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I. INTRODUCTION

The basic mathematics for dealing with linesar multi-
degree ?f freedom systems has been known for more thsn a
century!1)¥; the problem was that the arithmetic has been
too voluminous for practical computation. Until very
recently, most of the emphasis in practical computation
has been directed toward approximate or iteration methods
for finding a few of the lowest frequencies and mode shapes.
Armong these are: Rarleigh, Rayleigh-Ritz, Holzer, Stodola,
Myklstad-Prohnl, Leiczos and releted methods. \hen analog
computers rirat came on the scene, an effort was made %5
use them as snazlogs of the primitive mechanical system ).
While such an approach has been successful in some cases,
the ma jor probiem has been in getting circuit elements suf-
ficiently precise or computing accuracles sufficiently high
to ensure stability. A similer approach was first used with
digitel computers; the major effort wes Jdevoted to cocdling the
cl? familiar hand methods for computer operations. Hore
recently we have come to realize that hand methods are not
necessarily well sulted to digitel computers snd vice-versa.
By a stroke of poetic Justlce, a method that was devised by
Jacobl more than a century ago and discarded as belng too
labori?u? for hand computation, is 1deal for machine compu-
tation(3/, Using this method 1t 1s now practical to find
all the mode shapes and frequencies of large multi-degree
of freedom systems. Using classical trensformations, these
results In the frequency domain may be used to find responses
in the time‘domain.

Numbers in parentheses refer to Bibliography at end of paper.
263



II. LINEAR MULTI-DEGREE OF FREEDOM SYSTEMS

In matrix form, the governing dynamic equations of a
damped, passive, linear multi-degree of freedom aystem are(3);

jeot

MX + CX + Kx = fe II-1%

In these equatlons, x 1ls the column vector wnose elements
are the displacement of the masses in the directions of the
chosen geometrical coordinates; M 1s a square matrix whose
e¢lements are the rigid masses corresponding to those same
coordinates., If there 1s no mass coupling, i1 is a diagonal
matrix; in any case, M ig syrmetric, ML = M. C is the
matrix of viscous damping coefficients; we will assume that
there are no gyroscopic terms so that CT = C. K is the
dquare, symmetric matrix of spring constants. [ 1s the
column matrix whose elements are complex numbers which are
The amplitude and phase of the externelly applied forces
which are isochronous of circular frequency ¢o» . From this,
i1t 1s obvious that the particular solution for x 1s isoch-
ronous of frequency ¢J and each term has & common element
eJ”t; the real part has the phase of cosewt and the imagil-

nary that of sin«wt. The general solution 1s the solution
of the homogenous equation:

M+ CX + Kx =0 II-2

As usual, we let:

x(t) = xe'Ct II-3
then

(oM + o€ C + K)x =0 1=l

A capital letter willl indlcate a sguare matrix (except
for @ which is a column vector), a small letter a colwm
vector or & scalar, and T superscript(T) a transposed
matrix, i.e. if the element of A 1s aj4, the element of
AT is a4y. I 1s the idintity matrix whose element is &
(kronekgr delta) and AL is the inverse of A; i.e.

A=lp = an-1 = 1,

ije
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If this is an n-degree of freedom system the governing
determinant:

(| ¢®M + e +xfl =0 1I-5

is reducible to & 2 n®® order polynomial which has 2n roots.
Some of these roots are real and others occur as conjugate
complex pairs since all the elements are real; it may be
gshown that the reel portion of all roots must be negative(l).
The eigenvectors corresponding to real roots must be real

and are the shapes that decay exponentially and monotonically
without oscillation. Those that correspond to complex roots
are complex conjugates with negative real parts so that they
vary timewlse as damped exponentlals. The eigenvectors cor-
responding to them are also complex conjugates with the
imeginery part in quadrature to the real part.

In meny cases the C matrix is small in comparison with
the other two; i.e. ©€ C 13 small compared to the larger of
ol2¥ or K. If we ignore C, we have the homogeneous equation
for the nstursl frequencies and mode shapes of the undamped
svatem:

Joc? + x| x =0 II-6

There are n eigenvelues of the form LU, =+ joC,
2 . ) )
l-&DP M+ K! x, =0 II-7
Let X be the square matrix whose columns are the x,, then:
-_ QMK + KX = 0 11-8

where {L. 2 is the diagonal matrix of the éuna. Premultiply
by XT

xT kx = xT_n2 » II-9
Tranapose:

xTxTx = xTMLn 2Tx II-10

but KT = X, MT M and (22T =_[L?(diagonal) 80

1

xTEx = xTM.N2X II-11
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Subtracting enuaticn IL-11 from equation I1I-9

I1-12

1
o

T2 - xTMQ2X =

or xT (01 - MO2)X = 0
The on-diagonal terms of tne bracket are zero, therefore,
the off-diaronal terms of XK musg vanish (the singulsar
case of two or more elements of L{L< being equal may also
te handled the same way by a suitable constraint on the
corresponding columns of X). The values of X,, may be
scaeled by eny value desired so that the on-diagonal terms
mey be made equal to 1, therefore

Tt = 1 II-13

or from equation II-9

e 2

THEX = 0 I1-14
The sclution to eguation II-~1 takes the form:

~wMx + JwCx + Kx = I II-15
If we now let
x = Xq
an? substitute into equetion II-15:
~Xq + jwCHq + ¥Xq = I1-16
rremultiply by xT
J-c0?xTim + jeo xTox + xTxx| ¢ = xTr = g II-17
or

o] mn -
[ -1 + jenTon +.D_‘f‘ qa=Q 11-18
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If the off-diagonel terms of X'CX are small in corparison
to the on-diagonal terms, then XICX may be spproximated
by a disgonal matrix. In that case the squere metrix waich
premultiplies q 1s & dlagonal matrix and its inverse is the
diagonal matrix of the reclprocals of its terms. Thus

q = ’—coel + jeaxTox til?l'lq II-19

is easy to form. But x = Xq so that:
x = X j-aoEI + jeoXTex +41?}‘1Q I1I-20

which may be written in the form:

n x n P
Lr 2 %, T
X, = 4= I1-21
2 2 T
r=1 (wr - LJ ) + chr
where:
o~ n n
Cr = ;EE: Xi,rcijxj,r
i=1 j=1
th

and x 1s the 1%h element of the r vector of X subject
to the’hormallzling condition of equation I1I-13.

Another possibility would be to solve equation II-15,
equation II-18 or equation II-20 directly for each value of

o .

Any of the sbove procedures is valicé for deterministic
values of £, i.e. where f 1s either & pure sinusold or is
a known function of time that may be expanded into a series
of sinusclds by & Fourier enalysis. A somewhat different
approach must be used if the time varistion of I is known
only in & statistical fashion. It is obvious, however, thet
the necessary information is contained in equation II-Z21
which can be substituted into a Iourier Integrel.

ITI. FREQUENCIES AND MODE SHAPES

It 1s clear that the usefulness of the above exposition
depends very heavily on being_able to find the mode shapes
and frequencies, i.e. X andJfl?. For wmany years eflorts have
been based on getting good epproximations to the lowest fre-
quencies and associated mode sheapes in trhe fond hope that

267



equation II-21 could be truncated after the first few terms
and still give a good approximation for those forcing fre-
quencies appreciebly lower than the highestcar considered.
In general, this expectation is valld, but the number of
modes which must be considered can become excessaive.

The eerliest method was the Rayleigh-Ritz(l{)unich used
the statlonary property of freguencies as a functlon of ampli-
tude parameters to determine thes best set of frequencles for
an assumed set of shapes. This gives better frequencies than
1t does mode shapes and so is not a very good procedure for
determining stresses.

Another approach has been that of tteration{3), If we
rearite equation II-8 to read:

K-ivx = L, x II1-1
w
and substitute en assumed vector x on the left side, it may
be shown that resubstituting the right side into the left
will converge eventually to the eigenvector corresponding to
the lowest naturesl frequency which will also be found thereby.
There are verious methods for finding higher modes, all of
them based on purging the lower modes by means of egquation
IT-13., The major drawback of this spproasch is the logs of
glgnificent figures. #Hormelly about one signiiicant figure
will be lost rer mode shape determined,
A method due to Lsnczos! D) avolds thils problem by

building up e polynomial whose roots approximates the lowest

frequencies of the system. This appreoech 1s based on generating

vectors which are mutually orthogonal in the sense of equation
1I~-13 and using these to generate a chsracteristic nolynouial,
The roots of & pth order polynomial of this type will give

accepteble values for the lowest p/2 eigenvslues of the Soverning

system. The elreuvectors oy be found frow the roots and the
orilginal ejuations in the ususl feshion by inversion of the
reduced matrix.

Those systems in walch the succession of masses is
prinarily sequential, suca &s beams or shsfts (a topolﬁgi?al
treej, may e handled by the doluzer-rviulstad-ironl asthodiv)
This involves using a trial frequency, assuning a displsce-
ment, and if necessary & slope, at one end gn’d calculaeting
the elasstic distortion duc to the inertia forces while nro-
ceeding: from mass to mass slong the length., This celculation
dqebermines an unbslonced Iorce albt the far end whiien lsg that
force required to malntain the ssswned dlisplacescent &t the
cnosen irequency., Tris result is used 23 a pulde to clhicose
new frequencles in sueccession until one is foun” for which
the terminel force 1s accepvably swsll. The susoclated [re-
quency is a natural Trequency end the shape lg the mode szhepe.
Tne methond cen be used with branched systems b
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that form & comglex two or more fimecisioasl cric. e
other major drewvec. 1s the cver-present danger of
IMlssing soume frecuencles completely. This z.proach is
very widely used because one need only cover Ghg freuency
range of interest and becsuse one may calculszte a few fre-
quencies with an accuracy assocletbed with tlie complete
anelysis of s much lerger systen.

Wilthin the last few years, it has become spparent
that the asbove methods, znd other related ones, nave been
developed within the limitations of slide-rules and des.i-
calculietors. With the advent »f high speed digitsl cal-
culators, the tendency has been to progrem these same
methods with no change in fundamental approsch. There has
been a renewed effort lately to take advantage of their
abllity to do long sequences of sinmple arithmetic operations
with limited storasge. Out of thils hes come a method of
successiv? ?otation of orthogonel coordinates oripginally due
to Jecobi'3l, Although known [or about 100 vesrs, it has not
been useful because of the large number of numerical menipu-
letions necessary; the calculations consist, however, of
exactly the trpe well suited for digital calculators. The
basic aphroach 1s that of pre and post multiplying by a
unitary rotetlon metrix so a3 to make selected off-diagonal
terms zero; while ezc¢h such rotation will make previously
reduced off-dlasgonal terms non-zero, the sequence will
ultimately converge to an almost diazonal matrix whose
elements rcre the elgenvalues of the primitive system. The
product of these several rotetions generates the eigenvectors.
As en exarple of the time involved, the L6 eigenvalues and
eigenvectors of 2 L8 x L¢ matrix, were found on & 704 computer
by eight full iterations in six minutes inciuding input and
tape reed-out; using the enclosure theorem of nohn-Kato(3)all
48 eigenvelues were shown to be valid to st least five signi-
ficant figures with eight carried by the machine. The ratio
of maximum to minimum eigenvalues, in this case, was 10P with
one greup of four reyeated roots. The esigenvectors were
orthogonel, in the sense of equation II-13, to within three
or four units in the eighth digit. Other solutions have been
found with three zero roots so that the matrix was three-fold
singular; matrices as large as 112 square have been successfuliy
handled.

IV. RESPONSE CURVLS

In this presentation, we are actually not interested in
mode shapes and frequencles, but in the response of the system
to a set of applled forces. Ior the moment, let us consider
the response to a harmonlc forece; the response to a transient
or non-determlnistle force may be found by means of some sort
of & Fouriler Transform from the frequency domain to the time
domaln.

269



Equation II-21 1s the response in terms of the mode
shapes and neatural frequencles with certain assumptions as
to the damping. Another approach would be to solve equation
II-15 directly. If we write

~@wMx + jwCx + Kx = f II-15 bis

we may write

Ax = 1 Iv-1

where A = U + jV, x =y + Jjz

[0l L= L

and one need only invert:

U -V

v U
to find x, One might think that this would be preferable to
solving for the eigenvelues and frequencies and substituting
into eguation II-21; actuelly inverting to solve equation IV-2
15 almost as much work as solving the elgenvalue problem and
only gives the value &t one frequency. The actual calculation
involved in equation II-21 is very simple and may be done on
8 smaller mechine such as the 650. The results should be pro-
gremmed to plot directly from the output onto an x-y recordsr,
preferably with log scales, since otherwlse there 1s a tre-
mendous amount of numbers to handle. Equation II-Z21 need only
bs calculated over the frequency range of interest and one
might think that only the mode shapes whose frequencies fall
in that same range need be considered; experlence has shown,
however, that such & truncetion leads to serious error at
very }ow frequency (<E<101) and at the anti-resonances (xi very
small}.

Then:

It has been pointed out before that the Holzer-Myklistad-
frohl method is not subject to such limitations for those prob-
lems where it 1s applicable. One can calculate the damped
case with little more difflculty than the undamped case and
where 1t applies it is the method of cholce. One might still
wish to use equation II-21 to investigate the effect of changing
certain parameters, such as bearing deamping, since this can be
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done without recomputing the whole proolen, but there 1s
no great saving if the changed pasrameter.is mess or stiff-
ness.

At our own Letorastory, we are working on marrying the

best features of digital snd analog computers for this probe

lem. One mipht tﬂlnﬁ of setting up equation II-1 directly

on an anclog computer, and this has been done in some cases(2,7),
The problem arises when one uses sn active feedback electronic
differential anslyzer and the system damping is smell in one

or more modes. In general, the matrix K will be a fairly full
one, particularly so since one must usuelly recduce the number

o' degrees of Ireedom to gzet the problem on the machine; for the
stencderd machiine, one needs at least three stabilized amplifiers
per degree of freedom. In this case there will be n€ connections
emong 3n amplifiers; unless the damping is very large In every
»nsslible loop, at least one of them will have negative damplng
due to inasccurate phese shift and the problem will be unstable

as set up. The solution 1s to put equation II-18 on the computer
in the form:

Y+ xTexd +.nN.%q = @ IV-3

The only coupling emong the q loops is through the XTcX matrix.
The individuel undamped loops:

(X
q; +Lh%q = @ IV-4

will be sutomatically damped by an amount which depends on

how good the resistors and cepacltors are; even so, this damplng
will usually be less than the natural damping of & mechanical
system., The addition of the xTcx coupling will always be
stabilizing s0 long as the C are smmall, The exact comparison
1s between ky4 and @ Gy > > k;:, thls has the
effect of cla%ping - & aﬂd toge%ﬂ and %ﬂe vagaries of the
feedback loops may make the reduced system unstable. Since
such laerge damping is not a desirsable state of affairs, it

does not seem to be an important limitation. While this use

of sn electronic differentisl analyzer for the forced vibration
problem has not been fully explored, it appears to have merit
for investigating the effect of transients, complex or random
excitatlon, non-linear damping of otherwise linear systems, or
paremetric changes 1In C values to minimize the response.

V. TRANSIENT AND RANDOM RES?ONSE

It has been pointed out 1in many previous publications
that the dynamic desceription of the system 1s contailned in
equation II-21 as well &8s it 1s in equation II-~l. We have
already discussed how thls problem may be set up on an analog
computer; in thils sectlon we shall examine its numerical
treatment. 271



Let Hj 4(tD) be the response at point i due to a unit
sinusoidal }orce at j; j@wHyi1(e0) is the transfer mobility

of 1 with reaspect to J subjett to the natural constralnts “D
of the system. Hji(ed) 1s found from equation II-21 by

letting rj = 1; In"passing Hij = Hji.

If this system 1s subjected to a transient force at j,
rj(t), the response may be foun? by means of Fourlier trans-
forms and convolution integrals 8). If we rind the Fourier
transform of rj(t) either numerically or by reed shock gages,
then

o0
Fy(w) = ffjct)e‘J“’tdt V-1
— 00
Then
o0
xyq (t) =~.§1? fF‘j(aJ)Hij(w)ejwtdw V-2
—o®
or alternatively:
o0
x, (%) = fhij(’l"Jrj(t-’r')dq" V-3
(o]
whers J
oD
h, .(t) = L (/‘H {)e IPtacw V-l
1] E‘“ﬁ'—_w 1]

is the time response of the system to & unit pulse and
equation V-3 1is the convolution integral. The effects of
transient forces applied at several points mey be found by
superposition,

The response to random excit?t%on may be found in a
similar fashion from the mobility 9). Por example, if Sy(ed)
is the power spectral density of the force, then:

S, (e0) = /H(w)lz Sp(€0)

is the power spectral density of the displacement. In this

case H{w) 1ls the mpproprlate transfer mobillty between the

point of application of the force and the polint where the
response 1s wanted. Powell indicates the necessary conditio?s
or. the force for it to be considered in this unified rasiion{i0),
A particular result of some interest is the mean square response
to & uniform spectrum force; this is

“p
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oD
x% = 'Zf’”_ { lH(uJ)l 2 aco

where 3, is the amplitude of the spectral density, i.e. in
poundsZ per cps.

For our purposes here, it is sufficient to point out
that there are relatively simple methods of handlling random
excitation and transient response problems once the mobllity,
equation II-21, 1s found. These methods may be numerical,

graphical, or by analog computer but are all approached 1n
the same way.

273



EIBLICGRASIY

1. Rayleigh, Lord, "Theory of Sound", Dover, New York, “'
1905, Sec. B2£F.

2. Soroka, W.W., "Analog tethods In Computation and
Simulation", !lcGraw Hill, New York, 1954, Chap. 8.

3. Crandall, 8. 1., "Engineering Analysis", ieGraw Hill,
New York, 1956, Cheap.2.

L. Timoshenko, #., "Vibration Problems in Engineering",
Ven Hostrand, New York, 1955, 3rd id. Sec. 6l.

Lanczos, C., "Iteration Methsd for the Elgenvalue
rrovien", J. Res. Nat. Bur. Standsrds, 45 (1950)
pp 255-282,

W
»

6. DenHertog, J. V., "sec'anical Vibretions", MeGraw
Hill, New York, 1947, 3rd Ed., Sec. lba.

7. Lorn, G. A, and i.orn, T, if., "Electronic £fnslog
Computersg", licGrsw Hill, New York, 1952, 2nd Ed., Chap. 3.

' V Karman, T. and Biot, M., "ilathemetical Methods in
Engineering", MHeGraw Hill, New York, 19,0, Chap.X.

9. Crandell, S. H., "Random Vibrations™, Technology FPress, Wii
Cambridge, Mass., 1958, Chap. 4.

10. 1Ibid, Chap 8.

27%



