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ABSTRACT

This report discusses the performance of optimal control
systems with random parameters, The plants treated are de-
scribed by time-invariant ordinary differential equations whose
parameters are random variables with known distributions. The
control law remains fixed as the nominal optimal control, and
it is assumed known. Because the parameters of the differential
equations are random variables, the performance 1s a random
variable and can only be described in terms of its statistics.
Several methods of evaluating the ensemble statistics are pre=-
sented and compared. Alternatives better suited to stochastic
systems are given to the classical notion of sensitivity. Nu=-
merical results are presented for specific examples, and the

computer programs used in the study are discussed,

The report also includes an analysis of a particular opti-
mal stochastic control problem, to indicate some of the diffi-
culties involved in deriving optimal stochastic control laws.
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SECTION I

INTRODUCTION

In deterministic optimal control theory, the assumption is
made that the plant is known exactly, In practice, however, un-
certainty often exists concerning the values of the parameters
that describe the system. For example, variations in manufactur-
ing tolerances and environmental conditions may cause deviation
of parameters from thelr nominal values, Therefore, a signifi-
cant and practical problem is the determination of the statisti-
cal characteristics of optimally designed systems that use the
assumption of nominal parameter wvalues, but with parameters that
are in fact random variables, (An analysis such as this could
be used, for example, in the case of a high-performance aircraft,
because envirommental changes are slow relative to the time con-
stants in the aircraft dynamics). However, once such a nominally
optimal system is evaluated, the performance may be considered
unsatisfactory. In that event we would seek the optimal stochas-
tic law that takes into account the s priori knowledge of the
distribution of the random parameter, rather than just the mean

or nominal value,

This report is divided into two major sections, Section II
and Section III. In Section II, we concern ourselves with the
definition and computation of adequate measures of the perfor-
mance of nominally optimal systems., Reliability analysts have
treated problems of this nature (cf., Ref, 1), It is our inten-
tion to present some of these concepts in a setting more familiar
to the control engineer, as well as to define new concepts.
Several methods of computing distribution functions of the per-

formance, given the distribution of the parameters, are discussed.



Next, several sensitivity coefficients are defined and their
utility indicated., Some numerical results for particular sys-

tems are glven, and the computer programs that were used are
described.

In Section I1I, a particular optimal stochastic control
problem is analyzed, Both the continuous and discrete time
versions are treated, Various types of control laws are de=-
fined, depending on the data avallable to the controller, It
is shown that the conventional method of handling stochastic

systems, viz,, dynamic programming, is not applicable to this
problem, and the reasons are given,



SECTION II

PERFORMANCE OF CONTROL SYSTEMS WITH RANDOM PARAMETERS

In this section we begin with a discussion of those aspects
of "performance" that arise due to the stochastic nature of the
system, In the deterministic case, performance is usually mea-
sured as some function whose domain is the space of admissible
controls, It is not our concern to justify the use of a particu-
lar performance index as being any more physically meaningful
than others, Rather, it is to point out that 1f the system has
stochastic elements, any measure of performance is a random
variable (because it 1s a function of a random variable) and
therefore, the description of the characteristics of the per-
formance can only be given in terms of distribution functionms
or statisties. Our problem then 1s twofold; first, to derive,
either analytically or numerically, the distribution function
of the performance based on the known distributions of the param-
eters; and second, to select sensitivity measures and meaningful
statistics (moments, percentiles, etec,) that will adequately re~-
present the behavior of the system., While an assumption of nor-
mality may make the second question somewhat trivial (because the
mean and variance completely represent the distribution function),
it is generally true that the input-output (parameter-performance
index) relationship is nonlinear; therefore, even assuming normal
inputs, we cannot assume normal outputs., In such cases, which
statistics will best represent system performance and how these

shall be computed are the questions we attempt to answer.



1, METHODS OF COMPUTING THE DISTRIBUTION FUNCTION

Suppose we are given the system dynamics
. *
x = £(x,u ,a) (2-1)

and the performance index

T
J = I g(xau*:t) dt (2-2)
0

where
x 1s the vector state of the system;

u is the optimal control;
T is fixed, and

is a random wvariable,

The performance V 1is given by

T

V= I g(x,ua,t) dt (2-3)
0

where u_, the "nominal optimal control," is obtained by re-
placing o with ao in the expression for the optimal control

*
u, and o is the nominal value of a. Thus

V= V(G,GO,XO) ’ (2-4)

where Xy = initial state, and

vV=J for a =0 .



The problem is to determine the distribution function of the
performance, P(V), It would of course be desirable to derive
P(V) analytically, but for most cases this is an extremely dif-
ficult, and sometimes impossible, task. In general, a closed
form solution of the differential equation for the state is neces=
sary. From this, the resulting performance V 1is evaluated.
This function must then be inverted in order to solve for the
distribution of V (Ref, 2)., Because V 1is in general ex-
tremely complicated (if at all availlable in closed form), this
procedure can present formidable problems, To illustrate the
difficulties involved, the procedure was carried out for the

sample problem (see Sec. II.3).

Because of the apparent difficulty in using analytical meth-
ods, we sought other techniques that would yleld the desired re-
sults and still remain applicable in nontrivial cases. The meth-
ods that we selected can be categorized as: a) a numerical ver-
sion of a known analytical technique, and b) methods based on

sampling techniques,

a, Numerical Version of an Analytical Techniqgue

These methods have some advantage over sampling methods be-
cause they yield (up to the limits of computer accuracy) exact
values of the distribution function and its parameters, The
disadvantage is that as the complexity of the problem grows, the
difficulty of implementation increases more rapidly than in
sampling methods.

If o 1is a scalar in Eq. (2-1), P(V) can be obtained nu-
merically in the following way. Increment o throughout its
range; at each point simulate the system dynamics (using the



nominal optimal control) and compute the performance V. In
this way an array V versus o 1is obtained. As an example,

suppose V 1is computed as shown in Fig, 1. Then the distribu-
tion function of V 1is given by

Pr(V § Vi) =Pr(e, <aga) +Pr(n, agay) « (2-5)

(See for example Ref. 3), Thus, to calculate P(V), v, is
incremented throughout the range of V., At each point the
corresponding values of a are found by using interpolation
if neceésary, and the probabilities in Eq., (2~5) are computed
from the given P(a). The accuracy of this procedure is
limited only by the step sizes in a and V. Once P(V) is
determined, any of its moments can be computed,

Fig., 1 Performance Function



b. Sampling Techniques

While the method we have discussed above seems quite adequate
and accurate for the one-dimensional case, the difficulties asso-
ciated with it become quite severe as the number of dimensions
(random parameters) increase, Therefore, consider the Monte Carlo
simulation procedure (cf. Ref, 4) for obtalning the distribution
function of the performance and its statistics. For this procedure
it is generally true that dimensionality is not a limitation. The
only real limitation is the number of case histories one must ob-
tain to get sufficiently accurate estimates of the statistics of
interest; the computer time for the required number of runs may be

excessive,

However, problems do arise that are peculiar to the simula-
tion of control systems, For instance, if there 1s a region
within the range of parameter variation that causes the perfor-
mance to have a large value (it is assumed that unstable param-
eter values are excluded), and if this region has a relatively
low probability, any sampling technique will be highly sensitive
to the number of samples taken from this region. For example, in
a small random sample there 1s a high probability that wvalues of
the parameters from this region would not enter the sample at all,
thereby causing an underestimate of the mean and varlance, There-~
fore, in such cases strict random sampling may not yleld accurate
estimates. In order to circumvent this it is necessary to use
sampling methods that guarantee a representative sample for any
glven sample size. One such method 1s stratified random sampling.,
With this technique the region of parameter variation is divided
into intervals such that the parameter has an equal probability
of occurrence in each interval. An equal number of samples is



then drawn from each interval, thus guaranteeing a representative
sampling over the entire range of parameter variationm. This
technique will guarantee that those parameter values yielding
large values of performance with low probability will enter the
sample in their proper proportion, and thus have the correct

effect on the computation of the statistics.

Having discussed some techniques for constructing distribu-
tion functions of the performance, the next section (IL.2) will
discuss the problem of deriving meaningful statistical measures

of the performance.

2, PERFORMANCE MEASURES

While the distribution function does contain all the statis-
tical information about the random variable V, it 1s desirable
to have some numerical figures of merit that the control systems
engineer can use.

a. Sensitivity

In deterministic optimal control theory, sensitivity is
usually defined as Sg = BV/aalao. Because thils definition only
takes into account the variations in a neighborhood of the nomi-
nal value, it is in a sense saying that only small deviations from
the nominal are expected, and that these are uniformly distributed
(since the deviations are weighted uniformly everywhere), When
more is known concerning the variation in the input parameters,
certainly a more adequate definition of sensitivity can be made,

Some alternatives and their relative merits are given below.



First, because 0V/d0a 1is a random variable, its mean value

oo

v 3V Qv
Sq, = E {sa;} = | Sap POy 9y

is a worthwhile statistic to employ as a definition of sensitivity
Note that if Bvlaai is a linear function of a;, then

oV
da; =M% Tk

i/
<

j

Q)

55 = B(} ai) = KE(ey) +k, .

If ao = E(ai), i,e,, the nominal is equal to the mean value,

~which is the usual case, then

0 av
Sa »

and the definition seems quite natural in light of this agreement
with the classical notion.

Also, it is interesting to note that the mean partial deriva-
tive has the same value as the coefficient of a linear least
squares fit to the function V(a) when o 1s normally distribu-
ted (see Appendix A). Intuitively, the variance of the perfor-
mance should also be a measure of sensitivity, because those dis-
tributions with small U% (for a given Uéi) are those which
yield a small spread of output values over the entire range of
inputs, Therefore, a sensitivity coefficient can be defined as



v) O'V

ch =5
4 %i]o, =0, 3k

J

This of course ignores interaction effects in multidimensional
systems, The two notions, the standard deviation ratio and the
partial or mean partial derivatives, can be related by noting
that, to the first order, the output variance is given (Ref. 5)

by
2~ \'; 2
Oy = EL(S ) %, °?
or, choosing the average rather than nominal value of dV/da,

2
oy 50 (%) o, -
i i i
However, if V(a) 1s a very nonlinear function, then neither of
these approximations to the standard deviation ratic may be ade-
quate, This does not imply that the ratio is a poor statistical
substitute for classical sensitivity; it simply means that meth-
ods not as closely linked to the classical sensitivity must be
used for evaluating it. Simple or stratified Monte Carlo sampling,
from which variance estimates can be made, are possible alternates,
The difficulty of determining the accuracy of these variance esti~
mates can be further complicated by nonlinear and non-Gaussian
assumptions, In addition, for a nonnormal P(V), the variance
is not necessarily useful as an indicator of any particular per-
centile, For that case a percentile estimate that is valid and
independent of the nature of the distribution is desirable.

10



b. Percentile Estimation

To be more specific, suppose we desire the bounds on the per-
formance such that with a given confidence those bounds will con-
tain the actual value of the Xth percentile (i.e., that value of
V which will not be exceeded X percent of the time), Such
nonparametric estimates are avallable (Ref., 6) for percentile
estimation, The notion of estimating percentlles in a nonpara-
metric way is simply another way of obtaining the "spread" of the
performance, and then using this as a measure of sensitivity.
Again, the main point is that a stochastic system demands a sta-
tistical quantity as a measure of its sensitivity,

3. NUMERICAL RESULIS

8, One~Dimensional Case

In order to demonstrate some of the techniques previously
discussed, the first example selected is a simplified pitch con-
troller, described in Ref. 7,

The plant is given (in canonical form) as

_ a X \ | .
X 0 1 Xy 0
= + u , (2-6)

L ) )

and the output is given by

11



The performance index is

T

V= lim {q[cxl + xZ]Z + ruz} dec , (2-7)

T vt o0

where q and r are weighting coefficients, and ¢ 1is a
. deterministic system parameter, It can be shown (Ref. 7) that

the nominal optimal control is

u = - klxl - k2x2 , (2-8)

where

2
g - o] () 4 5

2

o e (g dea [ e

Because of its simple nature, this example afforded some oppor-
tunity for analytical treatment, Some of the numerical pro~

cedures were verified.

If we have a single parameter variation,
L
P(C‘l)dal = P[al(v)] |0"1(V) ‘ av , (2-9)

where p(al) is the probability density of Qs (See for example

Ref, 2, p. 294.) Tbis analytical procedure requires that we obtain
the function V(al, 2), which can be found in closed form by using
Eqs. (2-6), (2-7), and (2-8).

12



[(ay + k)x;(0) + x,(0)]2

xf}_(O) + .
a, + k
Ve ( c2 + rkz) 2 1
4 1 2(a; + k)
(2-10)
) xg(O) + (ag+k1)x§(0) )
Solving for o, one obtains
or.g +ky ) %, (0%, (0)5
k., +a, = vV + px;(0) -
2 1 2208 1 4k
1 2 1 (2-11)
04y [y ? @2 +k,)
(a,+k,) |x,(0)x,(0)b a,+k. )y
£ )2 20 - v - |12t (a0+ ky +2%)
x1(0)5 ag + kl
where
x, (0)
A=
xliOi ?

E5=cq+rk1k2 »
2
'}r=q+rk2 , and

6=qc2+rki °

The derivative is given by

13



0
dal a2+-kl . 1

H

av 7
x7 (036 4 2 Yo w4 )
xl(O)B 14 5 C!.2+ k1+ A

[(ag+ kIV+ (ag + kl)Bx%(O) - %,(0)x,(0)5 |

Because the inversion is nanunique, the range of parameter varia-
tion must be separated into regions before Eq. (2-9) is applied.
This was done with q = 0.2, r = 1,0, ¢ = 0.5 (these values were
used throughout most of the study) and for p(al) uniformly dis-
tributed, 0.0 < ay < 2,3. The other data used were

xl(O) = x2(0) = 5,0, ag = 10,0. The density function p(V) 1is
shown in Fig, 2. A 100-sample Monte Carlo simulation is also
shown in Fig., 2, where the ordinate scale is normalized to

£/(N » AV), f = frequency of occurrence, N = total number of
rung, and AV = interval size, This gives units of probability
density.

Figures 3 and 4 show V(al,ag) and V(ag,az), respectively,
when

0 0
Gy =a, = 15.0 , O3 Gy >0

xl(O) = x2(0) = 5.0 .

The curves Indicate the high sensitivity to parameter variation
in the neighborhood of the origin. In general, thisd can cause
serious computational difficulties when attempts are made to
obtain statistics of the performance,

14
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P(V) or

0.04

0.03 } 0<acg 2,3, p(al) Uniform
0
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0,02
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I q=20.2 -
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0.01}f |
I
| V)
I
[
0 | B e S — T — _ A W

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
V nominal v '
Fig. 2 Performance Density Function and Histogram
with 100 Monte Carlo Samples

100 |-
50
ce=0,5
10 | q=0.2
r=1,0
5 b 0 - .0
% a, = 15.0
xl(O) = x2(0) = 5,0
Lok V nominal
|
0.5 |
I
|
!
I
0.1 [ L |I L 1 |
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1
Fig, 3 Performance versus ay with %y Constant
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100

50 c = 0.5
q= 0,2
r=10
0 0
51 xl(O) - xz(O) = 5,0
=3
1.0 V nominal
0. 5 § \/"
I
|
0.1 1 I ! i 1 ]
0 5 10 15 20 25 30
2,

Fig, 4 Performance versus 0y with oy Constant

Figure 5 is an example of a density function p(V), which
was obtained by differentiating the distribution function com-
puted via the method of Eq. (2~5) with P(az) Gaussian, Uaz = 3,0,
and 0, = constant = 15.0. The singularity occurring near
V = 0,39 1is explained by referring to Fig. 4 and noting that a
minimum occurs at that value of V, Because Eq. (2-9) 1s valid
{with oy inserted for al), a singularity is expected when
Bvlauz = 0, This computation, while instructive for the single
dimensional case is not readily extendable to higher dimensions.
The only reasonable technique in the higher dimensional case is

Monte Carlo simulation or some wvariation of it.

For the same data as in Fig, 5, Figs. 6 and 7 illustrate 2
histograms of 100 Monte Carlo runs each, with simple random
sampling, and Fig., 8 is a histogram of 100 runs with stratified

16
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Fig. 8 Performance Histogram (100 Stratified Samples)
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sampling (one sample from each of 100 equal probability inter-
vals), If sampling is to be used, clearly stratified sampling

is the preferred technique because it gives better agreement with
the computed density function., The limitation on its use will
depend on the dimensionality of the problem, For =n random
parameters and one sample from each of k equal probability
intervals, the number of samples is kK*. For a particular prob-
lem, if this number is prohibitive in terms of computer time, one
may have to resort to straight sampling and accept less confidence

in the results,

The singular behavior would be observed in a sampling process
only for a large number of samples and a very fine grid size in
the histogram plot, This demonstrates that care must be taken in
the choice of the particular sampling technique used, or some sys-

tem behavior of interest may not be discovered.

(1) Variance Estimation In this section we report

some numerical results in the estimation of certain statistics of

the first sample problem,

Table I lists values of output variance computed on the
basis of the various techniques we have discussed. The values
in column 1 were calculated via integrating with the computed
p(V) and are taken as the actual values. Using an equal number
of runs, it is seen that stratified sampling is the more reliable
sampling technique. As previously noted, the classical notion of
sensitivity has deficiencies with regard to stochastic systems.
This is emphasized by comparing the last two columms: the output
variances estimated with the mean partial derivative lineariza-
tion give better agreement with the actual system varlance. There-
fore this linearization is preferred over the classical sensitivity

coefficient,

19



TABLE T

OMPUTED AND ESTIMATED VARIANCES

DATA COMPUTED VARIANCES ESTIMATED VARIANCES

Y o D 2 3 & 3

Q (o4

1 2

0 1 .014 .015 .014 .014 014
0 2 .054 .059 .055 .057 .054
0 3 .116 .102 .116 .127 .112

1 0 .020 .019 .020 ,019 .020

2 0 .096 122 .095 077 090

3 0 .319 .206 .290 .173 .252

p(a;,a,) = p(a;)pla,)
p(al), p(az) Truncated (0.1, 30.0) Gaussian

El = 52 = 15.0, xl(O) = x2(0) = 5.0, q=0.2, r =10, ¢c = 0.5

col. 1: o5 =] w-Dpw av

< N

100 runs, uniform sampling

< DN
-

100 runs, stratified sampling

L0
(]
< M
-

2

4 (s) <

1 1

20



(2) Nonparametric Percentile Estimation As an example

of nonparametric percentile estimation we estimate a range of V
that contains the true Pth percentile, The formula given in
Ref. € determines with 90 percent confidence the range R 1in

number of observations about the sample 'Pth percentile;

R = + 0,0164 ,/ P(100 - P)N

where

R = range about the sample Pth percentile
N = number of samples,

The above formula is arrived at from the following considera-
tions:; When observations are arranged in order of size, the po-
sition of the observation which defines the sample Pth percen-
tile is given by ELQT%ELL . The value of the observation
yielding the Pth percentile will vary from sample to sample.
For large N, the probability that the true Pth percentile

will lie in the interval defined by

100 + k,J P(100 - P)N

is obtained by using the normal approximation to the binomial dis-
tribution (valid for N > 50). The value of k is obtalned from a
table of the normal distributioﬁ, and is simply the number of stan-
dard deviations on each side of the mean that contain the desired
confidence level, This number is divided by 100 because our
variable is percentile rather than probability. 1In the above ex-.
ample, 1,64 standard deviations contain 90 percent of the normal
distribution., If we desired a 95 percent confidence level, we
would use k = 1036 .0196, Thus we estimate a range of V that
contains the true P percentile, If P = 90, N = 100, then

R = +5 and the true 90th percentile 1s located between the 85th
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and 95th observations (with 90 percent confidence)., In the
Monte Carlo history of Fig. 6, this is equivalent to the range
1.35 ¢ V < 1,68, while in the history of Fig. 7, this range is
l.4 < V< 1,6,

(3) Correlated Coefficients The second example

used in this study consists of a set of longitudinal equations
of motion of an aircraft and elevator actuator, In the previous
example a single parameter variation was treated. In this ex-
ample there 1s still only one random variable in the problem,
but several of the system coefficients are functionally de-
pendent on this random variable, Thus, the coefficients are
correlated in this case through their dependence on dynamic
pressure (qv =3 pV2, V = velocity) changes, which are con-

sidered to be the major cause of system parameter varilationm,

The incremental equations of motion can be written in

stability axes with the assumption of no speed change as:

1

( a ( -L 1 --L5 o { 0
o e
= MCG - MoLa Mé"" M& bd5 - M&La 9 + 0 [60] b ]
e e
Be 0 0 =1/7 6e 1/«
(2-12)
where

= Incremental angle of attack,
& = pitch rate,

5_ = Incremental elevator angle,.
6 = command input to actuator,

7 = elevator actuator time constant, and
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Mz, M. M M5 - and Ly are longitudinal stability
derivatives expressed as acceleration coefficients: L/m, Mlly.

@ and ¢ are system outputs, and the performance index is

chosen as
T .
2 2 2
2V = 1lim qq19° + q229 + 5 dt
T—
t
and the nominal optimal control is
ua = -kla - kze - k36c ’

where kl, k2, k3 can be found by solving the matrix Riccati

equation (see Ref. 7).

Typlcal parameter data for a high performance vehicle are
given in Tables TI 'and III. As a first approximation, the de-

pendence of the parameters on 4y Was assumed linear, i.e.,

L, =L+ K (4 - 99
Lﬁe - g + Xylqy - O) ’
M, = 2 + Ky(qy - 0) s
My =M+ K gy - 9D
My = Mé + Ke(qy - qg) s

0 0
"My *Kelay - ay)

of

e

where the superscripts denote nominal values, If better fits to
available data are desired, higher-order terms may be added with
slight modification to the existing computer programs,
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TABLE 11

FLIGHT PATH PARAMETERS FOR
TYPICAL HIGH PERFORMANCE VEHICLE (Ref. 8)

* t
t b Qy n, v

a
sec 1000 ft M 1bs/ft2 deg g ft/sec

0 226 5.6 22.1 0 0 5690

20 211 5.3 26,0 0 0 5690

40 147 5.5 92.2 15 N 5940

60 102 5.9 676.0 15 2.6 5930

74 80 5.4 1043.3 12.6 5.0 5200

90 17 4.8 858.5 3 1.1 4700

* 1 2 T

Gy = 5 PV n, = normalized load factor

TABLE III
NUMERICAL DATA FOR TYPICAL
HIGH PERFORMANCE VEHICLE (Ref. 8)

t M M M L L

sec 2 & o MS e} )

0 =~-.0011 -.0004 - 0.1569

0.1131 .0016 .0002

26 -.0020 =-,0007 - 0.3173 -~ 0.2317 .0034  ,0004
40 =-,0078 =-,0027 - 1.5083 - 1l.1664 .0114  .0022
60 -,0595 -,0208 ~-1l1.11 - 8.51 .1120  .0172
74 =-.1541 =-,0539 -26.41 -17.5 L2795 .0417
90 -,1322 -,0463 -17.1 -12.2 .2767  .0372

These data correspond to those of Table II
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The condition of h = 77,000 feet in Table II was assumed
nominal, For this case, with q11 = 999 = 2,0, the nominal

optimal feedback coefficients are (see Ref, 7)

k; = 1.72
k2 = =-1,32
k3 = 1,36 .

It was assumed that Gy Wwas normally distributed with a
mean value of 900.0 1bs/ft2, Figures 9 and 10 are histograms
for the cases where UqV = 300 1bs/ft2 and og = 500 lbs/ftz,
respectively, Each represents a 100 run sample. Although the
random variable now enters into several of the system coeffi-
cients, the behavior of the performance density function is
qualitatively similar to that of system (2-6) when only one co-

efficient is affected (as shown in Fig. 2).

b. Two=-Dimensional Case

In the previous section (II.3.a) we treated two cases of
single parameter variation. We now allow two parameters in the
plant of Eq. (2-6) to be random variables with nonzero variances,
For this case a new sampling method was derived in order to avoid
the difficulties previously discussed, viz, high sensitivity, low
probability regions. These problems now exist to a greater de-
gree because both random variables take on values that cause rapid
increase of the performance index. The sampling method we have
used is a variable density stratified sampling which is implemented
as follows, The parameter plane 1ls sectioned into an equal proba-
bility grid by dividing each axis into equiprobability intervals
(see for example Fig, 11), For normal stratified sampling, equal

numbers of samples are taken from each square, However, in order
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Gaussian (0.0, 30.0)
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o =g = 3.0
1 2

144 Stratified Samples

Fig. 11 Two-Dimensional Equiprobability Grid
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to Improve accuracy, one can sample more densely in some squares
and weight the samples accordingly. In our case, the sensitive
region near a; =@, = 0, was sampled ten times more densely than
the remainder of the region of parameter variation, and improve-
ment over the nonvarigble-density stratified sampling in variance

computation was noted,

In Table IV a comparison of the results for the variance esti-
mated by various techniques is given., 1In the first column the re-
sults of the integration [f [V(al,az) - G]z p(al,az) dal,da2
given in order to have a standard of comparison for the sampling

are

scheme, The results clearly favor the variable density stratified

sampling for estimation of the variance (the direct integration is
used as the standard of comparison). The straightforward Monte
Carlo sampling has a tendency to underestimate the variance con-
sistently, This again points out the danger in using simple ran-
dom sampling indiscriminately, Note that any fixed number of
Monte Carlo runs will eventually give poor results as the varlance

increases, regardless how sophisticated the sampling scheme,

Table IV also shows the results of estimating the variance
via the Taylor series expansions with the ordinary partials and
mean partials. While the one-dimensional results were very good
in this respect, the two-dimensional results leave much to be
desired., It is clear that V(al,az) is not sufficiently linear
for a first order expansion to yield a wvalid approximation of the
variance, This procedure for estimating variances 1is definitely
not to be used unless it can be justified by some a priori know-
ledge of the function.

4, CONCLUSIONS

Some problems in describing the properties of a class of

stochastic flight control systems have been discussed, Various
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H O W W W

Note:

TABLE ]V

VARIANCE ESTIMATES

TWO-DIMENSIONAL CASE

o 1

.833
.505
451
466
.378

W W = o W

Integration [f (v-€52 p(al,az) dal da

Variable-density stratified sampling 109 x

Monte Carlo

2

.618
.539
.489
.270
.155

1000 runs

11,881 runs

3

.438
.378
486
«229
.131

4

.364
.306
.266
.202
.132

109 grid

Variance Estimate using Mean Partial Derivatives

Variance Estimate using partial derivatives evaluated

at nominal

P(alsaz) = P(al) P(az)

P(dl), p(uz) Gaussian

al = Q

q = 0.2, r = 100’ Cc = 095

. =¢g. = 3,0
b R

30

5 = 15.0, xl(O) = 32(0) = 5,0

.300
.230
.187
.204
146



numerical methods of computing performance statistics and measur-
ing sensitivity have been developed and compared.

From the results of this study it 1s evident that in the
absence of closed form solutions each available numerical tech-
nique suffers from one deficiency or another. In the least com-
Plex case (one-dimensional random parameter), the most reliable
data can be obtained by methods other than sampling, namely
transformation of variables (analytical or numerical). However,
because of small increases in complexity of the stochastic com~
ponents of the problem, there is no alternative but to use
sampling techniques, In two dimensions an inversion of the kind
described in Eq. (2-11) is possible, although difficult, 1In three
or more dimensions, such a method would be out of the question,
On the other hand, sampling, while far less sensitive to dimen-
sionality, presents another set of problems. The fundamental

problem is that it is usually not possible to assess the accuracy
of the estimates derived from the sample data unless we are

willing to use nonparametric techniques such as the percentile
estimation of Section II.2.b. However, nonparametric methods
yield very wide confidence bands around the estimate, and this
tends to reduce the significant information one can draw from
the data, The solution then is to increase the sample size,
but this increase is, of course, limited by the economics of

computation,

While the absolute accuracy obtainable under a Monte Carlo
simulation may be less than we would like, the solutions obtained
with it certainly have value both as qualitative indicators of
the system performance and as initial estimates for design in-
formation, With clever programming and careful initial planning,
program running time can be made reasonable. Sophisticated sam-~
pling techniques may be designed to obtain the maximum information

for a given sample size,
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With regard to sensitivity of stochastic systems it was
shown that the standard deviation ratio and the mean partial
derivative are worthwhile altermatives to the classical notion
of sensitivity., These measures provide the designer with useful
indicators of system behavior, Further experience is needed for

their thorough evaluation,

5. COMPUTER PROGRAMS

a, Program Manual - Program T

Program I submitted in fulfillment of Contract AF33(615)-2431
was written in FORTRAN IV language for the IBM 7090/7094 IBJOB
Processor Component, The program performs a statistical analysis
of the performance of dynamic systems whose parameters are func=-
tions of one or two random variables. Various outputs are avail-
able, including calculations of sample moments and numerical
ranking of performance for histogram preparation.

The random variables are obtained from either a Gaussian or
uniform distribution (via random number generators), although
with slight modification other distributions are possible. For
the Gaussian case, the samples can be stratified with an atten-
dant increase in accuracy. Two sets of dynamics are programmed,
a second and a third order case, both linear. The performance
index is the integral of the weighted sum of squares of the state
variables and the controls., Again with slight modification, dif-
ferent dynamics, and a different performance index (assuming one
has avallable the nominal feedback coefficients) can be used. It
is assumed here that speclification of the dynamics includes the

functional relation between system parameters and the random
varilables.
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The program is a composite of several smaller programs de-
veloped during the course of the study. There are in fact nine
options available to the operator (Table V). The choice among
these options requires the specification of two control words
that direct the logical flow through the sections used in common

and through those sections unique to each option,

TABLE V

PROGRAM OPTIONS, PROGRAM T

OPTION SAMPLING DYNAMICS CONTROL CONTROL

NUMBER OPTLION OPTION WORD 1 WORD 2

BOXNO CHECK V +1 +1
2 BOXNO DYN 1 +1 0
3 BOXNO DYN 2 +1 -1
4 RDM CHECK V 0 +1
5 RDM DYN 1 0 0
6 RDM DYN 2 0 -1
7 STRAT CHECK V -1 +1
8 STRAT DYN 1 -1 0
9 STRAT DYN 2 -1 -1

The program has storage for seventy data words composed of
problem data, flow control words, control constants for certain
of the subroutines used, print control, and several extra words,
All nine options use a portion of this data block, and individual
options require various combinations of the remainder., Table VI
defines all the data words and lists a set of sample data.

Table VII breaks down the total data matrix into sections re-
quired by each of the options, It is intended that the operator
take the assembled program and included subroutines, choose the
option to be computed, then assemble the required data from
Table VIIL, and submit the deck to the computer.
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DATA

e

o

10

12
13

14
15
16
17
18
24

26

27
28
29
30
31
32
33
36
37
38
39

44

41
42
43

45
46

47
48
49
50
51
52
53
54
55
61
62
63
64
65

66

TABLE VI

DATA DEFINITION, PROGRAM I

DEFINITION

q/r

x,(0)
x,(0)

0

%2

%, (0)

STEP COUNTER
DTAU
DELTA
EPSIL
ERR(1)
ERR(2)
ERR{3)

CONTROL WORD
1 (SAMPLING)

FINE GRID LIMITS

FINE GRID LIMITS
DY RATIO
COUNTER
DY (ROUGH GRID INC)
GCOUNTER
CHECK OUT COUNTER
CONTROL WORD
2 (DYNAMICS)
34(0)
NOMINAL

NOMINAL

Ly

Mo: NOMINAL
M s NOMINAL
Mz NOMINAL
ME: NOMINAL

ERR(4)

% CHANGE
STOP TEST
TIME MAX
MIN J‘.‘.t TEST

= pﬂ w?'w' NP’q' H‘N

O\NU!

WHERE USED SUBROUTINE
ALL OPTIONS
ALL OPTIONS
WITH DYNAMICS

MAGIC
WITH DYNAMICS MAGIC
ALL OPTIONS

OPTIONS 7,8,9

OPTIONS 7,8,9
ALL OPTIONS
ALL OPTTIONS

DYN 2

DYK 2 MAGIC

DYR 2

34

TYPICAL
VALUE

o
]
owmom

5.0
5.0

15.0

15.0
0.0
109,

10”7

X

x 107
1.0 x 107*

x 107

x 10
-1, 0, +1

+1, 0, -1

2,0
1.0
-.5024
-3.5722
.0588
1.0 x 107
.0001
20,
1.0 x 10
2.5 x 107
3.36 x 10
-1.55 x 10
=4.18 x 10

-1.19 x 1074
-1.10 x 1072
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TABLE VII

PROGRAM OPTION DATA REQUIREMENTS, PROGRAM I

OPTION DATA WORDS
1-9, 12, 13, 24, 33, 37, 54

same as 2 plus 26 - 29, 31, 32, 33
same as 3 plus 26 - 29, 31, 32, 33

2 1l -1/0, 12 - 18, 24, 33, 37, 54

3 l-10, 12 - 18, 24, 33, 37 - 52, 54
4 same as 1

5 same as 2

6 same as 3

7 same as 1

8

9

(1) Dynamics Option "Check V' and "Dynamics I"
refer to the simplified pitch controller example described by
Egqs. (2-6), (2-7), and (2-8). Because the performance V
(called check V 1in the program) can be readily determined as

a closed-form function of the parameters in this example, it

is inefficient to use computer time for the numerical integration
of the system dynamics. Therefore, check V, which is the
closed-form function of Eq. {(2-10), will be used in most statis-
tical analyses of this example, However, when check V 1is not

a valid solution (e.g., finite optimization interval or nonzero
weighting of final miss), then the Dynamics I option should be
employed. The Dynamics II option gives the more complex pitch
controller model of Eq, (2-12). Subroutine MAGIC used in inte-
grating the dynamics is discussed in Ref. 9.

(2) Sampling Options The BOXNO option refers to the
case where one or two normally distributed random variables are
required, and simple random sampling is to be employed, The sub-
routine used for this option is discussed in Appendix B,
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RDM refers to the case where one or two uniformly distribu-
ted random varlables are required, The subroutine used for this

option is discussed in Appendix B.

STRAT is an option that divides the G50 plane into equi-
probability regions for normally distributed random variables., A
sample is then selected at the midpoint of the region. Subroutines

INV and PHI, which are discussed in‘Appendix C, are called in
STRAT.

The function of STRAT can be explained with the aid of
Fig. 12, Let ¢&(x) be the distribution function of a normally

distributed random variable with zero mean and unit variance, i.e.,

&(x)
1.0 4

0.8+

0.6 +

1.0 2.0 3.0

Fig. 12 Normal Distribution Function
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P(x < xo) = @(xo). If the probability axis of &(x) is divided
into equal intervals, and if from each of these intervals an equal
number of values of the function @ﬂl(P) = x are obtained, these
values of x will be normally distributed with zerc mean and unit
varlance, This is a simple transformation of the uniformly dis-
tributed P to the normally distributed x via

(x) =P, 0P

®-1(P) = X, [x normally distributed with
2

x =0, o, = 1] .
Now to scale x to the appropriate normal distribution we simply
multiply x by the standard deviation and add the mean to get

0y = calx + al .
Similarly, the az-axis can be subdivided to produce a grid as
in Fig. 11. A further refinement is the option to sample a por-
tion of each variable In greater detail (see Fig. 13). That is,
the operator may wish to sample from (c,d) more densely than
in the interval exterior to (c,d). This region of fine grid is
to lie between constants 26 and 27 in one direction, and
between constants 28 and 29 4in the other. Constant 32 1is
one-half the magnitude of the rough grid step, and constant 30
is the ratio of fine grid to rough grid, Constants 12 and 33
are the total number of grid steps to be taken in the respective
directions. The operator must calculate these constants based
upon the choices of the above constants. For example, with a
rough grid step of 0.1, a ratio of 100 between fine and rough
grids, and liwiting the fine grid between 0.0 and 0.1, there
are 109 totil steps in the chosen direction. The odd number
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Fig., 13 Variable Density Grid
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develops from the fact that we sample at the midpoint of each
step.

(3) Data Input Data are to be submitted with the
following format, 11, 14, 1E14,7, This format defines three
words (I, II, D) per card. Word I is a key word which de-
termines whether to store D in location II or if the entire
data packet has been read, If I =2, D is stored, If I =1,
D 1is ignored and execution is initiated. A further option is
included, If I = 0, the program will branch to a section where
the contents of the array V will be ranked and listed. This
is normally done only at the conclusion of a series of runs, A
data input packet then consists of data cards with a 2 1in
column 1, an address in columns 2-5, and a data word in
columns 6~19. Following this packet is a card with a 1 1in
column 1 to initiate execution.

(4) Control Words There are in Program I a total of
twelve control words, The functions of control words 1 and 2,
located in positions 24 and 37, have been covered in Table I.
In options 2, 3, 5, 6, 8, and 9 (control word 1, 0, -1),
where the integrating routine MAGIC 1s used, a print control
DTAU 1is available., Output is printed for the integrated sectioms
only every DTAU time units,

Constant 36 1is a control word to obtain additional print-
out for the verification of results., Under normal control, con-
stant 36 1is zero, and only the final values of each sample scan

1s printed. Changing constant 36 <£from zero will cause full
detail scans to be listed up to constant 36.
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b. Program Manual - Program II

Program II, submitted in fulfillment of Contract AF33(615)-2431,
was written in FORTRAN IV language for the IBM 7090/7094 IBJOB
Processor Component, Thils program performs a nonsampling analysis
of dynamic systems whose parameters are functions of one random

variable, «.

The program initlally steps o through its range of vari-
ation; at each step the performance V 1is calculated either by
integrating the system dynamics or by using a closed-form function
if available, Thus a numerical function V(a) 1is obtained,
stored, and printed 1f desired. With this function and a given
distribution of o, (the program is equipped for either Gaussian
or uniform distribution, although others can be handled with slight
modification) the mean and variance are computed by direct inte-
gration. Also the probability density function p(V) is computed
at the operator's option. (Subroutine PHI is used in this part.)

Various sensitivity coefficients, such as the first partial
derivative, mean partial derivative, and least squares lineariza-
tion can be computed according to the operator's option, (Although
the latter two are equivalent for Gaussian distributions, the
least squares option is available for comparison in the case of
other distributions.) Varlance estimates that use these coeffi-

cients can be computed.

The program is a composite of several smaller specialized
programs used during the course of the study, Table VIII outlines

the 6ptions and the functions of three control words,

The program has storage for ninety data words composed of
problem, data, flow control words, contreol constants for sub-

routines, print control, and extra and unused words., Table IX
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lists all the data words, defines them, and includes a set of

sample data.

PROGRAM OPTIONS, PROGRAM IT

TABLE VIIT

OPTIONS  DYNAMICS ANALYSIS CONTROL CONTROL
OPTION OPTION WORD 1 WORD 2
1 CHECK V GAUSSTAN +1 +1
2 DYN 1 GAUSSTAN 0 +1
3 DYN 2 GAUSSIAN -1 +1
4 CHECK V UNIFORM +1 -1
5 DYN 1 UNIFORM 0 -1
6 DYN 2 UNTIFORM -1 -1

Control Word 3 determines whether variable a; or o is being

2
incremented.

When the CHECK V dynamics option is chosen, the program
wlll calculate the sensitivity coefficients, mean partial de-
rivative, least squares linearization (equivalent to mean partial
derivative for Gaussian distribution), and the performance mean
and variance, When either of the dynamics options are chosen,
the program computes the mean, varlance, and the least squares

coefficient,

There are in Program 1I all of the control words of Program 1
and one additional word. The function of word 1, location 24,
is now to choose between a Gaussian and Uniform distribution.
Word 2, location 37, remains as the control for CHECK V, DYN 1,
and DYN 2. location 38, has

the function of controlling whether a, or a,

The new word mentioned, word 3,
is being incre-

mented. If word 3 is positive, the program will increment o;
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TABLE IX

DATA DEFINITION, FROGRAM TT

DATA WORD DEFINTTION WHERE USED SUBROUTTINE  TYPICAL VALUE
1 qlr ALL OPTIONS .2
2 r 1.0
3 c 3.3
4 g .
™
5 [¢] 3.0
%2
[ xl(O) 5.0
7 x,(0) 5.0
0
8 af L 15.0
g ag ALL OPTIONS 15.0
10 %,(0) WITH DYNAMICS 0.
12 STEP COUNTER 3000.
13 DTAU MAGIC 1,
14 DELTA 9.0 x 1077
15 EPSL 3.0 x 1070
16 ERR(L) 1.0 x 1074
17 ERR(2) ] 1.0 x 1074
18 ERR(3) WITH DYNAMICS MAGIC 1.0 x 1074
19 UPPER LIMIT UNIFORM DIST.
20 LOWER LIMIT
21 UPPER LIMIT
22 LOWER LIMIT UNTFORM DIST.
24 CONTROL WORD 1 UNIFORM/GAUSSIAN +1, -1
37 CONTROL WORD 2 DYNAMICS +1, 0, -1
38 %, (0) DYN 2 5.0
39 L .0016
40 L, .0002
€
41 M -.1569
42 My -.0004
43 Wy -.0011
a4 M, -.1131
€
45 . .15
46 a1, 2.0
47 49 2.0
48 d33 1.0
49 Ky -.5024
50 k, -3.5722
51 K, | J .0588
52 ERR(4) DYN 2 MAGIC 1.0 x 1074
55 % GHANGE STOP TEST .0001
56 TIME MAX 20.
57 MIN At TEST 1.0 x 1078
61 K, DYN 2 2.5 x 1078
62 K, 3.36 x 107°
63 K, -1.55 x 1072
64 K, -4.18 x 107°
65 K, -1.19 x 107%
66 % DYN 2 -1.10 x 1072
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if word 3 1is negative, the program will increment Gpe The
control words having to do with the integration routine MAGIC
are explained in Ref. 9.

Co Program Manual - Program III

Program III submitted in fulfillment of Contract AF33(615)-2431,
was written in FORTRAN IV language from the IBM 7090/7094 IBJOB
Processor Component, This program computes P from the 3 x 3

Riccati matrix equation
. T -1 T T
<P(t) = FP(t) + P(t)F - P(t) GR "G P(t) + HQH . (2-13)
P(tl) = §

where

= input matrix,

the system matrix,

output matrix,

WD = O
n

= a positive definite matrix which weights each input in
the performance index,

Q = a positive definite matrix which weights each output in
the performance index, and

S = nonnegative definite matrix which weights each of the
state variables at the final time, tie

Once P 1is known, the control which minimizes V 1is obtained via

@ = k" YeTpx
where
x(t) = F(£) =(t) + G(t) u(t)
y(t) = H(t) x(t)
6
xB(e )% = 2V = x5, 5= nxct1>n§+f (Iy g +luelg) e .
(o]
t
0
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Far further details the reader is referred to Ref, 7. If £y = @,
§ -+ 0, P(t) approaches a constant, and for a constant F matrix,
then the result will be a linear closed-loop system with feedback

parameters whose gains are constants.

The program solves for P by replacing Eq, (2-13) with a
set of 6 simultaneous ordinary differential equations (P 1is
symmetric and therefore has only 6 independent elements), and
solving them backwards in time with P(tl) = 0., This was accom=-
plished by substituting P for -P in Eq. (2-13). The integra~

tion is terminated when a steady-state condition is reached.

The actual system under consideration is that of Eq., (2-12)

so that matrices of the fbllowing form were programmed:

(97 O
Q = s, R=1 , S8S=3x3 null matrix
0 4y
0
G = 0
1/t
For this case,
o_ _ 17 1 1]
u o= [0 0 1] P11 P1p B3| %
Pia Pyy PFysl 1%,
[P13 Poz F3gl [%5
o {P13 Py3 Pss]
U = = X
T T T 1
X9
| ¥3]

1
u® = - 2 (Pyg%) + Pyax, + P33"3) .
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For the sample data in Table X

u® = (.507x, + 3.59x%, - 0.0592x,) .

1 2

The data input format is identical to that of Program I with
the single exception that a blank card terminates each data packet
and initiates execution, The program solves six differential
equations by the use of the subroutine MAGIC (see Ref., 9 )., The
data are defined in Table X,

The output of Program III is a listing of the data for
verification and a complete time history of the integrationm.

d. Program Manual - Program IV

Program IV, submitted in fulfillment of Contract AF33(615)-2431,
was written in FORTRAN IV language for the IBM 7090/7094 IBJOB
Processor Component. This program evaluates the definite integral

by 3
G = j. J V(al,az) p(al) p(az) dal daz
b1 2
and
.b2 a,
02 = I j (V(ql,az) - 6)2 p(al) p(az) dal da2 ,
by 3 |

where V(al,az) is defined in Eq. (2-10) with a, substituted

for ag. The above equations assume ag and o, to be uncorre-
lated. p(al) and p(az) are selected to be either uniform or
Gaussian (in any combination) by the operator. This program can
be used as a check on the means and variances computed in the

sampling Program I,
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TABLE X

DATA DEFINITION, PROGRAM ITI

DATA DEFINITION WHERE USED TYPICAL VAILUE
1 fll'r MAIN PROGRAM -.0016
2 f21 -.1569
3 f31 0.

[ f12 1.
5 f22 -.0015
6 f32 0.
7 f13 -.0002
8 f23 -.1131
9 f33 -6.67
10 T .15
11 431 2.0
14 p12(0) 0.0
15 p13(0) 0.0
16 p22(0) 0.0
18 p33(0) MAIN PROGRAM 0.0
19 DELTA MAGIC
20 ERR(1)
21 ERR(2)
22 ERR(3)
23 ERR(4)
24 ERR(5)
25 ERR(6)
26 EPSIL MAGIC
27 DTAU MAGIC PRINT CONTROL
28 T STOP MAIN PROGRAM
29 At*® MAGIC

*
At must be defined if it is desired to proceed with a fixed grid, In
this case DELTA is set to 0 and the six ERR are not used. (See
Ref, 9 for more information),

e . = entries in system matrix

ij
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The program evaluates the above integrals by converting to a
set of two ordinary differential equations, and integrating over
a two-dimensional grid via subroutine MAGIC. The program inte-

grates over a strip of constant o and then adds the contri-

2’
butions of each strip, working outwards from the mean ag. The

data input format is identical to that of Program I and is defined
in Table XI. The output is a listing of the data for verification

and values for G and 02.

TABLE XI

DATA DEFINITION, PROGRAM IV

DATA DEFINITION TYPICAL VALUE
1 q/r .2
2 r 1.0
3 c 0.5
& o 3.0
%1
5 Uaz 3.0
6 xl(O) 5.0
x2(0) 5.0
0
8 al 15.0
9 ag 15.0
12 NUMBER OF GRID POINTS
14 DELTA MAGIC 9.0 x 10’
15 EPSIL MAGIC 3.0 x 1077
16 ERR(L) MAGIC 1.0 x 1074
17 ERR(2) MAGIC 1.0 x 10‘4
25 GRID SIZE .01
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SECTION III

OPTIMAL STOCHASTIC CONTROL

1. INTRODUCTION

In the previous section, techniques of evaluating dynamic
systems whose parameters are random variables were considered.
The control laws, however, were derived on the basis of the nom-
inal values of these parameters. That is, in order to derive
the optimal feedback coefficients, the system was considered
deterministic. We now shift ouxr emphasis to the problem of the
derivation of optimal control laws for stochastic systems. Such
laws take into account the a priori knowledge of the statistical

distribution of the parameters.

The particular problem chosen is one which was suggested by
the Flight Dynamics Laboratory. While apparently simple, it

demonstrates some of the pathology of stochastic systems.

The general procedure for treating stochastic systems has
been to derive a recursion relation for the optimal loss function
via dynamic programming. In this example it is shown that such a

recursion equation cannot be derived.

The calculus of variations is used to analyze the continuous
version of the problem for both open-loop and feedback control
laws. Explicit optimal control laws are cobtained for both finite
and infinite optimization intervals in the open-loop case. In the
feedback case, only control laws that are linear functions of the
state are considered, for a reason that is explained in the treat-
ment of this case. For the finite optimization interval, a dif-
ferential equation for the optimal feedback gain is derived. A
sufficient condition for the existence of a steady state law for

the infinite interwval is also obtained.
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A hybrid case, called augmented feedback control, is also
examined. It is shown that the controller has sufficient infor-
mation to infer the value of the random variable arbitrarily soon
after the starting point and proceed as if it were a deterministic
problem. However, the supposedly optimal control fails to satisfy

a Lipschitz condition, and is thereby invalidated.

It is shown that, in general, the optimal control law is a
function of the initial time. That is, an optimal control from
some intermediate time to the final time is different for differ-
ent starting times. This behavior is linked to the way the random
variable enters the problem and not because of any specification
on the control law. It is this curious behavior that causes the
failure of dynamic programming. This is demonstrated clearly in

the treatment of the discrete version of the same problem.

In this section, t denotes the beginning of the optimiza-
tion interval, T denotes the end of the optimization interwval,
and 7 denotes the running time variable between these limits.
For the discrete case t, T, and T are replaced by n, N, and

k, respectively.

2. PROBLEM STATEMENT

Consider the stochastic dynamic system,
x(t) = bu(r) y, x(£) =c¢c, (3-1)

where x 1is the state, u 1is the contreol, and b is a time
invariant random variable with density function p(b). The
trajectory generated by Eq. (3-1) is x(tv]c,b). We seek the con-

trol that minimizes the performance index, defined by
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S(c,t,T) = E xz(Tlc,b) + Kuz(T)] dt . (3-2)
t
Here, and in what follows, E denotes the expectation operator.
Since b 1is the only random variable, E denotes integration

with respect to b, with p(b) as a weighting function. The

corresponding discrete problem is

Xl = ¥g + bukA R X =c, (3-3)
N
S(c,m,N) = E Y (3 + Md)a (3-4)
n
where
A=A(T-t)/(N -n) . (3-5)

To complete the problem statement it is necessary to specify
what data are avallable to the controller at each time <, or

each step k. Three cases will be considered:

Case I. The controller is of the open-loop type,
being a function of the initial state, initial time,

final time, and present time.

Case II. The controller may depend on the same
variables as in Case I, and in addition, on the present

state, This will be called an augmented feedback con-

troller.

Case III. The controller, of the feedback type,
may depend on the present state, the initial time,

final time, and present time.
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In the analysis of the continuous cases, it will sometimes be
necessary to interchange expectation and integration with respect
to time. For the functions encountered in this problem, the in-
terchange is valid for any sensible p(b). This question is not

relevant to anything in the problem and will not be commented on
further.

Throughout the discussion we denote the moments of p(b) by

o = EbX = b5p(b) db . (3-6a)

=0

Also, 0o denotes the standard deviation:
02 =m, - m% . ' (3-6b)
3. CONTINUQUS TIME VERSION

a. Lase 1

The -open=loop control law that minimizes Eq. (3-2) is sought.
To derive the optimal control, t, T, and ¢ are held fixed. It

is convenient to define

T
w(t) = u(n) dn t<T<T. (3-7)
t
Then
x(t|ec,b) = ¢ + bw (1) (3-8)
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and

S(c,t,T) = E [(c + bw('r))2 + ?\uz('r)] dr . (3-9)
t
The expected value of the integrand is denoted by H(w(t), u(r),7):

H(w,u,T) = c2 + 2cmlw + m2w2 + 7\u2 . (3-10)

The problem is in standard form for the calculus of variations:

T
S(c,t,T) = Hw(t),u(t),T) dt (3-11a)
t
u(t) = w(r) (3-11b)
w(t) =0 (3-11lc)
w(T) is free. (3-11d)

The optimal solution satisfies the Euler-Lagrange equation

4 [oH| . 8H _ -
d'r[au] ow 0. (3-12)
Using Eq. (3~11b) and simplifying yields
m c
. 2
w(t) - 5 w(t) = —;ﬁ . (3-13)

One boundary condition is provided by Eq. (3-1lc). Equation
(3-11d) gives the transversality condition

W(T) = 0 (3-14)
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for the second boundary condition. The solution is

emy cosh[a(T - 1) ] em,

w(t) = _E;—Eosh[a(T - t)] N —_; ’ (3-15a)

a = m

2/% . (3-15b)

The derivative gives the optimal open~loop control, valid for all
¢, t, and T (provided t < 7 < T):

cam, sinhfa(T - )]
cosh[a(T - £)] °

u®(e,t,T,T) = - (3-16)

My

As T - =, the optimal open-loop control approaches a limit,

cam e-a (T‘-t)

1

u(c,t,=,T) = - (3-16a)

)

The optimal open-loop performance index can be evaluated from
Egqs. (3-10), (3-1l1la), (3-15), and (3-16):

2 2
m c

s®(c,t,T) = c? (1 - ;i)(m ~ t) +

o

p— tanh[a(T - t)] . (3-17)

2

From Eq. (3-6b) it is evident that s® goes to infinity linearly

with T, wunless 02 of b 1is zero.

The optimal open-loop control law has a very curious property.
Consider an arbitrary point in the =x-tv plane, (xl, Tl), a
fixed final time T, and consider all the optimal trajectories
that pass through (xl, Tl) with b taking on the same value,
bl,
are characterized by having a starting point, t < Tys and an

for all trajectories (see Fig. 14). All such trajectories

initial state,
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NOTE:

T—

ALTHOUGH TRAJECTORIES A, B, AND C COINCIDE AT (%,, T,),
THEIR OPTIMAL CONTROLS, REFLECTED BY THE

TRAJECTORIES' SLOPES, ARE DIFFERENT IN THE

INTERVAL [, T]. SEE SECTION III.3.a, FOR
DISCUSSION.

Fig. 14 Open-Loop=-Optimum Trajectoriles
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ElEl (cosh[a(T - Tlll i 1) .

m, cosh[a(T - t)] (3-18)

c =X S 1+

Unless b1 = mzlml, the optimal control at (xl, Tl) depends not
only on X5 Tys and T, but also on the starting time ¢t:

oL x,Q sinh[a(T - Tl)] ° (3-19)
mz

b, coshfa(T - Tl)] + (EI - bl)cosh[a(T -t)]

1

That is, the optimal control depends not only on where you are
(xl) and how much time remains (T - Tl), but also on how you

got theret

Notice that the open~loop law, Eq. (3-16), in general cannot

be converted to an equivalent closed-loop law by considering Xy
and T, to be variables in Eq. (3-19), because the quantity bl
is not available to the controller. The deterministic case,
02 = 0 in Eq. (3-6b), is an exception. Another exception occurs
when both ¢ and x are known; then it may be possible to deter-
mine bl' This possibility is discussed in Case II1. In this sec-
tion it is assumed that only c¢ is known; in Case III, it is

assumed that only x 1is known.

b. Case II

In this case the controller may be a function of ¢, x, t, T,
and 7. At time T, the knowledge of these variables plus know-
ledge of the control law from t to 1T 1is generally sufficient
to determine b exactly. Knowing b exactly, one would naturally
implement the deterministic optimal control law. The deterministic
optimal control law, in feedback form, is found by adaptation of
Eq. (3-19). Note that m, = b’, m =b, and b, = b in the de-

terministic case, thus yielding
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u(x,t) = - tanh[a(T - )] , (3-20)

where
= b/ﬁ . (3""21)

The resulting trajectories are

cosh[a(T - 1) ]
*(1) = ¢ Coshla(T - ©)] ’

(3-22)

and the performance index becomes

14_’7\(:2
S = tanh[a(T - t)] . (3-23)

b

The control, Eq, (3-20), can be implemented in the stochastic
case if a can be computed from the data available to the con-
troller. On the other hand, a can be computed from Eq. (3-22)
if the past control has been Eq. (3-20). In other words, let
a*(c,x,T) be the solution of Eq. (3-22); then the optimal control

law would be

tanh[o” (c,x,7) (T ~ ©) ] . (3-24)

u*(c,x,r) = -

S

Should this work, it would be like pulling yourself up by your own
bootstraps. It does not seem reasomable that the control can de-
pend on a* for all 7 > t and that the expression for a* at
T can depend on what the control was during the entire interval

(t,7). Either the chicken or the egg has to come first!

This suspicion is borne out by a closer mathematical inspec-
tion of Eq. (3~ 1), with Eq., (3-24) substituted for u. It can
be shown that au /ox becomes unbounded as T approaches ¢t.

First, note that, by Eq. (3-22), 0x/da approaches zero as T
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approaches t. It follows that aa*/ax becomes unbounded there,
and after a few more computations, that au*/ax also becomes un-
bounded. Therefore u* does not satisfy a Lipschitz condition,
or any of the weaker conditions that guarantee uniqueness, in any
region bordering on the line T =t in the (x-t) plane, and

Eq. (3-1), with u* inserted, may not have a unique solution., In
other words, a value of S cannot be calculated for u* with any

certainty.

To try to overcome this difficulty, we define a new family of
control laws, U, that are independent of a in the interval
(t, t + €). For simplicity assume b > 0 with probability one.
If € 1is sufficiently small, the choice of u in (t, t + €)
has negligible effect on 8; the important thing is that it be
independent of a. Since the hyperbolic tangent in Eq. (3-24)
approaches one for large positive arguments, a choice as good as

any is to define u_ in the interval (t, t + €) by

ue(c,x,T) =~ = t<T<t+e. (3-25)

ey

Now, knowing ¢ at the beginning of the interval and x at the

end, we can find o from the relationship:
-ae
x(t+¢e) =ce . (3-26)

Using the deterministic optimal control for 7T > t + € gives the

trajectory

-ae coshfa(T ~ )]
coshfa(T - t - ¢)] °

x(t) = c e (3-27)

Under the hypotheses of this section, the controller cannot

"remember" a previously computed value of a, but must continu-

ously evaluate it by solving Eq. (3-27). Let the solution be the
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function ae(c,x,r). Then u_ is definedfor * > t + ¢ by

X

ue(c,x,T) = - tanh[a€(c,x,r)(T - 1)]. (3-28)
Let Se(c,t,T) be the performance index of u_s defined by
Eq. (3-2), and define

S(c,t,T) = g.l.b.[se(c“,t,T)] . (3-29)
e >0
(g.1.b. stands for greatest lower bound). As € approaches zero,
Se approaches the expectation of the right side of Eq. (3-23).
Therefore,

S(e,t,T) = /A g :[1; tanh —\;b—_?\('.r -t)] . (3-30)

This lower bound can be approached, but cannot be achieved by any
valid control law, i.e., one that guarantees unique solutions of
Eq. (3~1). Note that the expectation is always less than infinity
for finite T, regardless of the distribution of b, because the
integrand is bounded by (T - t)/.,/ A.

Note that S represents the best that can be achieved, even
with perfect information about b; that is, assuming that b
varies from sample to sample according to p(b), but is somehow
known for each sample, § 1is the minimum average loss. Moreover,
with perfect information about b available, the optimal control,
Eq. (3-20), is unique. As €-— 0,-u€ approaches this optimum.
Therefore, any sequence of control laws whose performance indices
approach § must themselves approach the same limit as u_e This

limit, Eq. (3-24), is nonlinear in_x and a_function of c.

—
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The following conclusions summarize the previous discussion.

1) In the augmented feedback formulation, the
problem stated in III.2 has no optimal control.
However, a generalized optimal performance

index can be defined via Eq. (3-29).

2) To approach § with a valid control law,
it is necessary to use a law that is non-

linear in x and a function of c.

3) For finite T, § 1is finite, regardless of
the distribution of b. Moreover, § in-
creases no faster than logarithmically as

T goes to infinity.

c. Case IIT

In Case III, the controller knows the present state, x, but
not the initial state, ¢. As in all cases, t, T, and T are

also available,

In the previous section (III.3.b), we saw that, when nonlinear
feedback laws were allowed, the near-optimal laws were functions

of ¢. Therefore, it does not make sense to seek a feedback law

that is functionally independent of ¢, and simultaneously optimal - -

for all ¢, unless further restrictions are put on the class of " 
allowable feedback laws. It turns out that if only feedback lawé:"
that are linear functions of the present state are allowed, then
the same law is optimal (within the linear class) for all stafting
values. This result is made evident by the fact that the K

to be minimized (see Eqs. (3-34) and (3-35) below) is independent
of c¢. (Compare this with Eq. (3-1la) in Case I, where the inte-
gral to be minimized depended on ¢, and therefore the optimal
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control did also.) Therefore, a sensible formulation of this case,
where the control must be independent of ¢, 1is to seek the opti-

mal control law of the form
uo(t,T,x(T),T) = X(T)fo(t,T,T) . (3-31)

As usual, we suppress dependence on t and T in the nota-

tion and consider the class of linear feedback controls
ux(t),t) = x()£(r) . (3-32)

It is convenient to define

T
y(r) = | £(n) dn . (3-33)
t
It follows that
2
S(c,t,T) = Ke" , (3-34)
where K 1is defined by
T
K=E| (L+M2(r))exp[2by()] dr . (3-35)
t

To minimize K, the calculus of variations is employed. It is

convenient to define

F(y) = E exp(2by] , (3-36)

H(y,£,7) = (1 + MOF(y) . (3-37)
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Now

T
K= | #HF@®,£(@),t) dt , (3-38a)

t
£(r) = y(v) , (3-38b)
y(t) = 0, (3-38c)
y (T) is free. (3-384d)

The optimal solution satisfies

d[9d dH
3;[§§] -5y =0, (3-39)
which becomes
2 . .2
[;E%%%}y +y o=t (3-40)

One boundary condition comes from Eq. (3-38¢c), the other from the
application of the transversality condition to Eq. (3-38d):

y(T) =0, (3-41a)
y(t) = 0 . (3-41b)

An analytical solution for y does not exist in general, or
for any commonly used distribution. Nevertheless, several per-

tinent observations about the solution can be made.
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Keeping in mind that $(7) 1is the optimal feedback gain, let
yl(T) be the solution of Eqs. (3-40), (3-4la), and (3~41lb) for
some interval (t,T), and let t < t; < T. Now set

Y2(T) = Yl(T) = Yl(tl) t]. <T<LT. (3-42)

Then Yz(tl) = 0, 92(T) = 0, and yz(T) = 91(1), for

t; <7< T. However, yz(T) does not satisfy Eq. (3-40). It fol-
lows that il(r) is the optimal feedback gain when t 1is the
starting point, but not when t1 >t 1is, despite the fact that
the final times are the same. This is similar to the situation
with the open-loop control and shows that the dependence of the
optimal control on the initial time, as well as the time to go,
arises because of the way the randomness enters the system, and

not because of any specifications on the control.

It is possible to synthesize a closed=-loop control from the

optimal open-loop control, Eq. (3-16):

ulx,t,T) = uo(x,T,T,T)
a (3-43)
= = X === tanh a(T -~ ) .
2
In some types of problems, this synthesis yields an optimal closed-
loop control, However, because Eq. (3-43) is a linear control, and

does not satisfy Eq. (3-40), it is not optimal.

The factor 2F(y)/F'(y) frequently takes a simple form.
Here the forms are worked out for two common types of distribution.

For the normal distribution,

p(b) = exp|- 4(b - ml)zlcz] SV Ir o . (3-44)
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F(y) 1is found from the characteristic function of the normal dis-
tribution (see Ref. 10, p. 159) by the substitution o = - 2iy.

F(y) £for the gamma distribution, below, is found in the same way:
[, 22
F(y) = expl20 y + 2ym1 s (3-45)

2¥/F' = (m + 207y . (3-46)

For the gamma distribution,

p(d) = p™ " expl-pp]l / @+ 1), b>0,
(3-47)
=0 ’ b<O0,
where
TR m1/02 and n+ 1= m_f/cr2 : (3-48)
For my positive:
" n+l-
FO) = (70 55) y < wi2, (3-49)
2 m
( 1 1
a T Ey vy
m) o
LI
2F/F ﬁ (3~-50)
=0 r225
20

Although Eq. (3-~40) cannot be solved analytically, neverthe-
less, much qualitative information can be gleaned about the optimal
control and its associated performance index for various distribu-
tions, p(b). [This information is summarized at the end of this
section (III.3.c).]

64



The first step is to rewrite Eq. (3-40) in the form

. _(L_ .2\ EW
7= (30 ey - (35D

From the definition of F(y) it follows that

by

F (y)/2F(y) = Ebe’’Y/E & (3-52)

and

2 2
%[F‘IZF] = 2[E 2PY EBZe?PY - @™y | @ 2y . (3-53)

By the Schwartz inequality,

4 e -
4y F /2F1 >0 (3-54)

Therefore, [F‘(y)/ZF(y)] is an increasing function on the
interval where it is finite. Furthermore, let B Dbe the set of
points for which p(b) > 0. Then, from Eq. (3-52), it can be
shown that

F'(y)

lim (ZF(V)) = inf B=B , (3-55a)
y - -

Lim (%E%%%) = sup B=B . (3-55b)
Y =y hoo

- % 1

If B< 0 <B, there is a unique point, 'y , where F (y) = 0.

At this point F(y) takes on its minimum value. It is sufficient
%

to consider only this case with y < 0, and the case with

0<B< B. This covers all cases where m, > 0. The other cases
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can be put into these categories by redefining: b = -b, y = -y.
We shall investigate solutions of Eq. (3-51) with y(t) = 0 and
various values of y(t), and see under what circumstances it is

possible to satisfy the final condition, Eq. (3-4la).

Consider first the case, 0 < B < B. (See Eqs. (3-47) through
(3-50) for an example of this type.) F'/2F is positive throughout
its range and has a finite value (ml) at zero. Examination of
Eq. (3-51) reveals the following consequences. If J(t) >0,
then ¥(1) >0 for all < >¢t, and ¥{(t) > A2, If y(t) < - A2

then y(t) never increases. In both cases, the final condition,

M-

-1
2

y(T) = 0, cannot be satisfied for any finite T. However, if

-k-% < ¥(t) < 0, then ¥y(r) is positive and remains positive as
y(t) increases through negative values. The question remains
whether $(t) reaches zero at some ty (in which case the optimal
solution for T = £ has been generated) or whether ¥(t) only

approaches some negative limiting value.

It can be shown that, if p(b) is bounded at zero, then,
whenever -h-% < y(t) < 0, ¥y(tr) 1is bounded away from zero for
all 7 > t. Thus every starting value of ¥ in this range gener-
ates the optimal solution for some finite value of T. As y(t)
approaches -K-% from the right, the 7T, for which the corre-
sponding ¥y(T) = 0, approaches =. Also, y(t) > -K_% and
y(1) = -h-%(T - t) for all finite 7 > t. The minimum value of
K (see Eqs. (3-34) and (3-35)] approaches K%E(l/b). This leads
to conclusions 1) and 2) at the end of this section (IILI.3.c).

Now consider the case where B < 0 < B and y* < 0. [See
Eqs. (3-44) through (3-46), with m > 0, for an exémple of this
type.] Reference to Fig. 15 will be helpful in the following dis-
cussion. As before, if ¥(t) > 0, then (1) >0 for all «t >0,
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” fe< y(M < 0;y(r)=0
ATAFINITE =T
r—
y=07=t 9m=f‘:‘9(fl—*0
AT, AND y(r) —wy*
y.

YD< e Yir)—~-2 Y2

Fig. 15 Behavior of the Solution of Eq. (3-51) for
Various Initial Values of y(t)
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L L
2 2

and §(t) -» N 2. Also, if §(t) < - N

*
until y(t) <y . Thereafter, it increases, but approaches -A
1

in the limit. Finally, if $(t) > -A 2, but sufficiently close

, then y(t) decreases

N[

to it, then ¥(1) 1increases at first, but not rapidly enough to
* :
prevent y(t) from falling below y at some finite time. There-

after, y changes sign, and ¥(t) decreases to a limiting value

-

of -A 2, If ¥(t) 1is negative, but sufficiently close to zero,
then y{(7) > y* for all Tt > t, and y(tr) reaches zero at some
finite time. Therefore, there is a critical negative value, f*,
strictly greater than -h-%, such that: if f* < y(t) < 0, the
optimal control corresponding to some finite final time T is

generated; if J(t) = f*, the optimal control for T = « is gen-

erated.

Note that the solution with J(t) = £ is not a steady state
solution. The optimal feedback gain for the interval (t,») 1is a
time varying function fO(T), which actually approaches zero as
T — », Note also that y(1) — y*, the value that minimizes F(y).
It follows from Eqs. (3-34) and (3-35) that the optimal loss for

interval (t,«) is infinite. This leads to conclusions 3) and 4),

below.
The conclusions of the qualitative analysis are:

1) If p(b) =0 for b <0 and E(1/b) is
finite, then the optimal feedback control

for the interval (t,«) 1is

o -1
u (x,7) = -A 2x , (3-56)

and the optimal loss is finite,

s%e,t,©) = AE(1/b)c? . (3-57)
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2)

3)

4)

If p(b) =0 for b0 and p(b) 1is
bounded in some neighborhood of 0, but
E(1/b) 1is infinite, then the optimal
feedback control for the interval (t,)

is still given by Eq. (3-56), and the opti-
mal loss is infinite. However, the optimal

mean loss rate, defined by

(3-58)

s° (c,t, T)
T -+t

R%(c,t,») = lim [

To »
is zero.

- *
If B<OKB and y <0 (m1 > 0), then
the optimal feedback control for the interval
(t,=) 1is x(r)fo(r), where

£°9(7) = 3°(2) (3-59)

and yo(r) is the solution of Eq. (3-51) such
that &0(7)-+ 0 as T - o, yo(t) = 0, and
-h—% < f* = ¥°(t) < 0. The optimal loss is in-
finite, and the optimal mean loss rate, defined
by Eq. (3-58), is

RO(c,t,=) = c2F(y") . (3-60)

- *
If B<OKB and y =0 (ml = (0), then
the optimal control is {; the optimal loss
is infinite, and the optimal mean loss rate

is given by Eq. (3-60).
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4. DISCRETE TIME VERSION

We shall restrict our attention to Case III because it is the

natural one on which to try to apply dynamic programming.

Consider the optimal feedback control and resulting perfor-
mance for a system described by Egqs. (3-3) and (3-4). In this
discussion n, N, and k denote the initial, final, and present
steps, respectively; ¢ denotes the initial state and Xy de-
notes the th state. Here the arguments of u® are in the fol-
lowing order: 1lst = initial time, 2nd ~ final time, 3rd - present
state, and 4th - present time, The arguments of s® are: 1lst -
initial state, 2nd - initial time, and 3rd - final time. It is

easy to show that

O, N,x,N) = 0 (3-61a)
$°(c,N,N) = c’a, (3-61b)
. Am
N -1, N, x, N~1) =-x (-—-——L-—E) , (3-62a)
N+ om A
2
@ -1, N, x, N) =0, (3-62b)
2 2
A
s%c, N - 1, N) = c2a (2 - ol 2) . (3-62¢)
A+ mZA
When n =N - 2, by definition,
N
%, N-2, N) =minE ) [xi + ?\uk(xk)z]a , (3-63a)
Yk k=N-2
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where

Xygeg = € 5 | (3-63b)
Xgep = ¢t buN_z(c)A s (3-63c)
Xy =Xyt buN_l(xN_l)A . (3-63d)

Let us define

Qe g sty = [y + ha G )2k ha e e, (3-64)

where X1 and Xy are defined by Eqs. (3~63c) and (3-63d).
Then

s°(e,N - 2,8) = min[(c? + My, (DA +E Q] . (3-65)
u
k
The method of dynamic programming is to state that Ue-1
and uy, may be assumed optimal, i.e., given by Egs. (3-62a) and
(3-62b), so that Q 1in Eq. (3-65) may be replaced by
SO(XN_I, N -1, N) [see Eq. (3-62c¢) ], thereby giving the recur-

sion equation,

$%(c,N - 2,N) = min | (cZ + hu§_2)5+ Es®(c +bug AN LN | . (3-662)
Un-2

The reason for the question mark is that Eq. (3-66?) is incorrect
as a result of a subtle error, induced by the notation. Let us

o
assume that the replacement of Uy-q byo U1 is correct —
which it isn't — and rewrite Q and S (xN-l’ N - 1, N) in such
a way that the dependence on b 1is clearly shown.. In fact it is

instructive to write the expressions for the generalized problem
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where b may take different values, bk’ at each step. Let

(bN-Z’ bN-l) have the joint density function PZ(bN-Z’ bN-l)'
We know “ﬁﬂ“ 0, so omit that term. Therefore,

O
Qle,uy ooty 1sPy_goPyy) =

f 2

(e + by g’ + M2 (e + by 0] (3-67)

2
.0 :
+ [c + by pUgagt t bN_luN_l(c + bN_zuN_za)A] } A,
where ug_l is given by Eq. (3-62a). For all x, by definition,

s%(x,N = 1,N) =

= {xzi-l[u;_l(x)]zi- [x + bN_lu;_l(x)A}zp(bN_l)de_l} A .(3-68)

Setting x = c + bN-ZuN-ZA’ we find that

s(c + ByaglyogfsN = L,N) =
= | Qestyeprtyegobyegoby )P by by - (3-69)
So that
E §%(c + Dy_yun ,0,N = L,N) =
= || Qesuy_griyg By peby- Py )P by )by g dby, - (370)
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But

E Qe uy_ytiy 2Py 1 sby.p) =
= || QCesuypruyogsPy_grby-1IP Bygsby ) dby_gdby, - (3-7D)

In order that the right sides of Eqs. (3-70) and (3-71) be the

same function of Un-22 the obvious requirement is that

N-2 and bN-l to be

statistically independent. In the problem we are concerned with,

This is precisely the condition for b

this is not the case. In fact b and b are totally de-

N-2 N-1
pendent in that the probability that they are equal is one. For

this situation, the joint p.d.f. contains a delta function:
Py (By-2Py-1) = POy )8y = Pyp) - (3-73)

The question arises whether, under any circumstances other
than statistical independence, the right sides of Eqs. (3-70) and
(3-71) can be equal for all values of Ugep® For terms of Q
that do not involve both bN-l and bN-Z’

automatically equal. However, examination of Eq. (3-67) reveals

the two integrals are

that there are four terms that contain both bN-l and bN-Z in
various combinations of powers. These terms contain Uyg-p 28
well. Complicated conditions, involving moments up to the fourth
order, for which equality holds can be written. But these condi-
tions would be tailored to this particular form of Q, which only
applies to the two-stage problem. For a three-stage problem addi~

tional conditions must be met, and these conditions would involve
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still higher moments. In short, although conditions weaker than
independence can be found, they are too cumbersome to be a prac-

tical tool for analysis.

With no way to develop a recursion equation, the dynamic pro-
gramming method must be abandoned; therefore, we fall back on
simultaneous minimization with respect to e o and Un-1 (u;
obviously is zero). Two simultaneous equations in Ue.p and
u;-l result from setting the partial derivatives equal to zero.
The equations are nonlinear, and cannot be solved analytically.
However, direct substitution of Eq. (3-62) proves that it is not

the optimal Un-1 for the problem starting at N - 2.

5. CONCLUSIONS

The dynamic programming method, although applicable to the
deterministic version of this problem, could not be used for the
stochastic version. The reason for this is closely related to the
fact that the optimal control, even in the feedback case, depends
on the starting time as well as the time to go. It is not easy to
see physically why this should be, but the equations cannot be
disputed. 1If we consider a limiting case, where the distribution
of b approaches an impulse, we find that the stochastic results
approach the deterministic ones. The conclusion is that the way
in which randomness enters the problem, particularly the presence
of time correlation in the random parameter b, causes the pecu-

liar behavior.

The extension of the methods employed in this section to the
vector case should not pose formidable problems as far as the
dynamics are concerned, The chief trouble spot would be handling

several correlated random variables. The main emphasis of such a
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study should be on limiting cases as the final time becomes in-
finite. As was seen, the behavior in the limit depends on the

distribution of b in some ways that are not immediately obvious.

Another possibility to be further investigated is the exis~-
tence of nonlinear solutions to the augmented feedback control
problem (Case II). Note that, in the discrete problem, b can be
determined exactly at step (n+l), if X (the initial state),

X 112 and un(xn) are known. This is the case for the augmented
feedback problem. It is conjectured that the optimal solution for
the discrete case is nonlinear, but that it does not approach a
limit that can be carried over to the continuous case, and that

there is pno optimal solution for the continuous problem.
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SECTION IV

SUMMARY

This report has discussed aspects of analysis and synthesis
of a class of stochastic control systems. Various analysis tech-
niques including numerical inversion, and several sampling schemes
were explored in Section II. For the single random parameter
case, numerical inversion is preferred because of its accuracy and
relative ease of application. For the multiple parameter cases,
sampling is usually necessary; however, care should be exercised
in the particular sampling scheme used in order to obtain maximum
accuracy for a given sample size. It was also shown that the
standard deviation ratio and the mean partial derivatives are
worthwhile alternatives to the classical notion of sensitivity in

the class of systems under study.

In Section III it was shown that the usual synthesis approach
to problems of this type, i.e., dynamic programming, could not be
used. This was because of the particular manner in which random-
ness entered the system, that is, the presence of time correlation
in the random parameter. The calculus of variations was used in
synthesizing open-lcop, augmented feedback and feedback control-

lers.
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APPENDIX A

EQUIVALENCE OF MEAN PARTIAL DERIVATIVE AND LEAST-SQUARES FIT

Given the function
y = £(x)

and a linear approximation

9 = klx .
The value of kl that minimizes

By - 9
is known to be

oo

1
kl = ;E xf(x)p(x) dx ,

where p(x) 1s the probability density of x, with mean X = 0,

2
and variance o°.

The mean partial derivative is

400

k, = | £ (®)px) dx .
-0

Integrating by parts, one obtains

oo oo

k, = £GP - £(x)p (x) dx .

-0
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Because p(x) wvanishes at the upper and lower limits, the first

term vanishes, and further, if

1 -x2/2cr2
—_—

2w02

px) =

>

then k2 = 1/02 [ xfE&x)p(x) dx, which is identical to kl. The
same holds true for a nonzero mean, if the least-squares fit is

constrained to pass through fC;).
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APPENDIX B

SUBROUTINES: RDM, BOXNO, RDMOUT, RDMIN

Source Language: MAP

Purpose:

Method:

RDM ~ To generate pseudo-random numbers satisfying the
rectangular distribution on (0,1). The numbers are in

normalized floating point form.

BOXNO - To generate pséudo-random numbers satisfying the
normal distribution with mean zero and standard deviation

one. The numbers are in normalized floating point form.

RDMOUT - To enter RDM and return with the ith element
of the fixed point sequence which RDM has generated, and
to return this number in the form of a 12-digit octal

word to the calling program.

RDMIN - To enter RDM and re-store the ith element of
the fixed point sequence which RDM has previously gen-
erated. This element will be in the form of a 12-digit

octal word.

RDM - The sequence of computations is:

r,

P @’ + 1)r, + 311715164025

8 °

The resulting fixed point number is converted to normal-
ized floating point form. The method is that of A. Roten-
berg (Ref.1ll)., The constant 311715164025 was chosen since

it is odd and approximates

35
(.5+ 3/6)2 (10)

81



which is shown by R. R. Coveyou (Ref.12) to be that con-

stant which causes the least serial correlation.

BOXNO - Generates two independent normal deviates, ry

and r2 with each execution;

i
2

r = (-2 loge Ul) COS(ZWU2)

[

= (~2 loge Ul) sin(ZWUZ)

Ty

with Ul and U2 random numbers from the rectangular
distribution on (0,1). The method is that of G. E., Box
and M. E. Muller (Ref. 13),.

RDM - The following FORTRAN statement is required:
R = RDM (DUMMY);

R will be the desired pseudo-random number. DUMMY need
not be defined in the calling program, and will not be
changed by RDM.

BOXNO - BOXNO requires no input from the calling program.
The following FORTRAN statement is to be used:

CALL BOXNO (Rl, R2).

The normal deviates will be stored in Rl and R2.

RDMOUT - RDMOUT requires no input from the calling pro-
gram. The following FORTRAN statement is to be used:

CALL RDMOUT (OCT).

The required octal number is stored in OCT. The main
program can then write out OCT in octal format so that
it can be used in reinitializing RDM.

82



RDMIN - The following FORTRAN statement is to be used:
CALL RDMIN (OCT)

where OCT is the required word. OCT can be read into

the calling program by means of an octal format.

Timing: RDM approximately 25 cycles; RDMIN and RDMOUT approxi-
mately 5 cycles each, BOXNO approximately 58 cycles plus
the time required for one execution of each of its sub-

routines.

Checkout: The results are identical to those of the original rou-
tines, where satisfactory results were obtained from

chi-square tests, sample means, and sample variances.
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APPENDIX C

SUBROUTINE INV(Y,X)

Source Language: FORTRAN 1IV.

Purgose: To find the value of X such that

2
-4
Y = l egt dto
v 2T
Use: CALL INV(Y,X), where 0.0 < Y < 1.0 and X is an ini-

tial value for iteration. X = 0.0 is always a suitable
starting value, The subroutine returns Y unchanged,
and X equal to the solution of the above equation.
Both X and Y are interpreted as REAL quantities. If
Y 1is outside the allowable range, or if the iteration

does not converge, execution is terminated.

Subroutines Needed: PHI, EXP, SQRT.

FUNCTION PHI(X)

Source Language: MAP.

Purpose: To compute the value of

-1.2
L e 2t 4t .
v 27
-

Use: " The argument X 1is interpreted as a REAL (single pre-

*

cision floating point) quantity.

Subroutines Needed: EXP,
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APPENDIX D

SOURCE LISTING PROGRAMS
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PROGRAM I

Cl=0/7K,C2=R,4C3=L 0 a=K3,4(6=Ka L6=X1{0),LT7=X2(0),C8=A0,09=B0,C10=X3{0]}

DIMENS ICN Ci190)

DIMENSICN VI60Q00)

DIMENSTION YICS(4) 3 YPU4) 2 YC{4)YD(4)  YNEW(4),YDERVI4)YDEVI4),
L FOEL{4) BOELIA),TDELI4) 2 PARTY(4) ,YNEB(4 )} ,ERR(4)

2

DOUBLE PRECISION YNEW.YP4+YDERV
FURMAT(I1,14,1E14.7)

1

WRITE (6450)

READIS,2)1,11,D

IF(I-1) 4+4,3
C{il}y = 1D

GG TO 1
EV = 0O,

EV2 = 0.
ME=]

A=0.
BT = 0.

BC = 0.
Y¥Y=0.

B=0.
WRITE(6,71C

Y = OI

FOURMAT L IH 1P12ES.2///)

TOP1
TOPR2 O,

0.

Wwin H

gar 0.
IFIC(37)) 20,

6,901

NEGCNS = 4
GO TO 21

NEGNS = 3
CUNTINUE

DTAU =C(13)
T1C=0.

DELTA
EPSL c{is)

Cil4)

WO

ERR({1}= C(16)
EXR{Z2)Y= C(17)

ERR{3)= C(18)
ERR(4}) = C(52)

YICS(1) Cléd
YICS{2)

C(7})-

ne o

YICS(3)
YI1€s(4)= C(38)

C(10)

YP(1}1=C(6)
YOi1i=C(7)

CGNL
CONZ

Cl4l} - Cl42)1%C(39)
C(a3}) + C{42)

Ho|n H

CON3

901 Q@ = C(131*C{2)}

Clad) = CL&2)%C{40)

SR=SQRTIC{9)*%2 +L(11%C(3)*%2)
CAL = -C(S) + 3R

8

CA2Z = ~Ci(8) + SQRT(LC{BI**2 -2.%((9)

IF(C(24))19024903,904%

+ G

+ 2.%SR)
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904 CALL BCXNG(R1,R?)
B = C(5)*%R2 + C{9)
A = Cl4)*R1 + C(B)
Gd 1O 9C5

903 CALL RDM{R1)

A = Cil4) *R1 + C(8)

8 Ci5)%R1 + C(9)
GO TO 9G5S5 e
902 CALL STRATV(A,B,ME,C,YsYY,DY,DYY)
905 {F(C{37))33+33+14
33 WRITE{(6,53)

fl

Al= A ~C(B) -
Bl= B -C(9)

X1 = C{39) + C(61}*A} = e -

X2 = Cl40) + C(62)%*A1

X3 = Cl41) + C(H63)%A] - S

X4 = C(42) + Cloa)*:Al

X5 = C{43) + Clo65}*A]

X6 = Cl44) + Cl66)*®A]L

9 CALL SETUP{MAGIN,MAGOUT,TIC,STEP,NEQNS,OTAUSEPSL,DELTA,ERR, TI4E
L+ OTIMEZYICS ¢ YP+YC YD, YNEW, YDERV, YDEV, FOEL ,BDEL 4 TDFL, PARTY, YNES)
10 IF(C(37))200412,0 o
200 NC=~{C(49)1€YP(1} + C(S5C1%YP(2) + C(S511xYP{4))
YD(l) = —X1%YP{1) +YP{2) — X2%YP(4)
YD(2) (X3-X4*¥XLIXYPA{L) + (X5+ X4)¥YP (2] +{X6-X4%X2)%¥YP(4)
YDI(3) = Cl46)®YP{L)#%¥2 + CL47)%YP(Z2)%YP(2) + Cl4R)&DCHDC
YO(4) = =YP({4)/C(45) + DC/CL45)
GO TO 13
12 U = —CAL*¥YP(1) — CA2%YP(2)
YD(1} = YP(2)

ni tin

YD{(2} ~BEYP(1) - A®YP(2) + U
¥YDL3) QFA{C(IVFYPLLY + YP(2))%*2 + L (2)¥UFx2
ITF{TIME)LI3414413

14 CHEV = (Q*CU3)¥*2 + CUL2)RCAL*%2)%({YP{1)%%x2 + ((A+CA?)%YP{1)+YD{1)
1 %27 (B+CAL) )/ (2.%(A+CA2)})

2 +(Q+L{2V*CA2=*2 15 ((YO(L)%%2 + (B+CALI¥YP(1)%%21/ (2. %(A+CA211)
3 - (CU3)%0 + CU2)%CAL*CA2)*YP(1)%%2

C
 SRO=SQRT{E*¥2 + C(LI*¥C(3)*%2)
CAl0= -B + SRO

CA20= -4 + SQRTLA*%2 — 2,%B + C(1)+ 2.%SR0)

VOPT= (Q¥C(31%%2 +C(2)%CALI0%%2)% ((YPI1)%%2 +((A+CA2UIEYP(1)+
LYD(1) ) #%2/(8+CA10) ) /1 2.3 (A+CA20) ) )

2% (Q+CU2V%CA20%€2) % ((YD( L) %%2 +(B+CALOY¥YP(11%%2} /(2. %(A+CA20) 1)
3- (C13)%0 + C{2)*CALU¥CA20)%YP( 1) %%

IF(C(37))13,13,35
35 CAPV = CHEV
GU TO 36
13 MAGIN = -1
IF(DTIME-C{55}) 1, 1,702
T02 CUNTINUE
15 CALL MAGIC

[F(MAGOUT) 10,110,410
16 MAGIN =0
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WRITE(6+1B)TIME,YC
IF(TIME)15,15,600

600

STOP = ABS(IYC{3)-¥YNEW{3})/YC(3))
IF(STOP - Ci(53)1)19,19,701

701 IF{TIME-C{54))15+,141
19 CARPY = YC(3]
36 BGT = BOT + C(31)
DY = 2.%*DY
DYY= 2.%DYY
TOPl= TUPL1+ CAPV
TUPZ = TUPZ + CAPV*#2
IF{C124))906,907,907
906 EV = EV + CAPVxDY*DYY
EVve = EVZ2 + CAPV*¥2%DY¥DYY
GU TO 908
907 EV = TOP1/BOT
Fv2= TOP2/BOT
908 SIG2 = EVZ2 - EV¥¥2
SIG = SQRTI(SIG2)
MEG = BOT
66 FORMAT(T4,1PTELl4.7)
VIMEG)= CAPYV
IFIBOT - €{333)502.,500,500
502 1F{80 - C(36))503,503,8
503 WRITE(O64O6&LIMEGIA+sBIEVISIG2.Y2YY 480
GC TO 8
500 ME=0.
IF{C{24))%10,909,909
910

STRAT SAMP QUTPUT

DO 24M=14MEG
VL = 0,

DU 22N=14MEG
IE(YyL-Vi{N)I23,22,22

23 VL = V{N)

NN = N




C

22 CUONTINUE

- MM= 0 o
WRITE(622) MMy NNyVL
VINN) = Q.

24 CONTINUE
WRITELO yHEIMEG Ay B, EV,SIG2,YaYY, BT

goT = 0.
HO = 80 + 1.

[FIRU-C{12)}1100,5G1,501

501 WRITE(o0sHEIMEGABIEV,SIG2.Y,YY BT

GO TR 1
32 FORMATLIPHELG.T//)

51 FGRMATL( 81H R1 R?
i B VICLOSED FORM))

5C FORMAT(107H  Q/R R c K3
1 X210) AD 80 X31(0) M

x1(0)

11 FORMATE// /3 N=14/7)
17 FURMAT(33H RUN NUMBER 1 IS THE NOMINAL CASE)

18 FURMAT{IH 1PIES.3,1P4E15.7)

52 FURMAT(79H E(V) E{VSQUARED)

VARTANCE

S16

1#A V=PERF INDEX)
53 FCRMAT(51H TIME X1 xe

X3

65 FORMAT{7TH VUPT= LPLEL&4.T///)
END
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FCR USE IN EQRUAL PRCUBABILITY INTERVALS

EQUAL PRUOBABILITY ROUTINE
SUBROUTINE STRAT(A+B,MECaYsYY,DY,4DYY)

DIMENSION C{25)
IFIYoGELCI126) s ANDLY.LELCI2TIIGO TO 20

Dy = C(32)
GG _T0_21

20
21

DY = C{(32)/C(30)
IF(YY.GEL.CI28) JAND.YYJLELC(29) 360 TH 22

DYy= C1{32)
GO TO 23

22
23

Cyy= C(32)/7C{30)
CUNT INUE

IFIME) 3,544
YY = -DYY

AAP = 0.
YY = ¥YY + 2,%DYY

ME=-1
YELYY-DYY/2.105495.9

IF{YY-1. + DYY/2.110,10,41
X=0C.

CALL INVIYY,X)
AA = C{4)*xX + C(8])

A = [AA +AAP}/?.
AAP = AA

Y = —-DY
80P = 0,

[F(A)Y5,5,43
B=C(9])

=Y 4+ Z2.%DY
[FIY-DY/2.)646,11

11
12

IFLY-1. + DY/2.112,12,1
X=C.

CALL INVI(YsX) )
By = Ci{5)1*X + C(9)

B = (BB+BRP}/2.
BBP= 88

[F{BlGs6,1
CONTINUE

31

IF{C14}))30C,431,30
A = C(8)

30

GO TO 32
[F{C{5}132,33,32

33
32

B = C(9)
RETURN

END
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PROGRAM I1
SUBRGUTINE STEPPIC,ALBME)
T DIMERSTIGN €38 T
TFIME}3 4.2
T4 A==C(25y T T T T
MF=-1
3 ASA+((25)
B = (9
5 O 1
2 A= CI8)
Ta=ueC0Z5Y T N T
1 CONTINUE
RETURN
END

Cl=0/R+C2=14C3=C4L4=K3,L5=K4,Ca=XT{0}Y,LT7=X2(0Y,CE=A0,CS5=80,C10=X3T0]

TDIMENSTIN PETaOGQYT S
DIMPNSION CL70)

DIVENSIUN vIaton), TAY[600D)

2

NIMFNSTON YICSTAY,,YPT&),YCT47, Y04, YNEWTAT YDERVIZY,YOEVTEY,  —
CLFWOLL (41, (KOEL (4) 4 THDEL(4) yPARTY(4) , YNEWRL4) JERR (4]}

NGUPLE PRYCISIGN YNEW S YPL,YDERV
FOURMAT (Rl s laylE1A.T])

REACTS, 23T ,11,0
IF([—lli"i!*
cClI11y =0
GG T 1

e A

WRITE (&,50)

5

100

ME = 1
WRITF{6,47)C

JAY = C(3b)
CUNT INUE

K=—-C (251}
FURMATUIH 1PLI2F9.2//7)

i
Wi
|
|
i
i
I
i
{

I
!

i
1
i
3
:
|
i

S BOT =

TUP1 = (.
TOP? = O,
(e

TIC=0.

DELTA Cll4a}

EPSl Cil15)

wiu n

ERR(1}= C{16)
ERR{2})= CL17)

ERR13)= Cl18)

YICS(I) = C{56])
YICS(2} = CUT}
YICS(3}) = C{10}

YPIII=C(6)
YO{1}=C(7)
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NEGNS = 3
Q= C{l11*C(2)

SR =SORT(C(9)%%2 + C(1)*C(31¥%2)
CAlL = -C(9} + SR

CA2 = —C(&Ht + SQART(CAB)I*FH2 ~2,.%((9) + C{1) + 2.%5R)
VAAB=(Q¥CI3)x%x2+4L (2)%CAL*2 )% ((Clo)yxx2/{2,%={C(9)+CAL))

T =~ (C{eT#%2%(C(9V1+CAL) + ClTI%%2) 717 F(CTOV#CATI*¥(CTBY«CAD E=2T YY)
2 - 1Q + CL2V*CAZ¥¥2 )% (LCIT)*%2 + (CUOI+CALIRCLA)*¥2) /(2. %(C(B)+CAZ

3 kX2
VBAG = —(Q#C{3)%42 + C{2)*CAL=%2 )% {C{B8J+CA2IRCIHEI+CUT I *%2/(2.%

I (C(8)+CAZ)=(C{GI+CAL)*%2) + (G+L{2)*CAZ¥2IxC {61 %%/ (2. {L{8)
2+ CA2))

305

IFLJAY-2)305,3064306
SIGVZ = CHH)k%*2«VBAB*YX2

306

Gu 10 307
SIGV2 = ClA)¥F2EVAADNRD

307

CONTINUE
WRITFI{G&,300IVAABWVBAY,,STGV 2

300

FURMAT{1AH VAAB,VBAB,SIGV2/1P3E20.7)

§ CALL STEPP(CyA.R.ME]) L i} . -
IFICI37)133,33,14
33 CCNTINUE e e S
GU 10 20
20 2=1
WRITE {6,53)
TF = DTAU - R
DTAU =C(13)
Al= A -C{8} S
Bl= g -C{9} .
XL = Ct39) + Clo6li=aAl
X2 = Ct40) + C({62)1%al
X3 = Cl4a]) + C(63)*Al S
X4 =+ Cl42) + Clhae)*Al
X5 = (C{43) + CIb65)*A1 I e
X6 = L{44) + C(66)%A1
9 CALL SETUP(MAGIN MAGUUTyTIC«STEP,NEQGNS,DTAU,EPSL yDELTA,ERR,TIME

LeDTIME W YICS s YP oYL s YO YNEW,YDERV,, YDEV s FOEL 4 BDEL S TDELyPARTY » YNER)

10 IF{C{37)}1200,12 41 e
200 DC=—(C{49)%YP(1) + C(501%YP(2) + C{SL)*YP(4))
YD(1) = —X1%YP({1l) ¢YP(2) — X2%YP{4) - o
YUDU2) = {X3=X&4%XLIRYP(Ll) + {X5+ Xa}l®EYP{2) +(XO—-X4*X2)%YP(4)
YD(3) = Cl46)%YP(L)%%2 « ClL4TI®*YPI2)I%*YP {2} + CL48)}*NC*DC
YD(4) = -YP(4)/C(4%) + DC/Cl45)
G0 TO 13 e
12 U = —CAL®YP(1) - CA2%YP(2)
YD{1l) = YP{2) ~ o
YO({2) = —-B#YP(l} - A*YP(2) + U
YD{3) = Q%(CU3)EYPIL1) + YP(2))%%2 + ((2)%Ux%x?
IF{TIME)L3+14,13
14 CHEV = {(Q%C(3Y%%2 ¢ C{2)*CAL%%2)%((YP(1}*%2 ¥ ((A+CAZ)xYP{1)+YD{1}

1L )*%2/(B+CALY}Y /(2. %(A+CA2)))

2 +I(C+C{2)1*CA2*E )= ((YDILI¥%2 + (RBA+CAILIRYP(IV%&2) /{2 ={A+CAZ)YY
3 - (C(3)%Q + CU2}*CAL*CA2)V¥YP (1) ¥%?2

94



IF{C124))113,13435
35 CAPV = CHEV

TG TO 36
13 MAGIN = =1

TFIDTINE-C(551) Ly 1,702
702 CONTINUE

15 CALL MAGIC
[F{MAGOUT}10+10+16

1A MAGIN =0

WRITE(6,18) TIME,YC(1),YC(2),YCL3)

IF(TIME)1B+154600

600 STOP = AAS{{YC{3)-YNEW(3))/¥YC(3))

IF{STOP = C(531119,1%9,+701
?OI'IF[TIME-C(SQJ,lScltl

19 CONT INUE
CAPY = YC(3)

35 CONTINUE
307 = BOT + lo

MEG = BOT
VIMEG)= CAPYV

IFT8OT - CU12}V18,70,70
70 STP = SQRT(6H.2831853)

DELTA = 0.
ME = 0

NEGCNS =

YICSI1) 0.

YICcs({2}
YICSL3)

Ja
O

WOl W

K =10
STEP=.01

TIC= 0,1
NDTAU = 0.

KKK=C(12)/2.

71 CALL SETUPIMAGINMAGUUT,TIC,STEP,NEQNS,DTAU, EPSLDELTA,ERR,TIME

1,0TIME,YICS,YP,YC, YD, YNEW,YDERV, YDEV,FOEL,8DEL, TDEL,PARTY,YNEBT

[F{C{371113,13.+35

72 CUNTINUE
IF{C[241)1400,400,401

401 GU TOU4062+403),JAY
402 €45 = Cl4)

€89 = C(8)
G0 _TO 404
403 C45 = C(5)
" CR9 = C(9)
404 P = ~ITIME-CBI)*(TIME-CB9}Y/((2.%C45%C45)Y T

P = 1./{STP*C45)*EXP{P)

GO TD 405
400 GO TO14064,407)4JAY

406 C45 = C(19)
€89 = Cl20)

GU TO 408
407 €45 = Cl21)
€89 = C(22)

408 . P = 1./(C45 + (CBS)
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TAY{K} = P
YD (1) = VIK)=*pP

TIE{CUYTY)405,409,410
41(\ IF{JAY~-2) ’!O‘ivjor_’y‘”m]?

303 YD(2)=-Px
(G%C{3 a2 +C(2)%CAL*%2}%((CUIB)+CAZIFCIEI+CITIIXR*2/{ 2%

—

ZUC{BY+CAZ ¥ (TIME+CAL )R 2 )+ [Q+C(2)#CA¥ %21 2C {63 * %2 /{2, % (C(8)

3 +(AZ)) %P

ol T 304
302 YOU2) =R (%0 (2) % 24C (2 )*CAL®R2 ) H(CHI¥%2/12.%(C(9)+CA1))
- 1 = (C{o w7 % (CUI)+CALI* CLTTR%27 /{2 % {C{G)+CAL)*{TIMF+CAZ)1*%2})
2 = (40 {2)#CAZ%#2 )5 (C{T1%%2 +{C(SI+CALI*C{6I**2) /(2. % {TIME+CA2
3 JE%2) ) %P
GO T 304 ~ )

T AU YDU21= O
YOL3) = (TIME-CBY I {VIKI-VIKKK) ) *P

T304 COnNTINUF o
MAGIN = =]

TaTCALL MAGIC
CLFMPAGUUT 72472474

74 MAsIN = 0
O ARITH (o, 82)YC L sy TIME,K
K= X o+ |
BOT = K

75 IF(RUT - C(12))173,73,76

76 VIAR = YO{1)
CAB = YCU31/1045%045)
WRITE (6, 301)(YC{K) K=2441,CA5

301 FURMAT (24K YCU2) YL (3),¥Cla),LAS /1P4F20.7])
WRITE(G,, 77 IVAAR
T7 FORMAT( Br VHAR = 1P1EZ20.7)
XK= 10
CALL SETUP(MAGIN,MAGOUT,TIC,STEPNEQGNS,UTAUYEPSL ,DELTA, ERR, TIME
L DTIME G YICSaYPsYC sy YOy YNEWy YDERVy YOEV,FOEL +BDEL ¢ TUEL s PARTY 4 YNEB
79 YDU1) = {VIK)- VHAR)*Z2*TAY(K)
MAGIN = -]
T8 CALL MACGIC
YF {(MAGGUT)IT9,79,:80
_ BU MAGIN = O
C WRITELLB82)YC{LY WIK) s TAY{K) 4K
83 FURMAT(IH 1P3E1%5.7,15)
K=K+ 1
BOT = K
Bl LF{ROT=CU12Y) 78,78 ,R2
B2 Sy2 = yC(l) _ S
WRITE{E,H84)5V2
B4 FORMATI{SH SVZ2=1P1lEZ20,.7)
NN=C{12])
I=NN—-1
ANN=NN
__ARAR = (89 B
A28V = (45
D0 105 J=10.1 _
K=J+1
Ad=dJ
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C10R AK=K

103 1F (VIKI=VIJI 104,104,106
106 IF(X-J=1120%,205,103

107 PR(JY =PHI{{ANNSSTEP=ALAR) Z7A2AVY = PHI{(AJXSTEP~-ARARY/A2AV)
Gu T l'f,

PRUJY =PHI((AKRRSTEP-ALAR)/A2AV) ~ PHL({AJ*S5TEP-ARAR)/AZAV)

104 K=K+1

T 205 WRITE 16,202)

GU 16 105

IF (K=NNYT33,107,107
105 CONTINUF

VBPD=0.

V2AVPD=0.

DG 2C1 JJ= 11 ¢ NN
CRARESGRTU(PROJII=-PRIJI-TYI*%27
CEVAESYRTHIV(JIYI-VIJJ-1))*%2)

TDE= P ARZEVA
VIRP=V{JJ}

VBPD=VIRPERAR+VOPD
. _MZAVPBEVIRP**Z#RARYVZAVPD

C

WRITF UG, 203) VIRP+OLsPRIJIT
201 CONTINUE

VARPO=VZAVPD —VBPO®%)

WRITE(6£4204)VBPD, VARPD,SIGP
202 FUORMAT( 4314 Y ‘““”VEEE@Tf?““‘“‘““VUIsT'Té.)"' B
203 FURMAT{lr 1PIF15.7)

T32 FORMAT(1PSFIG.T//Y

204 FURMAT{ 36b VBAR CALCULATED FROM CENSITY FCN = 1PIFI15.7777y 35H
IVARIANCE CALC,. FROM DENSITY FCN = 1PL1ELS. 7///' 9H QIGMA =

C21PLEIGSTYT T T T S e e
Gu TO 5

51 FUORMAT( Bl R1 R2 A

1 £ VICLOSED FORMY]
50 FORMATILIOTH H/R R C K3 K4 X110]
S S - 1)) AT A -1 R % ¢ R S R R o
11 FORMAT(///3H N=14//)

L7 FORMAT (331 RUN NUMBER T TS THE NOMINAL TASFT T/
18 FURMAT(IH 1P1E9.3,1P3E15.7)

57 FORMAT (791 E(V] ETVSGUARED) VARTANCE 3G
CIMA V=PEREINDEX)

53 FGRMAT(SLH  TIWE 5 U R & S

65 FORMAT(7H VOPT= L1PLEL4.T///)

601 FORMAT(Z2H 1PZ2E15.7)
END

97



PROGRAM II1
DIMENSION C(30)sYICS(6)sYPREDI6) 4 YCURKIG) 4 YOUTIE) s YNEW(S)
e VUERVIS )1 YDEV LS ) o FRUEL (6) s 8KDEL16) y TBUEL(6) yPARTY(6) s YNEWBI(6)

2 EXR(6)
—_— DS E PRELLSTON-YNEW s YRRED » YDERY e 1 e o e e e
WRITE(H,6)
CEORMATLLHL Y e o e e
READ(S5s2) 19440
~IFEL L) ey 3 e e -
CitJ) = D
o301 -
2 FORMATi{11l,14,1E14.7)
ey MRITELE+ T IC e e
7 FORMATL{bH DATA/{LPSEZU. ?) l
L NEQNS = & ) e
DELTA = Cl1%)
EPSIL = ({261 e e _—
BTAY = Ci(27)
e DU BK=LyNEGONS - o e
YICSIK) = ClK+12)
8 CERRIKY = L{K+19)
STEP = Ci{29)
TIC = U.
L AL L—SETUP {MAGIN yMAGUUT s TIC y STEP s NEONS 2+ UTAVLEPSILWDELTAERR,
1 TIMELOTIMESYICSyYPREDSYCURR YDOUT g YNEW»YUERV YRV FWDEL ,BXKDEL
e TBUELyPARTY fYNEWB Y - - :
9 IF({TIME-TSTUP}1Q+5,45
—_—1 YOOI )2 Rl Y PR ED LI EC (1 )+ YPREDLIZIELLQ) -+ YPRED(IIRCL3) ) e
1 — YPREDU3)*#2/C{101%¥2 « L(11)
e XOUTL2) = YPREDILIXCL4) + YPREDIZ2I®C(5) + YPRED(II*C(S6) + YPRED(Z2)
1 #C{1) + YPREDU4)*C{2) + YPREOIS)I*C{3) — YPRED{3)}*YPRED(5}/
SN —— S R R E L -
YOUT(.3) = YPREDll’*Ci?) + YPR&U‘Z)*C(B} + YPR[‘D(3}*L(9] + YPRED(3)
—_—1 {1} YPREQLISIRLLZ) + YPREDUIGIRC(Z) £ YPRED(6IXYPREDIZI/ZLILO)
2  ¥x2
e - XDETL G ) =2 2 YPREQLZ2IXC (4 + YPROD(&I*LU5) + YPRED(SI*(C{6))
1 - YPREU(SI#*%2/C(10)%%2 + C{12)
e —YPOTE 5= YPREDI 23X L (T4 + YPREDI4)F(C{B) + YPREDIS)RL(9) + YPRED
1 {3)%C{4) + YPRED{SI*(LS5) + YPRID(6I1*=C{6) - YPRED(SI*YPRED{5)
N S 7R P L P ,
YOOT{6) = 2. IYPRED(3}*Ci7T) + YPREOI{B)I®(LC(8) + YPRED(0)}%((9))
ol e YRRED(OIEFLLL{10 ) 2%
MAGIN = -1
——3Z-CALL - MAGIC —
I1FIMAGUUT)I9,9,13
3 Hiei—— . —— -
WRITE{6,14)TIME,YCORR
——— 34 FORMATL P TELD e - -
GO TO 12

4=ND T e i

=R & kg

oW
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PROGRAM 1V

C TW-DIMENSTIONAL DETERMINISTIC

€ E1=0/R,TZ=R,C3=C,CA=K3,C5=K4,L6=X[ (DY CT=X2(0) ,L8=A0,CI=B0,C10=X310]

L

T DIMENSION C(36)
COMMON / MGIC/MAGIN,MAGOUT TIC,STEP,NEQNS,DTAU, EPSL,DELTA,TIME,

1 DTIME, YICSU{&)/YPRED/YPL&)/YCORR/YCU4)/YDOT/YD(4)/YNEW/YNEWTA)/
2 YOFRV/YDERV{4)/YDEV/YDEVI&4)/FADFL/FDEL(4) /BKOEL/BDEL(4)Y/TBDEL/

T3 TOEL(4)/ERRJERRI&G)/PARTY/PARTY (41 /YNEWB/YNERTSEY
DOURLE PRECISION YNEW,YP,YDERV

2 FORMAT( Il el4slELlGa.T)

1 READ(S,2)1,11,.D

TFIT=1) Ll+4+3
3 COI1Y = D

GO 7O 1
4 1=7

T WRITE (6,501
5 WRITE(H,TIC

7 FORMATI(IM LPLZ2ES.2/771
CTEMPO =0,0

BaT = 0,

TIC=0.

DELTA = C(1l4)}

EPSL CL15)

Wlw i

ERR{l}= Cl16}
ERR(2)= C(17)

YICS(1)=0.0
YICSt{Z2) = 0.

= Ct6)
F= C{1}

H =C{31)

8= LI %CL2)
SR =SORT(C(9)%%2 + COII*C(31*%2)
CAl = -C(9) + SR

CA2 = —C(B) + SIRTICIRI¥XR2 —2,%(C(9)] + C{1) + 2.%SR)
TEMP=(,0

TF= C(30)
_ DTAU =C(13)

STP = SQRT(h,2831R53)
MY=-1

MYN=0
G0 7O 407

410 B8=C(9)
MY=1

GO TO 405
407 R=C(9)

409 [F(IMY)410,402,403
402 B=8+L(25)

GO TO 405
403 B=B-C(25)

405 CONTINUE
9 CALL SETUP{MAGIN ,MAGOUT,TIC,STEP,NEQGNS+DTAULEPSLyDELTAERRYTIME

1,DTIME, YICS,YP,YC YD, ¥YNEW, YDERV,YDEV,FDEL »BDEL + TDEL 4 PARTY, YNEB)
10 2=2
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401 A=TIME

PA=—[A=C(8))xx2/ ({2, %C(4)%%2)
PA=TL/ISTPRC(4))%E XP{PA}

CPH=—{3-C{9) )2/ (2. 50 ({5)%%x2)
PR=1./(STP%C(5))*EXP(PR)

14 CHEV=(WaL(3)%%24+C{2)*CAL¥®2 )% ({(E+*2+ {(A+CA2)%E+F

Li®®2/18+¢CAL)/{2.%(A+CA2) ) )
C2HLQL (2O AP F2 ) A (FRX2+ (H+CALIFEX&2) /(2. %(A+CA2)))

3 —({C{3%Q + C(2)*CAL#CA2VRE*%2

YD{1)= CHEV * PAXPH
YO{?)= CHEVE®2%BARPR

13 MAGTIN = -1
A5 CALL MAGIC

IF(MAanT,l)rqu]D
16 MAGIN =G o
IF(TIMI=TE)15,19,19

219 CONTINUE

TEMP=TEMP+YC (1)

TEM2i] =TEMP) +YC()!
G=SURTIYG (L) %%2)
_GG= SQiIIXQiEJffEJ e
BOT=80T+1.
IF(ROT=C(12}/2.)09,403,408

T 408 MYN=MYN+1

69 IF(GelEaMaANDeGGSLEHHIGH TO 408
;J TU 409

_ My=1
307= 0.
IF{MYN=-1140T7,407, 70

70 CUNTINUE
CTEMP=C{25)%TEMP

TEMPO =C(25)*=TEMPQ
_SIGAR =TEMPQ —-TEMP*%2

TWRITE(A,404) TEMP,SIGAR

404 FORMAT{ 15H TWi—0lM MEAN =1P1ElALT7416H TWO-DIM VAR = 1P1E16.7)

GO TO 1

50 FUORMAT(IOTH  Q/R L K3 K4 X110}
1 X2(0) AQ R X3(0) M N }
END
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APPENDIX E

LITERATURE SEARCH

The following literature search concentrates on articles in
the field of stochastic control with specific emphasis on papers
discussing multiplicative disturbances. They are divided into two
major categories: 1) Optimization and 2) Study of Stochastic
Differential Equations Including Stability Theory. Also included
are several papers reviewing the entire area of stochastic control
(with lengthy lists of references). The reader may consult these
if interested in other topics in stochastic control theory. While
not complete, the list is representative of the important current

efforts in these areas.

REVIEW PAPERS
1. H. J. Kushner, "Some Problems and Some Recent Results in Sto-

chastic Control," 1965 IEEE International Convention Record,

Part 6, p. 108. General review of stochastic control theory
with 58 references.

2. W. M. Wonham, "Stochastic Problems in Optimal Control," JIEEE
Convention Recoxrd (1963).

3. ~Symposium on Monte Carlo Methods, H. A. Myers, Ed., John Wiley &

Sons, Inc., 1956. Discusses all aspects of Monte Carlo simula-

tion techniques with emphasis on random number generation and

sampling methods.

4, Random Number Generation and Testing, IBM Reference Manual
C20-8011, N.Y., 1959, Discusses various techniques of random

number generation including a section on programming aspects.
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OPTIMIZATION
1. R. E, Kalman, "Control of Randomly Varying Linear Dynamical

Systems," Proceedings of Symposia in Applied Mathematics,
Vol, 13. American Mathematical Society, 1962. Existence of

optimal solutions for random parameter linear plants.

P, Dorato, R. F. Drenick, and L. Shaw, Optimal Stochastic Con-
trol Theory, A Short Course, Polytechnic Institute of Brooklyn,
January 1964, General discussion of stochastic optimal con-
trol; parametric random fluctuations are considered via dy-

namic programming formalism,

R. F. Drenick and L. Shaw, "Optimal Control of Linear Plants
with Random Parameters," IEEE Transactions on Automatic Control,
Vol. AC-9, No. 3. Treats, in discrete and continuous time,
optimal (unconstrained) control of linear plants with random

coefficients.

R. F. Drenick and R. A. Reiss, "Realization of an Optimal
Control System," IFAC International Symposium on Sensitivity,

Yugoslav Committee for Electronics, ETAN. Implementation of

scheme to control variable parameter plants.

J. B. Farison, Identification and Control of Random Parameter
Discrete Systems, Stanford Electronic Labs, TR 6302, January

1964, Learning system to identify random parameters correla-

ted in time.

T. L. Gunckel, Optimum Design of Sampled-Data Systems with
Random Parameters, Stanford Electronic Labs., Report 2102-2,

Obtains feedback coefficients for systems with random variable

parameters.,
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9'

W. Gersch, and F. Kozin, "Optimal Control of Multiplicatively

Perturbed Stochastic Systems," Proc. 1963 Allertopn Conference

on Circuit and System Theory, University of Illinois, Urbana,
1963.

R. A, Rohrer and M. Sobral, Jr., "Sensitivity Considerations

in Optimal System Design," IEEE Transactions on Automatic Con-
trol, Vol, AC-10, No., 1, January 1965.

M. Acki, "On Performance Losses in Some Adaptive Systems,"

Journal of Basic Engineering, Vol. 87, pp. 90-94, March 1965.

STOCHASTIC DIFFERENTIAL EQUATIONS AND STABILITY THEORY

1.

S. Ariaratnam and P. Graefe, "Linear Systems with Stochastic

Coefficients, Parts I, II, III," International Journal of Con-
rol, Vol. 1, Issue 1, p. 239; Vol. 2, Issue 2, p. 161; Vol. 3,
Issue 3, p. 205. Correlation functions and spectral densities

of linear systems with coefficients subjected to Gaussian white

noise or incremental Brownian type process.

T. K. Caughey and J. K, Dienes, Journal of Mathematics and
Physics, Vol. 40-41, p. 300, 1962, Finds autocorrelation and
spectral density for linear nth order differential equation

whose zeroth derivative term contains random coefficient.

C. Adomian, "Linear Stochastic Operators,"” Review of Modern
Physics, Vol. 35, No. 1, January 1963. Develops stochastic

Green's functions for linear systems with stochastic parame-

ters.

A. I. Ressin, "The Probability Characteristics of Error in
Automatic Control Systems with Random Parameters," Technical
Cybernetics, No. 3, U.S.S.R., 1964; U.S. Department of Com-
merce, Office of Technical Services, Joint Publication Research
Service, TT 64-41595, 10, September 1964.
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5.

7.

E. Wong and M. Zakai, On the Relation Between Ordinary and

Stochastic Differential Equations, Electronics Research
Laboratory, University of California, Berkeley, Report 64-26,

1964, Properties of solutions to stochastic differential equa~-

tions.

H. J. Kushner, "On the Stability of Stochastic Dynamical Sys-
tems," Proceedings National Academy of Sciences, Vol. 53, 1965,

p. 8.

F. Kozin, "On Relations Between Moment Properties and Almost

Sure Lyapunov Stability for Linear Stochastic Systems,"

Journal of Mathematical Analysis and Applications, Vol. 10,
1965. Theorem on almost sure asymptotic Liapunov stability,
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