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The future development of key areas inthe field of matrix structural
analysis is considered. The relationship of these areas to the overall
design problem is established, and sources of past difficulties within the
areas are identified. Avenues of approach to the difficulties are suggested
and illustrated by reference to recently conducted research. In the area
of modelling, the triangular membrane element and the bar-panel ideai-
ization are evaluated. A method of improving results obtained from the
analysis of models composed of triangular membrane elements is pre-
sented. The loss of numerical accuracy in linear structural analysis is
considered and methods of improving accuracy are deseribed. Problems
in the field of nonlinear structural analysis are reviewed. The possiblity
of an interactive computational approach to the synthesis of comples
structures is suggested, and an interactive graphics approach to the
synthesis of a structure subjected to steady~state vibration is demonstrated.
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SECTION I

INTRODUCTION

In searching for a suitable theme for this opening paper, the writer was impressed with
two features of the conference agenda that seem especially important, The first feature is
that the field of interest is broad, We are not only interested in the ordinary behavior of
structures subjected to loads well within the elastic range, but we are also concerned with the
exceptional behavior resulting from the application of loads outside this range, We are interested
in the application of matrix algebra to the analysis of structures, as well as the process of
structural idealization that must precede analysis, We are interested in structural synthesis,
which is the process ofdesigning a structure to meet a given set of criteria, We are interested
in dynamics as well as statics, and in the application to our problems of computing devices,
such as graphics consoles, Finally, no restrictions are imposed on the intended purposes of
the structures we consider. Many of our methods can apply equally well to aircraft, missiles,

space vehicles, ships, submarines, buildings, and bridges,

A second important feature of the agenda is that the need for progress in the field is
great. Designers must cope with ever more stringent requirements resulting from projects
of an advanced nature, such as aircraft designed for vertical take-off, supersonic and hyper-
sonic flight, and vehicles intended for lunar missions, In striving for structural integrity and
efficiency the designer is not aided by spectacular breakthroughs, as in other fields, Whereas,
the speed of flight has increased from about 300 miles per hour to orbital velocity in 30 years,
a ratio of roughly fifty to one, the structural designer considers himself fortunate if the
strength-to-weight ratios of his materials have increased by 50 percent in the same period of

time,

Because the field is so broad, only certain key areas--where the need for accelerated
progress seems most urgent--have been selected for discussion, The objective of this paper

is to consider the future development of these key areas in order to:

@ establish the significance of each area as related to the overall problem of structural
design

® identify clearly the sources of past difficulties

® suggest some approaches to these difficulties

@ illustrate certain approaches by reference to research recently conducted by the writer,
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Engineers and scientists working in a highly technical field, such as structural analysis,
often concentrate their efforts in specialized areas, It is hoped that this paper will serve to
provide a useful overview of a significant fraction of the entire field, and that it will point the
way to avenues of research that will prove useful in the future, These areas include discrete
element idealization, linear structural analysis, nonlinear analysis, synthesis and the inter-

active application of remote graphics consoles to problems of steady-state vibration,

SECTION II

DISCRETE ELEMENT IDEALIZATIONS

This section is limited to a consideration of discrete idealizations, or models, composed
of finite numbers of elements, These elements are connected at joints or nodes which also

serve as application points for idealized discrete equivalents of actual external loads,

Two principal classes of models are defined, A displacement model is composed of ele-
ments having force-deformation characteristics such that continuity of displacements exists
across element boundaries, while the characteristics of equilibrium models are such that

continuity of stresses is maintained (Reference 1).

The present status of modelling canbe summarized roughly as follows: Framed structures
can be modelled without difficulty, Structural elements that represent plates, shells and solid
bodies have been devised. These elements provide reliable results only if properly employed
by experienced personnel, Better plate and shell elements, together with better methods of
interpreting results derived from these elements, are needed, Better methods of evaluating
the usefulness of elements are also desired.

METHODS OF ANALYSIS
A clear distinction should be made between the structural model and the method whereby

the model is analyzed, Such adistinctionis necessary to provide a proper basis for discussing

the difficulties involved in the two areas,
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The static behavior of a linear discrete structure is governed by equations of equilibrium
and compatibility, Three methods of solving these equations are defined. In the Force Method,
displacements are eliminated from the governing equations, The resulting equations are solved
for element forces, which serve asthe basis for calculating displacements, In the Displacement
Method, element forces are eliminated from the governing equations, The resulting equations
are sclved for displacements, Elements forces are calculated from these displacements,
In the Unified Method, the equations are solved in no predetermined order.

The Force and Displacement Methods are subsets of the Unified Method as demonstrated
by Kosko (Reference 2), The definitions of these methods do not depend on the structural
model, Any of the three methods, therefore, can be employed to analyze either displacement
or equilibrium models, The results obtained through the use of any of the three methods are
the same, except forloss of accuracy during computation, when applied to any particular model

regardiess of type, since the governing equations being solved in each case are the same.

The degree of accuracy inherent in a given model should not be attributed to a particular
analysis method, For example, the statement that the Force Method gives upper bounds for
deflection influence coefficients is, generally, not true,

MODELLING CRITERIA

An attempt to assess the usefulness of structural models must be based on criteria of

some kind, Following are three criteria that seem to be generally accepted:

1. Convergence -~ As the sizes of elements in a model approach zero, the errors in

computed stresses and deflections should approach zero, The convergence should
be monotonic,

2. Rate of Convergence - The usefulness of an element is proportional to its rate of
convergence,

3. Computational Efficiency - The usefulness of an element is proportional to the ratio

of accuracy to computational effort,

INTERPRETATION

The stresses and deflections mentioned in the criteria are nominal values derived from

the model according to some rule of interpretation, For example, nodal deflections are
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normally interpreted to be structural deflections, Various options are open for stress inter-
pretation, Thus, the stresses at the center of a membrane element can be interpreted as the
stresses atthe corresponding point of the structure, Some interpretation rule must be establish-
ed before the modelling criteria can be applied,

MODEL EVALUATION

One method for evaluating discrete membrane elements is to consider a plane stress
problem having a known solution, For example, aplate of a given shape is subjected to boundary
stresses. A closed form solution for the resulting internal stress distribution is known, The
plate is then idealized with, say, triangular elements of a certain size, Stresses and deflections
are numerically computed and compared with the known solution, The process is repeated for

elements of different sizes. Convergence is studied,
A METHOD OF DISCRETE ELEMENT EVALUATION

The following paragraphs describe a different approach to element evaluation, It is
similar to the preceding approach, except that after the plate is modelled with discrete ele~
ments it is analyzed mathematically instead of numerically, Difference equations are written
for stresses and deflections, These equations are solved and the results are compared with
known solutions to provide expressions for stress and deflection errors as functions of panel
size. This method has several advantages, First, aprecise expression for rate of convergence
is obtained. Conclusions about convergence are not obscured by errorsthat occur when stresses
and deflections are numerically computed, Second, results are obtained for a continuous range
of element sizes, Third, a study ofthe error expressions can lead to a better understanding of
element behavior. As a consequence, methods of correcting the results or of improving the
elements themselves can be devised, Fourth, the best rules for interpreting results can be
established.
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SECTION III

THE EQUILATERAL TRIANGULAR CONSTANT STRESS MEMBRANE
ELEMENT, POISSON’S RATIO = 1/3

Figure 1 shows a triangular element applicable to the Matrix Force method. The forces

F., F

1 For and F3 act paraliel to the element edges, The corresponding deformations are edge

elongations, Stresses in the element are assumed to be uniform, Appendix 1 describes the

element in more detail.

oy

Figure 1, Triangular Meémbrane Element

LINEAR STRESS DISTRIBUTION, TRIANGULAR ELEMENTS

Appendix 1 presents a study of the behavior of the triangular element in a general linear
stress field, The element is considered to be part of a grid of the kind shown in Figure 2,
although the grid shape may vary. The grid is a model of an isotropic plate of uniform thick-
ness, Loads act upon the boundaries distributed in such a manner that internal stresses are
linear functions of the coordinates,

VAVAVAVAN
VAVAVAVAVAN
VAVAVAVAVAVAN

Figure 2, Idealized Plate
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With these assumptions the analysis of the model is a simple matter. The true displace-
ments of the plate are first calculated, These displacements are then applied to joints of the
model and the resulting external loads are determined, Element forces and element stresses
are computed, Appendix 1 containg thedetails ofthe analysis, The results follow, These results

also apply to the uniformly stressed triangular element employed in the Matrix Displacement
method,

Edge Loads

The analysis shows that normal and tangential loads applied to a joint on the edge of the
idealized plate should be equal to the boundary normal and shear stresses, respectively,
acting at the joint multiplied by the length of the edge of the element and the thinkness of the
plate, No loads are applied to internal joints. The idealized plate is in equilibrium urder these

loads when the stress distribution is linear,
Deflections

The computed deflections are exact when the loads are applied as described in the pre-
ceding paragraph., Deflections of joints of the idealized structure should be interpreted as

deflections at corresponding points of the plate,
Stresses -

An attempt was made to find a point in each element of the model at which the computed
uniform stresses in the element are equal to the true stresses at the corresponding point in
the plate. No such point exists, Next, an attempt was made to find a point in each element at
which the sum of the squares of the errors in the stresses is minimized, Discovery of such
a point would provide a rule for stress interpretation, No single point was found, Instead the
location of the optimum point was found to depend on the type of linear stress field acting on
the plate,

Since no unique optimum point was found, a study was made of errors at the centroid of
the triangie. The results are given by Equation (33) and are summarized as follows: First,
the stress errors at the centroid of the element converge to zero as the length of the side of
the element approaches zero, Second, the errors are proportional to the length of the side of
the element and the stress distribution parameters bl, b2, b3, and b 4 Third, the errors are

independent of element location,
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These results indicate that calculations based on the triangular element generally con-
verge, as long as the stress field contains no singularities, because the field in the region of

an element will tend to approach linearity as the element becomes smaller,
Percentage Error

The error in a quantity measured or calculated by some approximate procedure can be
expressed as a percentage of the known correct value, This procedure is not applicable for
present purposes because small errors in stresses that have very small or zero exact values
produce large percentage errors which are misleading. The following procedure is adopted:
Errors in tensile stress components are divided by an equivalent tengile stress, @ , defined
as the uniform tensile stress that would produce the same amount of strain energy in the plate
as the actual stress distribution. Errors in shear stress components are likewise divided by
an equivalent uniform shear stress, T, definedin a similar manner, These reference stresses,
which are constant for any particular loading condition, are derived as follows: The strain

energy stored in a plate subjected to plane stress is:

- [2 2 _ 2
\P\-’—2 E.‘{ O‘x“f‘O'y 2vo;o~y+2(l+1/)rxy]dA {n

where t = plate thickness, E = Young’s modulus, ¥ = Poisson’s ratio and T T and Txy
are components of the stress tensor. If Cfxz o {constant) and O”y= Txy= 0, then

o = z—fw

T>

If 1. = 7 (constant) and Oy Oy = 0, then

Xy
T/ .o (2)
ALL+v) o)

Stress Correction Procedure for Constant Stress Triangular Elements

The notion of the stress field in the region of an element becoming approximately linear
as the element decreases in size suggests a method of improving stresses computed from
triangular elements. The method is based on the assumption that a linear stress field that
approximates the computed stress distribution can be found in the region of an element.

Appendix 2 contains the derivation of the method.

When the correction procedure is applied to the approximate stresses derived from the
equilateral triangular grid subjected to a linear stress field, exact results are obtained. The

method also produces excellent results in the following highly nonlinear case,

A concentrated load acts upon one vertex of the triangular plate shown in Figure 3.
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Figure 3. Loaded Triangular Plate

Equilibrium is produced by stresses acting along the lower edge. The following stresses and

displacements of the plate are derived from Reference 4,
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The plate was replaced by structural models composedof equilateral triangular membrane
elements, and stresses computed from the models were compared with exact results and with
stresses computed according to the correction procedure of Appendix 2. Three grid sizes were
studied: fine, medium, and coarse. Figure 4 shows the medium fineness model. The fine

grid had twice as many elements per edge and the coarse grid had half as many, The triangular

|2“
+
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Figure 4, Medium Grid Model

plate was truncated as shown because the concentrated load applied at the vertex produces

infinite stresses and deflections, at that point, which are not realistic,

Each model was analyzed in the following manner. Nodal displacements were accurately
calculated from Equation 4. The matrix of displacements was multiplied by the assembled
stiffness matrix to produce external loads. Element deformations were calculated from dis-
placements, and element stress components ( ox, Oy, Txy) were computed from element
deformations. The model was thus analyzed as a kinematically determinate structure, This
procedure has three advantages compared to idealizing edge loads and computing deflections
and stresses from these loads. First, the loss of accuracy involved in solving simultaneocus
equations is avoided. Second, the uncertainty resuiting from idealizing edge loads according
to some arbitrary rule is avoided, Third, a study of the computed external loads may suggest
rules for load idealization. The kinematically determinate structure, although a somewhat

unusual subject for study, should yield reliable information on convergence,
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Figure 5 shows the convergence of external load at the node indicated by a circle in

Figure 4. The error inthe load actingat the node, expressed as a percentage of the load acting
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Figure 5, Convergence of Interior Joint Loads

at the vertex of the triangular plate, is plotted as a function of length of element edge. The
load should be zero since the node is on the interior of the plate, Figure 5 indicates a
satisfactory convergence,

Figure & shows the convergence of shear stress at the point indicated by a plus mark (+) in
Figure 4, The shear stress error, as a percentage of the mean shear stress in the plate, is
plotted as a function of length of element edge. The corrected shear stress shows a very
satisfactory convergence,

The shear and normal loads acting at nodes on the upper and lower edges of the plate were
found to approach the shear and normal siresses acting at these nodes multiplied by the length
of the element edge and the thickness of the plate.

The results shown in Figures 5 and 6 are typical of the entire plate, The errors in the
medium-grid-corrected stresses are on the order of threepercent compared to about 20 per-
cent for uncorrected stresses, The corresponding values for the fine grid are about one percent
and nine percent,

25



APFNL=-TR~68-150

50[—

40 §

Corrected
It

Aty

Yo

Length of Eilement Edge
-0 \ (Inches )

\
\ Uncorrected

o

Figure 6, Convergence of Shear Stress

The equilateral triangular element, on the basis of convergence of external loads and
corrected stresses, can be considered tomeet the modelling criteria in a satisfactory manner,
A good deal of confidence canbe placed in the convergence of deflections when loads are speci-
fied, as a result of the satisfactory convergence of loads when deflections are specified, This
conclusion holds, provided that excessive accuracy is not lost in the solution of simultaneous

equations,
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SECTION 1V
THE RECTANGULAR BAR-TANEL IDEALIZATIONN

Figure 7 shows a bar-panel idealization of a plate, The model consists of axially loaded

bars, and plate elements or panels that carry shear only, Panels are connected to bars at
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Figure 7, Bar-Panel Model

midpoints of panel edges. The point of connection between a panel and a bar is referred to in
the following as a shear node., The point of intersection between two bars is called a joint,
Normal edge loads act on joints, and tangential edge loads act on shear nodes, Bars need not

be equally spaced. Bars and panels are constant stress elements,
LINEAR STRESS DISTRIBUTION, BAR-PANEL MODEL

The behavior of the bar-panel idealization in alinear stress field is analyzed in Appendix
3, accounting for Poisson’s ratio and considering unequally spaced bars, with the following

results:

Edge Loads

As in the case of triangular elements, the normal load applied to a joint should be equal
to the boundary normal stress acting at the joint, multiplied by the distance between midpoints
of adjacent panels and the plate thickness. The tangential load applied to the shear node shouid
be equal to the boundary tangential stress at the node, multiplied by the length of the panel
edge and the plate thickness,
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Deflections

Deflections at joints are exact for the linear stress field when loads are applied as in the
preceding paragraph. Deflections of shear nodes should be disregarded.

Stresses

Normal stresses in bars should be interpreted as normal stresses at points corresponding
to joints in the plate. Shear stresses in panels should be interpreted as shear stresses at
points corresponding to panel centers in the plate, Interpreted in this manner, the stresses

produced by the bar-panel idealization are exact for the linear stress field,
QUADRATIC STRESS DISTRIBUTION, BAR-PANEL MODEL

The study of the behavior of the bar-panel model in the linear stress field throws no light
on rate of convergence because stress and deflection errors are zero, The analysis of model
behavior in a general quadratic stress field is therefore described in Appendix 3, Because of
the complexity of this analysis, two simplifying assumptions are made., Bar elements are

assumed to he equally spaced, and Poisson’s ratio is assumed to be zero,

The stress function for the quadratic distribution involves four independent parameters
d

the bar-panel model are essentially the same as the effects of the distributions resulting from

1* d2, d4, and d5. The effects of the distributions resulting from parameters d5 and d4 on

dl and d2’ because of isotropy of the model. Only the distributions d, and d2 need be considered.

1
The results are as follows:

Edge Loads

For the d1 distribution, edge loads should be idealized in the same manner as for the linear
stress field, For the d2 distribution this rule produces edge loads that do not satisfy equilibrium
of moments, In Appendix 3 this momentimbalance is eliminated by a balancing couple uniformly

distributed along the edges of the plate parallel to the Y-axis,

Deflections

The errors in joint deflections are proportional {o the squares of lengths of panel edges,
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tresses
Errors in stresses for the d1 distribution are zero, For the d2 distribution, errors in
tensile stresses are zero, The error in the shear stress is proportional to the square of the

length of the panel edge parallel to the x-axis,

In order to derive quantitative results for the rate of convergence, consider the square
plate shown in Figure 8 subjected to the quadratic stress field defined by putting d2 =1,d, =

1
d, = d; = 0. From Equation 85 the stresses are o =0, %;wmrw=4f.mmnmmmm
2 and B5 the reference shear stress is

4 5

From Equations 6 and 102 the absolute value of the percentage error is

(7)

Bty |, 0512
| =17z
T m
where m is the number of shear elements per side of the plate, Figure 9 shows the convergence

as a function of m,

o w ———————y

Figure 8. Square Plate
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Figure 9. Convergence of Shear Stress in Bar-Panel Model

The bar-penel idealization can be considered to meet the modelling criteria in a satis-
factory manner not only on the basis of the preceding analysis but alsc on the basis of many

past comparisons with test results (Reference 11),
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SECTION V

LINEAR STRUCTURES

The element force and displacement responses of structures in this category are linear

functions of loads, support displacements, and unassembled element deformations,

BASIC APPROACHES TO STATIC ANALYSIS

The Force, Displacement, and Combined Methods differ in the order in which unknowns
are computed, but all three methods provide solutions to the same governing equations, All
three methods are applicable to any linear discrete model, The essential difference is in order
of solution, This difference at first may not appear to be significant, but disputes concerning
the comparative suitability of the three methods in various applications have persisted. A brief
review of the pros and cons of this matter is offered,

Required Unknowns

If only deflections are required, the Displacement Method has an advantage because the
effort needed to compute forces can be avoided, Similarly if only forces are required, the
Force Method has an advantage,

Structural Model

The Displacement Method has an advantage when the model has a relatively low ratio of
number of nodal displacements to number of redundants, The Force Method has an advantage
when the ratio ishigh, The first situation tends to occur when the structure has many members
in parallel, the second when the structure has many members in series, Particular types of
elements seem better suited to one method than the other, For example, the rectangular con-
stant stress membrane element seems better suited tothe Displacement Method than the bar-
panel idealization because the latter requires additional nodes at points where panels are joined
to bars. Lumping (joining elements that serve parallel functions) is a useful procedure in the

Force method for reducing the number of redundants,

Conditioning of the Governing Equations

Large complex structural models have a tendency to yield governing equations that are

difficult to solve without significant loss of accuracy, The order of solution can be decisive
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in successfully solving such equations, Forsyth has discussed this matter in some detail

(Reference 5). As an example, consider the following matrix equation:

[ 0 0 - ol [x ] [ o]

0 10”° 0 | - Xg 0

0 0 { 9] | X = 0 (8)
— | 0 0 0 Xg 0
| o ~1 1 0 o | [ | -]

A solution is sought on the basis of a Jordanian elimination process, The most straight-
forward approach is to attempt to eliminate the unknowns in the order X s Xgr X0 Xy to yield
a golution for X5, using diagonal elements as pivots. The following equation results after

elimination of Xy X, and Xg:

—1000001 1000000 X4 0 9
= 9
000000 -1000001 Xg -1
This equation is poorly conditioned, If a solution is attempted with a computer that carries

less than seven significant decimal digits, the method fails,

If the unknowns are eliminated in the order Xer Xy X» Xg, X, with elements (3,5), (1,4),
(4,1), (5,3) and (2,2) of the coefficient matrix as pivots, then the following results can be

obtained with the aid of a two digit machine.
{x, x5 x5 % «,} = {0s0 oso -050 0.50 050 } (10)

This result is a very good approximation to the exact solution which is

{x| X, X3 Xg xs} - -ZT‘K)_—G{i, I, -1-10 1, |+to'6} an

The scalar equations contained in Equation 8 are actually well-conditioned in the sense that
an accurate solution can be obtained as a result of carrying a small number of significant
digits, provided the order of solution is optimized. It seems worthwhile to distinguish between
such equations and equations that are poorly conditioned, The term ‘‘order sensitive’’ is pro-
posed to denote simultaneous equations having the property that solution accuracy is sensitive

to order of elimination,
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The example shows that some sets of equations are order sensitive, An approximate
optimum order of solution can be discovered through the use of the procedure known as pivot
selection (References 5 and 6). A suitable pivot selection strategy incorporated into equation
solving routines for matrix structural analysis can significantly improve the accuracy of

computed results,

The influence of order of elimination on solution accuracy has a bearing on the question
of Force versus Displacement and Unified Methods. In the Unified Method no predeter-
mined restrictions are placed on order of solution., The Unified Method in conjunction with
pivot selection therefore provides in every case, a higher probability of success than either
of the other two methods, Indications are that the governing equations are usually well
conditioned, although order sensitive, if the structure is stable, The Unified Method with
pivot selection should be a very reliable procedure. The principal disadvantage of the method

is that all of the governing equations must be processed in one batch,

The other two methods involve prescribed orders of solution, No one has been able to
show which orderhasthe greatest potential for accuracy. However, it is known that a structural
model with one or more very stiff members produces poorly conditioned Displacement Method
equations unless certain nodal displacements are deleted, whereas, the Force Method equations
are well-conditioned in such cases. The detrimental effect of stiff members plus the lack of
suitable pivot selection procedures may be the cause of difficulties sometimes experienced with
Displacement Method solutions.

The Force Method involves the difficulty of redundant selection. One approach to this
problem is to base the selectiononexperience and intuition, This approach is virtually useless
for most large structures. A second approach is to select redundants by comparison with a
standarized model, or a model for which a mathematical analysis is available, This approach
should be reliable when a suitable comparison model can be found. Many structures are too
complex to be dealt with in this manner. A third approach to redundant selection is known as
the Structure Cutter, This approach is based uponthe application of pivot selection procedures
to solve the equilibrium equations in terms of the redundants plus the application of column
weighting factors proportional to member stiffnesses (Reference 6), This procedure eliminates
the redundant selection problem by completely automating the selection process, The Structure
Cutter has the additional advantage of optimizing the order of solution of the equilibrium and

compatibility equations involved in the Force Method.
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Experience with both the Force and Displacement Methods has led the writer to believe
that the Force Method with optimized redundant selectiontends to provide a greater degree of
accuracy than the Displacement Method,

Computational Efficiency and Convenience

The influences upon computational efficiency of the configuration of the structural model
and the particular unknowns to be calculated have been discussed, Computational efficiency
is also dependent upon the design of the computer program and the skill of the programmer,
Extremely efficient programs applicable to special classes of statically indeterminate
structures have been devised, User convenience is afunction of the degree of automation built
into the program. Maximizing the degree of automation saves valuable engineering time and
increases reliability. These comments apply equally to the Force and Displacement Methods.

PROGRAMMING SYSTEMS

A valid approach to developing an automated system of structural analysis is to write
programs applicable to particular types of structures such as beams, plates, and shells of
revolution, A second approach is to develop general purpose programs, This approach has
proven feasible and worthwhile because many components of typical aircraft, missile, and
space vehicle structures do not fall into recognizable categories, The following paragraphs
describe a general purpose system recently developed at the Douglas Aircraft Company under
sponsorship of the Air Force Flight Dynamics Laboratory,

FORMAT System

The FORTRAN Matrix Abstraction Technique (FORMAT) is a general purpose program-
ming system for matrix structural analysis. Detailed documentation of FORMAT is contained
in References 7, 8, and 9, A description of some applications of the system is given in
Reference 10, The purpose here is to describe briefly the project objectives, the programming
concepts, and the degree to which the objectives have been met,

The major criteria originally identified for FORMAT were generality, communicability,
flexibility, universality, and efficiency (Reference 6). Generality meant that the program should
be applicable to a broad range of structures, Communicahility meant that the mathematical
procedures should be formulated in such a manner as to be intelligible to engineers working

in related fields, Flexibility meant that users who were expert in matrix structural analysis
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would be able to alter procedures to meet changing requirements with no additional programming
effort, Universality meant machine independence, Efficiency meant maximum output at minimum

engineering and computing cost,

Some of these criteria tend to be contradictory and compromises are necessary, An

effort was made to optimize the overall effectiveness of the program.

The FORMAT system is programmed in three phases, Phase I generates matrices from
raw data. The output of Phase Iincludes matrices required for the following functions: analysis
of structures subjected to thermomechanical loading, analysis of symmetric structures,
element modification, substructure joining, and analysis of elastic stability and undamped
vibration. The phase also generates joint coordinates of some commonly used structural

shapes, and maintains and updates files of data,

Phase II performs matrix operations according to abstraction instructions written by
the user. A typical instruction is FXO = FX, MULT.XO, which means that matrix FXO is
equal to FX postmultiplied by XO. The user thus has freedom in determining the sequence of
operations, The program processes abstraction instructions, prints diagnostics, allocates
matrices to available tapes in an optimized manner, and executes instructions, Matrices up

to order 2000 can be processed,

Phase III prints Force and Displacement Method reports and provides a graphical output

capability.

The original criteria for the system have essentially been met, The Displacement and
Force method generators provide a selection of displacement and equilibrium elements suf-
ficient to represent a broad range of engineering structures. The matrix notation and extensive
user and programming documentation provide communicability. The matrix abstraction
language provides flexibility. The machine independence provided by the FORTRAN coding is
such that the program has been successfully run on a number of machine configurations,
including the IBM 7094, IBM 7044-7094 direct couple, UNIVAC 1108, GE 635, and IBM 360/65,
Some degree of computing efficiency was sacrificed to meet the other criteria, but the savings
in programming effort and maintenance resulting from generality, flexibility, and relative

machine independence are considered tomore thanoffset possible increases in computing cost,
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SECTION VI

NONLINEAR S3TRUCTURES

The governing equations for structures in this categoryare nonlinear in the unknown dis-
placements and element forces, The nonlinearities result fromany form of behavior that does
not accord with the assumptions of small deflections and linear elasticity. In the presence of
creep, responses to static loads are time-dependent.' The search for solutions to nonlinear

structural problems involves certain difficulties.
BASIC LAWS

The first difficulty is that the basic laws of material behavior are not completely known.
The strain components of an incremental volume of material are functions of stress components,
past histories of these components, and histories of other environmental factors such as

temperature, The laws of macroscopic material behavior are probably different for each alloy.
REPETITIVE SOLUTIONS

The quadratic, cubic, and biquadratic equations inasingle variable are the only nonlinear
equations having closed form solutions, All other nonlinear equations, including the governing
simultaneous equations for nonlinear structures, must be solved by repetitive processes,

These processes are usually iterative or stepwise applications of linear approximations,

In the iterative approach, a solution is sought for a particular set of values of the independent
variables. Various structural parameters, such as element stiffnesses, are functions of depen-
dent variables, such as stress, which are unknown, Values of the parameters are assumed.
Approximate dependent variables are calculated and revised parameters are determined on the
basis of the new independent variables. The process is repeated until values of the unknowns

are obtained that satisfy all of the governing equations to the required degree of accuracy,

In the stepwise approach the response is assumed to be linear over small increments of
the independent variable, which can be loador time, The structural parameters existing at the
beginning of the interval are assumed to apply to the entire interval, Various refinements
of the technique exist, The iterative and stepwise approaches can be combined.
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In both the iterative and stepwise approaches convergence is important, The results
must converge to fixed values as the number of iterations increases, or as the size of steps in
the stepwise method decreases. Convergence can be deceptive, The results can appear to
converge without being evenapproximately correct, Theprocess can be very slowly convergent
or divergent, The results ofthe stepwise process can have properties which are characteristics
of the method of solution rather than of the structure.

MULTIPLE ROOTS

The possession of multiple roots is a property of nonlinear equations., For a given set
of loads several different sets of struetural responses can satisfy the governing equations,
Only one response is appropriate to the prior history of loading., The iterative approach con-
verges on roots that depend upon the choice of the initial approximation and the method of
solution, The stepwise approach has the advantage of reproducing the actual loading history
and consequently has the potential capability of always converging on the correct set of roots,

NONVALIDITY OF SUPERPOSITION

A third difficulty is that the responses of a nonlinear structure to two separate loading
conditions cannot be added to produce the response to the sum of the two conditions, The
solution for each condition must be separately computed, The unit load approach as a labor

saving device for developing responses to actual loading conditions is not applicable,
COMPUTING EFFORT

A fourth difficulty is that the magnitude of the computing task is very significantly in-
creased for nonlinear structures as a result of the required repetitive approach and the

inapplicability of superposition,
APPROACHES TO THE DIFFICULTIES

One possible means of remedying the lack of information on material behavior is to con-
tinue study of the subject on the molecular and crystalline levels, The forces that govern the

behavior of these bodies may be simpler to classify and describe than the behavior of macro-
scopic bodies such as tensile coupons.
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A second approach is to continue deliberate efforts to establish categories of idealized
material behavior that are useful in structural analysis, Categories already established in-
clude nonlinear elasticity, perfect platicity and various time-dependent stress-strain laws,
The criterion here is not how closely natural behavior is approximated, but the usefulness of

the approximation,

The need for repetitive solutions, the existence of multiple roots and the inapplicability
of superposition are fundamental and unavoidable. The impact of these difficulties can be
diminished by searching for optimum methods of solution that minimize computing effort and

maximize the probability of converging on the correct set of roots.

The irreducible minimum amount of calculation unfortunately can be expected to be at
least an order of magnitude greater thanthe effort required for the linear case, which already
has a reputation as a formidable computing task. A requirement therefore exists for vastly
improved computing capability. Perhaps this improvement can be realized by developing
specialized computers for the solution of nonlinear simultaneous equations. The requirements

in the field of structural analysis may be sufficient to justify such development.
Finally, a need exists to define carefully the objectives of nonlinear structural analysis

in view of the difficulties involved. The basic objective for airframe and space vehicle design

is to find methods that are useful for design purposes, not to model nature in great detail.
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SECTION vII

STRUCTURAL SYNTHESIS

Structural synthesis is the procedure of designing a structure to meet a criterion of
merit within constraints. For example, a structure can be designed to have minimum weight
{the criterion of merit), and to have the capability of supporting multiple loading conditions

in such a manner that stresses and deflections do not exceed alilowable values (the constraints).

Minimum weight is often employed as a criterion of merit, Maximum cost effectiveness is
usually a more realistic criterion although more difficuit to apply.

Some examples of constraints are as follows:

No structural element shall fail by fracture or buckling at ultimate load
No yielding shall occur at limit load

Deflections must not exceed allowable values

°

.

¢ No general instability shall occur

.

® Aeroelastic effects (e.g., loss of aileron effectiveness) shall not exceed allowables
)

No flutter shall occur

e No fatigue failure shall occur during the design life.

A list two or three times as long can easily be prepared. These constraints are important
design requirements that must be satisfied.

The independent variables of the problem include loads and thermal environment. The
unknown dependent variables include structural concept, structural geometry, member
sizes, materials, means of attachment, and thermal protection,

NONLINEARITY OF THE SYNTHESIS PROBLEM

Figure 10 shows a simple pin-jointed statically indeterminate truss., The problem is to
determine the membher cross-sectional areas Al’ A2, and A3 in such a manner as to minimize
weight, subject to the constraints that no member shall have a negative area. The loading
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conditions are as follows: in condition 1, qbl = l,qb2 = 0; in condition 2, ¢1 = 0, q52 =1, All

members have the same allowable tensile stress O‘a. The stress-strain relationships are

linear to failure. The material density is unity.

y.__s — sﬁﬁ..t

/////////C/)/////////

Figure 10, Statically Indeterminate Truss

Analysis of the problem yields the following relationships,
for Condition 1:

o, (2048 R, A+ 10 Ay Al + 10 A, A)2(30 A, +30A5) ¢,
o, (2048 A, A, +10 AL A, +10A A, )2 384 A ¢, (12)

o, (2048 A, Ay + 10 Ay A + 10 A, A,)238.4 A, ¢,

for condition 2:
0,(20.48 A, A, + I0A, A +I0A A)2(40A, - 404,10,
g, (20,48 A, Ay 1+ 10 Ay A + 10 A, Ay)2 (5.2 Ag+ 50 A )¢, (13)
0, (20.48 A, AS+ 10 A A + 10 A A}2(512A,+504 )¢,

Also A|20 Azz 0.

The mathematical formulation is in terms of inequalities rather than equations. These
inequalitites are quadratic in the unknowns Al’ A2 and A3. even though the structure is
linear, As more structural elements are added, the formulation of the synthesis problem

hecomes more highly nonlinear (not merely quadratic) and extremely complex,

40



AFFDL-TR-68-150

NATURE OF SYNTHESIS

The general synthesis problem, which is the problem designers must solve, is formidable
when stated in mathematical terms, The following complexities are involved: First, realistic
criteria of merit, such as maximum cost effectiveness, are not easy to define with precision,
Second, the list of constraints is verylong, Third, the number of variables to be considered ig
large. Fourth, the problem is nonlinear. Fifth, the mathematical formulation tends to produce
inequalities rather than equations, Finally, the synthesis problem includes all analytic
problems, such as linear stress and deflection analysis, plasticity, buckling, and vibration,
The mathematical formulation of the general synthesis problem is many orders of magnitude
more complex thanthe most difficult problem inthe field of structural analysis, The possibility

of producing a general computer program for structural synthesis seems extremely remote,
APPROACH TO SYNTHESIS

Subsets of the general problem have been studied, Working computer programs have been
developed (References 12 and 13) These programs are useful tools and they are significant
advances in the state of the art. They contribute to the solution of the general problem but they
do not solve it, yet this problem must be and is being solved daily to some degree of approxi-
mation, Two questions suggestthemselves: First, howis the problem currently being handled?
Second, how can the capability of the computer and the methods of matrix analysis be more

efficiently applied to structural synthesis?

Obviously the answer to the first question is that the designer does the best he can with
the tools he has, These tools include digital computers and computer programs, but the
designer’s most valuable aid is theability tothink creatively about the problem. The computer
is entirely lacking in this ability which the human brain has in abundance. Even before the
invention of the slide rule men were able to do a creditable job of structural design aided
solely by computations performed with pencil on paper, On the other hand, the computer

is far superior to man in the area of complex arithmetic calculation,

Recognition of this complementary relationship between man and machine led to the con-
cept of Computer Aided Design (CAD) (References 14 and 15), According to this concept man
and computer are placed in clogse contact, sothat interaction time is minimized and maximum
benefits are gained from the combination of abilities, The concept is implemented through the
use of remote consoles, especially graphic consoles, connected to large computers provided

with operating systems that allow the user almost instant response,
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The idea of applying CADprinciples tosynthesis of complex structures is worth consider-
ation in view of the difficulties of developing a completely automated system, Unfortunately
many computing fasks associated with matrix structural analysis are too large for the
interactive approach. On the other hand, some tasks can be approached in this manner, Such

an application is described in the next section,

SECTION VIII

AN INTERACTIVE APPROACH TO STEADY STATZI VIBRATION

Voluminous output tends to be characteristic of matrixstructural analysis, Various means
such as tables of maxima and minima are employed to reduce the amount of data the user must
examine, Computer graphics provides an extremely effective means of condensing cutput, In a
recent dynamic response study (16) aninteractive graphics console displayed a moving picture
of a vibrating structure. Such an application is especially useful because the dynamic display
conveys an impression of mode shapes that cannot he easily gained from inspecting printed
data,

The following paragraphs describe another application of the graphics console to structural

vibration,

In this application, the steady state responses of a damped structure to oscillating inputs
were studied, As a result the matrix formulations presented in Appendix 4 were developed.
These formulations, which are generalizations of the Displacement, Force, and Unified
Methods of static analysis, yield rigorous solutions to the equations of motion, The formulations
are applicable fo linear discrete structures. Each siructural element has its own elastic and
damping constants. Masses are attached to structural joints, All kinds of support and zero
support are considered. Forcing functions that are sinusoidal functions of time of a single
frequency but differing phases are applied. These forcing functions are external loads, support
displacements, and unassembled element deformations, The unassembled deformations provide
the basis for rapid computation of structural changes, Equations are given for time-dependent

force and displacement responses of the structure.
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In static analysis the effects of changing a structural element can be simulated by intro-
ducing into the element fictitious unassembled deformations, The magnitudes of these defor-
mations are such that the assembled forces and deformations of the modified element are the
same as they would be if the element stiffness actually were changed, This idea has been
adapted to the analysis of vibrating structures, The resulting procedure for calculating

modified response involves much less effort than computingthe effects of a change from basic
data,

The computations take place in two steps, The first step takes place in the batch mode,
In this step the response of the original structure is calculated, In addition certain matrices
are computed which are required in the second step as a basis for computing the effects of
structural changes,

In the second step the user inputs through the graphics console the identification of the
elastic element, mass, or damper he wishes to modify. He also inputs the factor by which he
wishes to multiply the stiffness, the mass, or the damping constant, Changes to the deflection
response are calculated and displayed. The user can modify the elements in any order by any
amount. The same element can be modified repeatedly,

Figure 11 shows a structure consisting of a horizontal gridwork of beams and a number
of vertical axially loaded members, as displayed on the face of the cathode ray tube, A mass
is attached to each node, and an oscillating force of a given frequency acts at the upper end of

the center vertical bar, Each element has its own damping constant,

Figure 12 shows the vibrating structure at a particular instant of time, A moving picture
also can be displayed, The display canbe rotated about each of the coordinate axes, and slices

of the structure can be displayed for improved visibility,

\ X A AN < Y A ~ ™~
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Figure 11, A Damped Elastic Structure
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Figure 12, Response of a Damped Elastic Structure

Figure 13 shows the list of elements that are available for modification, The tables show
the original value and the latest value of the modified element parameters. When the user
requests a change to a structural element, 1-1/2 minutes are required for the machine to
compute and display the revised deflection pattern. The modification program is thus a true
interactive application of the graphics console to matrix structural analysis.
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ELEMENT SEQ. | ELEM, ORIGLNAL SCALING LAST VALUE

TYPE NO, NO. VALUE FACTOR

ELASTIC 1 i .17500E 04 .10000E 0Ot .17500E 04
ELASTIC 2 2 .17500E 04 .10000E 01 .17500E 04
ELASTIC 3 3 .17500E 04 .10000E 01 .17500E 04
ELASTIC 4 4 .17500E 04 .10000E 01 .17500E 04
ELASTIC 5 5 .17500E 04 .10000E 01 .17500E 04
MASS 6 87 .33333E 00 .10000E 01 .33333E 00
MASS 7 88 .33333E 00 .10000E 01 .33333E 00
MASS 8 89 .33333E 00 .10000E 01 .33333E 00
MASS 9 20 .33333E 00 .10000E 01 .33333E 00
MASS 10 91 .33333E 00 .10000E 01 .33333E 00
DAMPING 11 92 .17500E 04 .10000E 01 .61250E 04
DAMPING 12 93 .61250E 04 .10000E 01 .61250E 04
DAMPING 13 94 .61250E 04 .10000E 01 .61250E 04
DAMPING 14 95 .61250E 04 .10000E 01 .61250E 04
DAMPING 15 96 .61250E 04 .10000E 01 .61250E 04
SEQ. ORIGINAL LAST VALUE SCALING NEW VALUE

NO, VALUE FACTOR

1 .17500E 04 .17500E 04 100,0_

Figure 13,

Modified Element Parameters
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SECTION IX
SUMMARY

The field of structural modeling can benefit from the establishment of generally accepted
criteria for discrete elements, and systematic methods of element evaluation, The evaluation
methods should be as free as possible from the influences of extraneous factors, such
as loss of accuracy in the process of numerical evaluation. An analytic evaluation avoids this
difficulty and provides a better undersfanding of element behavior,

Loss of accuracy in solvingthe governing structural equations has always been a problem,
The accuracy ohtained in solving the equations by an elimination process can be sensitive to
the order of elimination even when the equations are well conditioned. Accuracy can be
improved by exercising care in establishing the elimination order and by employing a pivot
selection technique during elimination,

The analysis of nonlinear structures involves the difficulties of repetitive solution,
multiple roots, and nonvalidity of superposition, These difficulties significantly increase the
scope of the computing task, Methods that minimize this task are needed, Development of
speclalized computing devices for solving nonlinear simultaneous equations may be justified
for this and other applications,

The scope of the computing task invol ved in siructural synthesis can be very large because
a single synthesis can require the solution of many different kinds of analytic problems, such
as stress analysis, stability, vibration, and fatigue, The task can be performed most efficiently

through a combination of the creative powers of the analyst and the arithmetic and logical
capability of the computer. A suitable combination can be effected by means of interactive
graphics terminals and other devices that bring the user into close contact with the computer,
Such an approach to the synthesis of complex structures should be considered, An interactive

application of the remote graphics console to damped steady state structural vibration was
demonstrated,
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APPENDIX I

EVALUATION OF¥ THE EQUILATERAL TRIANGULAR CONSTANT STRESS
ELEMENT, POISSON’S RATIO = 1/3

\/ \ /

(a} 3 (b)

Figure 14. Egquilateral Triangular Element

The flexibility matrix for the triangular element shown in Figure 14(a) is
r— 4 he
0--L [4

Et ﬁ

4

-\/3 {14}
4
V3

b -

where E is Young’s modulus and t is the plate thickness,

Figure 14(b) shows a triangular frame composed of axially loaded bars of cross-sectional
area +/ 3 at/4, where a is the length of the edge of the element,

The flexibility matrix for the frame is also given by Equation 14, consequently the
equilateral triangle can be replaced by the framework of axially loaded bars, This substitution
simplifies the discussion,

49



AFFDL-TR~68~150

Difference Equations for a Model Composed of Equilateral Triangular Elements

Figure 15, Displaced Bar

Figure 15 shows a bar of the triangular frame, The symbols for horizontal and vertical
displacements of the ends of the har are as shown, The subscript i indicates that the bar is the
ith element of the grid. The deformation of the bar is

e, = (ubi—uai}cos a; +(vbi—voi) sin a; {15)

where a, is the angle between the bar and the X axis,

The element force in the bar is given in terms of the element deformation by

3
Fi .-.—4—Ete; {16)
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AX A
v, |

\

Figure 16, Joint Equilibrium

Figure 16 shows an interior joint of the idealized plate, with the adjoining triangular
elements. The external loads Px and P_ are shown acting on the joint, Also acting on the
juint are reactions to the element forces shown acting on the corners of the elements adjacent

to the joint, The joint iz in equilibirum,

Px =—g? Fi cos a;
(17)

Py = —zi FI sin ai
where the summations include all element forces acting on the joint. Similar equations apply

to joints on the edges and corners of the plate,

Equivalent Uniform Stresses

The flexibility matrix Eguation 14 is based on the assumption of uniform stress in the

panel. The equivalent uniform stresses are given by
— | . |3/F /3 S3 .
I | = Tt 3 3 73 !
E-y 0 V3 V3 F, {18)
ery 0 —| ! Fq
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This transformation is applicable when the edge of the element {or the bar of the equivalent
frame) upon which the F1 force acts is parallel to the x axis.

Linear Stress Field

If the plate is subjected to constant stress, a model composed of constant stress elements
ylelds exact results, A stress distribution one degree more complicated is a distribution in

which stresses are linear functions of coordinates, Consider

a, =2byx + 6by ¥+ 2¢c4
gy = 6b, x+2b, y+2¢c (19)
Txy:—Zba x-—2l:3y—c2

These stresses are derived from the stress function
3 2 2 3
¢,=b|x +byx yt+byxy +byy + c x2+c2xy+c3yz {(20)

The distribution given by 19 is the most general linear distribution that satisifies
equilibrium and the condition V4¢ =0, The components of the displacement of a point having
the coordinates x and y are given by

Eu = =b (3vx® + 3y*) —b,(2vxy) +by (x® ~2y% = vy®) + b, (6xy)
—c|(2vx}—c2(l+v}y+c3(2x)
(21)
Ev = bl(ny) + bz()‘2 —2x%—px%) -b3(2vxy) - b4(3vya+ 3x%)

+c, (2y)—c2(l+v)x —c3(2vy)

Two orientations of the triangular element are consideredas shown in Figures 17 and 18,
The figures also show the notation for the coordinates of the vertices of the elements, The
type II orientation ca n be derived from the Typel orientationby changing the sign of “a’,
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Substituting the coordinates of the vertices of the triangles shown in these figures into
Equations 21, and setting y = 1/3 yields expressions for the displacements of the vertices,
Substituting these displacements into Equation 15 gives the following expressions for the
elongations of the sides of the triangle in the Type I orientation,

y
a V3

(x,+?,y' + -3 a)

{x,,y,) e, (x,+o,yl)
X
Figure 17, Type I Orientation
y
(x;—a,y,) il (x,,¥,)
a
€ €3
a V3
("2‘_2‘ 1 ¥Y2- 3 a)
X

Figure 18, Type Il Orientation

. 2
E o =bcl-2x —a)+b, (=L-y, 1 +b,(2x, +a) +b, (6y) +c, (- §) +¢ ()

£ =2 b, (4%, +3a) +b, (i‘a@ e, +4—‘é§_—u)+ba(4f yto)

v () ee, (247)
E—2=b (4x, + a)+b2(—ﬁ3@x,+% ") +b3(—%yl—u)

ve (%) +oo(-253)
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Expressions for the Type II orientation can he obtained by replacing Xy by Xgr ¥y by
¥y and a by -a,

External Loads

Eliminating Fi among Equations 16 and 17 gives

J3
Px-—TEi zi:eicosai
(23)
3 .
Py=-—4—Etzi':ei sin Q.

These expressions can be evaluated for an interior joint such as the one shown in Figure
16 by substituting the appropriate elemsent deformations given by Equations 22 or similar
expressions applicable to the Type II orientation.

s P)( = Q
(24)
P, =0
o P,
Figure 19, Edge Joint Equilibrium
For an edge joint of the kind shown in Figure 19 the results are
P, =of (szx0 +2by ¥, tc, )
(25)

Py = ut(-GbI Xg = 2b, ¥, —2¢, )

where the coordinates of the joint are Xy Yo

54



AFFDL-TR-68-150

It canbe seenfrom Equations 25 that Px and Py are equal to the shear and normal stresses
(with appropriate signs) at the joint multiplied by the length of the element edge and the plate
thickness,

This method of establishing idealized normal loads on edge joints appears to neglect
couples resulting from the fact that normal edge stresses are linearly distributed rather than
constant, Study shows that these couples are exactly balanced by couples acting on other edges
that are similarly neglected,

Stresse§

Substituting Expressions 22 for €1+ €o and eq into Equation 16 yields expressions for the

element forces F,, Fy and F3‘ Substituting these expressions into Equation 18 gives the

2
following expressions for the nominal uniform element stresses:
— V3
=6, (2a) +b (21 +0) +b, (6y,) +c,(2)
o, = b (6x, +3a) +b,(2y, +/3a) + ¢, (2) (26)
- V3 /3
Ty =P, (——é-cl)+b2(-2xl— a}+b3(—2y| - a)+c2(—|)

Subtracting the nominal stresses from thetrue stressesgiven by Equations 19 and substituting

s = (x - xl)/a and t = (y - yl)/a leads to the following matrix equation for stress errors:

A T.T ! T -.- /3 ]
— 2o, | =] 2b, :6b4 s + |- 56y - by
l — —
Aoy 6b, |2b2 t 3b, J3 b, ( 27)
I
/3 3
At 2b, :—2b3 5 b, +b, +¥ b,
where Agc = o - T and Ao = o - T . Let
X X y
- "" ™ ] —l’ . — —
Ao = Ao, |3 a = |ab, :6b4 18 = [s7i8= [-%2b, -b,
Ao, 6b, : 2b, t -3b -3,
| V3 3
N - N § - _ -

208880088 (2 8)
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.
S.gho:Aste (29)

Note that s and t are nondimensional coordinates relative to the element vertex whose

coordinates are X1 ¥y To find a point in the element where the nominal element stresses are
equal to the true plate stresses, set Ag =0.

S AS =—B (30}

Unfortunately this matrix equation represents three scalar equations in only two umknowns.

Therefore no such point can be found, A point such that A o-x2 + Acryz + A Txyz

is minimized
can be found in the following manner:
AT AS = — AT B (3n

-1
s=—(ATAl ATB (32)

Equation 32 was solved for four sets of values of the sfress parameters., The results are
summarized in Table 1,

TABLE 1
Stress Parameters Coordinates of Stress Component
Case _ Optimum Point Errors
by | by | b3 | by s t Aoy, Acry A_TXY
a 1| o 0 0 -?,12— t 0 0 */%a
b 0 1 0 0 1 ‘/_?.:. -‘/_3—.3 0 0
2 2 3
c 0 0 1 0 1 A 0 0 0
2 &
d 0 0 0 1 5 0 0 0 C

Stress Errors at the Panel Centroid

The nondimensional coordinates of the panel centroid are s = 1/2, t = ./3/6. Therefore
from Equation 29,

— - _
ono _!%bz +./3 b, W
2.3
Ag = o -——— b, {(33)
Yo 3
V3 3
A'rxyo 2 b|+ 'y b!

where Aa‘xo, Ao Yo and ATXYO are stress errors at the element centroid, These errors are
proportional to the length of side of the element and independent of the location of the element,
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APPENDIX II

LINEAR STRESS CORRECTION PROCEDURE FOR CONSTANT
STRESS MEMBRANE ELEMENTS

+2

/ ,
~1 A\ .

Figure 20. Plate Element

Consider a plate subjected to plane stress. Replace the plate by a model consisting of
constant stress elements, Figure 20 shows one such element, not necessarily triangular,
Element forces are related to element deformations by

F =D e (34)
where D is the flexibility matrix for the element,

Coordinate dxes are passed throughpoint 0as shown, The components of the stress tensor,

o

% ?iy and ?;(y (constant in the element), are obtained by a transformation of the element
forces,
o = TF (35)
where
_x
| oy (36)
?xy

and T is a transformation matrix,
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Assume that the idealized plate has been analyzed, so that & is known, The nominal
stresses Ex’ ?y and ?xy are approximations to the components of the true stress tensor

at 0, Improved approximations are desired., To obtain such an improvement:

1. Assume that the stress distributions in the plate in the region of the element is
approximately linear, so that the components of the stress tensor are given by Equations 19,
The corresponding displacements in the region of the element are given by Equations 21.

2. Calculate the deformations of the element resulting from the displacements of Equations
21 in the form

e=eBB+ecc (37)
where
bl
ci
ba
B = b C = CZ {38)
3
Cs
bg

and e B and e care coefficient matrices whose elements are functions of element geometry.

3. Calculate the element forces from Equation 34 and the nominal stresses from Equation 35,

T ° oy B+ o, C (39)
where
— -1
g, °TD e (40)
and
— -1
c TD ec {41)

Let o, be a matrix of the true stresses at point 0, i.e.,

O’o = O'x o
%, (42)
ey,
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From Equation 19,

g, = |2c (43)
2c,

— c.2

If the stresses are constant ( B = 0 ), the nominal stresses in the element given by the
matrix & must be equal to the true stresses given by the matrix o, since the element is
a constant siress element, Therefore, from Equation 39

g, * o C (44)

and

% o~ E'B B {45)

Equation 45 provides a means of correcting the nominal stresses obtained from the use of

a constant stress element since it gives the true stresses at the panel center in terms of the
nominal stresses. The equation is exact for a linear stress distribution. For a nonlinear
distribution the equation will provide an approximate means of correcting the nominal stresses,
In the case of a nonlinear distribution the matrix B can be considered to be a matrix of
coefficients of a linear stress field which approximates the nonlinear field in the region of

the element. The matrix -EB (from Equation 40) is a known function of element geometry and
stiffness.

The matrix B can be established by determining the coefficients bi so that the stress
distribution of Equations 19 approximately reproduces the stresses which have been computed
in adjacent elements at points 1, 2, , . n (Figure 20),

The true stresses at point icanbe equated to the linearly distributed stresses of Equations 19,

— n e - -

-— ] — — —

' i
O‘xi 0 : 0] Iaxi IG)r| bl 203
l
% | = | &% 1 & : o : 0 b, |+]2¢ (46)
I
Txyi 0 |-2x {—Zyl. | © by -¢c,
_ _ L | I - ba L J
— —
oo * 0K. B+o i=1,2...n (47)
|
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where
a‘,ti 0 0 2x, 6y,
- L
o, = | %; K; = 5|6 2y 0 O (48)
TXYi O -in -Zyi O

and a is a scalar introduced to nondimensionalize the coordinates. The n matrix equations

given by Equations 47 can be written

o' = aKB t+ o {4 9)
where _ i . N -

o K, 1 %

o, K, To
P {50)

o = » K= . o F

a'n Kn alo

akKB = o’ —o, (51)

Equation 51 represents 3n scalar equations in the unknowns bl’ b2, b3 and b 40 The value
of n should be at least equal to two, so that Equation 51 involves more scalar equations than
unknowns. A linear stress distribution which provides a least squares fit to the true stresses
at points 0, 1, 2, ... n can be obtained as follows:

ok kB = K (o' - 0)) (52)

[ - ‘ ‘
B: 5 (K KI'K (' - o) (53)

Unfortunately the irue stresses involved in matrices o and a.c; are not lmown. A satis-
factory approximation to B can be obtained as follows:

=1 —r -
B = o (K K'K (&'- ) (54)
where
7 |5 | o’ =—?r' | (55)
o o % o
0‘2 0.0
°, @,
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In other words the coefficients of the linear stress field contained in B are obtained

from the nominal stresses in the elements in the region of point 0. An approximation to the
true stress distribution at 0 is then obtained by substituting B from Eguation 54 into

Equation 45,

a’o = & 4+ R{o — 0.0)
where | -
R = -+ O'B N
N = Tk KT
EQUILATERAL TRIANGULAR GRID
y

/
JG 7 e

Figure 21, Contiguous Triangular Elements

(56)

(57)

(58)

Figure 21 shows four elements formingpartof an equilateral triangular grid. Corrections
to the calculated nominal stresses in element ‘‘(’’ are desired based on the assumption that

the nominal stresses at points 0, 1, 2 and 3 can be approximated by a linear stress field,
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Substituting the coordinates of the four points shown in the figure into the Equation for K

{Equation 50) gives:

The matrix KTK

1

O

a‘o|h al- o

!

o

o o » O

is not only nonsingular, but also diagonal.
Substituting K and KTK into Equation 58 gives:

o
o

|
- 'I
J3 oL
I 4
|
/3 -1
° "=l %
[
o o 4%

{59)

(60)
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Equation 39 gives the nominal uniform stresses in the triangular element designated 0!
in Figure 21. These stresses are given explicitly by Equations 26 for a triangle located as
shown in Figure 17. Inorder to make the coordinate axes of Figure 21 pass through the centroid
=-a/2, ¥y = - /3a/6. Equations 26 then become

of the triangle, take Xl

T = by
a—'yzbz(
?xy‘-'bl(

V3

3

/3

-—a

)

+ ¢, (2)

U-ll'—

a)+ b, (-/3a) + cg (2}

O

o

)+ b, (—'“/G—ga) +c, (-1,

Comparing Equations 39 and 62 shows that

0

- b /3 |
= 0 o — 0]
% z 3
l
| 3
VI, 1B
| 2 | | s
Substituting N and EB from Equations 61 and 63 into Equations 57 gives
N [ O OO N I B v/
R=1 "¢ "2 iz | 12 iz
L, 1 wE
6 6 i 6 6
N BV Y S
24 12 24 | 24 12 24
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APPENDIX III

EVALUATION OF THE RECTANGULAR BAR-PANEL IDEALIZATION

Figure 22 shows the coordinate system for the idealized plate. Figure 23 shows the notation
for displacements and strains of a typical set of bars and panels. Denote the joint whose
coordinates are X yj as the ijth joint, In the following definitions the expressions ‘‘horizontal”
and ‘“‘vertical,’”’ *‘left’’ and “‘right,”’ ‘‘above’ and ‘‘below,’’ refer to directions and relative

positions of bars, panels and joints appearing in Figure 23.

let
uij' Vij = components of the displacement of the ijth joint,
€ xij = the tensile strain of the bar joiningthe ijth joint and the shear node to the left
of this joint.
E'XH = the tensile strain of the bar joining the i-1, jth joint and the shear node to the
right of this joint.
Eyi]. = thetensile gtrain of the bar joining the ijth joint and the shear node below this
joint,
%
€ yij = the tensile strain of the bar joining the i, j-1st joint and the shear node ahove
this joint,
yij = the shear strain of the panel which has as three of its vertices the ijth joint,
the i-1, jth joint and the i, i-1st joint,
a,, b]. = the lengths of the horizontal and vertical edges of this panel,
T’ij = the horizontal displacement of the shear node to the left of the ijth joint.

vy
Il

the vertical displacement of the shear node below the ijth joint,
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a, dz | Om
, | !
n
i | ] ] ] i 1 [ l
- -
Joint
T -
B <€ Shear Node
I
- —
b,
Y, - 3
yo Y bI
%g Xy m
Figure 22. Bar-Panel Idealization
B e — Cli —i
Yi-1,j ‘ N T Yii
-1, | ..
y} =i " ]:-;— Il i
€. €.
if ij
€ €
el ’ijA
c. .. Y.
i+ i ..
i-1,] i Cij bj
¢ +
€ €
Yi-1,] Yij
4 ] vii '1
vi“,j“' eli 1_1 GXi‘j_1
Yy — -
) u, . u. i-1
i-1, - 7 -1 i
2i-1 X
Figure 23, Detail of Bar-Panel Idealization
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DIFFERENCE EQUATIONS

Following are the governing equations for the idealized plate:
STRAIN -~ DISPLACEMENT EQUATIONS

From Figure 23,

€ = —(u, -

Xi] a Y ")

G;. =5 n. —u_. )

|.| ] ” |-|1]
- 2

ETECRC IR

. 2

€ = == -v. . )

i] bj Cu i,j—1

| |
Yy, = winp - Y+ —( - )
Yij b iy "M T, gij £, t.
STRESS - STRAIN RELATIONSHIPS

Ee = T - -—-——-—'—’———(b G +b,.q T )
%] i by by VT Ty TR Y g
Ee : 7 ~————— (b, +b.,, 7 )
i, Xisp1,j by by VY T Y
E 7 - G, +a., T
€ 2 T - ( o, +a T )

[ Y] oj Fojyp VT Xgj D X4
/ [— v - [
Ee g - —(a,0 +ao, O

uitn e °a+°a+1( P "-'+1,j)
€%y =20+ T

ij ij
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JOINT EQUILIBRIUM

| -
2—{0i +0i+.| Ha—yi,j'l"f
A

| — i] 1 —7
_ ij i+1,]

v
| —
E-(oi t a4 “ayij
Figure 24, Joint Equilibrium

From Figure 24

—a = 0 {75)
WITS ST
- - = {76)
Ty, %y 0
i, ¥ ij
SHEAR NODE EQUILIBRIUM
o.t ?
S A TS
b +b., T «—0—> (b +b 1T
2] A R ) 2705 T
ait rxy

i
Figure 25, Shear Node Equilibrium

Figure 25 shows the shear node to the left of the ijth joint.

Lz“’j”’m’(&;.. - o, )+ (= T, )0

{(77)
ij i-1, ]
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[ —
> (ui + t:|._|_1)t¢:.v']'ii

Figuer 26, Shear Node Equilibrium

Figure 26 shows the shear node below the ijth joint,

-;_—(ai +ai+])(5yij -5 )+ bj(?" T,y ) 0 (78)

Yi,i-1 i+1,j ij

LINEAR STRESS DISTRIBUTION BOUNDARY CONDITIONS

From Equation 19, neglecting the contribution of the constant stress field:

qu

0j 2byx,t Gb"yj
(79)
2by x, + 6b4yj

-

m+l,j
ayio = Gb,xi +2b2)fo
_, (80)
o, = 6b x, +2b,y
yi,n+1 t O 2’n
T 2b 2b ( bi
= - X, - -t
XYo] z2%o s\ T2 )
T 2b 2b ( b
- X - ——
Y41, 27m” 3 \ Y 2) (81
—_— _ 2 Oi
T, o (%o g) 2e
"y : - Z9iy
Txy . : sz(’H 2) 2byy,
i,n+1
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SOLUTION, LINEAR STRESS DISTRIBUTION

The following displacements and siresses satisfy the boundary conditions for the linear

stress distribution and the difference equations:

2 2z 2 2 2
= - - - - + LY.
Euij b, (3vxi +3yj ) t12(2:.nci yj}+b3{xi Zyj yyj ) b4(6x'yj)l
' (82)
_  pet et - it nty)
Evij = b (Gxiyj)+ I:'z()fj in ”i) b3(2vxiyj) b“(Enzyj +3xi)
. 24352 -3 ) b, (2 - )
E-r;i. == b, (3wx; +E”yj - 3vo;x; 2 (2vxyy - vayy;
‘ 2 2 2 -
(83)
2 2 2
= - +b S —-2x_ - wvx -b, y.)
F_gij b, (es:&l,yi Sbj x,) z(y] , P Y
2 2
—p_{ - - . 3x, 3yb,y.}
bS(Zrntiyj vbjxi) b4(3vyj +3x, v Jyl
&"ij = 2bgx; +6Ia,,‘yj
o_'yij = 6b|xi+2b2yj (84)
- g; bj

The displacements and stresses given by equations 82 and 84 are in exact agreement with
the exact displacements and stresses given by equations 21 and 19, when the results darived

from the structural model are interpreted as follows:

Joint displacements are equal fo displacements of the plate at corresponding points,

1.

2. Bar normal stresses are equal toplate normal stresses at points in the plate corresponding
to joints,

3. DPanel stresses are equal to plate shear stresses at points in the plate corresponding to

panel centers,

Shear node displacements do not match displacements of the plate at corresponding points.

These displacements therefore should be disregarded.
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QUADRATIC STRESS DISTRIBUTION

The quadratic stress distribution

o = d (6x°) +d(6xy) —dg (6x° ~12 y¥)
oy == d,(6y" —12x%) + dy(6xy)- dg (6y°) (85)
Ty ° dt(l2xy)—d2(3x2}—d4(3y2)+d5(I2xy)

is derived from the stress function
4 3 2z 2 3 4
¢ = d x" +d,x"y=3(d +d ) x"y +d xy +d,y (86)

The stresses given by Equations 85 satisfy equilibrium and the stress function given by
Equation 86 satisfies ¥ 4¢ =0,

The plate displacements for the case

d, = l,d, = d, = dg = 0, v = O are
Eu = —-2x° (87)
Ev = 12x%y-2y°

The displacements for the case

d, =1,d =dg =dg =0, v =0 are

3
Eu = -y {88)
Ev = 3xyz - 2x
BOUNDARY CONDITIONS,
dl = II, dz = d4 = d5 = o
- - 2
ij b Gxo
o = | — 2
Yio 2xi Sy°
(89)
T = N« §
r‘yio 12 (x; 2),,0
e - b
rxyoj = I2xo(y'_ —-E)

Similar conditions apply to the other boundaries,

SOLUTION, 4, =1, dz =d
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The followingdisplacements and sfresses satisfy the boundary conditions and the difference

equations:

Eu,. = —2x.‘” - a?x,
i i i
- 2 _ 3 _ 2
Evij z I2x.| yj 2yj b yj
E'qij = —Zx? +2<inz
2 3 2 2
EC .. = 12x, y — 2y, -6bx., + 3by,
S i % Y P by
o z - 6x
- 2 2
o = |2x - 6y,
— b
= | —— - =
Xy 2(x )()rj 2)

{90)

’ {91)
—b A
y'J
(92)

(23)

(94)

EAu,. =-o¢%x
f i
{95)
EAv,, =-b%y
1] J
AG’ = A = =
’ ayij Arxy. 0 {96)
BOUNDARY CONDITIONS, d2 =1, dl = d4 = d5 =0
. = 0
ij
o : Bx.y
Yio 1o {97)
T = —3x + 5x o —(:|2
Xy, i
io
—_ _ 2 _ 2
Txyoj = —3x, a

The shear stress ?ino

lower edge of the structural model between the joint at 51,0 and the joint at X
)representmgthe constant shear stress on the left

stress equals a contribution (-3x

TxYoi

represents the average shear stress at the shear node on the

. The shear

hand edge of the model and a contrlbution (-a”) necessary to provide equilibrium of moments

on the model, Similar conditions apply fo the other boundariés.
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SOLUTION, d, =1,d, =d,=d. =0

2:

The following displacements and stresses satisfy the boundary conditions and the difference

equations:
Eu., = —y°
Ui i . (98}
Ewii = .’nc'yJ —2x. + b X,
7y T T
ij j ’
(9%
EC.. = 3x.y(y —b)-2x> +b°x% )
ij i’} 7 i i
- N
xij
o = Bx.
i iY (100)
_ o _ay a2
S 3(“ _2_) 3
The errors are as follows:
EAu = 0
2 2 {on
EAv = b X,
Aoy, = A, =0
X ’2 , (102)
A, =-—2—
3y 4
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APPENDIX IX

STEADY STATE VIBRATION OF DAMPED ELASTIC STRUCTURES

Equations are presented for the analysis of steady state vibrations of damped elastic
structures by the Matrix Displacement, Ma‘rix Force, aad Unified methods,

GOVERNING EQUATIONS

Dynamic Equilibrium:
+ + =

Pe Fe P, Fp +P F +PoR P¢¢ 0 (103)
where PE' PD' Pm’ P g nd P4 are rectangular matrices of components in the joint
degrees of freedom of unit values of elastic element forces, damping element forces, inertia
force components, reactions and external loads, and FE' FD’ F m’ R and ¢ are
column matrices of elastic element forces,damping element forces, inertia forces, reactions
and external loads. The later group of matrices are time dependent. This equation can also be

written as follows:

+ + + + : 104
Pue Fe *PupFo Pum Fm TPURRTPUp ¢ = © (104]
+ + + +
PCEFE PCDFD PC F P R PC¢¢ {105)
where PUE’ PUD' P Um* PUR and PU $ are components in the unconstrained joint

degrees of freedom of wnit values of the elastic element forces, the damping element forces,

ce' Pcor Pomr Pomr¥nd Ppg 2@
corresponding matrices for the constrained joint degrees of freedom. The unconstrained joint

the inertia forces and the external loads, and P

degrees of freedom are selected in such a manner that reactions have no components in these
degrees of freedom,

Pyr * O . tioe)
FORCE-DEFORMATION EQUATIONS
Fe = keg (107)
Fp = cég (log)
Fn  mA, (109)
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where k, ¢ and m are square matrices of element stiffnesses, damping constants and
masses and e E* ©D and A m 2re column matrices of elastic element deformations,
damping element deformations and joint displacement components, respectively,

EQUATIONS OF COMPATIBILITY

The following equations can be derived from the principle of virtual work:

T T
o +ey = -PpA-PicAp (110)
T T
T T
Anten =Py, A-Pon, Apg {2

where A and AR are column matrices of components of joint displacements in the un-

constrained and constrained degrees of freedom respectively and e A and are column

e
B
matrices of unassembled deformations of the elastic and damping elements respectively, The

matrix e m is defined subsequently.
SINUSOIDAL EXCITATION, STEADY STATE RESPONSE

Equations 104 to 112 inclusive are the governing equations for the structure subjected to
arbitrary time varying external loads, support displacements and unassembled deformations,
Agsume that these forcing functions are sinusoidal functions of time of a single frequency w

but varying phase, Any such function Y can be written in the form

Y = Yy sin wt + Y. cos wt {113)

where Y_ = | Y l cos Qy, Y, = ] Y | sin By, | Y l is the amplitude of the forcing
function and Gyis the phase angle, A sufficiently long time affer the initiation of the dynamic
process all structural responses are sinusoidal functions of the time of frequency ¢ . Each
response therefore can be written in the form of equation 113, In the following the quantities
Ys and Yc are called the sine and cosine components of Y. Sine and cosine components are
denoted by adding subscripts S and T respectively to the symbol for a forcing function or re-

sponse, For example, the matrix of unconstrained displacement components is written

A = A sinw1+Accosw1 {1i4)

s
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UNIFIED MATRIX METHOD

Substitute expressions of the form of equation 114 for F £ FD’ F and ¢ into
equation 104, Equating like terms yields

1
(=

Py Fs +Pugds

Py Fo *Rige = ©

(115)

where
Py = [ Pue Pum Pup) (He)
Fs “{Fes FmsFos} Fe “{Fec Fmc Foc) tin
and the symbols [ ] and { } denote rectangular and column matrices, respectively.

In a similar manner Equations 107, 108 and 109 yield

F = Ne —§e
S 3 ¢ ] {ns)

Fe ~ g°s+ ne.

where

n=|l k £ =10 (119)
o] we
&g * {.ESAmS'DS} e :{°Ec Amc'nc} (120)

Similarly Equations 110, 111 and 112 can he written

esters = —P| Ag-PlApg
ecterc T TPy Ag Pl Age e
where
¢rs ° {‘As ®ms .BS} M ={‘wxc ®me ‘Bc} (tzz)
Pc = [PCE Pem PCD] (123)
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Let
n* = k—l o . g* = 0
m
- |
i ° (124)
0 w
Note that 'q*'q+§*§ = I 7% =L*n -0 (125)

Solving equation 118 for eg and e and substituting the results into Equation 121 yields

¥ % T T
N Fa+ LR +Py Agte o +P Bpg: O

c
~L%F +9F +p] Boter 4P Ap 0 ree)
Equations 115 and 126 can be written as follows:
[ n* L* PJ o _FS ] + —‘TS +Pg A 1. 0 127)
LT 9" o PIJ Fe o +Pc Bpe
Pu 0 0 0|4 Pup Ps
_0 P, © 0 ] _AC- __PUqb¢’C J

Equation 127 is the Unified Matrix equation for steady state damped structural vibration, The
equation can be solved for the sine and cosine components of the element forces and dis-

placements,

ELASTIC ANALOGY

The structure can be replaced by an analogous structure in which the masses are replaced
by negative springs. Equations 119 show that the unassembled stiffness matrix for these

negative springs is - w 2m.

Equation 120 shows that the negative spring deformations are equal to the joint displace-
ments, The negative springs therefore must be considered to be attached to the frame of

reference, Equations 122 show that and e c are sine and cosine components of un-

®ms m
agsembled deformations of the negative springs.
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MATRIX DISPLACEMENT METHOD

Solving Equations 121 for e and e C and substituting the results into Equations 118
yields T T
- - _ T T
Fo==mPy Ag+LP) Ac~nerg+ler. -mPl At LR) Ap,

T T T T (128)
Fo *7bPy A~ mP A - Lers —ner —LP, Aps 7P, Apc
Substituting FS and FC from Equations 128 into Equations 115 yields
s -T A = '
S
S (129)
T S Ac Ve
where
=P ~P me__+P -
Y5 *FugPs Ry mergtR, Lo, Suc Brst ke Are
(130}

Vo *FupPcPubers Py mer Tye Bns Suclre

= T - T
$: pynp TR, LP]
, T T (131}
Suc® PunPe  Tyc= PylPe

Equation 129 can be solved for the sine and cosine components of displacements by three
methods. Two of these methods involve finding S -1 or T -1 or solving the equations by
equivalent procedures., The method which involves § -1 is likely to be inaccurate in the case
of a complicated structure having many natural frequencies because § is poorly conditioned
when the impressed frequency is close to a natural frequency. The matrix T is likely to be
poorly conditioned or singular if some of the structural elements have zero damping, The
third and best procedure involves solving the complete set of equations by elimination,

employing a pivot selection technique. Element forces can be ecalculated from Equations 128,

Equations 128 and 129 are the Matrix Displacement equations for damped structural vibration.

MATRIX FORCE METHOD

The restriction that reactions have no components in the unconstrained degrees of freedom
is removed, Equation 103 can be written

z i
Prg Fa TPy P =0 (132)
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where
Per =[PE Pn o PR] Fr :{FE Fo o R} {133)

The element forces can be expressed interms of the redundants and the external loads as

FR :fxx+f¢¢ (13 4)

where f x and f ¢ are rectangular matrices of element forces resulting from unit values
of the redundants and of the external loads respectively, and X is a column matrix of re-
dundants, Note that the negative springs representing the masses are considered part of the
structure. The forces in these negative springs can be selected as redundants, The matrices

fX and f¢, are independent of time; they can be computed from PF and P¢, through

procedures applicable to static analysis,

The sine and cosine components of F R 2re obtained by substituting expressions of the
form of Equation 114 for F, X and ¢ into Equation 134 to yield

Frs * fxXs* fo s

(135)
FRC = fxxc+f¢¢c
The compatibility conditions (Equations 126) can be written
MewFrs T Srrre TP Bucst ®rrs O
(136)
_p* * T }
CFRFR5+17FRFRC+PFRAUCC+.FRC =0
where
* > * *
WFR = n C = C
o FR o (137)
Ayes - {As ARS} A e s { A Anc} (138)
®rrs ° {'TS_Ars} ®cre C { e .78 } ( 139)

and A , 1s a matrix of reaction displacements,
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Substituting FRS and FRC from equations 135 into equations 136 and multiplying
both equations through by ¢ 7T gives
X

T
8XX S *-8)()(xc+8 ¢¢5+8x¢¢c ""(PFR % AUCS fx ®rg =0 (140}

T T
=8y X+ X x¢¢x+8x¢¢c HPR ) Byc 4ty o =0 (141)
where
* Y L
Syx = tx Mertx 8 v Serfx (142)
T = Y L
3.6 =t Mrg 4 8¢ *tx Eerte (143)
The matrix PFR §( can be shown to he null, Therefore
Sxx  Bxx Xs 7 . As
- (14 4)
Syx  Sxx_ L A
where
As = X b xqb¢ x ®FRs
{14 5)

A xqb s - ¢¢ FRC

Equations 144 can be solved for the sine and cosine components of the redundants., As in
the Displacement Method the best approach appears to be to solve the complete set of equations
by elimination, employing a pivot selection technique. Element forces can be calculated

from Equation 135, Deflections can be obtained by calculating the deformations of the negative
springs as follows:

I
AS='—Z-PU m'F _-P

w m mS ~ 'um ¥ms
(146)
= -1 -
Bc= 22 Pum™ Fnc ~ Pum®me

Equations 135, 144, and 146 are the Matrix Force equations for steady state damped
structural vibration,
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