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ABSTRACT

Owing to their high strength and low weight, composite materials have
found applications in commercial, military, and spacecraft structures. The
truss system of the Hubble Space Telescope, for example, is made of graphite
epoxy beams, tubes and joints that have very low damping capacity.  Vibration
of the Space Telescope is undesirable since it would cause blurring of the
optical system images. A specific knowledge of the damping capacity of the
composite material and structural joints and the factors that influence the
damping is very wuseful in the design of appropriate vibration isolation
systems for the telescope.

Joints form an important aspect of any space structural system. Unlike
metals, fiber composites cannot %z welded together.  The alternatives include.
the use of mechanical fasteners, such as bolts and rivets or adhesive bonding.

These techniques produce joints with vastly different properties. it 1s
believed that bonded (and bolted) joints act to enhance the damping capacity
of structural systems. Hence in this paper the results of analytical and

experimental investigations carried out on two different types of joint.
composite specimens to study their damping capacity are reported.

First, a theoretical model to study the Vibration of a bonded lap joint
system was developed and is described. The model can be used to predict the
natural frequencies, modal damping ratios and mode shapes of the system for
free flexural vibration. Good agreement between numerical and experimental
results was obtained for a system of graphite epoxy beams lap-jointed by an
epoxy adhesive. '

The second type of bonded joint considered for the study was a double-butt
joint.  Experimental work conducted on these joints in a vacuum chamber is
described. The damping ratio was computed by using an improved half-power
points method. The increase in the values of the damping ratio due to the
presence of bonded joints in the system does mnot appear to be very
significant.
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INTRODUCTION

Structural adhesive bonding of composites to composites, as well as
composites to metallic components, has developed rapidly due to advances in
composite materials and adhesive bonding techniques. Structural composite
bonded joints are primarily of the overlap type (single or double overlap).
Scarf joints are structurally efficient, but are difficult or costly to
manufacture. Butt joints, although simple to process, are not considered for
primary structural joints. This is because of their limited load carrying
capacity due to the presence of cleavage stresses when the loading is not a
true tensile load. Tube joints are difficulty and costly to manufacture.

The paper by Goland and Reissner [1] is regarded as a classic work in the
area of static amalysis of a simple lap joint. Goland and Reissner studied
the stresses in bonded single lap joints for two different cases. In the
first case, the bond layer was very thin, in the second case, the bond layer
was so thick that it was the primary contributor to joint flexibility. In
both cases, they derived equations to evaluate the shearing and normal
stresses in the bond layer as well as those in the jointed plates. In the
Goland and Reissner analysis, the peel and shear stresses were assumed to be
constants across the adhesive thickness. In Jater works by Ojalvo and
Eidinoff [2], Carpentor [3], and Kline [4], attempts are made to incorporate a
linear variation of these stresses across the thickness of the adhesive.
Delale and Erdogan [S] have carried out the stress analysis of a bonded lap
joint system assuming that the adherents are elastic and the adhesive is
linearly viscoelastic. Renton and Vinson [6], and Delale, Erdogan, and
Aydinoglu [7] have attempted to include anisotropic adherents in the
mathematical model.

Hart-Smith [8-11] was the first investigator to extensively use continuum
mechanics approach in the analysis of bonded joints. He has analyzed
double-lap,  single-lap, scarf, stepped-lap and  tapered-lap  configurations.
Tensile, compressive and in-plane shear stresses in the system were considered
based on an elastic-plastic analysis of the configuration. In that work, the
author has also discussed joint efficiency and potential failure modes for
each of the above configurations. The above review indicates that much of the
work done in this area has been confined to the static analysis of bonded
joints,

I.  ANALYTICAL MODELING OF FLEXURAL VIBRATION OF A BONDED
LAP-JOINT SYSTEM

The system chosen for study is shown in Figure 1. The objective is to
arrive at a suitable mathematical model to evaluate the damping ratios and
resonance frequencies of the system undergoing free flexural vibration. The
system consists of a pair of rectangular beams lap-jointed - over a certain
length. The bond between the two beams is achieved by means of an adhesive
whose thickness is small compared with those of the beams. The unjointed ends
of the beams may have any physically realizable boundary conditions, but. in
this case are assumed to be simply-supported. Equations of motion are first
derived using the complex modulus approach. assuming the beams to be made of
composite materials. The adhesive is assumed to %e linearly viscoelastic and
the widely used Kelvin-Voight model is used to represent the viscoelastic
behavior of the adhesive.

The starting point for the development of this model is the consideration
of the dynamic equilibrium equations of the overlap (joint) region. The
equations of motion in the joint region are derived using a differential
element approach. The transverse di? acements of the upper and the lower
beam are considered to be different. he normal force between each beam and
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the adhesive layer is obtained from the Kelvin-Voight viscoelastic model of
the adhesive. 'The shear force at the interface between the adhesive and the
beam is obtained from the simple bending motion equations of the two beams,
The resulting equations of motion are combined with the equations of
transverse vigration of the beams in the unjointed regions. These are later
solved as a boundary value problem by knowledge of the boundary conditions at
the unjointed ends and the motion continuity equations at the ends of the
overlap. The eigenvalues and the eigenvectors of the system are obtained
numerically by an iterative technique on a computer.

The beam system is hypothetically divided into three parts as shown in
Figure 2. The coordinate system chosen for each part is also shown in the
same figure.

Analysis of Part 1 of Beam System

The following assumptions are made in the analysis: a) the analysis is
carried out only for the free flexural vibration of the system; the
longitudinal and rotary inertia effects are neglected, b) there is no slip at
the bond interfaces, ¢) all points on a plane normal to the longitudinal axis
of the beam have the same transverse displacement, d) the longitudinal force
in the adhesive layer may be neglected relative to those in the beams, and e)
since the thickness of the adhesive layer is small relative to the thickness
of the beam, the mass (inertia) of the adhesive may be neglected, and the
normal and shear forces in the adhesive are assumed to be constant.

A free-body diagram of a differential element of length dx of the
composite three-layer part of the beam system is shown in Figure 3. N is the
axial force in the beam, V represents the shear force in the beams, M is the
bending moment in the beam, s is the shear force per unit length at the bond
interfaces. and p is the transverse force per unit length between the beam and
the adhesive. The above quantities with subscript 1 refer to the upper beam

and with subscript 2 refer to the lower beam. Furthermore, y = vy l(x,t) is
the transverse displacement of the upper beam, and y, = yz(x,t) is that of the
lower beam.

Equating the sum of the forces in the y-direction to the corresponding
inertia forces, we get for beam 1,

A" ) azyl
'Vl + [Vl + a"x—‘ dX] + de = plAldx at2 4 (])
and for beam 2
av, &y,
-V2 + [V2 + Ix dX] + pdx = pzAzdx a—tz"‘ . (2)

The term pA in Equations (1) and (2) is the mass per unit length, in which p
represents the density and A represents the cross sectional area of the beam.
Summing the moments about the center of the right edge. for beam 1. ‘

t)Ml hl
Ml'(M1+3x_dx)'de7+V1dx=O' 3)
for beam 2,
6M2 h2
MZ-(M2+H—x——dx)-sdx—2+V2dx=0. “4)
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From Equati{m (1) through (4), we have,

*M h 3y
1 1 ds _ 1
?;2— + 7 Ix + P = plAl ‘aTz-— » and (5)
82Mz hz as 62y2
o ? +T§i'p=pzA25tT' ©)

Equations (5) and (6) represent the equations of motion for the upper and
lower beam respectively. From the classical theory of pure bending of beams,
the bending moments M , and M2 may be related to the corresponding transverse

displacements, y , and y, through the flexural rigidity term EI, where E is the

Young's modulus of the material of the beam, and I is the second moment of the
cross-sectional area with respect to the centroidal axis. Noting that the
y-axis is positive downwards, from beam theory,

8%y, a%y,
Ml= - EIII a—xz and Ni2 = - EZIZ 5;2— . (7)

It should be noted that Equation (7) is valid for an elastic, homogeneous beam
having a constant cross-sectional area. It turns out, however, that an
equation similar to the above can be written for the composite beams of the
present problem, by simply replacing the real modulus by its complex
counterpart.  This analysis is valid only for simple harmonic time dependence.
With this in mind, we can write,

. d%y . a7y,
M1= - ElIl :l? and M2 = - E212 P (8)
where E. = E(l + iaw), and E: E(l + ifw). ©)

o and B are some constants whose values depend on the material, « is the

angular frequency, and i = v -1. The next objective is to find suitable
expressions for p and s in terms of y, and Y,» 8o that Equations (5) and (6)

can be solved.

As mentioned before, the adhesive layer is modeled as a Kelvin-Voight
viscoelastic solid, because of the mathematical sim licity. A detailed
derivation of a standard-linear model for a viscoelastic material and its
reduction to a Kelvin-Voight model can be found in Reference [12].
Accordingly, we can write, 3y dy

P=K(@Gy) +c G- g0 (10)
K refers to the transverse stiffness per unit length, and ¢ is the viscous
damping coefficient. K may be related to the storage modulus E . the width b,
and the thickness hc of the adhesive by, K = Ecb/hc.

The interfacial shear force s may be found by considering a small element
of the viscoelastic layer as shown in Figure 4. The element is deformed due
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to the axial displacements, u and u, of the bonded surfaces of beams 1 and 2

respectively, caused by their bending moments. For small displacements, the
shear stress t, is related to shear strain in the adhesive by:

u -u u -u
t =G {_—‘r’} 98 —']i—i} . (11)
The expression on the right hand side excluding G, is the shear strain. G_ is

the real part of the shear modulus of the adhesive material. As before, y is
another constant which is included here to take care of the viscoelastic
nature of the adhesive.

Assume that the axial deformations, u and v, are caused only by the

bending of the beams and that there are no external axial forces in the beams.
Then, from the classical theory of pure bending of beams, it can be shown that

_hlayl _ b, 9y,
ul—z—a—i“,anduz——'z—ax—. (12)

In derivin% the above expressions, it is also assumed that the neutral axis of
e

the upper beam always remains above that of the lower beam. Then,
- hn ayl hz 6y2
u-w =33 7o (13)

From quuations (11) and (13), the interfacial shear force per unit length s is
given by

B Gcb " ayl " ay2 3 ayl ¢’iy2
s"’ﬂf[ﬁ&i‘* e R Bl (4
It is intereslt‘ilytg to note here that for a simple harmonic time dependence of
the form, e for y . and Y, Equations (10) and (14) can be written in a
more familiar form as
*
P =K_I[y-y)l (15)
and
E
G b dy, dy,
s=7n- B ax *hoax) (16)
where
* . CW * .
K = K1 + i K—), and Gc = Gc (1 + iyw). a7

K: and G: may be considered as the complex stiffness and complex shear modulus

of the adhesive material respectively.

The next step is to obtain the final form of the equations of the motion
(5) and (6) by making use of the relations developed so far for M. M. p and
iah

s. This is easily done by noting that y = Y, e'“", and y, = Y, e, where

Y and Y, are mow functions of x only. @ is the complex natural frequency,
the real part w_  represents the damped natural frequency and the ratio of the
imaginary part @ to @, represents the modal loss factor 7.  The modal

damping ratio { is simply equal to n/2. Now, from Equations (5), (8), (15)
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and (16), we obtain for the upper beam:
P ,
d‘y, G_bh, a’y, d’y, N -,
EL ax* ) 4h_ [hl a'z_ +h, dx 2 ] + K (YY) - pPA@Y, =0, (18)
and, similarly from Equations (6), (9), (15), and (16), we get for the lower
beam:

d’Y2
+ h

dx? 2 g4x?

d*Y, G'bh . a%y, . 2
EL ix* 4 [h; ] -K, YY) - pA@Y, =0 (19

c

Here, Y| = Yl(x), Y2 = Yz(x).

Et]uations (18) and (19) are coupled equations of motion of the system, the

solution of which cati be obtained by assuming a solution of the form Y =
A x x

Ae ", and Y, =Be".

Non-dimensionalization

The above equations of motion (18) and (19), should be expressed in a
non-dimensional form so as to avoid overflow problems on the computer during
the solution scheme. This is dome in this section for the special case in
which the two beams are assumed to be identical.

Let E = E, =E, and hl = h2 = h. The following non-dimensional parameters

are used:
Y Y

vy = | ¥ _ 2 T _X —=—_ ¢

YWSr YL, =5 x=[.¢=p,
where

L=v¢+~¢.

C

Also, let

G =pE =g, i=h7, =t
c E’%% E*" T D% T rC"

The non-dimensional natural frequency is expressed as

E)=—Z’)—,wherew2=EI n (20)
° ° PAL

Equations (4.24) and (4.25), written in non-dimensional form, are:

‘¥, 3G" [d’s’rl a*Y, 12E _ _ -, -
e + ]+ C(Y-Y)-@*Y =0, @1
dx* & B dx? dx? Ecﬁ’ 12 !

and
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a*Y, 3G, [dzifl Y, 128, 5. T =0 o
- + ] (Y - - = (.
x* & BLldax? ax’ BE 7 ?
Here,
= E(1+m) -« G (1+in)

it ™4 G, = E 23)

n, may be consndered as the modal loss factors of the beam material, and n,
and n, as the modal loss factors of the viscoelastic material in bending and
shearmg motions respectively. 7 A and n, may be assumed to have suitable

values which depend on the maternal when computing the cigenvalues and
eigenvectors for each mode.
As mentioned before, Equations (21) and (22) can be decoupled by a series
solution of the form _
- ). x — A x
Ae , and Y, Be", 24)

where A_ and B are constants to be determmed from the boundary conditions.
Subsututmg Equatlon (24) in (21) and (22) , we obtain, a matnx of the form:

(A: - Cl).i +C, - @) -(C, + C) A
=0 (25
2 2 —2
-(C, + C,) @-ca+c- "’_) B
with
s -
_ 36, . 12 E 2
C , = : . (26)
! h"h' 2 E R?

For a non-trivial solutlon, the determmant of the above matrix set equal to
zero yields eight roots of A. Equation (25) yields eight unulue roots for A.
Furthermore, from the above matrix, the constants A and B are re ated by:

B =9¢A,

where

[1:-cai + 02-62]

(27)
T+ T,

Finally, we have
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?=§Ae", (28)

and
‘ (29)
n=1

Equations (28) and (29) now have only ecight constants to be determined by
applying the boundary and continuity conditions.

Analysis of Parts 2 and 3 of Beam System

The differential equations of motion for the transverse vibration of the
beam portions of the system as shown in Figure 2 are:

3ty %y
bj bj = i =
Dj ——ax‘ + pj Aj P 0. j 1, 2. 30)
j
For the special case of identical beams,
Dl = D2 = E1, and ,alAl = pzA2 = pA.

Assuming ybj = ij(x) eiw', j =1, 2, Equation (30) becomes

d4Yb Al 2
41'[—€—‘]wa=°’1=1’2' (31)
dxj ‘j

In non-dimensional form,

d‘Yb , =

—A-Y =0,j=1,2 (32)
dX‘ bj

j

The solutions of the above equations are obtained, as before by assuming a
series solution of the form:

- 4 B X -— 4 B X
Y, =I Ce" ,and Y =73 De " | (33)
jm1 " 2 44 ¢
where ﬂ: = @°, and Cn and Dn are constants to be found from the boundary

conditions.

Equations (28), (29), and (33) have 16 unknown constants. The following
boundary and conmtinuity conditions are applied to determine those constants
and to obtain the frequency equation.
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II. BOUNDARY CONDITIONS

Considering simply-supported boundaries at the un-jointed ends of the two
beams, at points 1 and 2 (see Figure 5), the transverse displacement and slope
are zero. i.e.

_ - dYbl
a) at X = 0, Ybl =0, and —— = 0, (34)
dx
1
and
- ay
b)atx =¢Y_ =0, and = 0. (35)
2

Next, points 3 and 4 are free ends. Hence, the bending moments there are
zero. Furthermore, the shear force at these points can be obtained from
Equation (16). Hence, we obtain,

c) at X = 0 (point 3),

a’yY, Y, 66: aY, 4y,
2 =0, and —% = [_ + _], (36)
dx dx h dx dx

d) at x = ¢ (point 4),
a’y, Y, 6G" ay, 4y,
=0 ad —!=_° [_ + _]. 37
dx dx h dx dx

Referring to Figure 5, at points A and B, we equate the displacements,
slopes, bending moments, and shear forces for the two hypothetical sections of
the beams. These will yield eight more equations. Hence we have a matrix
equation from the above 16 conditions containing 16 constants. The
determinant of the above matrix D, set equal to zero gives the frequency
equation, i.e., for a non-trivial solution

Det [D] ( = 0. (38)

The roots of Equation (38) yield the complex natural frequencies (w s) of the
system.

@, = @y, + i @,
where j = 1, 2, ... represents the mode number.
@ . = modal damped natural frequency. and

Rj

..

n, = -—! = modal loss factor.

i CDRj

Once the eigenvalues are evaluated, the corresponding eigenvectors needed to
plot the mode shapes can be found by using any 15 of the 16 equations with one

arbitrary constant.
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III. NUMERICAL RESULTS AND DISCUSSION

The length and thickness of the graphite epoxy beams chosen here for
study are: ¢ = 12,25 cm, and h = 0.25 cm. The storage modulus of the beam
material as supplied by the manufacturer is 124 GPa. The material loss factor
of the beam is taken as n, = 0.004, which is taken as a constant for all the

modes.  This corresponds to a damping ratio of 0.2% and is believed to
represent closely the material damping of the graphite epoxy material as found
from various previous experiments [13, 14]).  The thickness of the adhesive
layer is taken as 0.05 cm. The complex modulus of the adhesive material,
which is epoxy resin in the present case is taken as 4(1 + i0.04) GPa which
has a real part of 4 GPa as supplied by the manufacturer. The complex shear
modulus of the adhesive is assumed to be 1.4(1 + i0.04) GPa. Here n, =n, =

0.04, which corresponds to a constant damping ratio of 2% for the epoxy
material.

The above quantities expressed in non-dimensional form are used in the
numerical computation of the eigenvalues and eigenvectors. The ratio of the
length of overlap to the beam %ength is called the overlap ratio.  Numerical
results are obtained for overlap ratios of 0.2, 0.4, 0.6, and 0.8. Figure 6
shows the variation of natural frequency with overlap ratio for the first
three modes of vibration. From this plot, it is clear that the natural
frequency of the system increases with an increase in the overlap ratio for
all modes. Figure 7 is a similar plot showing the variation of the system
damping (total loss factor of the system) with overlap ratio. For the case of
overlap ratio = 0.2, the non-dimensional frequencies @ are: 2.86, 13.12 and
27.24 for the first three modes. The corresponding system damping ratios are
Cl, = 0.534%, (’2 = 0.120%, and C3 = 0.054%. It should be noted that the above

values were obtained by assuming constant values of { = 0.02% and { = 2.0% for
the material damping ratio of the beam and the adhesive respectively. It is
seen that, for this case, the system damping is higher than the material
damping of the beam only for the first mode. For the other two modes, the
system damping ratio appears to be lower than the material damping ratio of
the beam. This observation, however, is true only for the above case and
cannot be generalized. To substantiate this point, let us consider a
different case in which the damping ratio of the adhesive was assumed to be
5%. and the material damping of the beam was kept the same. The system
damping ratios computed ‘for this case are: (,’l = 1.66%, Cz = 0.33%, Ca =

0.16%. There were no significant changes in the natural frequencies of the

system. As can be seen, the system damping ratios in this case are
completely different from the previous case comsidered. Hence, in order to
redict the system damping ratios, using the = present model, accurate

nowledge about the material damping ratios (of the beam and adhesive) and
their dependence on natural frequency is mandatory. Figures 8 shows the
predicted mode shapes of the first mode for different overlap ratios.

IV. COMPARISON WITH EXPERIMENTAL RESULTS.

Table 1 shows both theoretical and experimental results of two graphite
egoxy laf joint systems with overlap ratios of 0.2 and 0.4. All of the
theoretical results were generated by considering simply-supported boundary
conditions at the edges.

The specimens were prepared by bonding two similar graphite epoxy beams
over the desired length of overlap using an epoxy adhesive. The epoxy resin
was procured from CIBA-GEIGY Corporation. Much care was taken to obtain a
good bond by properly curing the joint system in an oven. The dimensions of
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the unbonded beams are: length = 12.25 cm, width = 2.8 cm, and thickness =
0.25 cm. These dimensions and the material constants (Young's Modulus and
Shear Modulus) were inFut to the computer program to predict the theoretical
natural frequencies, modal damping ratios and mode shapes.

The supports to simulate simple-supported boundaries at the ends were
specially fabricated in the form of two separate triangular blocks with a
knife edge on each. to support the beam, one from top, and the other from
bottom. _ The two blocks were then clamped to a rigid base. In order to
evaluate the experimental simulation of these supports, a trail test was
first conducted on an aluminum beam. Excellent agreement was obtained between
theoretical natural frequencies (computed using simply-supported boundary
conditions) and measured values. In fact, the percentage ifference between
the two results never exceeded 2% for the first four natural frequencies.
Having established the validity of the above test fixtures, experiments were
later conducted on graphite epoxy lap-jointed beams. An impact hammer with an
attached force transducer was used to excite the specimen and the response was
measured by a mini-accelerometer (Bruel & Kjaer 4375). The frequency response
(ratio of acceleration to force signals) was immediately computed and recorded
on a FFT analyzer (Bruel & Kjaer 2032). The modal parameters were then
co;nputed using the Structural Measurement Systems (SMS) modal analysis
software.

Referring to Table 1 it is seen that there is good agreement between the
predicted values of natural frequencies and experimental data. The
percentage difference between the two results is in the range of 3 to 9%. The
small discrepancies in the two results can be attributed to several
assumptions made in the theoretical analysis. The major assumption is the use
of a constant value, with frequency of vibration, for the modulus of the
material. The measured damping ratio values in column 7 (Table 1) are higher
than the predicted values. This is presumably due to additional damping
contributions at the end supports in the experimental data. In order to
substantiate this, damping measurements were made on the same samples without
the end fixtures. Column 8 of Table 1 shows these results. In this case,
testin% was done by simply mounting the sample directly on a shaker using a
thin layer of wax. The resonance frequencies in this case were, of course,
somewhat different from those obtained previously using the simply-supported
boundary conditions. But, it is interesting to notice that the predicted
damping values in column 6 and the measured data in column 8 are of the same
order. Next, theoretical mode shape is compared with experimental mode shape
in Figure 9 for mode 1. There is excellent agreement between the two mode
shapes for the first mode as seen in Figure 9.

V. EXPERIMENTAL STUDY OF DAMPING OF BONDED DOUBLE-BUTT
JOINT SPECIMENS

This section contains the results of experiments conducted on beam and
double-butt-joint specimens in a vacuum chamber. Damping measurements were
made on the following ten graphite epoxy samples which were procured from
Sikorski Aircraft Company:

i) Five identical graphite epoxy beam specimens with a double-butt joint in
the middle as shown in Figure 10 and ii) Five identical graphite epoxy beam
specimens of dimensions as in I but with no joints.

In each of the above experiments, the specimen was mounted at its center
directly on the shaker using a thin layer of wax. This closely simulated
free-free boundary conditions at the edges. Only odd numbered modes were
excited, since the specimen was mounted at the cemter, which happens to be a
node point for all even numbered modes for free-free boundary conditions.
All the damping measurements wee made using the usual improved haif-power
points method as described in [13, 14].
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Much care was taken to maintain identical environmental conditions in all
of the above experiments. The damping measurements were made precisely by
zooming in on each mode thus increasing the frequency resolution of the
analyzer and minimizing the influnce of external noise.

First, measurements were made on the double-butt-jointed (DBJ) specimens.
In each case, the specimen with the shaker was kept inside the vacuum chamber
and damping ratios and resonance frequencies were measured for the firgt and
third mode of vibration, before the air was pumped out. Then the
measurements were repeated in a vacuum when the pressure inside the chamber
was about 0.1 mm of hg. The test temperature remained ambient in both cases.
Table 2 shows a summary of results for the five DBJ specimens tested under
vacuum conditions. No significant change in the values of the damping ratio
was noticed between the experiments conducted under normal atmospheric
pressure and in a vacuum. This difference in the values of the damping ratio
was in fact in the range of 0.01-0.02% during most of the trials.

From Table 2, it is seen that the average value of the damping ratio of
the DBJ specimen for the first mode is 0.114% and that for the third mode is
0.155%. The small discrepancies in the values of the resonance frequencies in
the five samples could be attributed to a) slight differences in their
dimension and/or b) slight differences in the exact location of the excitation
point during mounting.

The next set of experiments was conducted on the five beam specimens with
no joints (having the same dimensions as the DBJ samples) under identical
environmental conditions as maintained with the DBJ specimens. The results
are tabulated in Table 3. Here, it is seen that the beam has an average
value of the damping ratio of 0.107% for the first mode and 0.138% for the
third mode.

By comparing the results of Table 2 and 3, it is clear that, although the
damping ratio values for the jointed specimens appear somewhat higher than
those of the beam specimens, this difference is almost unnoticeable. This
observation is also true from the previous damping results of lap-jointed
specimens with free-free boundary conditions.

VI. CONCLUSIONS

The analytical model described in this paper can be used to predict the
natural frequencies and the modes shapes of a bonded lap joint system for free
vibration. The model can also be used to predict the system modal damping
values by properly choosing the material damping values of the beam and the
adhesive. Good agreement between numerical and experimental results for the
natural frequencies of the lap-jointed beam system was obtained. From the
numerical and experimental results obtained on lap-jointed beams, it is clear
that the natural frequencies of the system increase with an increase in the
length of overlap. From the experimental results of bonded lap-joint and
bonded butt-joint specimeng, the increase in the value of the damping ratio due
to the presence of bonded joints in the system does not appear to be
very significant. More work 1s, however, needed in this area to determine if
the bonded joints can be relied upon to increase the system damping capacity.
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Figure 1. Two Parallel Beams with a Lap Joint
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Figure 3. Free Body Diagram of a Differential Element in the Overlap
Region
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Figure 6.

Plot of Natural Frequency vs. Overlap Ratio
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Figure 7. Plot of Damping Ratio vs. Overlap Ratio
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Theoretical Mode Shapes for Mode 1
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Natural Frequency(Hz) Damping Ratio(%)

1 1 2
Theory  Expt. \Error Theory  Expt. Expt.
195.90 207.07 5 0.534 1.51 0.20
898.46 986.22 9 6.120 1.63 0.16
1864.49 1984.00 6 0.054 2,29 0.10
263,46 270,60 3 0.128 0.68 0.43
1148.41 1075.49 -6 0.147 1.43 0.12
2492.74 2684.37 7 0.200 0.83 0.15

1Usinq Simply~Supported boundary conditions

2Using Free Free boundary conditions.

Table 1.

Comparison of Theoretical

and Experimental Results of

Graphite Epoxy Lap Joint Systems
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Comparison of Theoretical and Experimental Mode Shapes for
Overlap Ratio = 0.2, Mode 1
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Table 2 .
Sample No.| Damping Ratio
Mode | LMode 3
(259 Hz) (1376 H2)
I 0.113% [0.144%
2 0.102% |0.126%
3 0.127% |0.169%
4 0.105% |0.174%
5 0.122% |[0.162%
Average | 0.114% [0.155%
Table 3.
Sample No.| Damping Ratio
Mode | |Mode 3
(337 Hz) (1779 H2)
| 0.108% [0.148%|
2 0.126% [0.149%
3 0.106% [0.123%
4 0.108% [0.122%
5 0.091% [0.149%
Average | 0.107% [0.138%
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Experimental Results of Double-Butt Jointed and Beam Specimens






