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ABSTRACT 

As one of the direct applications of complex damping theory, a useful 

property of structural damping is presented in this paper.- If a structure 

is linear and lightly damped, (i.e. the maximum damping ratio < 0 .. 3), then 

increased damping of the structure will result in proportional change in 

each modal damping ratio of the system. This property is particularly useful 

in damping re-design and damping measurement. A number of experimental 

and numerical exariples are also presented. 
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INTRODUCTION 

Quantities such as/ 1-~2
• and exp(-~w) , where~ is the damping ratio and 

w is the undamped natural frequency, are often seen in the studies of 

dYI}amic systems. Direct treatments of these quantities are difficult. 

Furthermore, they are too complicated to be used in practice. Most 

engineering applications typically use approximated values for these 

quantities. In Table 1 some possible approximations of~ and/ 1-~2 

together with the associated errors are given. 

Table 1 Damping ratios and the approximations 

approximation of~ approximation of 1N2 

~ sh(~) & error 1N2 1 & error 1-~2 /2 & error 

.001 1.0000005 0.% • 0. 9999995 1 Se- 5% .9999995 0.0% 

.01 .0100001 1.6e-5% 0.99995 1 Se- 3% .999995 0.0% 

.05 . 0500208 .042% 0.9987492 1 0. 125% .99875 -8e-5% 

. 1 .1001667 . 167% 0.9949874 1 0.501% .995 .00126% 

.2 .201336 .668% 0.9797959 1 2.020% .98 .0204% 

.25 .2526123 1.04% 0.9682458 1 3.175% .96875 .0504% 

.3 .3045202 1. 51% 0.9539392 1 6.060% .955 . 106% 

In this Table, the largest error appears when /N2 is approximated by 

unity. If the value of~ is less than 10%, then the error is no more than 

0.5%. If the value of~ is less than 30%, then this error is less than 5%. 

If we approximate 1 - ~2/2 by unity, then the error is no more than 

0. 106%. These errors are tolerable in most engineering applications. 

We define a structural system to be lightly damped if the absolute value 

of the damping ratio for the system is less than 30%. The damping of most 

civil engineering structures such as buildings, bridges, dams and towers is 

usually less than 10%. Metal structures have even less damping. Theoretically 

speaking, for lightly damped systems, we have the following equations 

/N2 ::::: 1 
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1N2 ~ 1 - ~2/ 2 

exp(~)~ 1 + ~ + ~
2

/ 2 

ch(~)~ 1 

sh(~)~~ 

This paper is limited to the discussion to such systems. 

COMPLEX DAMPING OF LIGHTLY DAMPED STRUCTURES 

(1) 

We first describe the complex damping ratios of lightly damped systems. 

Consider an MDOF system. For each virtual mode of the system, we can have 

an equation 
- 2 u +(a+ Jb) u + w u = 0 

n 
The characteristic equation of (2) is given by 

A
2 +(a+ Jb) A+ w2 = 0 

n 
with 

1 . 
A = 2 [-(a+jb) 

[- (a+Jb ) 
= "'n 2w 

n n 

= J w [ ( a+Jb J ) ± · ( 1 + ( a+JbJ )2 )1/2] 
n 2w · 2w 

n n 

Using (1) for lightly damped systems, we have 

« 1 

and 
( 1 + ( a+JbJ )2 )1/2 ~ 1 + _1_ ( a+Jb J )2 

2w 2 2w 
n n 

Without loss of generality, let us first talce the positive sign of 

( 1 + ( a+Jbj 
2w 

) 2 )1/2 

n 

in Equation (3). Then we have 

[ ( a+ Jb J) _1_ ( a+Jb J) 
2 

] A = J w + 1 + 
n 2w 2 2w 

n n 

By using (1), we have 
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(2) 

(3) 

(4) 

(5) 

(6) 



( a+jb J) + 1 + _1_ (a+jb J)2 ~ (Ja-b) 
2w 2 2w exp 2w 

n n n 
a -b 

= exp{ J2w ) exp{ 2w) 
n n 

n n n 

~ [ J-a- + ( 1 _ ( ~J )2)1/2]exp(~) 
2w 2w 2w 

n n n 
It follows that 

i\ = Jw [ J2- + ( a )2) 1/2 ]exp(±) 1 - ( -J 
n 2w 2w 2w 

n n n 
a -b 1 - ( a )2)1/2exp(±)w = - 2 exp(-

2
-)w + J{ 2w J W W n · 2w n 

n n n n 

Now talce the negative sign 
_ ( l + ( a+JbJ )2 )1/2 

2w 
n 

in Equation (3), we have 

._ a ( b) J{ 1 (~J)2)1/2exp{-b-)'·' ~ = - ~xp 2w w n - - 2w 2w .., n 
n n n n 

Combining Equations (7) and (8), we have 

i\ = _ a p{ +b) + J{ 1 _ (~J )2)1/2exp{ +b )w 
~x2w"'n- 2w 2w n 

n n n n 

By comparing the Equation (9) with the standard form of i\, 

i\ = - ~w ± JI 1-~
2 w 

we have 

and 

By using (1) 

Then 

a 
2w = ~ ( a = 2 ~ w 

n 

+b 
exp(2w)wn = w 

n 

b 
= l: ( b = 2 l: 

n 

n 

w ) 
n 

(7) 

(8) 

(9} 

(10) 

(11} 

In Equations (10) and (11) , a and bare associated with the 1th virtual 

mode of the system. By assigning to a and b some proper subscripts, we 
th have, for the i virtual mode of the system, . 
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a=21;w 
l l nl 

b=2C:w 
l l nl 

and 

;\ = - ~ exp(+c; ) w ± j/ 1-1;2 exp(+<: ) 
l l l nl l 

Sometimes, it is convenient to approximate;\ by 
l 

;\ = J w exp( I;± Jc;) 
l n 

w 
nl 

(12) 

(13a) 

(13b) 

th If we define the i complex damping ratio of a lightly damped system by 

d 
l 

~l = 2w = l;l ± J c;l 
nl 

then we can make the following statements. 

(14) 

Theorem 1. For lightly damped MDOF system, The complex damping 

coefficient of the i th virtual mode is 

dl = 2 ( I; l + j C: l ) W nl 

where the real part of the complex damping ratio, !;
1

, is the traditionally 
1defined "damping ratio", ~

1 
, i.e. 

real (d
1 

) 

= ------2 w 
nl 

= 

the imaginary part of the complex damping ratio, c;
1

, 

the 1change of undamped natural frequency w
1 

from the 

frequency w , i.e. 
nl w = exp(i; ) w . 

l l nl 

is associa'ted with 

zero-damping 

Theorem 1 indicates that, for a lightly damped system, we can treat the 

real and imaginary parts of the complex damping ratio (or complex damping 

coefficient) separately. The Theorem is useful in energy analysis of real 

damping and imaginary damping. 

THE LINEAR PROPERTY OF LIGIITLY DAMPED SYSTEMS 

For· lightly damped systems, the damped natural frequencies are 

approximately equal to the undamped natural frequencies. That is, if the 

value c; is sufficiently small, then 
1 

exp( c;) ~ 1 
l 

and w = exp(i;
1

) w ~ w 
l nl nl 
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Equation (15) says that, if two lightly damped systems, H and H , have 
1 2 

the same mass and stiffness distribution, then 

and 

A<U ~ A.<2> 
Im Im 

A< 1> 
iim 

i = 1, ... 2n 

(16) 

(17) 

To simplify the notations, we arrange the system eigenvalues in the 

following order 

n 

so that their corresponding natural frequencies satisfy 

w ~ w ~ . . . . . . ~ w 
1 2 n 

For proportional systems, we now have the following lemma. 

LelllllB 1. If a lightly damped system H has proportional damping C which 
C 

can be represented as the sum of two proportional damping C and C • lC 2C 

i.e. 
C= C + C 

C lC 2C 

then, for the subsystem H and H • we have 
lC 2C 

A = A(lC) + A(2C) 
Re Re Re 

i.e. 
A = A ( lC) + A (2C) i = 1, . .. 2n (18) 

iRe iRe lRe 
and 

A ~ 
A ( lC) 

~ 
A (2C) 

Im Im Im 

i.e. 
A 

iim 
~ A< 1> ~ 

iim 
A< 2) 

iim 
i = 1 , ... 2n (19) 

Lemma 1 says that, for a system with proportional damping, if it can 

be split into two subsystems both with proportional damping, then the 

imaginary part of the eigenvalues of the original system is the sum of the 

corresponding imaginary parts of the two subsystems. In other word, the 

damping ratios possess the following relationship 

~(C) = ~(lC) + ~(2C) 
l l l 

i = 1, ..... _2n (20) 

where the superscript (.) stands for the corresponding system(.). 

Lemma 1 can be used in damping identification. When dampers are added to 

a structure, the damping ratio of the structure is changed. By using 
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equations (18) and (19), we can determine the damping ratio of the 

modified structur~. In a later section, some examples will be given. 

Lemma 1 can be extended to systems with general non-proportional damping. 

This is described in the following Lemma. 

Lemma 2: For any lightly damped system with damping C, let H be the state 

matrix. If we separate the system into two subsystems HP and HN, then 

we have 

A 
Re 

1. e. i\ 
iRe 

and A :::: 
Im 

1. e. i\ :::: 
iim 

:::: A(P) 
Re 

:::: i\ ~ P) 
lRe 

A(P) :::: A(N) 
Im Im 

i\ ( P) :::: i\ ( N) 
iim iim 

i = 1, 2, ... 2n 

i = 1, 2, ... 2n 

(~1) 
i 

(22) 

This lemma is easily understood by noting that systems Hand HP have 

the identical damping ratios for their modes, and almost the same natural 

frequencies per each mode. 

Theorem 2. If the damping matrix C of a lightly damped system H 

can be represented by the sum of two matrices C
1
and C

2
, i.e. C • C

1
+ C

2 

then, for subsystems H and H , we have 
1 2 

A :::: ACll + A< 2 > 
Re Re Re 

1. e . i\ :::: i\ ( 1) 
+ 

i\ ( 2) 

iRe iRe \Re 
and A :::: A(l :::: A<2> 

i = 1, 2, ... , 2n. (23) 

Im Im Im 

1. e. i\ :::: i\ ( 1) :::: i\ ( 2) 
iim iim iim 

i = 1, 2, ... 2n (24) 

PROOF. 

Let cl = clP + clN and c2 = c2P + c2N' Then we have 

C =cl+ c2 = · c clP + c2P) + ( clN + c2N) 

According to Lemma 2, 

A
( lP + 2P) ( lP) 

A :::: = A + 
Re Re Re 
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The second half of the theorem ls obv ious. 

Corollary 1. If lightly damped systems H
1 

and H
2 

have same mass and 

stiffness dlstrlbutlon and damping matrix C
2 

of H
2 

ls (3 times of C
1 

of H
1

, 

(1.e. C
2
= (3 C

1
), t hen, for H

1 
and H

2
, we have 

A(l) ~ AC2) 

1. e. ;\, <ll ~ 
;\, (2) 

tlm 1Im 
1 = 1 , 2 , . . . , 2n. (25) 

A<2> ::: (3 A<U 
and Re Re 

1. e. ;\, < 2> ~ (3 ;\, < 1) 
1Re 1Re 

1 = 1 , 2, ... , 2n. ( 26) 

APPLICATIONS AND EXAMPLES 

Example I 

Figure 1 shows a structure wlth 3 DOF. Before dampers are added, the system 

has the following damping ratios 

Table 2 Damping Ratios of the Base Structure 

Mode I II III 

damping ratio . 0102 . 0087 . 0079 

By adding dampers to the base structure , the damping ratios are changed. 

Since the damping ratio of a damper ls directly related to the physical 

parameters (such as the loss modulus and the volume of damping material), 

the ratio can be calculated when these parameters are given. Suppose we 

have already obtained the corresponding damping ratios contributed by 

the dampers (first row of Table 3) . Now we would llke to have the damping 

ratios of the structure after the dampers are incorporated. It ls easy to 

see that the system ls still lightly damped. So from Theorem 2 we can 

calculate the damping ratios using the linear property. The results are 

shown ln the third row of Table 3. The last row in Table 3 gives of the 

experimental data to be directly compared with the calculated results. 
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• 

Table 3 Calculation of damping ratio 

mode I II III 

~add .275 .1010 .0744 

~base .0102 .0087 .0079 

calculated .2852 .1097 .07519 
~ 

tested .2970 .0877 .06200 
~ 

Example II 

The second example is concerned with the damping matrix decompositions. 

Thus far, there are three popular damping matrix decompositions. (1). The 

Clough-Penzien decomposition 

+ C 
N 

This decomposition gives a proportional damping matrix CP. Consequently 

all the damping ratios of the system can be calculated. 

(2). The pure proportional and non-proportional decomposition 

C = C + C 
d o 

This decomposition gives the pure non-proportional damping matrix C. 
0 

(3). The real-imaginary decomposition: 

C = 

C and the matrix C 
r l 

This decomposition gives the which 

provide the real part and the imaginary part of the complex damping ratio 

respectively. 

Although decomposition (3) is in great use when dealing with energy 

analysis, its computations are intensive. With the help of Theorem 2 

we can use the formula 

C = C + C 
d o 

to approximate C = C + C. This is a simple approach to obtain C 
r l 
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matrix. 

Suppose we have the following M-C-K system, 

K = I, [-~ C = 
-1 
0 

Since 

CK = 

-1 
3 

-1 
-1 

-1 
-1 

4 
-2 

[ 

408 
-324 
-132 

48 

-~ l -2 
5 

-144 
544 

-440 
40 

and K = 

-92 
-352 

992 
-732 

92 
0 

-552 
644 

[ 

180 
-48 

0 
0 

l 

-48 
136 
-88 

0 

0 
-88 
180 
-92 

-9~ ]· 
92 

we know that the system is non-proportionally damped. Using the pure 

proportional decomposition, we have 

[ 
3.8507 -.2994 .0301 - . 3307 

l C 
-.2944 3.6314 -1. 1827 -.5486 = 

d .0301 -1. 1827 3.6328 -1. 3303 

and -.3307 - . 5486 -1. 3303 2.8851 

r-1. 8507 
-.7006 -1.0301 .3307 

l C 
-.7006 - . 6314 . 1827 -.4514 = 

0 -1. 0301 .1827 . 3672 -.6697 
.3307 -.4514 -.6697 2.1149 

The eigenvalues of the system are given by 

-2.5182 ± 16.5207J 

-1. 8893 ± 13.6937J 

-1. 9617 ± 9.8809J 

-0.6307 ± 3.0123J 

their corresponding complex damping ratios are 

.1507 ± .0098J 

.1367 ± .0066J 

.1947 ± .0063J 

.2050 ± .OlOOJ 

The maximum damping ratio is about 21¾. According to Corollary 1, if the 

damping matrix is reduced to one tenth of the original value, then the 

damping ratios will be approximately decreased to ten times smaller. 

Therefore the maximum dampi ng ratio is about 2¾. 

In Table 4 we listed the results of ~(H ) and ~(H ) from C - C 
co co d o 

decomposition as well as the results from the system of C/10 damping. 
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Table 4 A(H ) and ~(H 
co co 

Original system System with C/10 

.0179 ± 16.7148J .0000 ± 16.8771J r g -.0323 ± 13.8242J .0000 ± 13.9147J e A n 
V .0148 ± 10.0737J .0000 ± 10.0098J a 
l u -.0004 ± 3.0769J .0000 ± 3.0468j e 

C d 1 X le-4 x 
0 a m m .1507 ± .0098J -.0100 ± .9811J p p 
l i e n .1367 ± .0066J .0216 ± .6170J X g 

r 
t .1947 ± .0063J -.0136 ± .6156J 
l 
0 

~ 
.2050 ± .0100J .0012 ± .9824J 

The numerical results in Table 4 show that the approximation is 

satisfactory. This is particularly obvious for the small damping ratios. 

CONCLUDING REMARKS 

Most engineering structures can be classified as lightly damped systems. 

Dynamic analyses of these structures could be different from and simpler 

than those of heavily damped systems. The nice linear property of t~e 

lightly damped systems presented in this paper is such an example. A 

further appl_ication of this property can be found in damper utilization 

design (see Liang et al 1991). 
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