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ABSTRACT 

The Modal Strain Energy (MSE) method has become a significant design 
tool in the last decade. The MSE method allows the approximate solution to a 
complex eigenvalue problem using the solution to a real eigenvalue problem 
and knowledge of element loss factors and the percentage of MSE contained in 
each element. 

While the MSE method has been shown to be relatively accurate in many 
instances, particularly for design purposes, it can produce high errors even in 
simple cases with relatively low damping levels. This paper discusses a new 
MSE method which allows the approximate solution to complex eigenvalue 
problems while providing more accurate approximations. 

The Absolute Value MSE (AVMSE) method incorporates the absolute 
value of the individual element impedances to form a real "stiffness" matrix. 
From the solution of the eigenvalue problem associated with the system mass 
matrix and this real "stiffness" matrix; approximate mode shapes, natural 
frequencies, and damping ratios may be obtained. 

The new method provides greater accuracy than the standard MSE 
method in most instances, and more importantly provides conservative damping 
estimates while the standard method tend to overpredict damping ratios. The 
AVMSE provides more accurate results while remaining innexpensive to 
implement. 
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• Damping Devices Can Be Modeled by Impedances 
- Viscoelastics 
- D-Struts 
- Passive Piezoceramic Members 

• Impedance Is a Frequency-Dependent Complex Quantity 

Z (5) =Z R (5) + i ZI (5) 

• Rearranging the Impedance Results In a Frequency-Dependent "Complex 
Stiffness" 

• Modes of Systems That Contain Damping Devices Are Complex 

Passive damping applied to structures for vibration control has 
become an accepted practice in the past decade. Passive damping 
devices are efficiently modeled by their mechanical impedance for 
incorporation into structures. Such devices include viscoelastic 
members, viscous damping members, piezoceramic passive devices, 
and many others. 

Mechanical impedance is a frequency dependent complex quantity 
which describes the relationship between an applied force to a member 
and the resulting displacement. 

By writing the impedance in the proper form, a frequency 
dependent complex stiffness results. This form of the impedance is 
typically used to model viscoelastic material, however, it can be used 
for other damping members. The modes of a system which incorporate 
damping devices with complex stiffnesses are generally complex. 
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Introduction (concl)
 
• MSE Method Is Well-Known for Approximate Solution of Damped Systems 

( - M (0 
2 + K R) • <1> = 0 

• MSE Method Provides Insight into Damping Design Improvements 

• MSE Method Can Sometimes Provide Inaccurate Results-It Tends To 
- Overpredict Damping Ratios 
- Underpredict Natural Frequencies 
- Overpredict Modal Motion across Damped Elements 

• New Method That Improves Approximations Has Been Developed 

The Modal Strain Energy Method is a well known method of 
approximating the solution of the complex eigenvalue problem using real 
eigenvalue problems. 

In addition to the computational advantage of the MSE method as 
compared to the complex eigenvalue problem, it has the advantage that 
it provides insight in effective improvements in damping design for a 
particular system. However, the MSE method can sometimes provide 
inaccurate results. It tends to overpredict the damping ratios, 
underpredict natural frequencies, and overpredict the motion across 
damped elements. 

This presentation discusses a new approximation method with 
improved accuracy which also has the computation advantages of the 
MSE method. 
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Typical Oomplex Impedance Eletm,nt 
. . - - . -­

• The Ratio of the Motion Across a Complex Spring to Applied Force Is the
 
Absolute Value of the Impedance
 

F 

For a typical complex impedance element, the complex spring constant 
describes the ratio of the displacement to applied force. The ratio of the 
magnitude of the displacement to the magnitude of the force is the 
absolute value of the impedance. 
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• The Natural Frequency and Damping Ratio Are Found from the Location of 
the Pole ~ 

X A= 0).ei~an-1(v~+t2) +~J 

For a single degree of freedom system with a complex spring, the 
natural frequency and damping ratio can be obtained from the location 
of the pole in the system transfer function. The eigenvalue can be 
written in terms of its magnitude and phase angle, which are a function 
of the natural frequency and viscous damping ratio. 

Equating the pole location to the eigenvalue, we find that the natural 
frequency is the square root of the ratio of the absolute value of the 
impedance and the mass. The modal damping ratio is a function of the 
element loss factor. 
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• Assume the Real Modes Derived from the Real Part of the Stiffness Matrix Are 
Good Approximate Eigenvalues 

2 
( • M 0> + K R) • <I> = 0 

• Compute the Rayleigh Quotient To Find the Eigenvalue 
2_ <l>T ·(K R + KI)·<I>I 

A.	 I = T 
<I>.·M·<I> 

I 

• Assume That the Real Part of the Rayleigh Quotient Is the Natural Frequency 
Squared T 

II.. 12 _ <I> I • K R • <I> I _ 2 
I = 0> I 

<l>T·M·<I>·I I 

• Calculate the Damping Ratio Using the Approximation Formula 
1 T 2 

SI=2<1>j·K.-<I>j/(() j 

In the well known MSE method, the real system modes which are 
derived from the mass matrix and the real part of the complex stiffness 
matrix are assumed to be accurate approximations to the complex 
system eigenvectors.The Rayleigh Quotient is then used to 
approximate the eigenvalues of the system. 

As opposed to the absolute value of the Rayleigh Quotient, using 
the MSE method the natural frequency squared is assumed to be the 
real part of the Rayleigh Quotient. The damping ratio is then calculated 
using an approximation formula which is one half the ratio of the real 
and imaginary parts of the Rayleigh Quotient. 

Note that the MSE method does not yield the correct result for the 
single degree of freedom system. It is relatively accurate, however, for 
small damping ratios. 
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The Ab80lule Value MSE Method
 
• Assemble the Absolute Value Matrix 

NE 

K= L KR.~f 
j=1 J 

• Find the Eigenvectors and Eigenvalues Associated with This Matrix and the 
Mass Matrix 

2 ­
(-Moo + K)-<I>=O 

• Assume That These Vectors Are Approximate Eigenvectors 

• Compute the Rayleigh Quotient To Find the Approximate Eigenvalue 

A2 == <I> T- ( KR + iK I) - <I> 

<l>T-M-<I> 

• Calculate the Modal Strain Energy in Each Element 

<I> T-KRJ.~2_<I>·1 
MSE ij =---------­

oo~ 
I 

A new energy method of has been developed for the 
approximation of the complex eigenvalue problem, which is termed the 
Absolute Value Modal Strain Energy (AVMSE) method. In the AVMSE 
method, a stiffness matrix is assembled with the absolute value of 
each elements impedance, which is consistent with the single degree 
of freedom system. 

The eigenvectors and eigenvalues associated with the system 
mass matrix and this stiffness matrix are then computed. These 
eigenvectors are assumed to be a good approximation to the complex 
system eigenvectors. The Rayleigh Quotient is then used to 
determine the location of the eigenvalue. 

By defining the modal strain energy in the elements of the system, 
in a manner similar to the standard MSE method, we can determine 
the eigenvalue location in terms of element real and complex energies. 
This provides the same insight for design development as the 
standard MSE method. 
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• Calculate the Approximate Natural Frequency As the Absolute Value of the 
Rayleigh Quotient 

2I 21_[ 2 ~ MSEIJ 11 ~ MSEIIOTlJ ] 2AI - ())AO £..,j 2 ())A°£.. ~ == ())A 
J.1 1+Tl 1·1 '1/ 1+Tl,

J J 

• Use the Phase Angle of the Rayleigh Quotient To Calculate the Damping Ratio 

NE MSE IJ ° TlJ 
I, ~ 
J.1 '1/ 1+Tlj

11 = 
I NE MSE IJ 
I,~ 
J.1 '1/ 1+ Tl J 

From the complex Rayleigh Quotient, the natural frequency is the 
square root of its absolute value. This can be shown to be approxi­
mately the eigenvalue which is computed from the real eigenvalue 
problem. 

By defining the modal loss factor, the viscous damping ratio can 
be determined from the phase angle of the eigenvalue similar to the 
single degree of freedom system. The modal loss factor can be 
written in terms of the MSE in various elements and their loss factors. 
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A Simple Example! Problem
 
• Simple 3-DOF System with One Complex Spring 

• Vary the Spring Loss Factor 

• Compute Modal Properties Using Various 
Methods 
- Complex Elgenproblem 
- MSE Method
 
- Absolute Value MSE Method
 

• Compare Results 

To demonstrate the behavior of the standard MSE method, the 
AVMSE method, and the complex eigenvalue problem, a simple system 
was used. This system consists of three masses interconnected by 
springs, one of which is complex. 

For the example, the loss factor of the complex spring was varied 
and the modal properties were computed using the various methods, so 
that the results could be compared. 
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• Absolute Value MSE Shows Frequency Increase with Spring Loss Factor 

Fundamental Frequency vs Spring Loss Factor with Various Techniques 

Plotted here is the variation in the system fundamental frequency 
with the damped element loss factor. The MSE solution, of course 
shows no variation in natural frequency with element loss factor. The 
complex eigenproblem shows a frequency increase as the loss factor of 
the element increases, implying "stiffer" behavior of the damped 
element. Similarly, the AVMSE method also shows an increase in the 
frequency with element loss factor, and is more accurate than the 
standard MSE method. 
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Fundamental Mode Damping V$ $pring LeSI 
Factor 

• Absolute Value MSE More Accurate and Has Desirable Characteristics 

- Peak Damping at Specific Loss Factor Value 
- Conservative Damping Ratio Estimates 

Fundamental Mode Damping vs Loss Factor Various Techniques 
7 
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This plot shows the damping in the fundamental mode of the system 
as the loss factor is varied. The MSE solution predicts that the damping 
is linear in the element loss factor. The complex eigenvalue problem, 
however, shows that as the loss factor becomes large, the rate of 
damping increase becomes smaller. The complex eigenvalue problem 
also shows that if the loss factor is raised too high, the damping can 
actually decrease. The AVMSE solution duplicates this behavior, while 
providing a conservative estimate to the damping ratio. Notice that the 
problem was selected such that the damping ratio is low, on the order of 
3%. 
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• Absolute Value MSE Provides More Accurate Frequency Response 

Frequency Response of Simple System Using Various Techniques 
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This plot compares the frequency response for displacement of the 
first mass for forces applied to the same mass computed using the 
various methods. Notice that the absolute value MSE method is more 
accurate for the first mode, and very much better for the two coupled 
modes at 9 and 11 Hz. The standard MSE method has much greater 
error in this frequency region. 
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To show a comparison of the methods on a realistic problem, the 
PACOSS D-Strut truss was selected. This truss includes damping 
members which can be modeled with complex impedances. The exact 
solution can be generated by the solution of a viscous damping 
eigenvalue problem and compared with alternative solution methods. 
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RellJltl of Applicltion tQ D",Strut Trull 
Model·····' 
.. ,.;.,".. ,.... { 

• Complex Modes with Complex Stiffness Matrix Provides Exact Results 
It Computed at Eigenvalue 

• Absolute Value MSE Provides More Accurate Frequencies, Damping, 
and Mode Shapes than Standard MSE Method 

Analysis 
Method' Mode No. 

Frequency,
Hz 

Damping 
Ratio 

Complex 1 5.493 14.93 
Network 2 6.142 15.63 

.Complex 1 5.493 14.93 
Stiffness 2 6.093 16.51 

MSE 1 5.220 ' ,17.69 
2 5.720 18.85 

Absolute 1 5.457 14.10 
MSE 2 6.000 15.78 

The viscous eigenvalue problem with struts modeled as networks 
was solved first. A complex stiffness eigenvalue problem was then 
solved with the strut complex stiffness computed at the first eigenvalue. 
Of course, the first mode of this solution agrees exactly with the viscous 
damping formulation. The second mode of the complex solution has 
some error, as the properties were not computed at this eigenvalue. 

Even with the correct strut properties, the standard MSE method 
does not provide an accurate solution to this problem, as the first mode 
is predicted to have 17.7% damping while the solution is 14.9%, a 
relative error of 18.5%. Similarly the frequency is in error by almost 5%. 
The AVMSE method, however, is much more accurate. This method 
underpredicts the damping ratio by 5.5% relative error, and 
underpredicts the frequency by 0.6% relative error. This shows the 
much greater accuracy which can be achieved with the AVMSE method 
on difficult damping problems. 
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Conolueions
 
• New Method of Complex Stiffness Eigenproblem Approximation Developed 

- Uses Real Eigenproblem 

- Stiffness Matrix Is Assembled with Absolute Value of Impedance 

• Absolute Value MSE Method Behaves As Complex Eigenproblem 

- Elements Appear "Stiffer" As Loss Factor Increases 

- Damping Decreases As Loss Factors Raised Too High 

- Can Model Systems with Dashpots As Only Connection between DOFs 

A new method of determining approximate properties of damped 
structures has been developed and was presented. This method is 
based on a real eigenvalue problem which uses an assemblage of the 
absolute value of the element impedance matrices as the stiffness 
matrix. 

The behavior of the new method is more consistent with the complex 
eigenvalue problem. Similar to the complex solution, elements appear 
stiffer as loss factors increase, and the natural frequency increases. 
The AVMSE method does not predict a linear relationship between 
element loss factors and system damping, similar to the complex 
eigenvalue problem. 

Additionally, the new method can model systems with dashpots as 
the sole connection between degrees of freedom. As a dashpot has an 
infinite loss factor and no real part to its stiffness, the standard MSE 
method would not place a stiffness term in the MSE stiffness matrix. 
The new method places a term equal to the natural frequency multiplied 
by the dashpot coefficient in the stiffness matrix, and allows the 
approximate solution to this problem. 
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• Absolute Value MSE Method Provides More Accurate Results for Examples 

- Single-DOF System 

- Three-DOF Example Problem 

- D-Strut Truss 

• Absolute Value MSE Method Is As Easy To Implement As Standard MSE 
Method 

• New Method Should Be Used for Accurate Damping Design Approximations 

- More Accurate 

- Same Expense As MSE 

The AVMSE method provides more accurate results for example 
problems, including a single degree of freedom system, the three 
degree of freedom example system, and the D-Strut truss. 

The AVMSE method is as easy and inexpensive to implement as the 
standard MSE method, as element stiffnesses need only be raised by a 
factor dependent on their loss factors. Damping is readily determined 
from the MSE distribution. 

Based on these results and conclusions, the new method AVMSE 
method should be used for damping design and system analysis, as it 
provides more accurate solutions at the same expense as the MSE 
method. Errors due to the AVMSE approximation tend to be 
conservative. 
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