AFFDL-TR~68-150

RATIONALIZATION IN DERIVING ELEMENT STIFFNESS MATRIX
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From the principle of minimum complementary energy which is
extended to take into account the possible discontinuity in stresses or
displacements along the interelement boundaries, the finite element

methods by both the assumed stress hybrid model and the equilibrium

model can be formulated. This formulation enables the development
of a rational method for consistent lumping of body and surface forces
and the establishment of a criterion for the kinematical instability of
a system. For the hybrid model, there is an optimum choice of the
number of stress modes for a given boundary displacement approx-
imation. Example calculations for plate-bending problems are included
to substantiate the analytical predictions. Examples are also carried
out to illustrate the convenience in taking transverse shear effects
into account by the hybrid method.
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SECTION 1

INTRODUCTION

When the assumed stress hybrid model was suggested by Pian (References 1 and 2) to
derive the element stiffness matrices, the complementary energy of only the individual
elements was considered. Later on, a variational principle was developed (Reference 3) to
treat the entire assembled elements as a whole. It was then possible to derive the loading
matrix in a consistent manner and to reveal some restrictions in the formulation of the
assumed stress hybrid method,

The present paper is to derive a variational principle which can, in fact, cover both the
assumed stress hybrid model and the equilibrium model by Fraeijs de Veubeke (Reference 4
and 5); hence some of the characteristics are common to both methods. The formulation of
the hybrid model is then extended to plate-bending problems including both thermal effect
and transverse shear effect. Example calculations are made to evaluate this method.
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SECTION O

PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY-
EQUILIBRIUM MODEL AND ASSUMED STRESS HYBRID MODEL

Both the equilibrium model and the assumed stress hybrid model for finite element
analysis can be derived from the principle of minimum complementary energy, for which the

functional to be varied is

| -
= —_ dv - i
LA j\; > Cijkf o-ij Ukﬂ v J;u Ti u, ds (1)

In this expression

J1j = stress tensor

cijk s elastic compliance tensor

\'% = volume

S = surface

Ti = surface traction

H; = prescribed boundary displacement

S = portion of S over which the boundary

displacements u, are prescribed

The stress tensor Uij satisfies the equilibrium conditions

o. . +F =0 (2)
'111 '

and is compatible with the prescribed boundary tractions over the boundary So" Fi is the
prescribed body force.

In applying the finite element method, the assumed stress field need not be continuous
across the interelement boundaries, but equilibrium must be maintained for the surface
tractions Ti’ defined by Ti = Uij vj, where Vj are the components of the unit vector normal
to the boundary. Let two neighboring elements ‘‘a’ and ‘b’ be isolated (Figure 1), and con-~
sider the boundary traction components Ti (@) (s) and Ti (b} (s} (i = 1,2,3) over the respective
sides of the common boundary AB, (For simplicity, a plane stress example is used for

illustration,}
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Element

IRl

Figure 1. Equilibrium of Boundary Tractions Along Interelement Boundary

The equilibrium conditions at the interelement boundary are given by

b
T:a)(s) +T(i){s) 20 (i =1,2,3 ) (3

Equation 3 may be considered as conditions of constraint and can be introduced by including

Lagrange multiplier terms

f )\,(s)[T(a)(s) + T(b)(s)]ds (4)
A !

i i
or

f A; T; ds lu Lot f A T; ds l" .
AB a AB b

in the complementary energy functional to be varied. The Lagrange multipliers }\i’ which are

functions of the surface coordinates, are to be treated as additional variables.

When all the interelement boundaries have been considered, the complementary energy

functional may be written as:
. - ( N
ToE % .\j; 7 Cijug %ij Cxd
n

—f AT, ds—f TS dS) (5)

Snp Sup '
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where Su iz the boundary of Vn where the displacements are prescribed and Sn is the
o

interelement boundary of Vn. By taking the variation of m with respect to O'ij and )\i, it is

easily shown that the Lagrange multipliers )\i are equal to s the displacements along the
interelement boundary

-.]; Ty, ds—f Ti_uidS) (6)

In the finite element solution, the assumed approximate functions for the stresses cri.
are divided into two parts. The first part, which consists of a finite number of parameters 3 ,
should satisfy the homogeneous equations of equilibrium, while the second part is a particular
solution of the equations of equilibrium with the prescribed body forces, In matrix form, the

stresses crij are expressed as:
c = PR+ Pe ,BF (7)

where B is unknown and PF ﬁF is determined from the particular solution. For elements
which contain boundaries with prescribed surface tractions, some of the 8’s in the first term

will also be prescribed. In this case, all the prescribed [3's are put in the second term.

Both the equilibrium and the hybrid methods can be derived from Equation 6, but the
distinction lies in the treatment of the surface integrals along the interelement boundaries.
For the equilibrium model, the surface tractions Ti along each boundary are represented
uniquely by the generalized loads Q pertaining to the boundary and can be written as

T - ¢a (8)

For example, when Q are the values of Ti at a finite number of boundary points, ¢> represents
the corresponding interpolation functions, Since the surface tractions are also related to the
assumed stress distribution, they can also be expressed as

T:=RE +R:B; {9)
Thus, there is a unique relation between @ and f3 of the form:
T T
@ -6 B+6. 8 (10}
F
The corresponding element generalized displacements ¢ are defined by:
T R _ T T
oq-f T. u, dS -Qf ¢qus (i
Sn Sn
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or T

q = f ¢ UB das {12}
S n

Thus, the generalized displacement is a weighted integral of the boundary displacements, and

to maintain the same q for two neighboring elements does not guarantee compatibility along

the entire boundary. It is seenthat, inan equilibrium model, each generalized displacement

is common to only two neighboring elements,

For the hybrid method, the approximate displacements along the interelement boundaries
are represented by interpolation functions and the generalized displacements q at a finite

number of boundary nodes:

ug = L g (13)

Since the interpolating functions L are applied to the individual boundary segments, they are
relatively easy to construct so that interelement compatibility is maintained. Unlike the
equilibrium model, the generalized displacements 4 may be referred to corner nodes where

more than two elements are connected.

The corresponding generalized nodal forces are defined again by:

T
q Q =f T. u; dS (14)

or Sn

T
e:[ L T (15)
sn

Thus, the generalized nodal force is a weighted integral of the boundary tractions, and to
maintain equilibrium at a node does not guarantee equilibrium over the entire boundary.
Another significant difference from the equilibrium model is that the stresses and the boundary
displacements are independently assumed. Hence, the number of parameters in ﬁ and the

numher of generalized displacements q can be chosen independently in the hybrid model.

Finally, since the hybrid method relies on assumed boundary displacements, the pre~
seribed boundary stresses no longer constitute a restrained boundary condition. In this case

the functional T can be written more conveniently as

> (f —;ciikﬂ % % &

n Vn
‘f Ty u; ds +f Tou; dS) (16)
oV, 5o,
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where

ann = Sn + SO-n + Sun

is the entire boundary of V, , and u, =T1'i ons .
n

Substitution of Equations 7, 10, and 11 into Equation 6 and substitution of Equations 7, 9,
and 13 into Equation 16 both yield equations of the form

m: S(;B HB+B M. B, -BT6q

n

T
+S q + Bn) (17}
where
T ‘
= dv
H an P cp
T
HF = f; P CPF dv {18)

n
I T T
B, = ‘é‘ﬁFj\; P. CP.av B,
n

and C 1is the elastic compliance matrix. For the equilibrium model, 6 and GF are defined by
Equation 10, For the hybrid model they are given by:

¥

6:f R L dS | G, [  RLas (19)
ov avn

The vector ST is also different for the two models

sT

—BF 6, (equilibrium model)
(20)

T =7
s :-B 6 +'£ T LdS  (hybrid model)
On

where T are the prescribed boundary tractions.
The stationary conditions of the functional given by Equation 17 with respect to variations
of B and q then yield

HB-I—HFBF-Gq =0 (21)

and

T
Y (R G—ST)8q=O (22)

n
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By solving for ﬁ from Equation 21 and substituting back into Equation 17, we can express the
functional 7 in terms of the generalized displacements q only, i.e.,

Te-F(faka -8 a+c, (23)
n

where k and Q are, respectively, the element stiffness matrix and equivalent nodal forces
defined by

Kk * 6 H'e (24)
— T .-l
- +
@ =6 H'H B.+s (25)
and T 7T
C, = ITBF He H' He Bg -B, = Constant (26)

Knowing &k and Q@ for all elements, it is then a routine matter to set up the assembled
matrix equation for the problem.

Inspection of Equation 22 reveals that if N, the total number of assumed stress modes ﬁ
of all elements is smaller than M, the total number of unknown displacements q, there will
be, in general, no solution for the [37s. It can be seen that the above situation corresponds to
the appearance of kinematical deformation modes discussed by Fraeijs de Veubeke (Ref-
erence 5), who indeed had pointed out that for a single element, if n is the total number of
stress modes and m, the number of generalized displacements of which r must be constrained,
T being the rigid body degrees of freedom, then for such element to be kinematically stable,
n must be larger than (m - r). It is obvious that such requirements on the minimum number
of stress modes can always be met by the hybrid model because the stress modes and
boundary displacements are agssumed independently, but itisnot so for the equilibrium model.
Furthermore, since for the hybrid model, there will always be more than two elements
meeting at an internal node, the assembled structure will be kinematically stable if the above
criterion for each individual element is satisfied. For the equilibrium model, however, an
assembled structure may be unstable even if all the individual elements satisfy the criterion

for kinematical stability (Reference 5).
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SECTION III

COMPLEMENTARY ENERGY PRINCIPLE FOR PLATE THEORY
INCLUDING THERMAL AND TRANSVERSE SHEAR EFFECTS

The thermal effect is usually included in the variational principle as an initial strain

problem (Reference 6), Let ¢ be the initial strain and eij the strain due to total de-

oij
formation, then the stress is given by

= E —
i NV TR TE (27
It is convenient to define

o*i'j z Eijkf €, ¢ =stress associated with the total deformation

£ {28)
o . = € = st ioted wi ini ti i
o i ] ijkﬂ ok £ stress associated with the initial strain
Then ,
o, 0 -0 (29)
1

ij R

For the plate-bending problem, it is more convenient to use o-i'j as the primary variable
because the in-plane stress a:, B varies linearly across the thickness; hence can be defined
FJ
uniquely by the stress resultants N (; B and stress couples M aB’ i.e.,
N, 12My 3 x
' QB QB 3
Here the Greek index takes the value of 1 and 2 and the coordinate normal to the mid~plane

is Xge (Figure 2)

For the plate theory including transverse shear effect, the development in the following
is based on the treatment of Reissner (Reference 7).

Substituting Equations 29 and 30 into the equilibrium equations in three-dimensional

elasticity
o. . =0 (31
1.1
for i = 1,2 and integrating through the thickness direction we obtain the expressions for the
transverse shear stress which satisfy the shear free conditions on both faces of the plate is

!

Ty * ?ha [| - (2:3 )z]—sa (32)
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Qp
n /

M"s

= e I

M
Mm Q,

Figure 2. Sign Convention for Plate-Bending Problem

where
. h/ X3
3 |
g, = \—+ = a dx, — a dx (33)
a (h 2)[% oaB B 3 !hfz cafB. B 3
Q'; z M;B,B = transverse shear (34)

The substitution of Equation 32 into Equation 31 fori =3, and integration along Xgs yields
X3

r =3 o F ), e o

with 033('h/2} = (. By introducing the condition 0'33(-1-]:1/2) =p, we obtain

h/2

Qp a° 7P +_h/28a,a

dx 4 {36)

It is obvious that the terms involve B, in Equation 32 and By g 1in Equations 35 and 36

are the stresses due to thermal effect in the present plate theory

o = B
o0y Q
hz X
.3[2,25 (2% 3
%33 14 [3+ h ( h )]fhé By, 93 “fh/ By, q 9%3 (37)
- -7z
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The complementary energy functional can be expressed in terms of either o-ij or o'i,j’

i.e.,
WA
|
T o= f {(— C,. .
¢ _fh/z A 2 Vijkd %ij Tkl Teij T VA dxy
e
—f f o. ¥, u_ ds dx (38)
ijod 3
_h/Z Su
or
h/2 | h/2
- L _ i -
Wc—j; j; 5 Cijkﬂo-ij OI;JZ dAdxs f '/;u a.ij Vj ui ds d)l:3 (39)
- ‘h/z

By limiting our discussion to bending problems only and by expressing the stress due to
deformation in the same form as that of Reference 7

. 12 M3 xq
o‘ =
af3 h3
30" 2% .42
o’ = a [| - 3)] 40
as3 2h h
’ 3

o

3 [2_-‘.21(3 _<2x3\3]
33 4P |73 h h/

Substituting into Equation 39 and carrying out the integration with respect to Xg We obtain
the complementary energy functional in terms of ME! [Band Q’a.

i |2 / 12 2 .o
> | —Sc M 3
2 »{ 3 [ame aB"r6"5 " Cazp3 9B

7rc =
2 3
h t h !
+— LU
5 CaB33MaB P+ Ch33z Q4 P]"A
- ' T Al —
.};u [Maﬁ vBbg ~Qy iy W ]ds {41)

where ¢>a is the rotations such that

and w is the normal displacement of the plate,

We can also express the complementary energy functional in terms of M, Je! and Q. By
defining the stress couples and transverse shears as

h/a h/2
MQB =[h/2 xso'aB dx5 Qa = '[h/z T3 dx {42)
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and by writing

MaB = MaB ~Moaf
(43)
0 * % ~%%aq
we can eagily identify that
2
MOQB = '_fh/z *3 % a3 dx , (44)
and
h/s
Qoa =:fh/z % a3 de

and that Qg and M, B satisfy the conventional plate equilibrium equations. In terms of My B
and Qg, the functional 7 is

c'2f hS[aB)\B BM)\QE, GSBSQG QB
i
CaB3ss MeB P + 5 Casps % p] aa

n®
5

~lf—2[c Moo Mg+ Q. Q ]dA
2y PL5aBAE TaB ToNG T 5 a3B3 “a “of

- (M b —Q v w)d
j; aB B " ale ¥ (43)
u

In the following special cases, the expressions for the complementary energy can be
simplified. For example:
1, Isotropic material with thermal strain
L Timy +m, Y200 (M =M M)

2 2

I+ 2 h
+—:=,_h (Qx+0 )—-; vp(M,ﬁM,)]dA

f‘zu—um (M, +M ) dA
Eh

—f,, M, B, tM b —Q, Wids (46)
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where

E T(1-2
y_ zEa A (z v) dz (471

2, Conventional plate theory with thermal strain buf with transverse shear effect

™, 2f s (o +m 0 20mml My )] aa
— [Ru-vIM, (M +M )4
E5 v Q X y A
A
—j; (M, W, n +M, o W, . —Q, w )ds (48)

3. Sandwich plate (with facing material thickness tf << h) with thermal strain effect

P L
T ey —{(M 20 a1+ 5=t @2 4a ] aa

2
_J; o (I-2) My (M +My) dA

—[ M $, + Mag b — QW) s (49)
Sy
where
ik (AT, -ATp )
M, : —— a -
° 2(14w) u £

The subscripts u and £ indicate the upper and lower facing, respectively,

It can be seen that when Equations 45, 46, 48 or 49 are used in the formulation of the
assumed stress finite element methods, an equation in the form of Equation 17 will result,
Here the term ﬂT Hp ﬁF will arise not only from the particular solution for stresses but
also from the terms involving MaBp, QgP: MQBMO 20 and Q(J.QOB' Noting that the matrix
HF appears in the generalized nodal forces (see Equation 25) we can conclude that the initial
strains will lead to equivalent nodal forces and the distributed load p will make further con-

tribution to the generalized forces when the ‘‘moderately thick’’ plate theory is employed.
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SECTION IV

BOUNDS TO DIRECT INFLUENCE COEFFICIENTS

Finite-element analyses by compatible and equilibrium models will yield bounds on the
total strain energy content, Since the direct flexibility influence coefficient (i.e,, the gener-
alized displacement due to the corresponding generalized force of unit magnitude) is equal
to the strain energy, its upper and lower bounds can also be established by the equilibrium
and compatible models, respectively. This idea has been explored by Fraeijs de Veubeke
(Reference 4)* in dual finite element analyses of different types of structures,

The direct influence coefficient obtained by the finite element hybrid method may be
either an upper or a lower bound, since the method is not based on a minimum principle,
However, it can be shown that the direct influence coefficient by the hybrid model is always
bounded by that of a compatible model using the same type of interelement boundary dis-

placements and that of an equilibrium model using the same type of interior stresses,

We observe that within each element, the compatible model satisfies the compatibility
conditions, while the hybrid model satisfies internal equilibrium, Therefore, a compatible
model is more rigid than the hybrid meodel if the same set of generalized coordinates q and
the same interpolating functions for the interelement boundary displacements are chosen,
In that case, the direct influence coefficient obtained by the hybrid model will be larger than
that obtained by the compatible model, For the compatible model, we can introduce additional
displacement modes but keep the same set of generalized coordinates by the static conden-
sation process (Reference 8), The introduction of such additional modes is to improve the
satisfaction of the internal equilibrium. It is understood that the internal compatibility con-
dition is always satisfied, On the other hand, the use of more and more stress modes 3 in the
hybrid model improves the satisfaction ofinternal compatibility, while the internal equilibrium
conditions are already satisfied. It is obvious that the two methods will yield exactly the same
result if the assumed modes in both cases approach infinity. We can also interpret the use
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of more displacement modes in the compatible model as a relaxation of artificial constraints,
However, the use of more stress modes in the hybrid model would produce a structure more
rigid than one with fewer stress modes,

For the equilibrium model, when a set of assumed stress modes is chosen, there is only
one choice of generalized displacements, Ifthe same stress modes are used in a hybrid model,
the structure will be more rigid thanthe one analyzed by the corresponding equilibrium model
because of the imposed compatibility conditions along the interelement boundaries, The direct
influence coefficient of the hybrid method will be lower than that of the equilibrium method
using the same stress modes, Table 1 gives a summary of the conditions fulfilled by the
various finite element schemes., They are arranged according to increasing rigidity of the
different models.

Since the finite element compatible model always yields a lower bound of the direct
influence coefficient, it appears that the direct influence coefficient obtained by using more
internal nodes is always superior to that obtained by using fewer or no internal nodes, No
such conclusion can be made concerning the number of stress modes in the hybrid model, In
fact, if the direct influence coefficient obtained by using i stress modes in that method is
already a lower bound, then the use of j stress modes with j > i can only make the solution
more inaccurate, Thus, there is an optimum number of assumed stress modes in the hybrid
method.

There does not seem to exist any method that one can use to predetermine the optimum
number of assumed modes, The situation will be different for different problems and for
solutions at different locations of the structure. However, one can see immediately that the
resulting error of the approximate sclution may arise from both the error of the assumed
stress field and that of the assumed boundary displacement. One can thus conclude that the
two independent assumed functions should be comparable, i, e., that they should provide errors
of the same order of magnitude, For example, in the plate-bending problem, if the assumed
moment distribution in the interior of each element is a quadratic function of the space
coordinates, the transverse shear distribution will be linear, then the order of magnitude of
error of the boundary integral [ ands will be comparable with that of [ an.nds when W is
assumed to vary linearly along the boundary (Reference 3). The order of magnitude of the
error cannot be reduced by including many assumed stress modes for the interior of an
element without improving the boundary displacement function, Indeed, in the case of the
hybrid model, the use of additional stress modes may actually decrease the accuracy of the

solution. This argument of comparable errors in the assumed interpolating functions is
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also applicable to the compatible model, The use of many additional internal modes for a

given boundary displacement function again cannot reduce the order of magnitude of the

error,

SECTION V
RESULTS OF FINITE-ELEMENT PLATE-BENDING ANALYSES

To illustrate the various points on the assumed stress methods brought up in this paper,
several numerical results by finite-element methods are presented in this section,

1. The central deflection of a square plate with clamped edges under central loading
has been analyzed by different finite-element methods using right-triangular elements, For
comparison, the compatible model by Clough and Tocher (Reference 9), the equilibrium model
by Fraeijs de Veubeke and Sander (Reference 10) and the hybrid model by Severn and Taylor
{(Reference 11) are discussed. The results are plotted in Figure 3 in terms of the percentage
error versus the number of meshes in half of the plate width, The results clearly indicate
the upper and the lower bound solutions, respectively, by the equilibrium and compatible
models, It is seen that since in both the compatible model and the hybrid model the inter-
element displacement functions are cubic in w and linear in W o the latter model, according
to our previous conjecture, yields a more flexible structure. On the other hand, since in the
hybrid model the stress approximation involves quadratic terms in the moment while the
equilibrium model relies on a less accurate linear distribution, the hybrid model leads to a
comparatively more rigid structure, It should also be observed that the hybrid method pro-
vides a lower bound in this case and hence provides more accurate solutions than the corre—
sponding compatible model,

2. The second example shown in Figures 4 and 5 is the central deflection of a simply-
supported square plate under central load, Figure 4 shows the results obtained by using
12 degrees of freedom rectangular elements. However, in this case, an equilibrium model
will result in an element with kinematical deformation modes, Hence, only the results of the
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Center Deflection of Simply-Supported Square Plate Under Center Load
{Assumed Stress Hybrid Method - Rectangular Elements)
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compatible and hybrid models are presented for comparison., The formulation of the hybrid
method for a rectangular plate element employed different moment approximations in the
interior of each element, The assumed boundary displacements are cubic in w and linear
in w,n' The compatible model is the oneused by Deak and Pian {(Reference 12), hence involves
the same boundary displacement approximation as the hybrid model.

It is clearly indicated here that the hybrid model may yield either the upper or the lower
bound for the direct flexibility influence coefficient, and with the use of a sufficiently large
number of stress modes, it will yield a lower bound solution. In the present case, the use of a

quadratic moment distribution yields the most accurate results.

The hybrid solutions include two different approaches: in one case the assumed stress
distribution satisfies the condition of vanishing normal moments Mn along the simply~
supported edge; in the other, the prescribed boundary stress condition is not considered as
a restrained condition. As indicated in the results, the first of these two approaches provides
more accurate solutions, but the improvement becomes diminishingly small when a large

number of elements is used in the analysis.

Figure 5 compares the results for the same problem obtained by using different com-~
binations of interior stress approximations and boundary displacement approximations. In
addition to the 12 degrees of freedom elements, the 16 degrees of freedom elements are used.
For the latter, both w and w'n vary as cubic functions along the edges. Also in these sets of
solutions, the assumed stress modes do not satisfy the prescribed boundary condition of
vanishing normal moment. This figure shows clearly that for most accurate solutions there
is an appropriate combination of interior stresses and boundary displacements, For example,
in this case, the linear-moment and linear-normal~-slope combination appears to be a good
choice. Then the use of more boundary displacement modes with the same linear moment
distribution canonly yield more inaccurate solutions corresponding to more flexible structures.
In fact, as we have pointed out earlier, the over-abundance of the boundary displacement
modes will cause the structure fo be kinematically unstable, It is seen, however, that if the
approximationg for the interior stresses and boundary displacements are improved simui~

taneously, the accuracy of the solution can be improved.
3. The third example concerns a simply-supported square plate under uniform loading.

For the hybrid model, a quadratic moment distribution is assumed, hence unique generalized
nodal forces can be obtained. The center deflection of the plate has been calculated by such
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a method using various mesh sizes as shown in Figure 6. It is seen that the convergence of
the solution is extremely rapid in the uniform loading problem. Solutions have also been
obtained by using inconsistent nodal forces whichinvolve only vertical forces without moments.
The results are much inferior to those obtained by using the consistently lumped nodal forces,
Also included in the figure for comparison are the results by two compatible models using
triangular elements obtained by Clough and Tocher (Reference 9) and by Bazeley, et al.
(Reference 13), respectively, and by the equilibrium model obtained by Morley (Reference 14).
In Morley's formulation, the unknown stress resultants (values of stress functions) are used
as unknowns and the deflection of the plate can only be calculated by integrating the moment
curvature relations. In view of the approximate character of the moments provided by the
finite element analysis, the deflection obtained by integration is, in general, dependent upon
the chosen integration path; hence is not a unique solution. Thus, two different solutions by

Morley are shown in Figure 6.

Figure 7 i8s a comparison of the stress distributions (Mx along the axis of symmetry
y = 0) for this plate. It is seen that the assumed stress methods (equilibrium and hybrid
models) can provide very accurate stress distributions while for the compatible model only
stresses at the mid-points of the individual segments are reasonably close to the exact

solutions.
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Figure 6. Center Deflection of Simply Supported Square Plate Under Uniform Loading
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SECTION VI
TRANSVERSE SHEAR EFFECTS IN PLATE BENDING

The inclugion of transverse shear effect in the plate-bending problems has received only
limited attention in the finite element application. Herrmann (Reference 15) has included such
effect in his formulation by the Reissner’s principle. Severn and Taylor (Reference 11) have
pointed out the convenience of taking transverse shear effect into account by the assumed
stress hybrid model. Lundgren (Reference 16) has solved the problem of buckling of sandwich
plates, the stiffness matrices of which are obtained by the assumed stress hybrid model.

Only until very recently was the “‘moderately thick’’ plate-bending problem solved by the
finite-element method using compatible displacement functions (Reference 17), In that analysis
Smith used the plate theory advanced by Love so that he can express the strain energy in
terms of only w and the derivatives of w. However, he has to use 12 degrees of freedom at
each node in his rectangular elements in order to account for the higher order derivatives of
w in the strain energy functional. An alternative assumed-displacement approach for the
““moderately thick’’ plate is to distinguish the rotations Bx and By from the derivatives W
and w , respectively, and use five generalized coordinates at each node. If, in such a case,
only vs.:, 8x and By are used as generalized coordinates at the nodes, the displacement func-
tions w, QX and §_ can only be assumed linear along the boundary in order to maintain the
compatibility and if the simplest interpolation functions (linear function for a triangular
element and bilinear function for a rectangular element) are used, the strain representation
will be extremely crude. In fact, it can be shown that by such a formulation, the shear strain
energy will be predominating unless the element size is kept as small as the plate thickness,
Thus a finite-element method formulated in this manner will, in general, yield very erroneous
results. To improve the situation, the displacement functions must be much more complicated;
hence many internal nodes are needed.

When the assumed stress hybrid model is uged, the transverse shear effect can be taken
into account accurately by including an adequate number of stress modes and the use of only
W, Bx and 8 y as generalized coordinates can yield very reasonable solutions. Figure 8
indicates the results of a finite-element solution for the center deflection of a uniformly-

2
loaded sandwich plate with the parameter 81'12Gh = 4, where G = shear modulus of the core,
D

h = thickness of the core and D = flexure modulus of the plate = Etfh2/2(1- vz). In this assumed
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stress hybrid formulation, the moment distributions are assumed quadratic while the boundary
displacement w, §_and 8 arealllinear. It is seen that by increasing the number of elements
the solution converges very rapidly to the exact solution (Reference 18).

In the formulation of plate-~bending with transverse shear effect by Severn and Taylor
(Reference 11) and by Lundgren (Reference 16), the nodal displacements were still chosen
ag W, W, and w, with w varying cubically and Wi linearly along each edge. The correct
choice should be w, 9 and 9 where 8 and 8 should be independent of w. Solutions ob-
tained by using w, W, and w, as generahzed coordmates are also plotted in Figure 8, It is
seen although such a solution is acceptable for large element sizes it becomes progressively

inaccurate when the element size is reduced.

SECTION VII

CONCLUSIONS

The following conclusions can be drawn for the assumed stress hybrid method in the
finite-element analysis:
(1) The method is based on a rigorous variational principle.

(2) This method yields a structure more flexible than that of a compatible model, but
more rigid than that of an equilibrium model, in general,

(3) A rational way has been obtained for consistent lumping of body and boundary forces.

(4) To improve an element stiffness matrix, the approximations of both the interior stress
distribution and boundary displacement distribution should be simultaneously and compatibly

improved.

(5) The method is particularly suitable to treat plate and shell problems taking trans-
verse shear into account.
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