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ABSTRACT

An analytical successive-approximation method for the solution of linear partial
differential ecquations is presented first in general terms, and theﬁ applied to the
solution of two-dimensional heat and thermal stress problems. The method is applicable
when solutions are desired for bars or plates, i.e. fqr bodies with one dimension
small compared to the others, The final expressions given by this procedure for

example for the stress o consict of a number of terms (& =z0,' ), where the term

(2 i-1) 3(21 - 1) /(3 x)Ei - l_’fr.ﬁis

the ratic of height to length of the bar, andy measures the distance along the span,

9/ 1is proportional to the quantity [_}G-’

The number of terms required is thus small for thermal laadings varying smoothly

along the span, and for thin bars. Similar results are obtained for the temperature
and the deflecticns., Explicit formulas for the caleculation of stresses and deflections
are given, The validity of the Bernoulli-ﬁuler hypothesis of beam-theroy is examined.,

Illustretive examples are presented for all the above developments. The use of the

method in problems in which the material properties are functions of the temperature

is outlined,
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INTRODUCTION AND OUTLINE OF OF REPORT

The advent of high«#peed flight has increased the importance of thermal effects
i aireraft structures and has consequently accentuated the need for practical method
for the calcu’ ation of the distribpution of temperature, strass and deflection in many
types of bodies under a variety of conditions. The present paper considers the effect
of heating on a thin rectangular bar according to the two-dimensional theory of elase
tici ty, and deals particularly with thermal loadings varying smoothly along the length
of the bar. The analysis presented here may'also be used in the case of plates, if
the temperature distribution is independent of one of the coordinates in the plane of
the plate. Such plates are often encountered, for instance, with the standard sheete
and-stringer type of construction exemplified in Fig. 6, which may be taken to
represent a reinforced wing covering, As heat is applied, ﬁnﬁ—uniformity in the sheet
temperature distrihuﬁion in the x-direction is introduced because of the heat drawn
off by the stringers. Incidentally, questions concerning the buckling of the sheet
are not taken up in this report. -

The proposed method of solution takes as its starting point the formulas for
temperature, stresses and deflections valid for the case of heating independent of
the span, and proceeds to evaluate successive approximationsj the required number of
these depends on the "smoothness™ of the heating along the span, i.e. on the degree
of its variation from uniformity. The prec¢ise meaning of the term "smooth" will be
clarified during the detailed development of the method, but, roughly speaking, it

may be said to refer to spanwise boundary conditions which are expressible either as

polynomials or as rapidly converging power series. MAlso, the thinner the bar, the
better the convergence. As has been just indicated, only two~-dimensional systems are
discussed in this paper; it will be seen, however, that the method is general enough
to hold for three-dimensional systems as well. Work is in fact at present in Progress

in which the analysis described here is being extended to a general type of thine

walled section,
Manuseript released by the author 6 January 1955 for publication as a WADC Tbchnlcal HePnrt
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The body of this report is divided into seven sections and three appendices,

as.follnwst

1) General Considerations» The method is developed here in general terms
without reference te any specific physical problem, and the.appruximations
required to meet the boundary conditions are discussed.

2) Temperature Distribution=Ocneral Equations. The above method is applied
to the specific case of the heat equation, and is illustrated in the
following section, namely:?

3) Temperature Distributien - Example, with the aid of Appendix 1.

) Stress Distribution ~ General Equations., The same method is again employed,

and leads to explicit formulas for the various stresses in terms of the
temperature. Some of the results of this section are derived in detail in
Appendix 2. The effect of visco-elastic or otherwise inelastic behavior of
the material is not considered in this work, though it is known(l) to be
often of overriding importance, It has béeﬁ shown, however, that in many
problems inelastic solutions are most easily obtained by starting with the
clastic solution of the same prob]em(z’B). Fﬁrthermﬁre, the influence of
viscosity is small if the temperature level is not ino high, or if high
temperature are of short duration. The section which follows, namely:

5} &tress Distribution - Example illustrates the use of the formulas developed

in section L by cnntinﬁing the problem of section 3. Some of the details
of the ealaulations are given in Appendix 3.

6) EQEICalculatimn Engeflections is taken up next; explicit formulas for the

longitudinal and transverse displacements are given. Considerations on the
applicability of the Bernoulli-Euler hypothesis of beam theory te thermal
stress problems are included. It may be noted in thls connection that
theerics Ter the thermel bending of wlates have been derived under this
“assumption by severvral authors(l2’13),thouzh some Aoubts as to its validity
have arisen(lhj. The present approach makes it possible to resolve this
question within the scope of the solutions considered.
7) Stress Distribution - Variable Properties. This section shows that the
general method of section 1 can be used also if the mechanical properties of

' the material (assumed constant in 211 previous sections)varywiththetampearatre,
WADC TR SL=42l 2




1. GENERAL CON>IDERATIONS

Tet the solution be required of a differential equation of any order n of the

form | .

where z is the dependent variable, and where the linear partial differential operator

+ D + has been divided in three parts chosen so that no derivatives witl
(Dyp * Dyyqp * Dyp) P2 P

respect to x appear in DYT’ none with respect to y 1in DXT’ and only terms containing

both such derivatives appear in D,... Let the soclution be desired for the range

XYT
.}’lix) LY 4 YE(X); xl(y)éxi—;xg(y); t D03 and assume the boundary conditions to be

nf the form;

n=1 Ef .

. k .= X (x,t) when y = ¥y (x) (1a
$=0 3 d y 1, 2 77’ 1, 2 )
2;} \P

Zoo KV i = Y (y,t) when x = (y) (1b)
=0 j ox’ L, 2 1,2

N1 BJ -

T g2 g et ¥
j=0 L

where the k's are constants. A metnod of solution of (1) under these boundary
corditions will now be outlined; it will be useful when solutions are desired for a

thin strip, i.e. when (y2 ~ yl):ﬁ;(xz - X.)» Let the solution of eq. (1) be written

1

in the form
L)

2(x, y, t) = Z zi (%, ¥, t) (2)

1=0
where the zi functions are to be determined as indicated below Substitution into

eq. (1) gives o

< |
(Dyq * Dyyq * Dyp)(2) + Dyplzy) her Dy (23) + (Ogyp + Dyplzy POy, 00 (20)
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It is therefore clear that eq. (2a), and therefore also eq. (1), will be satisfied

is the zi functions are chosen so as to satisfy the following relations:
pKT 31 = Fl (x, Yo t) (33)
E - F (x t i = 2 3 h--- 3b
Dym (2;) (Dyyr * Dypt2y_q +F (6 75 ) > 3, (3v)
+ + D z =@ 3¢
(Dy., Der Do) 2, (3¢)
where the Fi functions can be chosen in any convenient manner provided of course that
oo
F = 0 Fy (3d)
i=1

Th> manner in which the portions z, of the variable z are defined is of course not

urique; for example, if they are chosen so as to satisfy the following relations

Dyp 2y "y (6 3, V) (3e)
Dyn %p = Dyyq 23 * Fpl%s ¥, 8 (3f)
Dym 23 = Dpyp % Dyp 830 * Fy Ko ¥u ¥) 123,04, 55e0ee (3g)
(D, + D +D )z =0 . (3h)

it is easily seen that eq, (1) will again be satisfied, Uther manners of defining

the 2 functions can of course be devised; the individual functions Z, will be

different in each case, but their sum will be the same. In the solutions presented
in the following mections the functions zi will be defined in such a manner that eac.
contains derivatives with respect to x of a single order only; thus in the solutien
of the heat equation (section 2) the first of the methods just described will be
employed, while for the determination of the str«sses (section L) the second was use
In any case, both the system (3a)-(3c¢c) or the systeam (3e)-(3h) have certain charage

teristics in commen, which will now be disoussed,

Solution of (3a) and (3b), or of (38), (3f) and (3g) is evidently simpler than

that of eq. (1) since no derivatives with respect to x appear in the left-hand sides

of these equations, and therefore the role of this independent variable has been

WADC TR 5h=h2l I



reduced to that of a paraneter. However, it 1is possible to satisfiy with each functior

zi(i # 0) individually only conditions (la) and (lc¢); the function 2 must then be

ehcsen so as to satisfy homogeneous boundary conditions in place of (la) and (lc), as

well as
: J
n-1 ~ d oo n=l
fﬂwdz“"=x ( t)-z Zk'azit- (¥) (31)
;o - : lzy’ _'_] ja I('-Xl2}' 1
j=0 Y Jxd B i=] §j=0 0 )

Clearly the exact determination of zo 18, 1in general, as difficult as the solution of
the original problems fortunately it is possible in the case of a thin-strip to obtai
an approximate and at the same time adequate expression for this quantity.,

Consider first an infinite narrow strip, that is the case of xl,z =+ O,
Conditions (1b) would then ordinarily be replaced by the requirement that z and some
»t 1ts derivatives remain finite at x = +«¢, and will be automatically satisfied if

this requirement 1s consistent with the behavior at infinity of the functions

I', X, and X,. In this case then 2 = 0,
1 2 0

In the case of a long but finite strip, one may write (y2 - yl)<gf(x2 - xl), and

11 approximation to 2 1is the solution of

0
= 0
Dy 2, (L)
With
1 “33 72 1
J J Yo = Y 1,2 ern * — y wWhen X = xl :
¥, (La)

The resulting expression fer % will then be independent of y. The error introduced

Wy this approximation can be found by solving Eqs., (3c¢) or (3h) under boundary
condition (3i). Comparison of egs, (31) and (La) shows that the average cerrection
¥ the quantity on the left—ﬁand side of these equations is zero. The actual general
determination of this érrmr is again a task of the same difficulty as the sclution of
the original equation; but in the prroblems of iemperature and stress distribution the

[y
-y
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error is negligible except in short distances [of the order of (y2- yi)] at each

end of the strip. In the stress problem this follews fren Saint-Venant's principle(hz
in the heat problem it is intuitively clear.that an analogeus pringiple will hold,

As an example, the temperature T in a semi-infinite strip of height (y2 - yi)=(?c) due
to a suddenly applied "self-equilibrating" heat input Q =.Qo-cos (n y/c)at x = 0 can

be verified to be

R
[T4/(2 ¢ Q)] = - 5 : (l/nt1)1/2

O

exp [-bnty = x°/(26e°t))ld & (5)

or, in a form more suitable for calculation:
(on HT/c Q) = e " X/© {1 ¢ (2/{7) ert [2nE] - x/(ke [T )] -
(5a)
- e x/e {1 - (2/[7n) erf [ZRJ?I + X/(hcf—yl)]

where the non-dimensional time tl =J{t/h02, and where 4 is the thermal diffusivity of
whe material, A plot of these expressions, shown in Fig. 1, clearly indicates that

only a limited region is appreciably affected by the heat applied,

The solution of Eq. (1) has thus been reduced to that of {3a), (3b) [or (3e),

(3f) and (3g)) and (L), together with the appropriate boundary cenditions; applica-
tion of these equations in the specific problems of interest here is considered and

illustrated below with reference to a rectangular region defined by

-c{y<c; =L <{xd{L; [f=(c/L) K1 (6)

WADC TR ShehL2l 6



2e THMPERATURE DISTRIBUTION-GENERAL EQUATIONS

The two~-dimensional heat equation is

2
Dér D ) T . (1)

K('——'z+
B ay B‘b
thus, in the notation of Eq., 1,
L 5 D 0; D 92 T; F (7a)
D H—.—..-...._.._—-.—.-; | ;  ~ 7 = ; =0 E_J
YTJ{QYZ Bt XYT XT ax

The solution is then obtained from the mrevious equations as

T=T +T +T,+.0.. (8)
vhere T (1311) is obtained from eqs (3a) and (3b),namely
™™,

c) T ,:;Ti

! - = @ (83)
N2 ot

.- y \ 2
k: E}L Tl f.T}Ti J( {:f T_ l

D o T > - ) 5 1> 72 (8b)

y = |

+he boundary and initial conditions under which these equations must be solved vary
a great deal from problem to problem, and it therefore appears impractical to conside
any general type of solution. Solutions of eq. (8a) under a variety of conditions

(5)

are however available in tne literature

At ter all the Ti quantities except T have been found,the la tter is obtained fro

0
N 2
P, ; Tc _ 2; Tn
x :
Y x? Ot (9)

together with the ap ropriate boundary condition given Ly kha). 1f, for example,

the ends x = + I, are insulated, the pertinent solution is

1n ) Jﬂtly(lﬂ) g : > 7
To = Y/ . £ a7, =8y WX T -
@ P o ~(1/2) { 13 "‘P‘ i=1 f = -(1/%_.--'3 )

? dt (9a)

WADC TR 5h=L2l 7



where

Q= e/bs by =4 ue®); = w2e s 9 = i(ze) O

and where dots and primes indicate differentiation with respect to tl and g’ 3

reapectively. The quantity f is the temperature in the rectangular region (6)

caused by a suddenly applied constant unit heat irput at x = L, all other edges

5),

being insulated, and is given by the expression

80
— 2 2 2
v _ 2 . 1 12 1 __2__\(-1)n -(n"n"t, 3°) 1
f(tlfj’tg%) B tl?' T (f;ﬁ *“E') ~6 ﬁzé.-_—;f"ﬁ 15 ‘cos n n(jiﬂ-*-é')
| : | n=1
(9¢)

nelations analogous to(9a-c) could be written for other boundary conditions. Use of

~he above equations in the solution of a specific problem is 1llustrated in the

example which follows.

WADC TR Sh-h2k 8



3. TEMPERATUKE DETERMINATION - EXAMPLE

Let it be desired to find the temperature distribution in.the rectangular bar

defined by eq. (6), when heat is snplied to the side y = +c at the rate
=Q, a (%) (10)

#all other edges being insulated. For the time being this heat application is assumed
Lo be suddenly started at tl = 0, and to be continued thereafter at a constant rate;
other types of time variation are considered later. The boundary conditions for

eq. {8a) are then

QTI {
K =)Q wheny = o
P
Y (10a)
O when y = ¢
end for eqs. (8b)
| :5Ti
By=0‘wheny=ic i>?2 (lDb)
The function Tl is then readily found to be(s)
Tl \ 1 1.2 1 - el
=Q( )f'(t r).-: t?).}t + - {y+ = = Z ""nﬂt
22 Q fg L ( ( L2 ( ( 2) 6 (-1) e f cos nmly fl)
© - n=1 | H? 2

(10c)
where the function f is that defined by eq., (9¢). The other functions T, can then be
i

determined from egs. (Bb) and (10b) in a straightforward manner (see Appeﬁdix 1)s the

result is
T ¢ © 5 E
2 X =q"(~.§)£_l__ (LB, (9+32 1
2cQU 2 2L 12 360
D0 2 2
> -1 n -nn % ‘ |
_TZ-—.) ?h 1 (1+n2 n2 t,l) cCos n n (,(+_];)Z (10d4)
" n=] n . 3

WADC TR Slh=h2L g



, 3 .1 1, 1
T3}‘ = 111:(?) tl ((+-§6_£+_l Z_(._'Z_‘L.?...l..____..

2 ¢ Q 6 720 1Lh 720 15120
? (lﬂe)
-n
E ('1) ’ tl [1 +n 2’0 + nhn;)'l /2] cos nrn ( ? + -,E
n=1

and so forth. Nute that primes indicate differentiation with respect toif'. Tt may

be noticed that, in general, Ti is proportional to the 2(i-1)th derivative 0f.q with
respect ta:f s thus it is clear that,if q is a polynomial,only a finite number of T1
functions will exist and so nc question of convergence of the series of eq. (R)

arises. Thus T1 represents the entire solution if q (g) is polynomial of the first

degree at most; (Ti +-T2) if q (:f) is a polynomial of the third degree at most; and

so forth, For ¢ functions other than polynomials no such simnle results can be
obtained; but certainly if the function is sufficiently "smooth" (1.e. if 1ts higher

derivatives decrease sufficiently fast) convergence will be ohtained.

Good convergence will also result for thin bars, even if the derivastives with
respect x or (x/2L) do not decrease very rapidly. Replace in fact the derivatives
with respect to g appearing in eqgs. (10d) and (10e) by the corresponding derivatives

with respect to (x/2L); then T, ig found to be proportional to

(220D /(g )20 = 5 20D 200 gy (/)2 (10£)

which will be smaller the smaller the aspect raticﬁ.

In order to proceed with the determination To it is impractical to leave g (:?)

in general terms; therefore a specific example was chosen, namely

a(g) =1+ (qo)/s<§-v93§2); Cigl¢/zp) )

where q, is a constant. Then eq. (9a) yields, after some manipuiation,

WADC TR Shel2l 10



_232)32 +h“§3 33 e bt “§h ;gh) _
- 22 .9
' I1
- ;_1]-;—)4_ Z._.-}.(_:l_)h_ﬂ_ e n‘/B t, cos {nn ( 3,3 +%)]3 (12)
ja n n=1 n |

In this case q is a polynomial of the second degree and therefore Ti = 0 for i

larger than 2.

The variation with time of the temperature as given by the above formulas at
x =2 and y = ¢ is plotted in non-dimensional form in Fig. 2. The values q = -{(1/2)

Also shown on the same figure is

and 2 = 1/5 were chosen for the numerical example.

/

. i
th temperszture at the same point due to aheat input Q varying with time according

t- the law
Q*(‘g,tl) =Q_q (%) b, & X (13)

a rameter chosen here as equal to 2.5. A plot of eq. (13

whave ™ ix a non~dimensicnal ;

- 3 #

e shown in the inset of Fig. 2. The temperature T due to Q@ 1is, from Duhamel?®s
)
f"‘-l"f:ftlla( 11 L )
t 3
3% & ¥*, 3 3
T = ) :LT(’E.;B:-_-,~.i------"--—-f'.'1 (L&f,t-tl)dt (13a)
- J
o o tl

where T(tl) is the temperature previously calculated for heating suddenly applied.

The integration indicated in eq. (13a) was carried out numerically.
An example of the variation of the temperature along the span of the bar is

presented in Fig. 3, in which a non-dimensional plot of temperature againstig‘fﬁr
y = ¢ and t =1=.05 may be found. .Again}3*= 1/5 and Q, = -1/2. Some comments on these

numerical results are given at the end of section 5.

wADC TR Sh-hh 11



L., STRESS DISTRIBUTION - GENERAL EQUATIONS

(6)

The governing equation of two-dimensional thermo-elasticity is

by Dby Dbe  HE 2
e s s a R s ET 1L)
2) x2 e szé y2 +9 y 312 Byz (D( ) (

where o and b are the coefficient of thermal expansion and Young's modulus,

respectively (toth taken as constants in this section), and where the stressea are

related to the stress functlon¢? by the relations

Q¥ 2% o d 2
- G - A ST, . (1La)
O-x ’a }’2 Y 9}{2 Bxay a
To the notation of Eq. (1)
o b N b PL Y2 a3
DYT“TA—;F; DXYT=23}[23;E ; DXT_W; z“ﬁ”F""(g_x'E'*g_yé')("( ET)
(1lo)

T problem is the determination oflp for a given temperature distribution, under

.undary conditions stipula tirig that

Tx=1=0 when x = + L (1he)
(v =¥ =0 when y=+c (1Ld)

J

The metinod previously described gives

L.{)= Lf’m -lr\f?l H o, teses (15)

where ul? : (i 2 1) is obtained from the follaring relations, written in accordance

with eqgs. (3e), (3f) and (3g):

L
J 2
—%q—ﬁ = - %—2 (x ET) = Fl(x,y , t) (15a)
J Y
EBLKP d %o ET 7511%”]_
L2 L LR, S (150)

= - =g . 2 ' i>3 1
N A 329 2 2 (15¢)
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These equations must be solved under the boundary conditions (1hd), which may be

reduced to the form
:)Vﬁ
E e =0 wheny =+ ¢ (15d)
b ERPT; Y-

by writing the stresses in terms of (F as in eq. (llka), and integrating the resulting

expression with respect to x. The details of the solution of eqs. (15 ) are
indicated in Appendix 23 the final results are listed in table 1, together with the
corresponding expressions for the stresses, for i = 1, 2 and 3. It may be noticed
that (similarly to the solution peeviously presented for the heat equation)} a7 ' is
proportional to the 2(i~l)th derivative of the temperature with respect to x; thus
the discussion given following egs, (10) applies to the stress distribution problem
as welle In particular, it may be noticed that the expression for the stress:ﬁ‘i
given by q?l is identical with that given by Timnshenko(h), and is exact for
wemperatures either constant or varying linearly with the distance along the span

-n the latter case of course the stressfj; is accompanied by a shear stress 2=.

The formulas given in Table I are analogous to those given by Seewald(7) to

indicaté the required correction to thne elementary'cr; = My/I formula in cases in
which the bending moment M is not a linear function of the distance along the span,
It is shown in the section on the calculation of deflections that the expression for
ﬁﬂl can be obtained on the basis of the Bernoulli-Euler hypothesis, and is therefore

entirely analogous to the formulas of ordinary beam theory,

The expressions given in Table I can be simplified considerably if the function

F of eq. (14b) is independent of y, as is for example true when the temperature is
that given by eq. (9a), or its special case eq. (12). The expressions fortpi and its

stresses, pertaining to this case, have been collected in Table XI, Note that in this

caseqo 1 = 0,
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Formulas have been given in the tables just referred to for the determination

of all . 's with the exception of ¢p . Combination of egs. (1he) ard (15d),

however, shows that

C C

C
SO’de=§ C dy=50‘x:rdy=0 (16
-C

-C -C

snd that therefore the stresses of tables 1 and II are self-equilibrating. The
validity of egs. (16) may of course be checked by direct substitution of the
expressions contained in these tables., It follows that the right-hand side of

ags. (La) is zero; hence the value

390 =0 | (16a

will satisty all the necessary relations within the approximation afforded by use

of Gaint-Venant's principle. Tsbles I and II therefore represent the desired

Sclution to the problem of stress distribution,
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5. STRESS DISTRIBUTION - EXAMPLE

The stresses arising in a rectangular bar under the heat input of eq. (10) car
now be calculated by direct use of the formulas of tables T and II. The temperature

is given by eqs. (10c-e); direct substitution gives {for example the stresscxi) the

expression
o0 n 2 2
2 - -n nt
o H/(2c xR )] =q(g)}i VAR Y cos[na( 1 +33] -
L 2 T n=1 n
o . Ly 2
-ha? g)étl(—]-" —Vf—)ﬁ-i——?—d- [
2L, 2 12 24 288¢

% 4 6

+Sit [16? (“+h8t)7]'9 86

ORo 2 2
2 N7 (1) Y 2 2 1 'g
+ > - = {2 + n'n"¢t,) cos nu{n +=)] (17)
R L 1 172 _
n=i
wiere
e > 2
at = tg_' -nn t
5} = ‘_/_’_[ 1/{n" 1))
n=l, 3, S5...

"ome details of the derivation of eq. (17) may be found in Appendix 3. To the above

cxpression for the stress must now be added the stress due to the temperature To of

eq. (12). Table II gives this additional stress as

2 L 2
[ & _K/(2e<EQ )] = T";—-— -1 + T 5-7-— L Yeare (17a,
X ° L2L‘ 25 12 2k 233°

The expression of eq. (17) is exact if q is that given by eq. (11), while eq. (17a)
eontains even in this case an infinite number of terms. Numerical calculations

showed however that the series contained in the latter equation is very rapidly
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convergent, and that in fact even the first term provides a reasonable approxim tior
Some numerical results are presented in Figs, i and 5 both for suddenly apnlied

heat [eq. (10)], and for heat application following eq. (13).

Figs. 3 and 5§ show the variation of temperature and stress, respectively, with
the distance along the span; also shown in these fieures is the variation along the
span of the applied heat.Q according to eq. (11). Inspection.ﬁf the calcula tions
from which these results were obtained shows that the first terms of the exoressions

for these quantities (i.e. T andifl) are of paramount importance, while even the

1
second term may be neglected. The second term is in fact proportional to Q", 8
quantity which is, in the present exanple, constant and small with respect to Q.

If the applied heat variation with followed a polynomial of higher degree, the
situation just described would not take vlace, but terms other t:an the first would

nlay an important rol=. The quantity T0 is of course of importance even in the

present problem.
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6. CABCULATION OF DEFLECTIONS

The deflections of the bar considered in the previous developments are easily

calculated from the stresses given in table I, The displacements in the x and y

directions are respectively denoted by u and v-and must satisfy the equationﬂ(h)

du

E=X—= = Q =V +wkT
Sx X y

E.%-E = O - V3 +ET (18)
Oy y X

22, 2 o1 4v)
Sy %

The desired result is easily obtained by susetituting in (18) the expressions for the
ctresses in terms of the stress function of eq. (15), and integrating the first and
second of eqs. (18) with respect to x and-y'reSpectively. The arkitrary functions
(rsspectively of y aﬁd Xx) arising during this_process aré then adjusted 8o as to

~atisfy the last of (18). The final result is:

X c c
u v 1 3y 7
—_—= J . + y'g+ g—— T d | T d d
= a 1 02 Sk oc S y * 2038 Yy yg X + (lga)
-L -C -C
:5 \ Yy Y ,C
— 3 ) T oy - Tydy]-f'-s ray e Y e (1av) Lo
O x 2 2 c
zc —c g
v ; v
2 1 2l
1+ %) (‘E)]‘*'é'g ryay [1ve GG N@ - @ 5E7) -
2C
e c
[ Ve
- —— T dy - T
he S y oy -h—c% g Y3 dyg toasne
~C -C



) L ° Y+ y L]
e S T J 1
+ ](l V) S T dy ; S y [1+¥V+ ) + (19b)
( e -c
C [ ]
1 uc ? 3‘}) l}i fI 2 1 3 }
+—' T y dy [ _— \ ) ] +""§ S T Y dy Toren
¢ S o0 L TR Lic )
-c —C -

E>h “he right-hand sides oI eqs (1%a) and (19b) contain successively higher

¢ iratives of the temperature with respect to x, and therefae will converge under
c~-ditions similar to those mentioned following eq. (10e), The first bracket in each
o the above expressions depends on the constants cl, c2 and 03, which are to be
#c.ornined from the boundary ccnditions of the problem. The next bracket represents
s :catribution due entirely wo the funttionffi of eq. (15). This portion, in the case
»{ the displacement wu, is linear in y, and therefore follows the Bernoulli-Fuler
a=gumption that sections plane before bending remain plane after bending, and may be
goen to be rigorously valid only for temperature distributions which are independent
5. tne distance along the span. Formula (19a) can also be used to eétimate the error
in any elementary theory developed on the basis of the Bernoulli-ERuler hypoghesis.
The corresponding term for the displacement v depends upon the integral .g‘ T y dy,

which plays in fact a role similar %o that of the bending mement in elementary beam

theory, It is interesting in this connection to calculate the average curvature;

it is
2 i v c 2
d ERSR 1 [
T d dy + '3 R d i TR (20)
d x g S 0 )’1 3 20c¢ S Bx 27 Le Sb( dx* y}
- -C
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(8)

This equation is analogous to one developed by von Karman to show that correction

required to the elementary beam formula

dzv

TR (20)

if the bending moment i3 not a linear function of x. Note that in the present
cese, the moment of inertia J of a thin rectangle of unit width is I = 2 c3/3.

In view of_the discussion follcwing eq. (10e), one may conclude that the first term
i1 the expression for the defl ction { or for the stresses) will become more and

2 ascurate as the loadizg besomes smoother, or as the bar becomes thinner,

= Al
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7. STRESS DISTRIBUTION - VARIABLE PROPFRTIES

Tn all the above developments it has been assumed that the mechanical propertie:
of the material are independent of the temperature., This was not found to be the
case however in an experimental investigation conducted by the N.A.C.A.(9’ 10}, whic
in fact led to the following approximate formulas for the variation of the modulus

of elasticity E, the shear modulus G, and the coefticient of thermal expansionﬁ)i

for 758=T6 aluminum 2lloy.

E - (1L70T » 15.17%)

6= G-~ (LLbOT L. 8T°)
o= o +3.52 10777
In these EXpPGSSlOHS the subscript o indicates the prepertles at T = 0, The values
E0 = 10,5 x 10 ps%i = .0 x 106 psi and X = 12,52 x10° / are suggested for
0

the above material

E
(21)

Examination of eqw. (21) shows a considerable variation of material properties with
temperature. The variation of &X provides no new difficulties, since it merely change
the right-hand side of the governing eq. (1L) and therefore corresponds to a differen
applied temperature function. _The variation qf k. and G (and therefore %) on the

other hand requires replacement of eq. (14) by

2 2
_?“_.(}w _i\ L())+ S ¢ ..3__2,:‘.’ _132‘10)+2 37 (1+v')2
BYE Byz E O x° ax2 EJ x° E *ayﬁ IX)Y E 92X
2
= ; --?—-—-2-) (o T} (22)
E."y'

wheret¥?is again defined by eq. (1lhka). This equation, though still linear, has

variable coefficients and is therefore more difficult to handle than (1L). Consider-
able doubt has been recently thrown, however, on the correctness of the variation of ®

(1)

E and G as obtained above, and the opinion has been expressed that a more critical

interpretation of the experimental evidence might reveal that the modull of elasticit;
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vary in fact very little, the apparent variation being due to a neglect of the visco-
elastic efiects, It is clear that some attention should be given to this question,
before extensive investigations of possible methads of solution of (22) are undertaken-
This problem can of course not be dealt with here; nevertheless it is shown below how
the general method employed throughout this paper is applicable to eq. (22) as well.

It will then remain for future research to determine the type of problem in which

euth a solution is of importance.

If the left-hand side of eq. (22) is expanded, it may be put in the form of

(1); after a number of transformations, the result is:

72 4 N2
Dy ™ 55 G =3
i L\,F P} ¥
a2 1 o2
D..':. B - ‘)

Y 9 2) [.égi‘),éﬁ)_b? +__>;_2(V/E_j_ Y 2 _, Ae:v 5 N 2

"he boundary conditions are again those of eqs. (llc) and (1bd)s Eq. {15) of course

still holds, but (15&) becomes

T’
;

>., a y
Integration gives
.y y ( .
(i = ' =0 K +
fﬂl B S oK T 4 cl y 02 E) dy dy (2La)
-C  =C
where the values of cl-and c2 required to satisfy the boundary conditions are
A C c
( 3 Ey dy)( ngT)d}') - (5 )7 dy)(SQJET y dy)
= =c ~C ___=C |
“1 c . c (2lb )
(BEde)“(_\ Edy}(SE;Y dy)
- - ™ =
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C C c C
. . 9
( § Eydy)( (BT y dy) = ( § Ey° dy)( SXET dy)
— — = = : (2lic)

C ) ¢ c
(__fcz y ) = (SEa(Eyay

-~C

Note that Cq and ¢, are functions of x if T{and therefore &) vary along the span.
With these cuantities the tirst terms of the expressions for the stresses may be
jerived. In particular, it is interesting to note that the iir-st term ©of the
stress '.x is .

o =2 - XET + 2 B ) .

and has therefore the same fo:m as that given in talle_l and cquld be obtained on the
wasis of the Bernoulli-Buler arsumption. Of course the constantis ¢, and c, are
fltfﬁrent here from those of tzble I, though they become identical (and this is true
&7 all corresponding expressions in the developments 1o0r variatle and constant
properties) if B is téken to be a constant. Ixamination of table II Shﬂws that if
xT=a+by (25)

where a and b are constants ( <x is also constant in table II, though not now) the
~osult

(_Fl = 0_‘11 = { . | _ (2;3.,

holds. Direct substitution o1 (25) into (24b) and \‘2Lc) shows that in this case
c, = b and c, = a and therefore (255) again results,

In the case of constant properties, the expression for arx analegous to (Qha) was
found to be exact for temperature distributions with'??(m(T)/éax? = Q, In the
presant case, however, it will be seen ?2 contains terms of the type (W T)/Ax;

hence tfi(iEtE) will vanish, and eq. (2L4a) wil' be exact, only for temperature

distributions independent of the span.
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The next step in the solution is the determination of Cf’2 from eq. (3b), which

in this case is

. ’ X
3 (% P < > = « (D + Dqu?l)‘ D_IE_T.). = H, 32y (26)

2 Yy ¥
o Yo e
X, = - = b Sdedy+c Ey+¢ L (26a)
2 D y2 )_c o 3 L

wiere the quantities ¢, and ¢_ are found from eqs. (15d) or (16). After a number of

~ntegrations by parts, the results are as follows:

3 3 g 2 £ ¢ 3
~le s = 2¢ S’Hcy—fﬂc S Hydy*'j“ y~ dy ( 26b)
- -C
-C
C C
2 s ¢
e o, = Sde-ESHyde‘H.v dy (26c)
~c -C -
-C

71 appears impractical to culculate these quantities in general terms; it is clear
however that in any particular problem the right-hand side of eq. (26)(i.e. H)is a
known function of x, y and t, and that the necessary integrations can be performed

without difficulty.

The determination fofz itself will require the double integration of (26a); a
procedure similar to the one just employed will lead to all subsequent functions 72
of eq. (15). It may be noticed that by means of this method the necessity for
solving explicitly the original equation with variatle coefiicients is eliminated.
Finally, it will be noticed that relations {16) are still valid, and hence again

g?o = 0 as in eq., (16a).

WADC TR 5h=l2L 23



9.

10,

11,

12.

1l.

BIBLIOGRAFHY

Ireudenthal; A:S.¢ "On Inelastic Thermal Stresses in Flight Struectures,®
Paper presented 4t Pond Annual Meetingy 195L, Inst. Aero. Sci., Preprint No, 129,

ﬂlfrey; T « Wicenanical Behavior of High olymers," Interscience Publ.,
New York, 194L8.

Hilton, H. H., Hassan, H. A. and Russell, H. G.: "Analytical Studies of Thermal
Stresses in Media Possessing Temperature-Dependent Viscoelastic Properties,”
WADG Technical Rep. 53-322, Wright jpir Dev. Center, Sept. 1953,

Timoshenko, S. and Goodier, J. N.: "Theory of Blasticity," Second Ed. MeGraw-
Hill Bock Co., dew York, 1951.

Carslaw, H. S. and caeger, J, C.: "Conduction of Heat in Solids," Clarendon
Press, Oxford, 194L47.

Hetényi, M.: "Handbook of Experimental Stress Analysis," Wiley, New York,
1950.1 P' ?55-

Secwald, F.: "Die Spannungen und Formanderungen von Balken mit rechteckigem
guerschnitt," Abh., Aerodynam. Inst., Tech. Hochschule Aachen, vel. 7, p. 1,

197,

von Karman, T.: "Ueter die Grunlagen der Balkentheoric,® Abh. Aerodynam, Inst.,
Tech. Hochschule hachien, vol. 7, p. 3, 1927,

Heimerl, G. J. and loberts, W. .3 NDetermination of Plate Comprescive Strengths
at Elevated Temperatures," N.A.C.A. T. N. 960, 1950,

Heldenfels, K. R.: "The Effect of “on-uniform Teaperature Distributions on the
Stresses ard Distorsions of Stifiened Shell Structures,” N.A.C.A. T. N, 2240,
1950.

Churchill, R. V.: "HModern Uperational Mathematics ip Engineering,” lMcGraw-Hill
Book Co., New York, 19hl, p. 193.

Tsien, H. S.: "Similarity Laws for Stressing Heated Wings," J. Acro. SCl.,
vﬂl. ?0, N'D'i 1’ pll 1-’, 1953'

Pell, W. H.: "Thermal Deflections of Anisotropic Thin Plates,! Quart. Appl.
Math., vol. L, p. 27, 19L6.

Sokolnikoff, ¢. 5. and Sokolnikoff, E, F.: "Thermal Stressee in Elastic Plates,”
Trans. Am. Math. Soc., vol. L5, p. 235, 1939.

WADC TR Sh-L2h 24



APPENDIX 1

Derivation of Egs. (10d) and (10e)

‘e function T1 of Eq. (10c) is given in ref. 5, p. 10kL; substitution of ;1
Inic wq. (8b) gives

2
kK 37 BT
—* (=2 )=-q"(§>§t+-(7+-) -3 -
¢
° G'Qa ? % J. (A1)
o0 - 2 2
-nnt
. L Z -(—-——1 cosnn(h-*-]-'-g
2 ( )
n=1 u |
in the notation of eq. (9b), The solution of this equation is the function T, given
in 2q. (10d) and may be obtained as follows. Assune T2 to be.af the form
T
kz 'Clti"‘ce(r’{+%)h+c3(7?+%2+ch+
Zchqr(?)
Co 2 2
n -nxt
+.EL (<1)" e 1 (¢c. + ¢, t ) cos nn ( +-l) (A2
n2 5 6 1 ?} 2
n=|{ |

which is of the same general nature as the right-hand side of (Al) and satisfies the

boundary conditions (10b) at y = -¢ (i.e. at r? = - %’-). The similér condition at

’n -;- will be satisiied if

hez + 2 03 = 0 . (A2a)

Substitution of expression (42) inte (A1) and comparison of like terms on both sides

of the resulting relation shows that eq. (A1) is compatible with (A2a), and further=

more yields the values of all constants cl,...,cé. The final result is the temperatu:

function of eq. (10d). There remains now to verify the fact that this solution

satisfies also the initial condition, namely

T, = @ when #l = 0 (A3)
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Substitutlun of the expression for T, into this equation gives

7’1 fZJ
4 - R S -— n = 0 (A3a)
2l 12 360 —nE Z—' E o 71 :

wher ¢ 71 = l’z-l.- (1/2).. The summation contained in (A3a) can be evaluated with the

aid c¢f the following well-known Fourier expansions:

2 1 L s (1)
1?1 = 3 + -;[-é— f:___, —-—;'1'2'— COS nn&?l
=]
. (A3b)
OO
’?h =-1-+—g-zﬂlz—cosnn? L8 Z—"l—)-rcosnn?l
‘1 5 =l 0 h n=1

. betitution into (A3a) shows that the latter is satisfied. It may be remarked that
-hs solution of eq. (#1) can be readily determined with the aid of the Laplace
transform technique, which allows the all boundary and initlal conditions are

-mmadiately incorporated in the solution and it is therefore a priori known that

they will be satisfied.

The derivation of eq. {10e) is entirely analogous to that just outlined and is

therefore not presented in detail., It may be remarked, however, that the final

check of the condition

I, = 3 whent = 0O _ (ak)

requires use of the series

1 26 120
-- + 12 Z (-1)" -5 *? —6-6-—)04::5 nn (A5)
F?J- 1 n n2 n n n n (!

‘in addition to those given by eqs. (A3b),
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APPENDIX 2

Derivation of the Expressions of Table I

The function.§F1 is the solution of eq, (15a) and may therefore be written as

R S 4
Cfi:"S (METdey+co+cly+c2Y2+63Y3 (46)
) ) >
~C «C

where the conntants.ca,...,c are to be determined from the boundary conditions (15d),

3
Svbstitution in (15d) gives

2 | 3 c Y
codwclc+c2(c/2)fc3(c/6) =S _S““"'ETd}’dY
-C ~C
C =-C, C+¢C (c2/2) - C (03/6) = 0
c 1 2 3 [ A6a)
2 _ Aba
cl+czc+c3(c/2) S.ETdy
-C
C ecC C+c (c2/2) = 0
1 3
The solution of these four simultaneous equations is:

(¢ /E) c’chlcded c 1 :
=t T o e - = — '
C . h) yiﬁg S y dy L STdy-—z {"Tydy (ASW)
~-C -C - -C )

1 £ 3 c y 1 © 3 ¢

Eﬂ""' Td Tdd‘:"""‘ el
(Cl/ut) bj .'Y""T 8 E J STdY e STydy
-C -C  =C -C -C
1l ¢
E) = = T d
(cz/bt) 25‘ y
-C
(c,/*AE) 2 chy ¢ T dy d 3
c "= - T dy dy = Ty dy
3 2c2 S ;:j S g .;;3 S
-C ~C =C -C
It may be noticed that for all the above constants with the exception of c, two

2
expressions are given; the first ef these is obtained by direct solution of the set

(Aba), and the second is derived from the first with the aid of the identity
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c ¥ c c |
3 STdydy=cS Tdy-—STYdy (A6c)
~C

- w3 -{Z

whoch is casily verified by means oi integration by parts. If now the double

it epel appearing in eq. {A6) is expanded with the aid of the relation

R4 y Y y

S Tdydy=yg'Tdy- STydy (A6d)
“C =C -C ~C

of which (A6c) is a special case, and if the values found for the constants aro

substituted into eq. (A6) the entry of Table I for the Iunctian<?i will result,

The derivation of the other g?i functions appearing in Table I can be performed

10 a manner entirely analogous to that just outlined. Consider for example the

fﬁpcbignsi%iz and 393; they are given by eqgs. (15b) and {15c) respectively as

z
| Y Y .y ¢ )'3

-C -C ~ (}q}
Vi 3
Y Y C OY Elly
?’*-—F H, dy dy + c,+¢ y+-_l.___..+
3 l\t:: -S-c 3 89 2 6
nhere
2
P Bz(o(E'r)_ ¢ 4
H2 = SL Sﬁ —-—-!n—__,dy dy - 2-—————§~
) 3 T, dx
| A7a)
! 2 (
H . ¢V yb wldydy-i—ZDLpz
T SRS

Similar equations can be written for all functions 69 4+ Eags. (A7) are of the same

form as (A6); therefore, the constants c can be immediately found from the

c
h,"‘.,ll
appropriate one of eqs. (Aba) by substituting either H2 or 33 for X E 7. The

expression for q?i can then be obtained in terms of Hi directly from the expression

fcrﬁpl given in Tatle I and is then

28
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oy J
LF -y \ H, dy ¥
i ) i

H y dy + _C
-\’
—ru —-c

2 c
L1 2(1) + (D71 (1, dy -

2 (A8)
-tz +3@- &) 5" H, ¥ dy

The substitution Hl =xE T givescﬁl as previously found; use of HQ’ H. and so

- 3
tovth gives the corresponding functions(ﬁz, LFj} etc. L1t may be noticed that all Hi

with the exeeption of Hl contain terms in which a double integration is indicated;

when substituted into eq. (A8) these terms will require a triple integration,

+ Thez=
may be eliminated by successive integration by parts in a manner similar to that

employed in eq. (A6d) in the case of déuble integration; the desired formula is in
this case

J

2 R4 ﬂY L Yy
S \ in.dedy= S Hidy"yS H, ydy + 5
- -l ==C -l -t

e final form for f:_'which is most convenient for purposes of derivation of
| i

sxpressions in Table I is then obtained with the aid of (A6c), (Aéd), (a8), (A2) and
identity of the form

{A9a)
The final result is ]
2 > -
.YB 4 1 3'2 vy d Hi‘ y J .2 O Hy 1 Yoo Hy
‘ - dy = = ( ¥y > dy+2 y 5 dy 6(’* y3_\ 9d
| 6 > } dY 5 Ay \ oy
-C -C ~C -C (13
3 c \2 e
c e A¥; H ¢ C :)H
r o [1-3(0)° -~ 2 (21 Q. c” ¥ V12 . 7\3 i
¢’ ) s dy+—=[(&) +2A0)" + (=] | ¥ dy
2k 2Dy g8 € C ¢ -.j-:c ayQ
| 2
c DH
—%[1+2(%)+({-2] g y2 i

Substitution of H2 and 33 of eqs. (A7a) into the above equation gives, aiter some
simplification, the functionsc{; > and ¥ of Table I,



APPENDIX 3

Derivation of Egq. (17)

ne. {17) is derived by substitutihg the temperature T = Tl + T2 into the

expracsteoas of Table I, where Ti and T2 are given in egs. (10b) and (10c) respeeti-2"s

the fun.tion q(Fg) appearing in the temperature expansion is found in eq. (11), The

result of the above mentioned operation can te put in the following form:

1 1 ,
| ” 7
Sx X =%-Tl L /2§ 1) dtwe) + /2)5/0) § 1) Grealare)
2 c¢c L Qo -1 | -l
1 1
+ S-—Tz + (1/2)5 I, d(y/c) + (372)(yse) j‘Tg (y/e)d(ysc) #+ (A10)
(_ -1 -1
Ly/e) (y/¢c)
" (1/h)[(.v/c) 31 T, d(y/c) - Il T, (y/c) d (y/c) -
2. 2 2. X
~(1/12)(1/c“ ) (e + 6 y ¢ + 6§") S‘ ) d(y/c) +
-1
1

2

+(1/2'3')(l/cs‘)(l':)'::.3 +2lyc¢ -10 :f3) S' a4 (y/c) d (yrsc) -

-1

., 1 ) 1 3 {
-f1/L) g oy (y7¢)® a (yse) - (/L) (y/e) j (y7¢)” d (y/e) ]
1 -1 D

hare primes indicate differentiation with respect to “g’ =%/(2c), Inspection of *u:
zoove equation and of the expressions for T1 and Tz*will reveal that the first
racket of the right-hand side of eq. (A10) depends only on the function q, while
the second bracket depends only on the function g¥, The details of the substitutio:x

are outlined below.

The various integrals appearing in eq. (A1l0) may be shown %o be as follows:
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1 1
(1/q) § T, d (¥/e) = (1/a") S’ T d (y/c) =2t

-l <1

1 1
(1/q) & T, (y/e) a (ysc) = (1/q™) gl Ti'_ (y/¢) a (ysc) = (1/6) - 1651:

-1

QAN g 1 vre) = v (294 D) + Lp°3) + (p¥/2) = (p 12) = a/0)) -
-] |

o~
;. S
~(L/x") % [(-1)n/n3] exp sin (411)

(y/c)

(1/9") jl " (y/e) 4 (3/c) - tlﬂ[z:-?‘* - (142)] + [ ?1‘/2) *2 () >j3) - <fe/12)

ﬁ:.-
¢ (1/96)] = (8/1%) 2 [(1)%/n] (cos -1 + iy sin) exe
ne)

1
(-l/Q")S T (y/2)% 4 (y/e) = (24,)/3) + (W/A5) - 325)
-1

1
(1/‘1“)5 T (y/e) 4 (y/c) = (1/10) - L8s | + 38LS
-1

1
(1/q") S T2 d(y/e) = t:‘]?.

1 PR h ot |
(l/q“)j T, (y/e) d (y/c) = (1/60) .16 S - 16t S}

~1
The following notation has been employed in writing the above equations
2 2
-n
7" y/(2¢) ; exp=e U
cos = cos nn (N+ %-) ; sin = sin nn (t? +%‘) (A11a)
00
st = (1n' £ (exp/n’)
n=1,3’5!ii
1, <= 1
S; = (1/n") ZE__ (exp/n™)
2,0,60 44

oC
5, = S = 81 = (/') ;L:l (-1)" (exp/n")

Substitution of the above integrals into egq, (A10) and simplification of the results

gives the desired eq, (17) without further uifficulty.

WADC TR Sh=l 2L 31












~§%§ “%-gﬂ%.’;ﬁf‘*‘rﬁgf“fﬂg*%g'rf‘*ﬂ':“2‘55‘":%* _

+¢ |15 - 2ot e (8- 2ma(H) - ;;o (l)"J §Tdy +
Tk 2 S -] §Tydy

ottt -—(*)J§TM+

[eoe')"'ﬂf@"' )]5"345-

s e *(’)HT:“J*:@B[“ -y 14Ty dy

{2 744 - 1SW+%SW dy~${T P v folrytdy +

r<'Lastt) 25 (1 14Ty«

+c [ 050 *135("')"'"2(1)3 o) e ]§T3 4‘31' '

"‘C["(i -5 18Ty d‘;*‘CEe?"' 78 *aslE
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Z%Sw $Tydqrd{ridy- Ty dy ~
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