacement
were made. The linear portion of the load deflection curve was of 1ittle

interest and no attempt was made to measure it. Sufficient accuracy could

not have been obtained using a dial gage to make such measurements.
The instrumentation was the same for the three bar truss and the frame.
Load deflection curves were obtained directly with the X-Y plotter. The test

was performed by applying displacements continuously. A photograph of this
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test setup is shown in Fig. 45. This instrumentation arrangement had the
advantage that the test results could be evaluated immediately. Strain
gages were attached to the members to monitor forces. Bending strains
could be measured but the axial strains associated with buckling were so
small that they could not be satisfactorily measured.

7.2.3 Results and Correlation

The results for two tests on the spap-through truss are given in Fig.
46 and 47. The correlation between theoretical and experimental results
for the one inch rise structure is fairly good. Experimental error can
arise from two sources. The force transducers should have been somewhat
more sensitive since the 0.3 1bs. difference in buckling loads represents
about six microinches strain output on the force transducer. However, the
experimental results yielded a smooth curve with little data scatter. The
second source of experimental error stems from the precision bearing
flexibility. This factor would produce more flexibility in the structure
than assumed in the analysis. The experimental curve also passes through
zero load at one inch deflection. Elementary analysis shows that buckling
occurs at 2.98 1bs.

The experimental results for the 2.25 inch rise structure shown in
Fig. 47 are probably more accurate. Good agreement is obtained on buckling
load. The elementary theoretical buckling Joad is 6.68 Tbs.

The three bar planar truss was a very difficult one to test. In view
of this fact the agreement shown in Fig. 48 between experimental and analytical
results was excellent. The first buckling load is very sensitive to the
existence of slack at the supports. Using the techniques described in

Section 7.2.2 the results shown were obtained.
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The stiffness obtained in the experiment was 64.9 kips/in before
buckling and 34.7 kips/in after buckling compared with 74.9 kips/in and
35.9 kips/in respectively for the analytical prediction. The precision
bearings at the loaded node probably accounted for most of the difference in
the stiffnesses. The experimental first buckling ioad of 32.5 1bs. compares
with 38.1 Tbs. for the theoretical value. The upper analytical predicted
buckling 58.9 1bs. compares with an experimental value of 58.8 1bs. An
analytical check was also made by removing the buckled member and replacing
it with its Euler buckling load. The resuiting two bar planar truss was
analyzed to determine the applied load at which the second member would
buckle. The computed load (59 1bs.) was in excellent agreement with both
the analytical and the experimental results.

The experimental results for the diagonally braced planar frame are
shown in Figs. 49, 50, 51 and 52. Correlation of analytical with experimental
results was carried out for one loading condition and is shown in Fig. 49,

The curves follow each other quite closely. It might be expected that the
experimental results would be more flexible than the analytical prédiction, since .
perfect restraint is not achieved in the experimental set up. In this case the
slender members required only small forces to restrain their ends. However,
the end fittings clamped a portion of the member effectively shortening its
Tength. This perhaps explains the somewhat higher stiffness measured.
7.3 Pinched Cylinder

7.3.1 Description of Specimen, Instrumentation and Testing

A short piece of cylindrical shell was tested by Guyan (Ref. 22) under
the action of diametrically opposed concentrated loads. Deflections were
measured on a diameter between the loads and on an end diameter. This same

'mode1 was still available and was instrumented with strain gages so that
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strains, in addition, to deflections could be measured. The primary
goal was to correlate strain measurements at selected Tocations with the
analytical prediction. The specimen used had been obtained from a
ionger piece of commercial extruded tubing. It is shown with strain
gages in Fig. 53. The specimen dimensions and some other details are
given in Fig. 54. It should be noted that specimen dimensional tolerances
are quite large. The ratio of diameter to wall thickness is about 100
and the ratio of diameter to length is approximately 1.

Strains were measured along two edges of one octant of the specimen,
The gage Tocations and their number designations are given in Fig. 55. Gage
numbers and locations are further defined in Table 9. Since all strain
measurements were made on lines of symmetry the direction of the principal
strains were known and therefore two element rosettes were adequate. Electric
resistance strain gages were used and they were attached with Eastman 910
adhesive. Rosettes were applied in pairs, inside and outside, back to back.

The test setup is shown in Fig. 56. The Toads were applied through
steel balls. The deflections measured were the deflection between the load
points and the deflection along a diameter parallel to the loading line at the
edge of the specimen. The loads were applied incrementally and deflection
and strain readings were taken at each increment.

7.3.2 Results and Correlation

Experimental values for strain were recorded at eleven load levels.
The measured strain and displacement data is reported in tabular form inTable C1 of
Appendix C. This data showed excellent 1inearity when plotted versus Joad,
exhibiting very little scatter. Some representative examples of load

strain curves are also given in Figs. C1 through C4 of Appendix C.
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Using cylindrical shell discrete elements of the type described in
Section 2.3.1, the cylinder was modeled as shown in Fig. 57. The strain results
for measured and predicted values are summarized in Figs. 58, 59 and 60. The
1ines shown in these figures were drawn to make the results easier to follow.
It should be noted that the analytical results exhibit discontinuities in the
surface strains because the current computer program does not permit the use
of additional conditions implementing curvature continuity.

7.4. Stiffened Plates

7.4.1 Design and Construction of Specimens

This phase of the experimental program was concerned with the design
andrtesting of stiffened plate structures. The objective of the stiffened
plate program was to perform tests on models that exhibit significant post-
buckling stiffness and strength while maintaining elastic behavior in the
structural material under all loads.

There are almost unlimited possibilities in the design of stiffened
plate test specimens. Stiffeners can be used on one or both sides of the
plate, their thickness to depth ratio can vary over a wide range. Stiffeners
can be oriented in one or two principal directions or they can be skewed.

In addition, boundary conditions on the plates and various load conditions
can change the character of the buckling behavior of a given plate. Obviously,

no one plate model is representative of stiffened plates in general.
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The specimens ultimately chosen for this program were generally quite
similar, with stiffener number, stiffener position and type of loading
the main variables. They had stiffeners on one side only and were subjected
to either transverse or in-plane loads. An attempt was made to select
specimens which could be accurately and easily modeled for analysis.

In all, five plate models were constructed. A preliminary unstiffened
model consisted of a square uniform thickness aluminum plate with an edge
beam of uniform dimension on all four sides. This model was designed for
transverse loading. The edge beam was designed to offer edge restraint
between a clamped and a free edge., Figure 61 is a photograph of the specimen
and Fig. 62 gives details and dimensions. The purpose of the preliminary
model was to investigate the type of boundary conditions to be used in the
experimental program. Results from this model indicated that edge beams
that contribute greatly to overall stiffness create problems in modeling
the structure with the repertoire of discrete elements currently available.
For this reason, none of the succeeding four models used edge beams to obtain
primary stiffness, but only to impose boundary conditions on relatively
"inactive”" edges.

The first stiffened plate is shown in Fig. 63. Dimensions and a
detail drawing are given in Fig. 64. The model is intended for transverse
loading and is simply supported along each edge beam and the two remaining sides

are free edges. It has one transverse stiffener and one longitudinal
stiffener. The edge beam permits end rotation and constant displacement in

the plane of the plate.
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The thickness to depth ratio of the longitudinal stiffeners was originally
12 and was later changed to 30. The second stiffened plate is depicted in
Fig. 656. Details and dimensions are shown in Fig. 66; This model,
also intended for loading normal to the plane of the plate, has one transverse
stiffener and two longitudinal stiffeners. There is one Tongitudinal
stiffener on each free edge, otherwise this specimen is generally similar to
the first model.

The third stiffened piate is shown in Fig. 67. Details and dimensions
are shown in Fig. 68. This plate, while intended for transverse loads, is
somewhat different from the first two piates. The overall depth of the
specimen is 1.250 inches instead of about 0.9 inches. There are 3 longitu-

dinal stiffeners and one transverse stiffener, all with a thickness to depth
ratio of 29. Like the other two transversely loaded medels, this model has
a heavy edge beam on the simply supported sides.

The second and third specimens for transverse load were constructed to
give additional insight into behavior of this particular type of stiffened
plate configuration. By adding additional longitudinal stiffeners to these
two modelis, more overall strength is obtained, in addition, a more uniform
stress field is developed in the plate.

The fourth stiffened plate was intended for inplane loading. This
specimen is pictured in Fig. 69 and details are shown in Fig. 70. It is a
square plate with identical vertical and horizontal stiffeners with thickness
to depth ratio of 12.7. The inplane loads are applied in the direction of
the vertical stiffener on the top and bottom edge. These edges are free to
displace in any direction. The two sides are restrained by edge beams but

are free to move relative to the test fixture.
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The stiffener orientation chosen was the simplest possible, with
the thought that if the edge beams made analysis difficult due to modeling
problems, they could be removed. The stiffeners were designed to buckle
at about 25,000 psi by assuming them to be simply supported along the plate
edge, free on the other edge, and selecting the thickness accordingly. This
same procedure was used for the transversely loaded models, hence the critical
stiffener buckling stress was about the same for all stiffened plate models.
The desired behavior of the inplane loaded model was for the vertical
stiffener on the plate to buckle under load. Various ecceniricities of
inplane load on this model cause different amounts of bending and should
give various types of behavior.

The first stiffened plate specimen for transverse loading was
essentially the same configuration as the inplane model. Smaller stiffener
thicknesses were necessary on the transversely loaded specimens since the
stiffeners are under a triangular stress distribution, due to bending,
instead of the nearly uniform stress distribution in the case of the inplane
specimen.

A1l models, except the pinched cylinder were machined from solid pieces
of 7075-T651 aluminum. This material has a yield point of 73,000 1bs/1’n2
and an ultimate strength of 83,000 1bs/in2. In general, the maximum stress
reached in any test was about 35,000 lbs/inz, so that the material remained
in the elastic range at all times. Tolerances on all dimensions were held
to 0.001 in. except as noted in the detail drawing for each specimen (Figs. 64,

66, 68 and 70).
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7.4.2 Instrumentation and Test Procedure

The primary results desired for all models were lcad-deflection
behavior at different points on the models and load-strain behavior in
regions of buckling and high stress; Deflections were measured with dial
indicators of either 0.0001 in. sensitivity or 0;001 in. sensitivity as
needed. Electric resistance strain gages of the foil type were used to
record strains. Grid sizes were 1/4 in;, or smaller 1n'the region of high
strain gradients. Adhesives used were Eastman 910 except on the inplane
specimen. They were attached with BR-600 adhesive and heat cured. Figure
71 shows the gage Tocations for the inplane stiffened plate model. Figures
72 and 73 show the gage locations for two of the transversely loaded stiffened
plates discussed previously.

The strain gage locations for the unstiffened plate can be seen in
Fig. 74. The primary reasons for location of strain gages was to monitor
highly stressed areas of the plates under test to avoid damaging the models,
to check boundary conditions, or to record strains at locations that are
nodes of subelements in the discrete element analyses.

Test devices and fixtures used were simple. These are best shown
by photographs and diagrams. The test fixture and test orientation of the
preliminary model (unstiffened plate, Fig. 61) is shown in Figs. 75 and 76.
This model was supported on hard steel balls. They were brinelled into
brass blocks and into the model to make the supports as stiff as possible.
Displacements were induced by a micrometer screw as shown. In series with
this micrometer screw was a small load cell to monitor load. Lateral
deflection of the edge beams was measured with vernier calipers, while
deflections other than the deflection under the central load were measured

with dial indicators.
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The inplane stiffened plate was loaded through steel balls and
aiuminum blocks machined to fit the tee formed by the end of the stiffener
and the plate edge. This test, along with all the transverse loading
tests were conducted on a 5,000 1b; screw type testing machine. This machine
was well suited to buckling tests, since a displacement is induced rather
than a load. This chatacteristic makes the possibility of damaging a
specimen remote. The stiffness of the cross head is 106 1bs/in for a
concentrated load in the center. This effect was compensated in the case
of the inplane loaded specimen. The point of load application for this
model was varied from the plate to the top edge of the stiffener to give
various amounts of bending.

The test for all three transversely loaded stiffened plates were
nearly identical, except for the number and location of loads applied to
each. These plates were simply supported on round steel bars as shown in
Figs. 78, 79, and 80. The transverse loading was applied as concentrated
Toad(s), at the junction(s) of the longitudinal and transverse stiffeners
on each model. The loading points are shown in Figs. 66, 68, and 70.
Displacement was induced by the testing machine, through the buckling
range, until a preselected maximum stress (approximately 30,000 1bs/1n2)
was reached. Deflections and strains were read at 20 to 30 load levels in
most tests. A1l deflections in the transverse loading tests were measured

with dial indicators.
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7.4.3 Results

The results of strain measurements are given in tabular form and some
representative results are shown graphically in Appendix C. Load deflection
curves for each specimen are shown in Figs. 81 through 85. The load deflec-
tion curve for the unstiffened plate (Fig. 81) is given with the theoretical
curves for a simply supported small deflection analysis and a finite deflection
clamped plate analysis.

Photographs of buckled stiffeners for the transversely loaded specimens
are shown in Figs. 86, 87, and 88. The buckled deflection of the inplane
loaded specimen had a maximum value of about 0.01 inches and was too small
to bé visible in the photograph. The results of the stiffened plate tests
show that all four structures exhibited significant post-buckling stiffness.

In addition, some of the strain results are decidedly non-linear, due to buckl-
ing and finite deflection effects., The overall behavior of the three
transversely loaded specimens was quite similar with one notable exception.

The primary buckling mode of the plate with two longitudinal stiffeners has

two small waves instead of one wave, as is the case in the other two models.

This is shown in the photographs of the buckled specimens (Figs. 86, 87, and 88).
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SECTION 8
CONCLUSIONS

The research program reviewed in this report has demonstrated that
the energy search approach to structural analysis can be successfully
applied to the prediction of geometrically nonlinear behavior in plate and
shell type structures. Numerical examples demonstrate the ability of the
various plate and shell elements generated to deal with problems exhibiting:

(a) nonlinear bending-membrane coupling,

(b) stable post buckling behavior,

(c} various stable branches on a post-buckling load vs. end-shortening

curve.

A laboratory-type experimental program has provided data for comparison with
current and future analytical behavior predictions. Satisfactory correlation
has been achieved for several planar truss and frame specimens exhibiting
various geometrically nonlinear behavior characteristics. Experimental
results are reported for several plate, shell and stiffened plate configura-
tions however only a limited comparison was possible within the scope of the
present effort. Additional computational effort using the computer program
described in Section 6 will be necessary, particularly for the stiffened plate
cases.

It can be concluded that assumed displacement patterns formed from
products of one-dimensional interpolation functions can be used to generate
a useful class of shell discrete elements including geometric nonlinearity.
In particular 48 degree-of-freedom rectangular plate, cylindrical shell, and

annular plate discrete elements have been developed and evaluated numerically.
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These elements can be joined together at arbitrary angies, although the
current computer program is limited to tangential and right angle joining.
Satisfaction of interelement geometric admissibility requirements is straight-
forward. The element assumed displacement states also facilitate the
optional use of additional conditions such as middle surface strain continuity,
based on physical insight. These 48 degree- of-freedom elements provide a
good approximation of the middle surface stress state which enhances the
ability to predict buckling and post-buckling behavior. The generation of

a Tinear bending parallelogram element using products of one dimension inter-
polation functions suggests that extension of the work reported herein to
oblique coordinates is feasible. The approach is, however, currently
restricted to elements for which opposite edges are paraliel.

The zero-strain rigid-body mode guestion has been examined within the
context of the linear cylindrical shell discrete element. Using first-order
Hermite interpolation polynomials in the circumferential (n=re) direction
gives a good approximation of the rigid-body modes and using osculatory
interpolation based on the functions (1, &, sin ¢, cos o) includes exact
representation of rigid-body modes. For subtended angles A¢ between 5° and
30° either element may be used. The element based on circular function
interpolation involves additional effort due to the more complicated functions
and the need to use double precision arithmetic and it tends to produce only
slightly better results. For cylindrical shell elements with subtended
angles As greater than 30° it is recommended that only circular interpolation
functions be employed and for cylindrical shell elements with subtended angles
46 less than 5° it is recommended that only the polynomial interpolation

functions be used,
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While the major portion of this research program was based upon the
principle of minimum potential energy, an exploratory study based upon the
Reissner energy principle was carried out. The Reissner energy method
appears attractive because: (1) it permits a balanced approach in which force
and displacement variables are both approximated using products of one
dimensional interpolation functions; (2) both equilibrium and force-displace-
ment relations are satisfied approximately; (3) both force and displacement
boundary conditions may be treated as natural boundary conditions; and (4) both
interelement geometric admissibility and interelement force equilibrium
conditions are easily satisfied. A 84 degree-of-freedom discrete element

Reissner energy formulation for a rectangular plate was carried out based

Ny’ ny)

and bicubic approximations for the bending unknowns {w, My s My, Mxy)' This

upon bilinear approximations, for the membrane unknowns (u, v, Nx’
formulation includes geometric nonlinearity arising from the second degree
terms in the finite deflection strain-displacement relations,however, the
highest degree terms in the Reissner energy are only cubic as contrasted with
the quartic terms in the potential energy formulation. The 84 degree-of-
freedom discrete element formulation is specialized to yield a 20 degree-of-
freedom linear membrane discrete element and a 64 degree of freedom linear
plate bending element. The numerical examples indicate that: (a) good quality
force and displacement predictions are obtained, (b) better overall results
can often be obtained by treating force and/or displacement boundary conditions
approximately as natural boundary conditions rather than by satisfying them
exactly as imposed boundary conditions, (c) buckling and stable post-buckling
behavior predictions can be obtained as a result of including geometric
nonlinearity in the formulation. A satisfactory algorithm for finding the

stationary value of a function of many variables was not found in the course
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of this investigation. An alternative formulation based upon minimizing a
residual function was found to be inefficient and numerical scolutions based
upon the Reissner energy formulation were accomplished using the Newton-
Raphson methggﬁ While this methad is efficient it requires storage of an
EE;%EEJ and solution of a set of n simultaneous equations for
each iteration cycle. This severely Timits the number of variables that

nxn matrix [

can be handled without recourse to auxilliary storage. The rectangular

plate discrete element Reissner energy formulation given is alsc limited to
structures that can be modeled using coplanar elements since different levels
of interpolation were employed to approximate the membrane (u, v, N, Ny, ny)
and bending (w, Mx’ My, Mxy) unknowns. As pointed out in Section 3 the
residual function formulation was abandoned prior to recognizing the strong
influence variable scaling can have on the convergence characteristics of
unconstrained minimization algorithms and it is recommended that this approach
be reexamined employing variable scaling transformations.

Energy search methods for structural problems, based on gradient
minimization algorithms, have been shown computationally competitive with
conventional solution procedures. An important factor contributing to this
result was the discovery of a strong scale effect on the convergence of
gradient methods which can be controlled by the diagonal scaling criteria
presented in Section 4. A study of the convergence properties of the
conjugate gradient method in over-discretized problems indicate convergence
in 0 << n cycles where n is the total number of independent degrees-of-freedom.
A structural problem with several hundred degrees of freedom has been
efficiently solved with this method and because no assembled matrices are

required much 1argerpr0b1ems are feasible without recourse to auxiliary storage

equipment.
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A new linear search procedure has been developed based entirely on
the directional derivative which is exact for linear problems. This
approach eliminates orthogonality problems that sometimes arise in function
fitting schemes. A nonlinear analog of Jacobi iteration was formulated
and analyzed for use as a terminal option with energy search procedures.
This option provides a capability for further reducing the gradient.
A computer program has been generated which draws together most of
the important separate contributions made within the minimum potential
energy framework during the course of this research program. The program
implements discrete element finite deflection analysis of a class of
structures that can be modeled as assemblages of plate, cylindrical shell,
and annular plate elements connected together tangentially or at right angies.
Flexibility in application has been built into this program by providing a
variety of options. For example, algorithmic options include Fletcher-Reeves
or Fletcher-Powell minimization with scaling and matrix inversion for linear
problems. Ease of data preparation and optimization of coding and storage
allocation are also notable characteristics of this program.
Several specific topics that are thouaht to merit further investiga-
tion are now discussed.
(1) A general equality constraint capability should be developed
and implemented within the context of the minimum total
energy formulation so as to facilitate:
(a) Jjoining elements at arbitrary angles,
(b) the use of curvature continuity additional conditions,

(c) the optional introduction of interelement equilibrium
conditions,

(d) the exact satisfaction of force boundary conditions on an
optional basis. |
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(2) The residual function formulation which transforms the Reissner
energy formulation into an unconstrained minimization problem
should be reexamined making use of the scaling transformation
ideas set forth in Section 4;

(3} A more extensive body of computational experience with the
computer program described in Section 6 should be pursued.

In particular it is suggested that some large linear problems
be undertaken and that further computational effort be directed
toward correlation of the post-buckled stiffened plate experi-
mental results reported in Section 7.

(4) Increased emphasis should be placed upon evaluating the quality
of stress predictions possible within the potential energy
minimization framework. There is jnsufficient evidence, at this
juncture, to conclude that a Reissner energy formulation gives
better stress results than a potential energy formulation for
approximately the same number of unknowns (degrees of freedom).

(5) The potential energy parallelogram plate element formulation
should be extended to include linear membrane and geometric
nonlinearities, thus facilitating the representation of multi-
cell swept-back box-beam structures.

Several general areas for further work come to mind as a
result of this research program, Effort should be directed toward extending
the use of various interpolation function displacement patterns to other
elements such as conical and toroidal shell elements including geometric
nonlinearity. Sandwich plate and shell elements including transverse shear

deformation, unbalanced anisotropic faces (representative of thin laminated
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fiber composite skins), and geometric nonlinearity merit investigation.
Consideration should be given to physically nonlinear behavior within the
context of minimum potential energy formulations, the goal being to cope
efficiently with both geometric and material nonlinearities. Finally,
efforts to improve computational efficiency for discrete element nonlinear

structural analysis by function minimization; should be continued.
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Figure 1. Rectangular Plate Discrete Element
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Fig. 3 Integral Stiffener of Rectangular Cross Section
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Figure 4. Parallelogram Plate Discrete Element
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. Figure 5. Cylindrical Shell Discrete Ejement
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Figure 6. Two Rectangular Plate Elements Joined at an
Arbitrary Angle
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h=0.1in. 4
E=1092x10 PRSI
¥=0.3

Figure 8. j
g 8. Clamped Plate Subject to Uniformly Distributed Load (p.)
z
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Figure 9. Quarter Clamped Plate
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Fig. 10 Load Intensity vs. Midpoint Deflection for Uniformly
Loaded Clamped Plate
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P= 100 LBS.
L =10.35 IN,
r =4,953 IN.

h =0.094 IN.
v 50,3125

E =105x10 PS.I.

Figure 15.

Pinched Cylindrical Shell
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Figure 20 Maximum Displacement vs. Uniform Load
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‘PLATE LOADED BY A UNIFORM
PRESSURE OF 0.0l PSI

E*30X10° PSI , v=0.3, h=0.3 in.

9,,0,,04 100,80, 20 “X

9, 0z, 0y =100, 90, 30 X

Figure 23. Nine Element Idealization of Simply Supported Plate
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Figure 30. Annular Plate Discrete Element
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Figure 31. Thick Cylinder Subject to Internal Pressure
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Figure 32. Annular Plate Example - Case 1
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Fig. 33 Elements Available in Computer Program
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Read title car

d
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Read next card

\ A

RESTART card

Read information from
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other
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Setup Phase

previous setup phase

Read problem description,
assign degrees-of-freedom,

from tape generate stiffness matrices
y
= Read next card
STOP card LOADS card NEW PROBLEM card
@ I/0 Phase
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load vector

Y

Solution phase f=

Get solution

'

1/0 Phase

Print results
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Fig. 34 Flow of Control Among Program Phases
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Figure 35. Snap-Through Truss

171

Thickness

0.050"
0.187"



S[te3aQ dn3as 1say pue ssnu] (Bnoay)-deug

13y2eUQ

A32Npsued] peoy

Section A-A

[(— |
]

i

Section A-A

:J‘
-

340ddns pbutudeaq
uoLsLoaud aunjetuty

9¢ "DL4

172



Photograph of Snap-through Test

37

Fig.
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Fig. 38 Buckled Snap-Through Truss
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knife edge support
(tension member)

Miniature Precision
bearings

Free Node

Load transducer

Loadindg
Member  Width  Thickness Apparat
1 0.750" .0935"
2 0.750" .0800"
3 0.750" .0950"

Knife edge support
(compression member)

Fig. 39 Three Bar Truss Specimen
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Fig. 40 Photograph of Three Bar Truss Test
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Fig. 41 Frame Configuration and Loading Conditions
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Fig. 42 Frame Specimen Details
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Fig. 43  Photograph of Frame Test Setup

179

Approved for Public Release



Fig. 44 Photograph of Displaced Frame
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Fig. 45 Photograph of Typical Test Setup and Instrumentation
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Fig. 48 Load Deflections Correction for the Three Bar Truss
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Fig. 49 Load Deflection Correlation for the Planar Braced Frame
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Fig. 50 Load Deflection Results for Test Number 2 on the Planar
Braced Frame
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Fig. 51 Load Deflection Results for Test Number 3 on the Planar
Braced Frame
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Fig. 52 Load Deflection Results for Test Number 4 on the Planar
Braced Frame.
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Instrumented
1 Octant

Instrumented |
End

10.025"

po " naem ——n———”——————ﬁ

e g.985" ——-| o 101.2-8"—-4

¥
Thickness Variation
Instrumented End 0.095 - 0.105
Other End 0.093"- 0.108
o
(= 4]
h
o

I‘——10.023"—"|

Imperfections 5 - 0.025" Holes at Various Locations

Material - Aluminum - Unknown Properties

Fig. 54 Pinched Cylinder, Dimensions, Details and Loads
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of the specimen, directly back to back of the outer rosettes.

Rosette Number Comparable Inside Rosette
1 7
2 8
3 9
4 10
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Fig. 55 Pinched Cylinder Strain Gage Orientation
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] 41 4
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Fia. 57 Finite Element Representation of Pinched Cylinder
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2.000"

—h

I" 12.000" -

=T
—al0. 600"|e— =iy 600"l

Edge beam 0.600 x 0.600 throughout

Plate Thickness Quadrant
(in)

0.100 1
0.100 2
0.700 3
0.700 4

1/

Vertical fillets 8" radius

Fig. 62 Rectangular Plate, Details and Dimensions
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— 2‘-_00,.'.'__ f
2 I
2 4
hI 21.000"
3 B 4 8.500"
- 2.000" '
-—J Model simply supported
at dotted lines
Load l
0.950"
l‘_ 12.000" .I t
Dimensions Thickness (in)

Stiffener 1 0.030
2 0.075
3 0.030
4 0.075

Plate Panel 1 0.050
2 0.050
3 0.050
4 0.050

Vertical fillets 1/8" radius

Fig. 64 Stiffened Plate Number 1, Dimensions, Details and Loads.
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L "2:0_90_"_ ’
i 'T‘
. R
] 1 2
\ 2 21.000"
=
: 2 4 || 8.500"
S 2.000" X

Two equal Toads

lh Model simply supported
at dotted lines
0.925"
he—————12.000" -] ’
Dimensions Thickness (in)

Stiffener 1 0.030
2 0.030

3 0.030

4 0.030

5 0.060

Plate Panel 1 0.050
2 ' 0.050

Vertical fillets 7/16" radius
Overall height varfation - NIL

Fig. 66 Stiffened Plate Number 2, Details, Dimensions and Loads
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1.250"
—— - -
{_- 1 1 2 3 —-l
7 8
4 3 4 6 6.250"
T 1.250"
o—6.000" ——— < !
nd 12.000" —— ™
2
™
Dimensions Thickness (in)
Stiffener 1 0.040
pa 0.040
3 0.040
4 0.040
5 0.040
) 0.040
7 0.040
8 0.040
Plate Panel 1 0.700
2 0.100
3 0.100
4 0.3100

Vertical fillets.

Center span

ends

3/16" radius
7/16" radius

14.500"

Three equal loads

Model simply supported
at dotted lines above

Fig. 68 Stiffened Plate Number 3, Details, Dimensions and Loads.
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1 2 2
] 3

i —
3 4 4

- s.ooo"—-.| '—l

I"-—s.ooo"—"

'

Load

1.000"

Dimensions

Left edge beam
right edge beam
- Stiffener

Plate Panel

WY~ B PO -

Vertical fillets

No initial measurable imperfections in stiffeners.

-——————12.000"

Thickness (in)

0.500
0.500
0.075
0.075
0.075
0.075

0.050
0.050
0.050
0.05%0

1/8" radius

Jt

12.000"

Nominal stiffener
dimensions 0.950" x 0.07

Fig, 70 Stiffened Plate Number 4, Details, Dimensions and Loads.
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Right

A11 gages are 1/8 inch by 1/16 inch
arid gages.

Lateral views of vertical stiffaner
upper portion.

Strain Gage Orientation, Stiffened Plate No. 4
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Fig. 72 Strain Gage Orientation, Stiffened Plate No. 2.
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Strain Gage Orientation, Stiffened Plate No. 3.
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cJ4

Right Edge

A1l strain gages on this model were 1/4 inch square arid.

Fig. 74 Strain Gage Orientation, Rectangular Plate
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— T — —— —
'O" ______________ LC)‘]/a" ball brinelled

Thto model

Deflection measured at load point with micrometer screw,
other points with dial indicator.

Lateral contraction measured with vernier caliper.

Fig. 76 Test Orientation and Loads, Rectangular Plate
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18—

1700

Analytical
16— solution, . %
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Ta0l_ at Load Point

A Vertical Deflection
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20 y Timoshenko
L Linear
40 r 2 Solution

0 g

'/// Load

ok £ I+

0 ] | I l
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50 100 150 -3 200
Deflection (inches x 107°)

Fig. 81 Load vs. Deflection Rectangular Plate, Corner Supports, Elastic

Edge Supports, Transverse Load at Center
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Fig. 82 Load vs. Deflection Transverse Loaded Stiffened Plate No. 1,
Simply Supported
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Fig. 83 Load vs. Deflection Transverse Loaded Stiffened Plate No. 2,
Simply Supported,

219



{Pounds)

Total Load

600

500

400

300

200

100

Buckling

_| I |

Average Deflection in Vertical
Direction Under Edge Load Points

L

Gage Location

Load

100 200 300

400
Deflection (Inches x 10

4?00

Fig. 84 Load vs. Deflection Transverse Loaded Stiffened Plate No. 3,

Simply Supported.
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Fig. 85 Load vs. Deflection Inplane Loaded Stiffened Plate No. 4.
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Table 1

Summary of Nonlinear Clamped Plate Results
(Section 2.5.1)

Load {psi) W, (in.) W, (in.)
P, Present Ref. 20 -P.42]
0.2 .03760 037
0.4 06554 .065
0.6 .08607 .086
0.8 .10213 .103
1.0 11535 115
1.2 . 12664 .126
1.4 . 13650 .136
1.6 .14535 .145
1.8 . 15327 .153
2.0 . 16056 .160
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Table 2

Summary of Pinched Cylindrical Shell Results
{(Section 2.5.3)

Modeling Degrees w under w under
of load poly foad circular
Freedom (see sec. 2.3.1) (see sec. 2.3.3)
inches inches
A 18 -0.00261 -0.00415
B 36 -0.0802 -0.0890
c 60 -0.0808 -0.0898
D 54 -0.1026 -0.1054
E 90 -0.1035 -0.1064
F 72 -0.1086 -0.1094
G 120 -0.1097(-0,115)* -0.1105
H 210 -0.1129

* including geometrically nonlinear behavior (see Ref. 7, p. 150 ).
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Table 4

Linear Bending Examp1e-HR( Section 3.4.2)

n
claﬁped boundary
conditions

imposed
w(a,0) in. +0.203
MX(O,O) in-1b/in -16.7
Mx(a,O) in-1b/in +0.42
Number of Variables 86
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1
claﬁped boundary
conditions
natural

+0.203

-20.6

+9,14
110

Timoshenko
Ref. 20
p. 197

- +0.202
-20.5
+9.24



Table 5§

Nonlinear Plate Bending Example
(Section 3.4.3)

HR Timoshenko il

(Ref. 3.6) P
w(a,0) in. 0.117 0.117 0.117
MX(O,O) in-1b/in -15.0 eeme-- -13.8
Max Stress 1b/in2 10,125 10,300 9,480
Number of Variables 144  eee-- 177
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Table 7

Displacements and Stresses for the Thick
Cylinder Subject to Internal Pressure

(Section 5.3)
Dispiacement u in microinches at r = rys

Case ry ry 1 element 2 elements
1 1.0 1.2 194.85 194.86

2 1.0 2.0 65.53 65.55

3 1.0 10.0 37.22 41.78
Stress Oy in 1bs/in2 at r = ry

Case " ry 1 element 2 elements
1 1.0 1.2 5547 5546

2 1.0 2.0 1693 1674

3 1.0 10.0 1075 1126

Note: Modulus of elasticity is 30,000,000 1bs/in’.
Poisson's ratio is 0.3. _
Pressure is 1,000 1bs/in2.
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5 elements
194.86
65.55
43.80

5 elements
5547

1667

1076

Ref. 26

194.85

65.56

44.00

Ref.
5545
1667
1020

26



Case

10

Note:

Support Conditions
at rsr,s r=r,
free, simple
simple, free
clamped,free

no slope, simple
no siope, clamped
no slope, clamped
free, simple
clamped, free
free, clamped

free, clamped

Table 8

(Section 5.3)
Load

line at r=r
pressure
pressure
pressure
pressure
line at r=ry
pressure
line at rer,
line at r-r,

pressure

Modulus of elasticity is 10,000,000 Tbs/in
Thickness if 0.1 1in.
Pressure loads are 10.0 lbs/in™.
Line loads are 10.0 lbs/in.

ry = 0.8 in.,

2

ry = 1.0 in.
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Maximum Displacements for the Laterally Loaded Annular Plate

Maximum Displacement
in microinches

Ref. 20 2 Elements
341. 341.38
20.2 20.317
2.31 2.3250
3.43 3.4608
0.77 0.77189
1.29 1.2869
184. 183.79
5.10 5.1044
5.04 5.0390
1.99 1.9921
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Table 9

Pinched Cylinder Gage Locations

90°
90°
90°
90°
90°
45°
45°
67 1/2°
67 1/2°
0°
90°
90°
90°
90°
90°
45°
45°
67 1/2°
67 1/2°
0°
0°
90°

(Section 7.3.1)
Coordinates

5 174"
2 1/2"
2 172"
1 1/4
11/4"
CL
cL
cL
cL
cL
5 1/4"
2 1/2"
2 172"
11/4"
11/4"
CL
cL
cL
oL
L
L
cL

outer
outer
outer
outer
outer
outer
outer
outer
outer
outer
inner
inner
inner
inner
inner
inner
inner
inner
inner
inner
inner
outer
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surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface
surface

circumferential direction
longitudinal direction
circumferential direction
longitudinal direction
circumferential direction
circumferential direction
longitudinal direction
longitudinal direction
circumferential direction
circumferential direction
circumferential direction
longitudinal direction
circumferential direction
Tongitudinal direction
circumferential direction
circumferential direction
longitudinal direction
longitudinal direction
circumferential direction
Tongitudinal direction
circumferential direction
longitudinal direction



APPENDIX A
BOUNDARY CONDITION CONTRIBUTIONS TO REISSNER ENERGY

This appendix contains expressions for the boundary condition
contributions to a rectangular element Reissner energy. These expressions
are essentially the same as those given by Reissner in Ref. 23. The force

boundary condition contribution is given by

- = = W = W
S, = [N, u+N v+0Q w-N == - M =] ds (A1)
1 Xy Y, A X, 8x Y, o
5
where
Ng = ¢os {x,x) N; + cos (x,y) N;y (A2)
A
N&A = ¢o5 (),X) ny + cos (n,y) Ny (A3)
M& = cos (x,x) ﬁg + cos {r,y) ﬂ¥y (A4)
A
Myx = cos {,x) M%y + cos (x.y) My (AS5)
= 7 oW AL
QA = cos {x,x) [VX + Nx x T ny 3 ]
- = W = W
+ cos (x,y) [Vy + Ny 3y + ny E;-] {A6)

and it is understood that X 1is the direction in the plane of the undefiected

middle surface normal to the boundary. The quantities Nx’ N&, and N}y

represent prescribed membrane forces and the M, , ﬁ& and ﬁ;y

moments acting on the boundary. The quantities ?& and V& represent

represent prescribed

prescribed transverse shear forces acting on the boundary in the direction of
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the normal to the deformed middle surface. Note that because the strain-
displacement relations assume that normals to the undeformed middle surface
remain normal to the middle surface after deformation, the following
prescribed forces on the boundary are not entirely independent but rather

they must satisfy the following equality constraints

oM M
- X Xy
V% TR 3y (A7)
sM M
T = Y Xy
Vy 5y + 3 (A8)

The displacement boundary condition contribution is given by

S, = [lu-u) N+ (v-¥) Nyx + (w-w) Q

) A
52
SEETR - oo 1 ds (A9)
where
NXA = o5 (x,x) N, + cos (x,y) ny {A10)
Nyl = cos (x,x) ny + cos {(»,y) Ny (A1)
MXA = ¢os {r,x) M, + cos (x,y) Mxy (A12)
Myx = €05 (X,X) Mxy + cos (A,y) My (A13)
0, = cos (x,x) [v, + N gg- + ny'%g-]
+ cos Ony) vy, + Ny %g— Ny %% ] (A14)
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and the transverse shear force resultants (Vx and Vy) in the direction of
the normal to the deformed middle surface are given by

aM oM

v, = Bx" + ayxy (A15)
. 3M aM’
Vy N ayy * axxy (A16)

Note that in Eq. A9 the quantities u, v, and w represent prescribed boundary
displacements. A discretized form of the boundary condition contributions

to the Reissner energy is developed in Appendix D of Ref. 12.
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APPENDIX B
PREPARATION OF DATA CARDS AnND INTERPRETATION OF OUTPUT

THIS AFPPENDIX PROVIDES DETAILED RULES FOR PUNCHING DATA
CARDS FOR THE COMPUTER PROGRAM DESCRIBED 1IN SECTION & OF
THIS REPORTe AND SOME COMMENTS ON THE OQUTPUT WHICH IT
PRODUCES. FIGURE B1 ILLUSTRATES A SAMPLE STRUCTURE FOR
WHICH DATA HAS BEEN PREPARED AND LISTED IN TABLE Bl. THERE
IS A COMMENTARY AT THE END OF THIS APPENDIX WHICH GUIDES THE
READER THROUGH THIS DATA LISTING. THERE IS ALSO A
REPRODUCTION OF THE OUTPUT GENERATED BY THE PROGRAM FOR THE
SAMPLE STRUCTURE.

Bel. PREPARATION OF DATA CARDS.

INPUT DATA FORMATS HAVE BEEN SET UP TO ACCEPT A GREAT
DEAL OF INFORMATION IN ALPHANUMERIC FORMy WHICH MAKES THE
INPUT FORMATS EASIER TO REMEMBER AND THE:DATA CARDS MORE
READABLE. 1IN THE TEXT BELOWr WORDS OR PHRASES ENCLOSED IN
CORNER BRACKETS <> CONSTITUTE ALPHANUMERIC DATA TO0 BE
INTERPRETED LITERALLY. THE CHARACTER A IN THIS CONTEXT
STANDS FOR A BLANK SPACE. A SINGLE INTEGER ENCLOSED IN
SQUARE BRACKETS [1 FOLLOWING AN ALPHANUMERIC SPECIFICATION
INDICATES THE CARD COLUMN NUMBER OF THE LEFT-MOST (HARACTER
OF T+E ALPHAMNUMERIC DATA. TWO INTEGERS ENCLOSED IN SQUARE
BRACKETS INWDICATE THE LIMITS OF A FIELD WHERE A NUMBER IS TO
BE FiNCHED. FIVE=CHARACTER FIELDS ARE TO BE FILLED WITH

RIGHT=JUSTIFIED INTEGER CONSTANTS (FORTRAN IS5 FORMAT
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PHRASE} ¢ AND FIFTEEN-CHARACTER FIELDS ARE FOR FLOATING=POINT
NUMBERS (FORTRAN E15.8 FORMAT PHRASE}: WITH A DECIMAL
MANTISSA AND» OPTIONALLYr A RIGHT=-JUSTIFIED POWER OF TEN
PRECEDED BY THE CHARACTER E. BLANK FIELDS ARE ASSUMEL TO
REPRESENT ZERQ. OFTEN A 'DISPLACEMENT SPECIFIER® IS CALLED
FOR IN THE TEXT BELOW: TO INDICATE WHICH ELEMENT
DEGREE~OF~FREEDOM IS REFERENCED. THESE ARE TO BE CHOSEN
FROM AMONG THE FOLLOWING: <U>r KUX2r <UYDe <UXYD» V> VXD
VYD KVXYDr CWwdr <WXDr  <WYDr KWXYDr <WXXDe <WYYDr <WXXYDy
<WXYY2>r OR <WXXYYD.

DATA CARDS ARE DIVIDED INTO THREE GROUPS: SPECIFICATION
CARDS» WwHICH DESCRIJZE THE STRUCTURE AND PRESCRIBE CERTAIN
PROGRAM OPTIONSe LOAD CARDS WHICH DEFINE A SET OF FORCES AND

IMPOSED DISPLACEMENTS TO BE ANALYZED» AND SEPARATOR CARDS.

Belels SEPARATOR CARDS. THESE CARDS ACT SOMEWHAT LIKE
CONTROL CARDS+» IN THAT THEY INDICATE wWHICH SURROUTINE WILL
GAIN CONTROL NEXT. THERE ARE FIVE KINDS OF SEPARATOR CARDS:

Belelsls THE TITLE CARD IDENTIFIES THE CURRENT
PROBLEM. ANY TITLE MAY BE PUNCHED IN COLUMNS 1=-78 OF THIS
CARD. CONTROL IS PASSED TO THE SETUP PHASEr WHICH READS
EITHER A SPECIFICATION GROUP OR A RESTART CARD (SEE B.l.l.2
BELOWN) « UPON EXIT FROM THE SETUP PHASE» INDEPENDENT
DEGREES-OF=FREEDOM wILL HAVE PREEN ASSIGNED AND STIFFNESS
MATRICES WILL HAVE BEEN GENERATED AND WRITTEN ON DRUM
(DISK) e

Belale2s THE RESTART CARD MAY TAKE THE PLACE OF THE
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SPECIFICATION GROUP» AND INDICATES THAT THE RESULT OF THE
SETUP PHASE OF A PREVIOUS RUN IS TO BE READ FROM TAPE. THIS
CARD HAS <READASETUPAFROMATAPED> PUNCHED IN [11e AND THE
LOGICAL TAPE UNIT NUMBER (1 OR 2) PUNCHED IN L[21-251].

Belelsd, THE LOADS CARD PASSES CONTROL TO THE
INPUT/QUTPUT PHASE OF THE PROGRAM WHICH WILL READ A GROUP OF
LOAD CARDS AND GEMERATE A WORK~-EQUIVALENT LOAD VECTOR» AFTER
WHICH THE ANALYSIS PHIASE WwILL TAKE CONTROL. THIS CARD HAS
<LOADS> PUNCHED IN L173.

Belele4e A MNEW PROBLEM CARD INDICATES THAT AN ENTIRELY
NEwW PROBLEM IS TO BE RUN NEXT. THIS CARD HAS <NEWAPROBLEM>
PUNCHED In [11e AND IS FOLLOWED IMMEDIATELY BY A TITLE
CARD.

Bselele5s THFE STOP CARD MUST BE THE LAST CARD OF THE
DECK. PURNCH <STOP> IN [11].

THE FLOW CHART IN FIG. 34 ILLUSTRATES THE USE OF
SEFERATOR CARDSy AND HOW THEY CONTROL FLOW AMONG PROGRAM
PHASES. NOTE THAT A SPECIFICATION GROUP MAY BE FOLLOWED
IMMEDIATELY BY A STOP CARD OR NEw PROBLEM CARD» IN WHICH
CASE NO ANALYSIS wlIlLL BE PERFORMEND. THIS CAN BE USEFUL: THE
USER CAN EXAMINE THE OUTPUT FROM THE SETUP PHASE» AND IF IT
SEEMS SATISFACTORYe RUN THE PROBLEM WITH THE RESTART OPTION»

WITH VERY LITTLE LOST TIME.

" Besle2e SPECIFICATION CARDS. THESE CARDS ARE ORGANIZED
INTC SETS OF ONc OR MORE CARDS FEACH. THE FIRST (AND

SOMETIMES ONLY) CARD OF EACH SET HAS ALPHANUMERIC DATA
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PUNCHED BEGINNING IN COLUMN ONE. MOST DATA SETS ARE
OPTIONAL» AS INDICATED IN THE DESCRIPTIONS BELOW. THE SETS
THAT ARE INCLUDED MUST APPEAR IN THE ORCER IN WHICH THEY
APPEAR BELOW.

SET S1. ELEMENT CONNECTION SPECIFICATIOM. THE FIRST
CARD OF THIS SET HAS <ELEMENTACONNECTIONS> IN [1] AND THE
NUMBER OF RELATIONSHIPS BETWEEN ELEMENTS PUNCHED IN
(21=-251. FOLLOWING THIS PUNCH ONE CARD FOR EACH
RELATIONSHIP. OF THE TWO ELEMENTS INVOLVED: CALL THE ONE
WITH THE LOWER ELEMENT NUMBER THE PRIMARY ELEMENT: AND THE
OTHER THE SECONDARY ELEMENT. IN [1-5] PUNCH THE PRIMARY
ELEMENT NUMBER. TN [6-=101 AND [11-15] PUNCH THE TwO CORRNER
NUMBERS OF THE PRIMARY ELEMENT WHICH BOUND THE EDGE IN
QUESTION. IN [16=20] PUNCH THE SECONDARY ELEMENT NUMBER.
AND IN (21-253 AND [26-=30] THE TwO CORNER NUMBERS OF THE
SECONDARY ELEMENT WwHICH COINCIDE RESPECTiVELY WITH THE
PRIMARY CORNER NUMBERS INDICATED IN [6=10] AMD [11=~15]. NOW
OBSERVE THE RELATIONSHIP BETWEEN THE AXIS SYSTEMS OF THE TwWO
ELEMENTS. SLIDE THEM OVER THE SURFACES OF THE ELEMENTS TO
THE EDGE IN QUESTION:s IF NECESSARY. DETERMINE WHICH
SECONDARY AXIS LINES UP WITH THE PRIMARY X=AXIS» AND PUNCH
EITHER <X>¢ <Y2r OR <Z> IN [35]1 TO INDICATE THIS. 1IF THESE
TWO AXES POINT IN OPPOSITE DIRECTIONS: PUNCH <=> IN [341
OTHERWISE <+>. SIMILARLY» DETERMINE WHICH SECONDARY AXIS
LINES UP WITH THE PRIMARY Y~=AXIS AND PUNCH <X>» <Y>» OR <2Z>

IN [40] AND <+> OR <=> IN [391. TO SUPPRESS NORMAL STRAIN
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CONTINUITY BETWEEN COPLANAR ELEMENTS: PUNCH <NORMALD> IN
[461» OTHERWISE LEAVE THIS FIELD BLANK. TO SUPPRESS SHEAR
STRAIN CONTINUITY PUNCH <SHEAR> IN [S56] (BLANK OTHERWISE) »
FINALLYs IF THIS CORNECTION IS A HINGEs PUNCH <HINGED> IN
L6661 (OTHERWISE BLANK) .«

IN THE CASE OF A ONE=-ELEMENT STRUCTURE SET S1 IS
OMITTYED. NO STRUCTURE MAY HAVE MORE THAN S50 ELEMENTS.

SET S2. SPECIFICATION OF ELEMENT PROPERTIES. MORE
THAN ONE OF THESE SETS MAY BE INCLUDED. EACH SET SPECIFIES
A NUMBER OF PROPERTIES WHICH APPLY TO ONE OR MORE ELEMENTS.
IF ALL ELEMENTS IN THE STRUCTURE HAVE THE SAME PROPERTIES
THEN ONLY ONE OF THESE SETS NEED BE PUNCHED. IN ANY CASEr
ENOUGH SETS MUST RE INCLUDED TO ACCOUNT FOR ALL ELEMENTS.
THE FIRST CARD HAS <ELEMENTS> IN C1]» AND FROM ONE TO TWELVE
ELEMENT NUMBERS PUNCHED IN C21-25]r.[26-30]r £31-351, ETC.
IF A GROUP OF PROPERTIES APPLIES TO MORE THAN TWELVE
ELEMENTSe THEN MORE THAN ONE DATA SET MUST BE PUNCHED FOR
SUCH A GROUPe¢ SINCE THE FIRST CARD HAS ROOM FOR ONLY TWELVE
ELEMENT NUMBERS.

THE SECOND CARD OF THIS SET MUST BE PUNCHED WITH EITHER
CRECTANGULAR>» <CYLINDRICAL>r» OR <ANNULAR> IN [61] TO
- INDICATE THE ELEMENT TYPE.

THE THIRD CARD INDICATES THE TYPE OF INTERPOLATION TO
BE USED FOR MEMBRANE VARIABLES. PUNCH <MEMBRANE> IN L6l
AND EITHER <POLYMOMIAL>+ <TRIGONOMETRIC>» OR¢ IF MEMBRANE
DEGREES-OF-FREEDOM ARE TO BE SUPPRESSED IN THESE ELEMENTS:
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<NONE> IN [16]s LEAVE THE FIELD [31-351 BLANK IF <NONE> WAS

SPECIFIED. PUNCH 0 IN THIS FIELD IF THESE ARE RECTANGULAR
FLAT FLATE ELEMENTS AND ZEROTH=0RDER {LAGRANGE)
INTERPOLATION IS DESIRED. OTHERWISE» PUNCH A 1» INDICATING
FIRST=ORDER (OSCULATORY) MEMBRANE INTERPOLATIONM.

THE FOURTH CARD IS SIMILAR TO THE THIRD. PUNCH
<BENDING> IN [61 AND EITHER <POLYNOMIALD>» <TRIGONOMETRICD
OR <HONE> IN [161. AGAINe LEAVE [31-35]1 BLANK IF <NONE> WAS
SPECIFIED. PURCH A 2 THERE IF SECOND=ORDER
(HYPERQOSCULATORY) INTERPOLATION IS DESIREDe OTHERWISE PUNCH
A l.

THE MEXT CARD IS OPTIONAL AND IS USED TO INDICATE THAT
THE ELEMENTS IN QUESTION ARE STIFFENER ELEMENTS. PUNCH
<STIFFENER> IN [61.

THE NEXT CARD IS ALSO OPTIONAL AND MAY BE USED ONLY
wITH CYLINDRICAL OR ANNULAR ELEMENTS. IT INDICATES THAY THE
ELEMENTS IN QUESTION REPRESENT A CLOSED CYLINDER OR  ANNULUS
WHICH IS IN.EVERY WAY AXTALLY SYMMETRIC» AND IS SUBJECT OWNLY
TO AXIALLY SYMMETRIC LOADINGS. PUNCH <AXISYMMETRIC> IN
L&l

THE NEXT CARD IS MANDATORY AND INDICATES WHAT SET OF
STRAIN=DISPLACEMENT RELATIONS IS 10 BE USED. PUNCH
<NONLINEAR> IN [61 1IF HIGHER=QRDER TERMS ARE TO BE
INCLUDED. OTHERWISE PUNCH <LINEAR> IN [63,

THE NEXT CARD HAS A MODULUS OF ELASTICITY PUNCHEL IN

(6=201r POISSON'S RATIO IN [21«35]r AND SHELL THICKNESS IN
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[36=501.

THE LAST CARD HAS DIFFERENT INFORMATION FOR DIFFERENT
ELEMENT TYPES!

FOR RECTANGULAR ELEMENTS PUNCH THE PLANFORM DIMENSIONS
IN THE X AND Y ODIRECTIONS IN [6=201 AND £21=351
RESPECTIVELY.

FOR CYLINDRICAL ELEMENTSs PUNCH THE AXIAL LENGTH IN
Le-20]» THE RADIUS 1IN [21-35]1e AND EITHER THE ARC LENGTH»
ARC IN RADIANS: OR ARC IN DEGREES IN [36=50J« PUNCH
CARCALENGTH>e <RADIANS>» OR <DEGREES> 1IN [561¢r WHICHEVER
APPLIES TO THE NUMSER IN [36-=501.

FOR ANNULAR PLATE ELEMENTSe: PUNCH THE INNER RADIUS 1IN
(e=201» THE OQUTER KADIUS IN [21-35]y EITHER THE INNER ARC
LENGTH» ARC IN RADIANSe OR ARC IN DEGREES IN C36=503r AND
EITHER <ARCALENGTH>» <RADIANS»e OR <DEGREES> IN [567].

SET S3 (OPTIONAL). BENDING EDGE BOUNDARY CONDITIONS,.
THE FIRST CARD OF THIS SET HAS <BENDINGA&B.C+> IN [1] AND THE
TOTAL NUMBER OF ELEMENT EDGES WHERE BENDING RESTRAINTS ARE
PRESCRIBED IN [21-25Js FOR EACH SUCH EDGEes PUNCH A CARD
WITH AN ELEMENT NUMEBER IN [1-5]¢ AN EDGE NUMBER IN (&=101y
AND AN ALPHAWNUMERIC PHRASE TO INDICATE THE TYPE OF RESTRAINT
IN [16]. THE CHOICES ARE:

<CLAMPED>» INDICATING THAT THE DISPLACEMENT W AND ITS
SLOPE NORMAL TO THE EDGE ARE ZERO ALL ALONG THE EDGE}#

<SIMPLYASUPPORTED>» SAME AS CLAMPED EXCEPT NORMAL SLOPE

ALLOWED
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CSYMMETRY>+ W ALLOWED BUT NO NORMAL SLOPE:

<ANTI=SYMMETRY>r W KEPT ZERO BUT NORMAL SLOPE ALLOWED:

CEDGEASTRAIGHT>r SAME AS SIMPLY SUPPORTED EXCEPT W IS
ALLOXED TO TAKE ON A VALUE CONSTANT ALONG THE EDGE: OR.

<EDGEASTRAIGHT » ANCANORMALASLOPE> » SAME AS CLAMPED
EXCEPT w IS ALLOWED TO TAKE ON A VALUE CONSTANT ALONG THE
EDGE .

ANY EDGE FOR WHICH NO BOUNDARY CONDITIONS ARE
PRESCRIBED 1S ASSUMED TO BE FREE.

SET sS4 (OPTIONAL). SPECIFICATION OF POIMT SUPPORT AT
CORNERS OF ELEMENTS. PUNCH <CORNERARESTRAINTS> IN (11 AND
THE HUMBER OF SUCH RESTRAINTS IN (21-251. FOR EACH SUCH
RESTRAINT PUNCH A CARD WITH AN  ELEMENT NUMBER IN C[C1~5]1r A
CORNER NUMBER IN [&6-=10]1» AND A DISPLACEMENT SPECIFIER IN
C161].

SET &5 (CPTIONAL). OPTION TO DUMP CERTAIN ARRAYS FOR
DEBUGGING PURPOSES. PUNCH <DEBUG> IN [11].

SET S6 (OPTICNAL)s TWO DISPLACEMENTS MAY BE FORCED TO
KEEP THE SAME VALUE. THIS OPTION MIGHT BE USED TO REDUCE
THE UMBER OF DEGREES~OF=FREEDOM IN A PROBLEM WHERE SYMMETRY
EXISTS ABCOUT A DIAGONAL LINE» FOR EXAMPLE. PUNCH
EQUALITYACONSTRAINTS> IN [11 AND THE NUMBER OF SUCH
CONSTRAINTS IN [21=253s FOR EACH SUCH CONSTRAINTy PUNCH TwO
CARDS» ONE FOR EACH OF THE TWO DISPLACEMEMTS INVOLVED: EACH
WITH THE FOLLOWING INFORMATION: ELEMENT NUMBER IN [1-51]

CORNER NUMBER IN [6=101r AND DISPLACEMENT SPECIFIER IN
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(163. IF THE TwO DISPLACEMENTS ARE TO BE OPPOSITE IN SIGN»
INDICATE THIS WITH A <-> PUNCHED IN {151 OF THE SECOND CARD
OF THE PAIR.

SET S7 (OPTIONAL) . THIS OPTION INDICATES THAT ENERGY
SEARCH IS TO BE USED. ENERGY SEARCH MUST BE USED FOR
NONLINEAR PROBLEMS OR PROBLEMS WITH IMPOSED DISPLACEMENTS:
IT IS OPTIONAL FOR LINEAR PROBLEMS. PUNCH <FLETCHER-POWELL>
OR <FLETCHER=-REEVES> IN [11. IF A LINEAR SOLUTION IS TO BE
OBTAINED BY ENERGY SEARCH AS A STARTING POINT FOR NONLINEAR
ENERGY SEARCHe INDICATE THIS BY PUNCHING A 1 IN [21=-25]s IF
NO SUCH LINEAR SOLUTION IS DESIRED: OR IF IT IS 70O BE
OBTAINED BY MATRIX IWNVERSIONe LEAVE THIS FIELD BLANK.

SET 58 (OPTIONAL). IMPOSED DISPLACEMENTS., PUNCH
<IMPOSEDANISPLS> In [1J AND THE NUMBER OF DISPLACEMENTS TO
BE IMPOSED IN [21-251. FOR EACH IMPOSED DISPLACEMENf PUNCH
A CARD WITH AN ELEMENT NUMBER IN [1-53r A CORNER NUMBER IN
Le~103r AND A DISPLACEMENT SPECIFIER IN [161. THE VALUES TO
BE IMPOSED WILL BE READ IN LATER.

SET s9 (OPTIONAL). MATRIX INVERSION, FOR LINEAR
PROBLEMS, THIS INDICATES THAT DISPLACEMENTS WILL BE
CALCULATED B3Y INVERTING A MASTER STIFFNESS MATRIX. FOR
NON=L INEAR PROBLEMS (FLETCHER~-POWELL OR FLETCHER=REEVES MUST
ALSO BE SPECIFIED) A LINEAR SOLUTION WILL BE OBTAINED FIRST:
THEN ENERGY SEARCH WILL BE INITIATED+s WITH THE LINEAR
SOLUTION AS A  STARTING POINT. MATRIX "INVERSION IS HNOT
ALLOWED WHEN IMPOSED DISPLACEMENTS HAVE BEEM SPECIFIEOD.
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PUNCH <INVERT> IN [113.

SETY S10 {OPTIONAL) ., MEMBRANE EDGE BOUNDARY
CONDITIONS, PUNCH <MEMBRANEAB.C+> IN (1] AND THE TOTAL
NUMBER OF ELEMENT EDGES WHERE MEMBRANE BOUNDARY CONDITIONS
ARE PRESCRIBED 1IN [21-251. FOR EACH SUCH EDGE PROVIDE A
CARD WITH AN ELEMENT NUMBER IN [1-51» AN EDGE NUMBER IN
L6~10]1» AND AN ALPHANUMERIC PHRASE IN (16]. THE CHOICES
AVAILABLE ARE:

<UAPREVENTED>

CVAPREVENTEDD>

<UAANDAV PREVENTED>:

<EDGEASTRAIGHT>» INDICATING THAT A UNIFORM DISPLACEMENT
NORMAL TO THE EDGE IS ALLOWEDS

CEUGEASTRAIGHT rAUAPREVENTED> (APPLIES ONLY TO CONSTANT
Y ED5GES)

CEDGEASTRAIGHT»AVAPREVENTED> (APPLIES ONLY TO CONSTANT
X EDGES)

<SYMMETRY>; OR

SANTI=SYMMETRY>.

ANY  EDGE FOR WHICH MO BOUNDARY CONDITIONS ARE
PRESCRIBED IS ASSUMED TO BE FREE.

SET S11 (OPTIONAL). PRINT THE MATRICES GENERATED FOR
USE IN CALCULATING ELEMENT STRAIN ENERGIES AND/OR THE MASTER
STIFFNESS MATRIX. PUNCH <PRINTAQ'S> IN'C1].

SEY S12 (OPTIONAL). PUNCH THE SOLUTION VECTOR AT THE

END JF EACH LOAD CONDITION ONTO CARDS FOR POSSIBLE INPUT TO
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FUTURE JOBSs PUNCH <PUNCHASOLUTION> IN [11].

SET S13 (OPTIONAL). AN INITIAL SOLUTION VECTOR AND
FLETCHER=POWELL H MATRIX: WRITTEN ON TAPE IN A PREVIOUS RUN
(SEE SET S18} ARE TO BE READ IN. PUNCH
<READAX»HAFROMATAPE> IN [11 AND THE LOGICAL TAPE UNIT NUMBER
{1 OR 2) IN [21-251.

SET S14 (OPTIONAL). REDUCE PRINTINGe. UNLESS OTHERWISE
SPECIFLEDs THE FLETCHER=-POWELL AND FLETCHER-REEVES ROUTINES
WILL PRINT A SUMMARY OF EACH ITERATION CONSISTING OF 8 TO 10
LINESe IN ADDITIOWNs THE SOLUTION VECTOR AND GRADIENT VECTOR
ARE PRINTED AFTER EACH ITERATION, CONSUMING ABOUT N/2 LINES,
WHERE N IS TFHE NUMBER OF DEGREES=0F~-FREEDOM. THIS MAY BE
ALTERED SO THAT THESE TwO VECTORS ARE PRINTED ONLY AFTER
EVERY MTH ITERATION. PUNCH <REDUCEAPRINTING> IN [11 AND THE
APPROPRIATE INTEGER M IN [21=-251. TO SUPPRESS ALL
INTERMEDIATE OUTPUT FROM FLETCHER=-POWELL OR FLETCHER=REEVES:
PUNCH ZERO IN [21-251,

SET S15 (OPTIONAL). INFORMATION GENERATED DURING THE
SETUP PHASE OF THE PROGRAM MAY BE SAVED ON TAPE: SO THAT IF
THE SAME PROBLEM IS RUN LATERe THE SETUP PHASE CAN BE
BYPASSED. PUNCH <SAVEASETUPAONATAPE> IN [11].

SET S16 (OPTIONAL). THIS OPTION SPECIFIES THAT AT THE
END OF EVERY MTH ITERATION OF THE MINIMIZATION ROUTINE THE
CURRENT SOLUTION VECTOR (AND H MATRIXr IN THE CASE OF
FLETCHER=-POWELL MINIMIZATION) ARE TO BE WRITTEN ON AN OUTPUT

TAPEs AND THE TAPE BACKSPACED. PUNCH <SAVEAX+HAONATAPE> IN
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L1 AND THE DESIRED INTEGER M IN [21-251.

SET S17 (OPTIONAL). SUBDIVISION OF ELEMENTS. NORMALLY
THE PROGRAM PRINTS DISPLACEMENTSe STRAINS: AND STRESSES ONLY
AT ELEMENT CORNERS. THIS MAY BE ALTERED SO THAT ELEMENTS
ARE SUBDIVIDED BY UNIFORM GRIDS» AND THESE QUANTITIES ARE
CALCULATED AT THE NODE POINTS DEFINED BY THESE GRIDS. GRID
SIZES ARE SPECIFIED BY A PAIR OF INTEGERS INDICATING THE
NUMBER OF SUBDIVISIONS IN THE X AND Y DIRECTIONS:
RESPECTIVELY. THUS A 2 BY 3 GRID WOULD RESULT IN QUTPUT FOR
THE FOUR CORNERSe FCR SIX POINTS ON THE ELEMENT BOUNDARIES»
AND FOR TWO INTERIOR POINTS. THE FIRST CARD OF THIS SET HAS
<SULDIVIDE> IN [13s AND THE NUMBER OF SUBDIVIDED ELEMENTS IN
[21-251. FOR EACH SUCH ELEMENT» PUNCH A CARD WITH AN
ELEMENT NUMBER IN (1-51 AND THE GRID SIZE 1IN [6~1031 AND

[11"15]0

Bsel.3. LOAD CARODS. LOAD CARDS ARE ALSO ORGANIZED INTO
SETSs ALL OF WHICH ARE OPTIONAL.  THOSE THAT ARE INCLUDED
MUST APPEAR IN THE ORDER SPECIFIED BELOW.

SET Lle POINT LOADS.  PUNCH <POINTALOADS> IN [11 AND
THE NUMBER OF POINT LOADS TO BE APPLIED IN [21-251. FOR
EACH SUCH LOAD PUNCH A CARD WITH AN ELEMENT NUMBER IN [1-51
A CORNER NUMBER IN [6-101s A DISPLACEMENT SPECIFIER IN L1613
AND THE MAGNITUDE OF THE LOAD IN [21-351.

SET L2. LINE LOADS. LOADINGS DISTRIBUTED ALONG AN
EDGE MAY BE SPECIFIEDs ORIENTED IN THE Usr Vs OR
DIRECTIONSs DISTRIBUTED EITHER UNIFORMLY OR IN THE FOLLOWING
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WAYS: ALONG EDGES Y=CONSTANT OF RECTANGULAR OR CYLINDRICAL
ELEMENTS» LOADINGS MAY VARY WITH X OR Xe. ALONG EDGES
X=COHNSTANT OF RECTANGULAR OR CYLINDRICAL ELEMENTS (PROVIDED
POLYOMIAL INTERPOLATION IS USED)e+ LOADINGS MAY VARY WITH Y
OR Y. ALONG EDGES Y=CONSTANT OF ANNULAR ELEMENTSe LOADINGS
MAY VARY WwITH R OR Rr WHERE R STANDS FOR THE RADIAL
CO-ORDINATE MEASURED FROM THE POLE OF THE ELEMENT (SEE FIG.
307 . FINALLY* WHEM TRIGONOMETRIC INTERPOLATION IS USED:
LOADINGS ON CURVED EDGES MAY VARY WITH SINOs COSOr SIN(20)»
OR COoS(20) WHERE 0 IS THE ANGULAR CO-ORNDINATE »
CORRESPONDING TO EACH OF THESE OPTIONS IS A *VARIATION
SPECIFIER' USED ON DATA CARDS. THESE ARE <X>» <X*%2>r <Y
CY*x%2>r  <RO>» CR*¥%2>y  LKSIN(TIDe <COS(TI>r <SIN(2TID>» OR
<COS(2T)>. TO SPECIFY LINE LOADS: PUNCH A CARD WITH
<LINEALOADS> IN (11 AND THE NUMBER OF SUCH LOADS IN
[21-25]+ FOR EACH SUCH LOADe PUNCH A CARD WITH AN ELEMENT
NUMBER IN [1=5]¢ AN EDGE NUMBER IN [6=101r EITHER <U>r <VD»
OR <4> TO INDICATE THE DIRECTION OF THE LOAD 1IN [16Jr AND
THE MAGMITUDE OF THE LOAD IN [21-351. FOR UNIFORMLY
DISTRIBUTED LOADSe LEAVE THE REST OF THE CARD BLANK.
OTHERWISE PUNCH <*> IN [361 (SYMBOLIZING MULTIPLICATION).
AND A VARIATION SPECIFIER IN (371. SPECIFI&ATIONS ARE
CUMULATIVEes SO THAT A LCADING OF THE FORM 1=X+X » FOR
EXAMPLE» MAY BE IMNPUT AS THREE SEPARATE-LOADINGS-

SET L3s SURFACE LOADS. LOADINGS DISTRIBUTED OVER THE
SURFACES OF ELEMENT ™MAY BE SPECIFIEDs ORIENTED IN THE Ue Vo
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OR W DIRECTIONS:, DISTRIBUTED EITHER UNIFORMLY OR
NON-UNIFORMLY AS INDICATED IN SET L2« THE FIRST CARD OF
THIS SET HAS <SURFACEALOADS> IN (1] AND THE NUMBER OF SUCH
LOADS IN [21=251]. FOR EACH LOADs PUNCH A CARD WITH AN
ELEMENT NUMBER IN [1~5]+ EITHER <U>e V>r OR <W> IN C[161 TO
INDICATE THE DIRECTION OF THE LOADe AND ITS MAGNITUDE 1IN
{21-35). 1IF THE LOAD DOES NOT VARY IN X+ LEAVE THE FIELD
C36=-42] BLANK» OTHERWISE PUNCH <*> IN [36] AND A VARIATION
SPECIFIER (CHOOSE FROM AMONG <X>¢ <X*¥%¥2>» <R>¢ OR <{R¥*2>) IN
£371. (SEE SET L2 FOR AN EXPLANATION OF VARIATION
SPECIFIERS)e IF THE LOAD DOES NOT VARY WITH Yr LEAVE THE
REST OF THE CARD olLANK? OTHERWISE PUNCH <*> IN [43] AND A
VARIATION SPECIFIER IN {443 (CHOOSE <Y>r <KY#%2>y <SIN(T) >»
<SIN(2T) > <COS(TI>e OR LCOS(2TI2) .

SET L4. IMPOSED DISPLACEMENTS. PUNCH <IMPOSEDADISPL.>
IN [1] AND THE NUMBER OF IMPOSED DISPLACEMENTS IN [21-251,
PROVIDE ONE CARD FOR EACH IMPOSED DISPLACEMENT WITH AN
ELEMENT NUMBER InN C1-51 CORNER NUMBER IN [6=101.
DISPLACEMENT SPECIFIER IN [161r AND THE MAGNITUDE OF THE
DISPLACEMENT TO BE IMPOSED IN [21-351. THE PURPOSE OF DATA
SET 58 1S TO PROVIDE PROPER VARIABLE NUMBERING. THE PURPOSE
OF THIS SET IS TO PRESCRIBE THE MAGNITUDE OF THE IMPOSED
DISPLACEMENTS WHICH MAY CHANGE FROM ONE LOAD CONDITION TO
THE NEXT.

SET L5s AUTOMATIC LOAD INCREMENTATION. IF THE APPLIED

LOADS ARE TO BE INCREASED LINEARLY FOR A NUMBER OF LOAD
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CONDITIONS» IT IS NOT NECESSARY TO PROVIDE A NEW GROUP OF
LOAD CARDS FOR EACH INCREMENT OF LOAD. INSTEAD» THIS OPTION
ALLOwS THE USER TO SPECIFY THAT FOR A CERTAIN NUMBER OF LOAD
CONDITIONS: A CERTAIM INCREMENT OF LOAD WILL BE ADDED EACH
TIME. THIS INCREMENT IS SPECIFIED AS SOME FRACTION OF THE
LOAD VECTOR WHICH HAS JUST BEEN FORMED. THIS SAME FRACTION
WILL ALSO BE APPLIED TO ANY IMPOSED DISPLACEMENTS WHICH HAVE
BEEN SPECIFIED. IT IS ALSO POSSIBLE UNDER THIS OPTION TO
EXTRAPOLATE LINEARLY THE SOLUTION FOR ONE LOAD CONDITION AS
A STARTING POINT FOR THE NEXT LOAD CONDITION. THIS IS
ACCOMPLISHED RY SPECIFYING A FRACYION OF THE SOLUTION FOR
THE |_LOAD CONDITION CURREMTLY BEING SPECIFIED WHICH WILL BE
ADDED AT EVERY INCREMENTATION STEP. PUNCH <INCREMENTATIOND
IN [1] AND THE NUMBER OF SUCCEEDING LOAD CONDITIONS FOR
WHICH THIS INCREMENTATION IS TO APPLY IMN [21-25]«. O A
SECOND CARD PUNCH THE FRACTION TO BE APPLIED TO THE LOADS
AND IMPOSED DISPLACEMENTS IN [1-151r AND THE FRACTION TO GE
APPLIED TO THE SOLUTION IN [16=30]. NOTE THAT FOR EACH LOAD
CONDITION DURING WHICH INCREMEMTATION IS IN FORCEs NO DATA
CARDS WILL BE READ.

SET Lb. THIS SET SPECIFIES A STARTING SOLUTION FOR
THIS LOAD CONDITION: PRESUMABLY OBTAINED AS OU*PUT FROM A
PREVIOUS JOBe THE FIRST CARD HAS <STARTINGASOLUTION> IN [11

AND THE SOLUTION VECTOR FOLLOWS IN A (5E16.8) FORMAT.

Be2. INTERPRETATION OF OUTPUT.
A DESCRIPTION OF THE STRUCTURE IS PRINTEDes FOLLOWING
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THE DATA THAT WAS SUPPLIED. THIS SHOULD BE CHECKED FOR
CORRECTNESS, A TABLE SHOWING HOW INDEPEMDENT
DEGKEES=0F~FREEDOM WERE ASSIGNED 1S PRINTED NEXT. A TABLE
OF STORAGE REQUIREMENTS IS PRINTED» AND IF ANY OF THE ITEMS
LISTED EXCEEDS THE MAXIMUM ALLOWEDes THE RUN IS TERMINATED.
THE INPUT/OUTPUT PHASE PRINTS A DESCRIPTION OF THE LOADS
THAT WERE SPECIFIED, AND THE wWORK=EQUIVALENT LOAD VECTOR
WHICH WAS GENERATEDs THE MATRIX INVERSION PORTION OF THE
ANALYSIS PHASE PRINTS THE FINAL SOLUTION VECTOR.  THE
MINIVMIZATION ROUTINES PRINT VARIOUS INFORMATION: AS
DESCRIBED IN SPECIFICATION SET S14. FOLLOWING THE ANALYSIS
PHASE» THE INPUT/0UTPUT PHASE TAKES OVER AND  PRINTS
DISPLACEMENTS STRAIMSe AND STRESSES AT £ACH CORNER OF EACH
ELEMENTs AND AT OTHER POINTS SPECIFIED BY DATA SET S17.
STRAINS AND STRESSES ARE CALCULATED AT THE MIDDLE SURFACE
AND BOTH FACES.

A wWORD OF CAUTION ABOUT STRAINS AND STRESSES IS IN
ORDER. AS_ S5TATED ABOVEr» OSCULATORY INTERPOLATION IS THE
LOWEST ORDER OF INTERPOLATION POSSIBLE FOR INTERPOLATION OF
BENDING DISPLACEMENTS: WHILE FOR MEMBRANE DISPLACEMENTS
LAGRANGE INTERPOLATION IS POSSIBLE. A RESULT OF THIS IS
THAT wHEN OSCULATORY INTERPOLATION IS USED TO INTERPOLATE
30TH MEMBRANE AND BENDING DISPLACEMENTS: THE MEMBRANE
STRAINSy» OR MIDDLE SURFACE STRAINSe WHICH COME FROM FIRST
PARTIAL DERIVATIVES OF U AND V» WILL BE MORE ACCURATE THAN

SURFACE STRESSESe WHICH DEPEND ON SECOND DERIVATIVES OF We
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MEMBRANE STRAINS IN THIS CASE WILL VARY QUADRATICALLY 1IN X
AND IN Yo AND WILL BE CONTINUOUS BETWEEN CO=PLANAR ELEMENTS
(UNLESS THIS CONTINUITY HAS BEEN SUPPRESSED)+: WHILE BENDING
MOMENTS WILL VARY LINEARLY IN X AND IN Yr AND  ARE
DISCONTINUOUS BETWEEN ELEMENTS. HOWEVER » WHEN
HYPEROSCULATORY INTERPOLATION IS USED FOR BENDING VARIABLES:
THE SENDING MOMENTS WILL VARY CUBICALLYe» WILL BE CONTINUOUS
BETWEEN ELEMENTSe. AND WILL THEREFORE BE MORE ACCURATE. WHEN
LAGRANGE INTERPOLATION IS USED FOR MEMBRANE VARIABLESe THE
STATE OF MIDDLE=SURFACE STRESS WILL BE CONSTANT IN EACH
ELEMENT» AND THUS WILL GENERALLY BE ONLY A ROUGH

APPROXIMATION TO THE ACTUAL STRESS STATE.

Beds A SAMPLE STRUCTURE.

TASLE B1 SHOWS THE DATA CARDS CORRESPONDING TO THE
SAMPLE STRUCTURE SHO«WN IN FIGs Ble THIS MODEL WwAS CHOSEN
TO ILLUSTRATE A WIDE VARIETY OF ELEMENT TYPES AND
CONNECTIONS, AND DOES NOT REPRESENT ANY REALISTIC
STRUCTURE. - THE FOLLOWING COMMENTARY REFERS TO CARD NUMBERS
ALONG THE LEFT=HAND MARGIN OF TABLE B81. THESE SERIAL
NUMBERS ARE NOT ACTUALLY PUNCHED ON THE DATA CARDS.

CARD 1 IS THE TITLE CARD.

CARDS 2=16 CONSTITUTE SET Sl1l. THE NUMBER 14 ON CARD 2
INDICATES THAT THERE ARE 14 CONNECTIONS BETWEEN ELEMENTS.
CARD 3 INDICATES THAT ELEMENT 1+ CORNERS 3 AND 4+ JOINS
ELEMENT 2+ CORNERS 2 AND 1» AND THAT THE X AND Y AXES OF

ELEMENT 1 LINE UP WITH THE X AND ¥ AXES OF ELEMENT 2
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NORMAL AND SHEAR STRAIN CONTINUITY BETWEEN THESE TAO
ELEMENTS ARE SUPPRESSED BECAUSE OF THE STIFFENER BETWEEN
THEM., CARD 4 INDICATES THAY ELEMENT 1 JOINS ELEMENT 8+ AND
THAT THE X AND Y AXES OF ELEMENT 1 LINE UP WITH THE =Z AND
+Y AXES OF 8. NOTE THAT SINCE ELEMENT 1 IS JOINED TO 2+ AND
1 IS JOINED TO 8» IT WOULD BE REDUNDANT TO SPECIFY
EXPLICITLY THAT 2 1S JOINED TO 8. CONSIDER THE VERTICAL
LINE WHERE ELEMENTS 50 6r 70 AND 8 MEET. THREE
RELATIONSHIPS AMONG THESE ELEMENTS ARE REGQGUIRED TO MAKE
THESE ELEMENTS REMAIN MUTUALLY PERPENDICULAR. ELEMENT 5 IS
JOINED TO 6¢ 7 TO 8¢ AND 5 TO 8+ IT WOULD HAVE BEEN EQUALLY
VALID TO CONNECT 5 7O 70 &6 TO 7¢ AND & TO 8.

CARDS 17 THROUGH 23 CONSTITUTE THE FIRST OF FIVE
OCCURRENCES OF SET S2. THESE FIVE SETS COULD HAVE APPEARED
IN ANY ORDER. CARD 18 1INDICATES THAT ELEMEMNTS 1 AND 2 ARE
RECTANGULAR» CARDS 19 AND 20 INDICATE THAT OSCULATORY
(FIRST=ORDER) POLYNOMIALS WILL BE USED TO ‘INTERPOLATE BOTH
MEMBRANE AND BEHNDING DISPLACEMENTS. CARD 21 SPECIFIES
NONLINEAR STRAIN=-DISPLACEMENT RELATIONS FOR THESE ELEMENTS.
CARD 22 HAS.THE MODULUS OF ELASTICITY. POISSON'S RATIOr AND
THICKNESS FOR THESE ELEMENTSe AND CARD 23 HAS THE PLANFORM
DIMENSIONS OF THE ELEMENTS. THE SET 24=30 IS SIMILAR.
EXCERPT THAT CARD 30 HAS THE AXIAL LENGTHe RADIUSe AND ARC 1IN
DEGREES FOR THESE ELEMENTSe WHICH ARE CYLINDRICAL. CARD 46
INDICATES THE INNER RADIUS+. OUTER RADIUSt AND ARC IN DEGREES

FOR ELEMENT 7.
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CARD 5% INDICATES THAT BENDING BOUNDARY CONDITIONS ARE

TO BE APPLIED 7O FOUR ELEMENT EDGES. CARD 56 INDICATES THAT
EDGE 2 OF ELEMENT 1 IS CLAMPEDe. AND THE NEXT THREE CARDS ARE
SIMILAR.

CARD 60 CALLS FOR FLETCHER=REEVES MNONLIMEAR ENERGY
SEARCHs CARD 61 INDICATES THAT A LINEAR SOLUTION WILL BE
S0UGHT FIRSTr USING MATRIX INVERSION.

CARD bz SPECIFIES THAT THERE ARE FOUR MEMBRANE gOUMNDARY
CONDITIONSs 4MICH FOLLOW ON CARDS 63=66.

CAHD 67 SPECIFIES PUNCHED QUTPUT OF THE SOLUTION VECTOR
AT T+4E END OF EACH LOAD CONDITION,

CARD B8 CUTS DOWN THE QUTPUT FROM FLETCHER-RFEVES. TiHE
SOLUTION VECTOR  AND GRADIENT VECTOR WILL BE PRINTED QillLY
AFTE!R EVERY 69 ITERATIONS.

CAR[} 9 IS TeE LOADS CARD» WHICH INDICATES THAT THE
SPECIFICATION SECTION IS COMPLETE: AND A SET OF LOAD CARDS
IS T FOLLOw.

CARD ?ﬂ INDICATES THAT THERE ARE SIX LINE LOAODS
DISTRIBUTED ALOHG ELFMENT EDGES. FIGURE R1 SHOWS A VERTICAL
LINE LOAD ACTING ON THE EDGES OF ELEMENTS 1 AND 3. THIS
LOAL MUST 3FE RESOLVEL INTO RADIAL AND TANGENTIAL COMPONENTS
FOR ZLEMENT 3. ASSUME THE MAGMITUDE OF THE LOAD IS 5.0
(FORCE PER UNIT LEWGTHYs THEN» APPLYING THE TRANSFORMATION
FOR A STATE OF PLANE STRESS AND MNOTING THAT THE FREE %DGE OF
THe CYLINDRICAL ELEMENT IS THE 0=0 EDGEr THE RADIAL

COMPONENT OF ThIS LGAD IS
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2.5%[1+0.93969«C05(20)+0,34202*SIN(20) 1»
AND THE TANGENTIAL (SHEAR) COMPONENT IS

2.5%[ 0.34202%C0S(20)=0,93969%SIN(20) I,
CARD 71 SPECIFIES THE LINE LOAD FOR ELEMENT 1 (ELEMENT
NUMBER» EDGE NUMBERe DIRECTION SPECIFIERes AND MAGNITUDE)
SINCE THE RAQIAL COMPONENT OF THE LOAD ON ELEMENT 3 CONSISTS
OF THREE TERMS» 1T IS ENTERED ON THREE CARDS: 72, 73 AND
74, FINALLY:, THE TANGENTIAL COMPONENT IS ENTERED OM CARDS
75 AND 76

CARD 77 INDICATES THAT TWO ELEMENTS ARE SUBJECTED TO
SUKFACE LOADSe WHICH ARE SPECIFIED ON CARDS 78 AND 79.

CARD 80 CALLS FOR THREE MORE LOAD CONDITIONSe EACH
OBTAINED FROM THE PREVIOUS LOQADS BY SUBTRACTING 25 PERCENT
OF THE FIRST LOAD. THIS COULD HAVE BEEN DONE BY SPECIFYING
THREE MORE LOAD SETSe. EACH SIMILAR TO THE SET  70=79¢ WITH
THE LINE LOAD TAKING OM THE VALUES 3.75¢ 2.5¢ AND 1.25¢ AND
THE SURFACE LOAD TAKING THE VALUES =0.75¢ =0.5¢r AND =0.25,

CARD 82 MUST BE THE LAST CARD OF THE DECK.

TABLE B2 SHOWS OUTPUT WHICH WAS OBTAINED FROM THE
UNIVAC 1108 COMPUTER FOR THE SAMPLE STRUCTURE. THIS OUTPUT
IS SELF-EXPLANATORY. THE LAST PAGEr SHOWING DISPLACEMENT»
STRAIMe AND STRESS RESULTSs DOES NOT CORRESPOND TO THE
SAMPLE STRUCTUREe. SINCE IT WAS FELT THAT RUNNING THIS
UNREALISTIC PROBLEM TO COMPLETION WOULD BE A WASTE OF
COMPUTER TIMEs THIS PAGE WAS TAKEN FROM ANOTHER RUNr AND IS

TYPICAL OF THE OUTPUT WHICH IS PRODUCED.
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Fig. BT  Sample Structure
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Table BY  Sample Input Data
1. STRUCTURE ILLUSTRATING DATA CARD PREPARATION o )
2. ELEMENT CONNECTIONS 14
S 1 3 4 2 2 1 #X__4Y  NORMAL _ SHEAR ... __
Y, 1 3 4 8 2 1 -2 +Y
S 2 3 4 10 3 4 -Z Y _— e
Ho 1 1 4 3 2 3 +X +Y NORMAL SHEAR
7s 7 1 4 8 1 4 _*x =Y ~ NORMAL.__ SHEAR ______
B 2 1 4 y 2 3 +X +Y. NORMAL SHEAR
- 1 1 9 1 4 10 SR S & S, S
10. 1 1 4 5 1 2 +Y +Z
e o2 14 6y 2 ¥ ¥ . o
12. 5 2 3 1) 1 4 +X +Y NOQRMAL SHEAR
13 .5 2 3 8 1 4y +X =2
iy, 3 3 4 4 2 1 +X - +Y NORMAL SHEAR
3 15, 3 3 4 1 i 2 +Z ~-Y
16. 4 3 4 9 4 3 +Z -Y
17 ELEMENTS S S-S .
18, RhCTANGULAR
B 19, MoMBRANE  POLYNOMIALS 1 -
20, BENDING POLYNOMIALS 1
B 21l. WONLINEAR L R
22, 10000000, + 3 201
, 23e_ 1,0 . teQ .. _ _ o
2l . ELEMENTS 3 4
e 850 CYLINDRICAL. . . _ e L _ -
264 M MBRANE TRIGONOMETRIC 1
27. BENDING  TRIGONOMETRIC | o ] )
- 28a LINEAR
29, 15000000, 3 02 ,
B 30« 1.0 1040 " 10.0 DEGREES
31, ELEMENTS 5 6 8 10
32, RECTANGULAR
33, MEMBRKANE  POLYNOMIALS
-3y, BENDING POLYNOMIALS 1
35. STIFFENER B B ~ S
36«  LINEAR
A7, 10000000, e 01 ) B _
T 3Be 0.1 T 1.0
39. ELEMENTS - 7 o e
) Tug,. AFNULAR
41, MEMBRANE TRIGONOMETRIC 1 _ L
B 42, BENDING TRIGONOMETRIC 1
43, STIFFENER - o
T 4y, LINEAR
__4757-7 10000000. N 03 7 + 01 B
46. 100 10.1 10.0 DEGREES
47. ELEMENTS 9 o -
I 'Y 1 ALINULAR
- 49, = MgMBRAWRE TRIGONOMETRIC 1 _ e
S0. BENDING TRIGONOMETRIC 1
51. __ STIFFENER . -~ — R,
52, LINEAR
53, 1 uﬁOpﬁQOQO . 3 of __l
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Table B1 Sample Input

Data (Continued)

S
55,

9.9
BENDING BeCos

10.0
4

10.0

DEGREES

56
57,

1 2
8 e

CLAMPED
CLAMPED

o] 2 2 CLAMPED
.59, 10 2 _ CLAMPED X _ . e
60+  FLETCHER-REEVES
. B1. INVERT ) L . e
62+ MEMBRAIE B.Cos 4
63, 1 2 _U AND V PREVENTED
ol 8 e U AND V PREVENTED
65, 2 e U_AND V PREVENTED _ o —
66 10 Z U AND V PREVENTED
67+ PUNCH SOLUTION ) R e el
b8+ REDUCE PRINTING 69
9. LOADS _ B . ;
70. LINE LpADS 6
e e L Y W Be0 e
T2 3 1 W 25
o 13e 3 Yk 2340225 xCos(2T) | _ B
T, 3 1 W 0.+.855050 *SIN(2T)
154 a1 VvV  «0.,855050 *Cos(2T) ~
76 3 1 v 2+3489225 *SIN(2T)
. 17+ SURFACE LOADS. . ... ..2 . . o
78 . 1 W - 1 [ ] 0
.19 2 . W =1.0_ L - R s
B0, INCREMENTATION 3
&l. =25 . =425 i B
mr g eGP o e T P ER
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APPENDIX C

EXPERIMENTAL DATA
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0° |
: ] Tu
%
0 | ] _ | L | _J
0 -200 =400 -600 -800 -1000 -1200

Strain (p in/in)

Figure C.1 Load vs. Strain Pinched Cylinder , Gage No. 1
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Load (Pounds)
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20
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45°
gage
location
ol
1 ]
2 - 1 5 pall
l l I I § Lz 18

0 -200 -400 -600 -800 -1000 -1200
' Strain (u in/in)

Figure C.2 Load vs. Strain Pinched Cylinder, Gage No. 3
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Figure C.3 Load vs. Deflection Pinched Cylinder
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Figure C.4 Load vs. Deflection Pinched Cylinder
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Figure C.5 Load vs. Strain, Rectangular Plate, Corner Supports,
Elastic Edge Supports, Transverse Load at Center.
Gage No. b
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Figure C.6 Load vs. Strain, Rectangular Plate, Corner Supports, Elastic
Edge Supports, Transverse Load at Center, Gage No. 1
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Figure €C.7 Load vs. Strain, Transverse Loaded Stiffened Plate No. 2,
Simply Supported.
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Figure C.8 Load vs. Strain, Transverse Loaded Stiffened Plate
No. 2, Simply Supported

276



(Pounds)

Total Load

600 |-

500 |—
400 |—
e == T =
Gage Location
200 W
load Load 1oad
—_— 3 3
:: 3
100
gage

| 1 l 1
0 20 40 60 80 100
Strain {p in/in)

Figure C.9 Load vs. Strain, Transverse Loaded Stiffened
Plate No. 3, Simply Supported
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Fig. C.10 Load vs. Strain, Transverse Loaded Stiffened Plate No. 3
Simply Supported
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Load vs. Strain Inplane Loaded Stiffened Plate No. 4.
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Fig. C.12 Load vs. Strain Inplane Loaded Stiffened Plate No. 4
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Fig. C.13 Load vs. Strain Inplane Loaded Stiffened Plate No. 4.
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Table C3

Test Data for Stiffened Plate No. 1

Load {1bs)

10
15
20
25
30
35
40
45
46
a7
48
49
50
51
52
53
54
55

Deflection
(under load)
{inches)

286

0
0.0045
0.0100
0.0155
0.0220
0.0278
0.0334
0.0386
0.0451
0.0518
0.0532
0.0552
0.0565
0.0582
0.0622
0.0656
0.0710
0.0760
0.0790
0.0850

Buckling, Tongitudintal
stiffener
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