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THE ANALYSIS OF THIN SHELLS WITH TRANSVERSE SHEAR STRAINS
BY THE FINITE ELEMENT METHOD

Samuel W, Key
Zelma E, Beisinger

Sandia Laboratories, Albuquerque, New Mexico

An analysis of thin shells with transverse shear strain by the
finite element method is developed. A shell theory with {ransverse
shear strains is used in order to reduce the continuity requirements
on the finite elements displacement assumption. The shell theory
used requires only continuous displacement assumptions as contrasted
to a Kirchhoff shell theory which requires continuous derivatives
for the displacement normal to the shell. Since the majority of aero~
space structures are based on shells of revolution, the equations are
specialized to shells whose reference surfaces are a portion of an
axisymmetric surface, A doubly-curved arbitrary quadrilateral ele-
ment is developed with bilinear displacement assumptions for the
inplane displacements and the transverse deformation variables and
a bicubic variation in the out-of-plane displacement, Examples of
calculations for flat plates, cylinders with cutouts, and spheres
with cutouts are included.

* This work was supportied by the United States Atomic Energy Commissgion
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SECTION I
INTRODUCTION

The finite element method is a numerical golution technique which has been applied to
the analysis of thin shells with considerable success. Linear elastic axisymmetric shells
subjected to axisymmetric loads were the first ones treated (References 1 and 2), Subsequent
work led to the analysis of linear elastic axisymmetric shells subjected to asymmetric loads.
This was accomplished by using a sine and cosine eigenfunction expansion in the circum=-
ferential variable and applying the finite element method to the remaining meridional dif-
ferential equations in each eigenvalue (References 3 through 8). Further work led to the
treating of axisymmetric shells with curved meridians directly rather than analyzing conical
frustum idealizations, (References 9 through 12 and 15). Other work has led to the elastic-
plastic analysis of axisymmetric shells subjected to axisymmetric loads, {References 13
through 15), and rudimentary geometric nonlinearities have been considered for axisymmetric
shells (References 16 through 21).

Concurrently, eiforts have been directed towards the solution of thin shells of arbitrary
geometry. Many authors have treated thin shells of arbitrary geometry as a sequence of
flat plates or facets and used a flat plate finite element for each facet, (References 22
through 27), There are several treatments of arbitrary shells where the shell is considered
locally to be a shallow shell and single finite elements developed based on this assumption,
(References 28 through 31).

With the exception of four papers covering special cases, there has not been a treatment
by the finite element method of the general equations governing the hehavior of thin shells,
Gallagher (Reference 32) considered a doubly curved rectangular element defined by the
lines of principal curvature, The element was based on constant but distinct principal
curvatures. Bogner, Fox and Schmit (Reference 33) treated a right circular cylinder of finite
length with a singly curved rectangular element defined by the lines of principal curvature,
Cantin and Clough (Reference 34) considered a rectangular cylindrical shell element defined
by the lines of principal curvature with explicit rigid body modes present, and recently,
Oden (Reference 35) discussed a class of shell elements again rectangular and defined by
lines of an orthogonal coordinate system,

In order to develop a two~-dimensional curved shell element, four major difficulties must

be overcome. An element geometry must be selected that provides the needed flexibility in
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fitting the problem boundaries, A representation of the shell reference surface must be
obtained that provides satisfactory curvatures. A displacement function must be found that
provides the needed continuity, and for practical reasons the presence of rigid body modes
must be assured. The character of these four difficulties is, to a large degree, dependent
on the differential equations, or eguivalently the variational principle used fo describe the
shell.

The equilibrium equations of thin shells with the Kirchoff hypothesis imposed written in
terms of displacements are a set of fourth order differential equations. The related minimum
potential energy functional requires second derivatives in the unknown displacements in
order to be evaluated. In the finite element method this means that the element displacement
assumptions must lead to continuous displacement fields which have continuous first de-
rivatives. This is a very ditficult proposition when dealing with irregular grids on the curved
reference surfaces of thin shells,

The equibilrium equations of thin shells with transverse shear strains written in terms
of displacements are a set of second order differential equations. The related minimum
potential energy functional requires only first derivatives in the unknown displacements
in order to be evaluated. Inthe finite element method this means that the element displacement
assumptions need only provide continuous displacement fields. This is a much easier proposi-
tion with which to deal. This system of equations is also much more accurate than those above
when examining the dynamic response of thin shells.

It is this second set of differential equations that is treated here. The equations are
considered in general for clarity. Since the majority of aerospace structures are based on
shells of revolution, the equations are specialized to shells whose reference surfaces are
a portion of an axisymmetric surface. A curved quadrilateral element is developed which
meets three out of the four requirements. The element is an arbitrary quadrilateral and
satisfies the continuity requirements, while having rigid body freedoms only for vanishing

curvature or size,

The continuity requirements of both the above variational principles can be relaxed if
additional line integrals are added to the functional. These added integrals are essentially
the continuity requirements times Lagrange multipliers integrated alonglines of discontinuity.
Several treatments of this in the finite element context are available, (References 36 through
40),
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The use of a shell theory with transverse shear strains to reduce the continuity require-
ments imposed on the finite element method is not entirely new, (References 22, 25, 28,
55, and 56). However, the approach taken in these references is to modify the strain energy
due to the transverse shear strains or to eliminate it altogether and impose a discrete
version of the Kirchhoff hypothesis. Neither of these approaches is taken here.
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SECTION II
THIN SHELL EQUATIONS
The treatment of the thin shell equations is that presented by K. Washizu in a series of

lectures at the University of Washington in 1962, A later {reatment of this problem appears in
his monograph (Reference 41). Figure 1 shows the geometry of the reference surface.

Figure 1

The principle coordinates in the reference surface are a@ and 8. Normal to the reference
surface is the coordinate { . The principle curvatures of the reference surface, 1/Ra and
1/R, are positive as shown. The upper surface of the shell is given by t +(a, ) and the
lower surface by t (a, B). An element of length in the shell coordinate system is given by

ds? = A (1 4—-‘-1-'-‘—--)2“:2 +8° (|+-ﬁ%)z dB%+dl? (1)
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where A and B are the Lamé coefficients in the a,3~plane,

In terms of Cartesian components of the displacement vector, the deformations allowed

in the shell are of the form

ua(a,B,C)
uB(a,B.C)

ug(a,B,g)

The resulting Cartesian components of the strain tensor are given by
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The reference surface tractions are denoted by ?a’ ?B , and Y, , and the stress resultants

Nee : NBB» Saf: Maq: Mpg3 - Mqagr Qq cand QBC, are defined by
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On the curve C bounding the reference surface S, the boundary conditions are

Ng = -I\Ta or u = u
NB z HB or v = v
Q : Q or w= w
— — (8)
Ma = Ma or f = §
M, = M or g=9
B B

where the bar denotes a specified quantity and referring to Figure 2, the force resultants

are defined by

Ng = Nggcos 8 +Ngq sin 8

Nchos g + NBB sin@

w

Q = Qa{', cos & +QB§ sin @ (9

Ma= Maa cos G +MaBsin9

MB: MaB cos 8 + MBBsin a
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In Figure 2, n and s are coordinates tangent to the reference surface which are per-
pendicular and tangent to the edge of the shell, respectively, Assuming the shell material to
be anisotropic, the stress-strain-temperature relation is given by

€ =Bijrs T +c1ij AT {10}
Here, Bijrs are the Cartesian components of the elastic flexibility tensor,a i are the Cartesian
components of the thermal expansion tensor and AT is the temperature change. The elastic

flexibility tensor has the symmetries Bijrs =B jirs = B,

ijsr = Brsij'

Figure 2

Assuming the shell to be in a state of plane stress, O'g L = O, results in

KT B Buzz 2Bizs 2By 2By [Teqa 1 (®aa] ]
oBA Bz Bazop 2Bppp3 2Byp3 2By *BB| {268
OB | = | %Puzs 2Bazes “Bazzs Bpziz Basie 2ear |-|223; AT i
%ag 2Bius 2Baaz 4Bp33 48133 By 2eqr aaag
O-GB- 2Bz 2Baziz 4Bo312 B3 4Blzuz_ _feaB_ faa[;’_ i
and carrying out the inversion gives
[ %a | [ ¢aq |
°BB BB
o | * [cij ] 2egr | - [8] at (12)
sym.
%al Eeag
_aaﬁ | _ZeaB_




AFFDL-TR-68-150

The stress resultant-strain-temperature relation for the shell is obtained by using the
Definition 7. It is
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In using these equations for dynamic response calculations, it is customary to scale the

constants D 3i and D 4 with a shear coefficient, (Reference 42). For the static analysis
considered here a shear coefficient equal to one is used.

The equations of Equilibrium 5, the stress resultant-strain-temperature Equations 13
and the strain-displacement Equations 4 combined, result in a set of five second order
partial differential equations in the five unknowns u, v, w, f and g to be satisfied in the
region S subject to the Boundary Conditions 8. These equations form a self adjoint system

and are equivalent to the following minimum potential energy principle. The functional
7(u, v, w, f, g) given by
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is to be minimized on those functions which satisfy the displacement boundary conditions

on C, = C ~ C2 and which are continuous and have piecewise continuous derivatives, Here

1
the strains are interpreted as functions of u, v, w, f and 2.

In what follows, the specialization is made for shells whose reference surfaces are
portions of an axisymmetric surface. In Figure 3 the reference surface coordinates are
@ = @ circumferentially and 3= s, a length coordinate, meridionally,

z

|
8
- [
8
Figure 3
The Lame/coefficients in this case become
Ac:r(s), B =l (18)
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With the r and z coordinates of a meridional line in terms of s, the curvatures are given by

the expressions

A .1 dz

RQ T T ds

| d?z dr d®r dz

Rs ds? ds ds ds
SECTION IOI

FINITE ELEMENT METHOD

{7

The finite element method is similar to the Ritz method and is applied to the variational

statement of the problem. The object in the finite element method is to select a simple

geometric shape, called an element, and to choose how the unknown functions are to vary in

these regions. For example, triangles could be chosen as elements and the unknowns varied

linearly in each element., The elements are ‘‘Fitted together®’ to form what is known as

polyhedral approximations to the unknown functions of the variational principie. The polyhedral

functions are characterized by unknown mesh point values and parameters yet to be determined,

For a given problem the polyhedral approximations are substituted into the variational prin-

ciple and the unknown mesh point values and parameters are determined by extremizing the
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functional, A polyhedral approximation must satisfy certain conditions before convergence to
the actual solution can be obtained by reducing the element size. They must be admissible
functions for the variational principle heing considered, and they must be complete in the
function space on which the variational principle is defined. For a complete discussion of
the convergence properties of the finite element method, either Melogh, McLay, Key, Johnson
and McLay, McLay, or Tong and Pian may be consulted respectively in References 43, 44,
45, 46, 47 and 48,

For the minimum potential energy principle considered here, admissible polyhedral
approximations must be continuous and have piecewise continuous first derivatives, and they
must be complete with respect to first derivatives. In addition, practical considerations
require the presence of rigidbody degrees of freedom, element by element, for coarse meshes,
In what follows a doubly curved quadrilateral element is developed. It satisfies the above
continuity requirements but has rigid body modes only for vanishing curvature or vanishing

element size.

Referring to Figure 4, the element is a quadrilateral in the reference surface of the shell.

IS

Figure 4
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Following Irons (Reference 49) and Ergaioudis, Irons and Zienkiewicz (Reference 50)

an oblique coordinate system a, b is introduced in the quadrilateral elements defined by the
element geometry, The resulting coordinate transformation is

Bla,p)= 8i {1—=a){1-b)/4 + Bj (I+a)(|—b)/4+8k(I+u)(l+b)/4+9£(l-o)(l+b}/4
s{a,) =5 (1= 0)1-b)/4+s, (i+a)l ~b)/4+s, (I+a)i+b)/4+5y (1-a )i+ b)/4 as

The axisymmetric reference surface for the element is given by

r

g

P (a,b)

A
8 (a,b) (t9)

)

/z\ {a,b)

Z

The function 5 is treated exactly and is given by Equation 18. The functions % and 2 are
treated approximately and replaced with bicubic polynomials in a and h, The result is
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o
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q
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where hl’ h2, h3, and h 4 2T€ second order Hermite interpolation functions given for both a and
b by

Q.

ab
+h g tany (o) d

h,(n)=i4(q3—3n +2)

hy (7} = —L4(173——377 -2)
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-
(59, - (29,58, m = 112
(a_:)m =(%%)m(%‘§-)m cmos ik g (22)
() (S (3 (BT e 1t

The function q represents either T or 2. For the r coordinate the derivatives in s are obtained

from

Qo

|

(

and for the z coordinate the derivatives in s are obtained from

r . ’ .o )
s)m:_SIn¢m S om = I,j,k,j (23)

Qs

a H ) . . \

—} =Cos s M=, ,k,.g (24}
( Jds m ¢m ]

For the second derivatives in s, a value is used based on the change in ¢ from mesh point

to mesh point, The derivatives needed to calculate the Curvatures 17 are obtained from the

bicubic Expression 20, This treatment of the reference surface is suitable for arbitrary

surfaces, however, the Expressions 22 will then contain additional terms.

These steps provide the needed flexibility in element geometry and result in an ap-

proximate reference surface from which satisfactory curvatures are calculated.
ELEMENT KB1

In the a, b coordinate system the unknown functions u, v, f and g are taken to vary
bilinearly, defined by their values at the mesh points,

u = u (- u}(l-b)/4+uj(l+a)(l-b )/4+uk(l+a)( I+b )/4+ u‘((l—a)([+b)/4

-
n

v (I-a ¥Ii-b)/4 + g (i+o )¥I-b)/4+ Vi {1+ u)(l+b)/4+v£; (l~a¥I+b)/4
25)

-y
(1]

fi I=ali=b)/4 +£; (1+a)I=b)/4 +f (I+a)(i+b)/4+1s (1-a)(I+b)/4

9:= 9, U—a)(l—b)/4+gj {I+a XI-b)/4+ g lI+ao Xi+b)/4+ qj(!-—a)(l+b)/4
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and w is taken as a bicubic

w= i (a)h {b)w + h,(a)h (b) w;

+hplathy (b)w, +h (a) hy(b) wg

+hyla)h, (b)(%‘)i +hylalh, (D‘(au i

+hgla)hyib) (g—:)k +hy (a)hy(b) (a—:)j
(28)

+h, (a)n,(b) (—g—:-)_ th, {a)hy (0} (%’;-).

i J

+h, (0)h4(b)(%‘z')k th {a) “J‘"(%)j

Fhy (0 hato) (2 ) +na (u)nam(gzg',,)j

a
o w
+h, (a) h4(b)(aaab)k+ ny (@ln, ) 350),

where hl’ h2’ h3, and h 4 are given by Equations 21, The polyhedral functions defined by the

mesh point values of u, v, w, i, g, g—: , *g% ,» and ga_\gb are confinuous and have piecewise

continuous derivatives and are complete with respect tofirst derivatives, Key (Reference 45).
The derivation of the element stiffness matrix and load vector proceeds along the usual
lines, (Reference 43).

The second derivatives in w are condensed out of the stiffness matrix before merger.
They are retained as independent element deformation parameters since they do not con~
tribute to interelement continuity and are difficult to interpret globally. The first derivatives

in w are transformed to global derivatives before the elements are merged.
The stresses and stress resultanis are calculated by evaluating the strain~displacement
Relations 4 at the center of the element and using Equations 3 and 12 for the stresses and

Equations 13 for the stress resultants,

In order to make the required integrations in Equation 15 tractable, additional ap-

proximations must be made. The integrations themselves are carried out numerically with
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a 25-point Gaussian quadrature in the a, b element coordinate system (Reference 49), Based
on mesh point values various quantities in the interior of an element are ohtained by inter-

polation., The result is

t7{a,b) = 17 U~a) (I=b)/4+- - + 1y -0) (1+b)/4

t (a,b) = f; (lI=a)ll-b)/4 + - + 12, (l-a )l +p) A4 @7)

AT(a, b, §) = AT (LM = adli=b)/4 + -+ + AT (L)0-a)(I+b) /4

For each quadrilateral element the meridional coordinate s is calculated from the nodal
point r, z coordinates and the angle between the outward normal and the positive r-axis at
each node. Referring to Figure 5, the arc length between two nodal points of the same element
is approximated by a circular arc betweenthem, Thus, the meridional distance between m and
n is given by

sn—sm=,é/(sin $/$) (28)

where

(29)

Figure 5
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The integrals in Equations 14 are not easily evaluated, The following approximations
to the integrands are made:

£ -t 2
(1) =1 - (R)
- 2

L_:(I+RC—Q-) :::g-%:

{30

Ra g Ra " Fg
H(eag) ()=t
()" (b~ - (e
(om) (g =k
ez (1 ey <t

The remaining approximations are obtained by interchanging R, and RB'

For axisymmetric shells, there have been numerous approaches taken in approximating the
meridional arc length, the curvatures, and the reference surface, (References 10, 11, and 15).
They all bear similarities to one another and to the treatment given here, since it is the same

quantities which are being sought, based on a minimum of given information about the shell.
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SECTION IV

EXAMPLE SOLUTIONS

To carry out the analysis, a computer program, SLADE I, has been written, Key and
Beisinger (Reference 51). SLADE is designed specifically for shells whose reference sur-
faces are portions of axisymmetric surfaces. The program allows up to five separate layers
and up to five separate elastic anisotropic materials with temperature dependent properties,
The program handles variable thickness shells and allows thickness discontinuities along
element boundaries. The program provides for both normal and tangential surface loads
and for temperature changes through the thickness as well as varying over the reference

surface, Several problems have been solved.to evaluate the finite element introduced.
CURVATURE STUDY

The curvatures that result from the approximated reference surface are one of the
important parts of the analysis that must be examined. This can be done by considering a
spherical shell. In Figure 6 is the maximum meridional curvature error occurring as a
function of the number of finite elements used along the meridian of the sphere, It can be
seen that with eight elements spread over a 90-degree segment of a meridian, the curvature
calculations begin to depend more on the accuracy of the input data than on the approximations
to the reference surface. The input information for this study is accurate to five digits. The
circumferential curvature errors are an order of magnitude smaller., A more difficult
situation is encountered with an arbitrary element on a parabolic shell. Figure 7 shows such
an element. For this element the outward normal turns through an angle of 9 degrees in the
meridional direction and through an angle of tendegrees in the circumferential direction, The
maximum error in the meridional curvature is 5,5% and the maximum error in the circum-

ferential curvature is 0.075%,
PRESSURIZED SPHERE

A relatively simple problem requiring a curved element and involving a very nearly
degenerate geometry is a sphere under internal pressure. Using the same geometry and
mesh as in the curvature study, the errors in the radial displacement and the in-plane
stress resultant are shown in Figures 8 and 9. The element at the pole is very nearly
degenerate. The two nodal points at the pole have radial positions of r = 10.-4 inches, This

situation does not present any difficulties for this problem.
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Nodal Point Coordinates

r 8 z ¢
in. degrees in. degrees
i 4.0 5.0 3.6 17.3
i 35 10.0 5.1 i9.6
k 2.5 5.0 7.5 26.6
l 3.0 0.0 6.4 22.6
¥

Figure 7. Parabolic Element
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FLAT PLATE ELEMENT

Contained in this analysis as a special case is an arbitrary quadrilateral flat plate
element. As a comparison with existing flat plate elements, a portion of the very thorough
study of Clough and Tocher (Reference 52) was repeated, Using the symmetry of the problem,
a quadrant of a simply supported uniformly loaded square plate was analyzed. Shown in
Figure 10 is the convergence behavior of the KBl element compared with the elements
examined by Clough and Tocher, The ACM element, Adini-Clough-Melosh, is a rectangular
element based on a 12-term polynomial. The M element, Melosh, ig a rectangular element
hased on physical reasoning. The P element, Papenfuss, is a rectangular element based on
an incomplete hicubic polynomial., The HCT element, Hsieh-Clough~Tocher, is a triangular
element based on three subtriangles with preferred polynomial expansions leading to a
continuous displacement w with continuous derivatives —g—:’% and%g—. The complete study and
references to these elements are contained in Reference 52, For this flat geometry all of
the rigid body modes are present in the KB1 element,

CYLINDER WITH A CUTOUT

Lekkerkerker (Reference 53) has analyzed an infinite cylinder under axial load with
a circular cutout. The problem has two planes of symmetry which are utilized in the analysis,
see Figure 11, The meshes used are shownin Figures 12, 13, 14, and 15, These are irregular
meshes on the surface of the cylinder with several nearly degenerate clements, These are
located in relatively quiet regions of the problem and are not recommended for use where
the answers are of interest. The results of these analyses are shown in Table I along with
the results of Lekkerkerker (Reference 53). It should be noted that the plot programs connect
the nodal points with straight lines and donot reflect the fact that the mesh is on the reference
surface of the cylinder,

ANISOTROPIC CYLINDER

Gulati and Essenburg (Reference 54) examined the problem of an anisotropic cylindrical
shell clamped at one end and displaced axially at the other end, They present a closed form
solution to this problem for transverse shear straing and anisotropic elastic constants, Using
the elastic constants presented by them, the problem was analyzed using the KB1 element,
Figure 16 shows the results for the circumferential displacement. A uniform grid of 10

elements along the cylinder and 15 elements around the cylinder is used.
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Radius 9.1 in.
Thickness 0.091 in.
Half Length 45.0 in.

Hele Radius 1.0 in.

l.oaded in Uniform
Tension

Figure 11.
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|76 Nodal Points

148 Elements

4

Figure 12, Coarse Mesh Layout
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533 Elements

. "‘%‘ 589 Nodal Points
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Figure 14, Fine Mesh Layout
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TABLE 1

STRESSES FOR A CYLINDER UNDER
AXJAL TENSION WITH A CIRCULAR CUTOUT

Lekkerkerker 53 Finite Element Solution1 Finite Element Solution2
Graphical Results Coarse Fine
ot
55 3350 psi 3072 psi 3338 psi
@ A (-8%) {(~.4%)
Tss 4560 psi 4202 psi 4506 psi
@ A (~8%) (-1%)
o+
el -550 psi -397 psi -469 psi
@B (-28%) (-15%)
i
68 ~2200 psi -1900 psi -2101 psi
@B (-14%) (-5%)

A is at the side of the hole at r& = 1.0, z = 0,0.

B is at the top of the hole at rg = 0.0, z = 1.0,

1Execution time for this mesh is 0.3 hours on a CDC 3600,

2Execution time for this mesh is 3.5 hours on a CDC 3600,

HEMISPHERE WITH AN OFF-CENTER HOLE

As an example of an irregular grid on a doubly curved shell, a 20-inch hemisphere with
a 2-inch off-center hole was examined. Figure 17 shows the mesh used and the geometry of
the problem. The hemisphere is clamped around the base and a symmetry plane is used to
restrict the grid to the front half. The edge of the hole is free. The sphere is loaded with
internal pressure. Figure 18 shows the inside and outside circumferential stresses along
the line of symmetry. Figure 19 shows the inside and outside meridional stresses along the

line symmetry. As a comparison, Figure 20 shows the inside and outside, circumferential

and meridional siresses in a hemisphere with a centrally located hole,
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RIGID BODY MODES

The deformation assumptions used fo derive the element stiffness matrix do not contain
accurate rigid body deformations. Rigid body deformations are trigonometric in character
and are only approximated by the polynomials used. As a result, the stiffiness matrix predicts
restoring forces for rigid body displacements, For vanishing element size or curvature the
restoring forces vanish and energy free rigid body motion is recovered. The sirain-displace-
ment relations used give zero strains for rigid body translations and infinitesimal rotations
for any geometry. For the problems that have been examined, the number of elements needed
to recover the needed rigid body freedom exceeds the number of elements needed to resoive

the solution.

SECTION V

CONCLUSIONS

Along with the problems presented here, several extremely complicated practical problems
have been analyzed with this element. The stresses have proven to be quite accurate and
thermal stress analyses have been made with very good results, Shells with bulkheads,
layered ghells, shells with negative Gaussian curvature, shells with discontinuous meridional
slope have all been analyzed with very good success. The only shoricoming discovered to date
is the lack of rigid body degrees of freedom. (The rigid body degrees of freedom are recovered
for either vanishing size or curvature), This has necessitated the use of large numbers of ele-
ments with the attendant execution time. Further work is under way in developing an element
with all of the present features plus unrestrained rigid body motion. The computer program
SLADE and the user’s manual (Reference 5l) will be available once this limitation has been

removed,
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