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ABSTRACT

A non-magnetic metal moving through a region of non-uniform magnetic
field experiences a drag force. For some simple, one-dimensional or axi-
symmetric cases, it is possible to obtain an exact analytical solution. For
more complex geometries, finite element (FE) methods are the most practical
means of calculating the force between a configuration of magnets and a
moving conductor. This paper describes how FE calculations can be performed
and shows that good agreement can be obtained between FE calculations and
the measured response. When a conducting plate, bar or rod is constrained
to move near certain configurations of high energy density, permanent
magnets, a large drag force proportional to the relative velocity is
produced. This drag force can be used to damp mechanical motion. This
paper presents several candidate magnet-conductor configurations that could
be used as vibration damper assemblies. The next step is to design damper
assemblies for particular modes of a specific structure and then to compare
the calculated with the measured performance of these dampers.

* This work was supported in part by the Air Force Office of Scilentific
Research through the Small Business Innovative Research program.
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1.0 INTRODUCTION

The reduction or elimination of wmanted structural motion is an ever
present problem in mechanical structures. Many very clever and effective
solutions have been developed to address vibration damping wder a wide
variety of circumstances. This paper shows that electromagnetic damping as
described herein should became one of the candidate technologies that is
routinely considered for adding passive damping to structures. Several
modifications of the passive damping approaches discussed in this paper are
also cardidates for combined active and passive dampers but these are not
discussed here.

2.0 GENERAL BACKGROUND THEORY

Currents are induced to flow in any conductor moving through a region
of localized magnetic field; these currents and fields obey Maxwell's

equations 58
and
VaH = I (2)

For non-magnetic metals such as aluminum, the appropriate constitutive
equations for the moving conductor are
T = ocE + ovaB

-

(3)

and
B = uH (4)
where v(r,t) is the velocity of the conductor relative to the magnetic field
B(r,t), o is the electrical conductivity and A is the magnetic permeability.
Following standard convention, solutions are developed in terms of a vector
and scalar potential such that

- _92A
E= -3¢ + V¢ (5)
§ = vV A A (6)
Substituting Equations (5§) and (6) into Equation (3) gives
| oA
;)_':0' ‘-é-—t— -+ !I\v/\é\ — G’V¢ (7)

Under most conditions at low frequencies, the time derivative of A will be
much smaller than the velocity term and one can write

T = TvaVY aAaA - OV (8)

With no loss of generality for 2D current flow, one can take 4 = (0,0,A) and
(9A/9z) = 0. Consequently,
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One is free to chose the gauge such that V.A = 0. Let us consider the
special case of a conducting plate moving in the y-direction (therefore
v = (0,V,0)) with the magnetic field confined to the x-y plane as required
by Equation (9). Combining Equations (2), (4), (6) and (8) gives

L %A [ 92A oA
—_— 2 . LA 4 gver - goV@=0 (0
Mex: T Wy >y ¢ 49
Solving Egquation (10) gives the magnetic field and its gradients (and hence
the current density induced in the conductor).

The total power dissipated by the moving conductor is given by
*
P- X S J.J dxdydsy (11)

- g conductov
The equations developed above neglect any skin depth effects. If conditions
are such that motion causes a significant screening of the inside of the
conductor, then the term in 9A/dt in Equation (7) must be included. The
solution is straightforward but considerably more camplex than the outlined
given above.

3.0 FINITE ELEMENT CALCULATIONS

The standard starting point for electromagnetic finite element (FE)
calculations is Equation (10) with the velocity dependent term equal to
zero. It is well known that the solution of a partial differential equation
(PDE) containing a term like (v éA/ay) such as in Equation (10) is difficult
to solve using mumerical procedures because there is a tendency to generate
oscillatory solutions.

Variational calculus shows that, if a functional F' satisfies the
equation

ééx[b(aa:/ax\] M .SB_)'[ B(a:/;/ay)] B %%': o(12)

then FI is a solution to the PDE given by Equation (10). With some
considerable efforts, we have shown that

2 oA \?
F'= e:xp(—,z,«o-yv)l:(%—-f‘C + (""ay> +ZA0‘V¢1 (13)
reproduces Equation (10) and hence can be used in the Ritz method for
obtaining a FE solution to Equation (10).

Using the functional given by Equation (13), we have developed a FE
solution to Equation (10). One particular case is shown in Figure 1 where
an aluminum plate is moving with a velocity of 1 m/sec between the poles of
a magnet that produces a maximum field of about 1 T in the gap region. It
is clear that the magnetic field lines within the plate are altered
substantially by current induced with the plate when it is moving.
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Figure 1 A finite element calculation showing the magnetic field
configuration due to a non-magnetic conductor moving in a magnetic field.
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Figure 2 A pictorial illustration of the experimental arrangement used to
determine the viscous drag coefficient of a conductor (Al block) moving
within a reasonably localized field region, B2 . A current I (drive) through
a coil that passes through a region, B,, of reasonably constant field
produces a well defined driving force on the rigid system shown in the
figure. The frequency of the drive current is changed in order to map out
response curves. The velocity amplitude of the response is determined by the
‘voltage induced in a pickup coil moving in region, Biz. This coil is
positioned in the field so that the pickup voltage is proportional to the
horizontal wvelocity of the rigid system. Naturally, this voltage is also

proportional to the frequency.
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4.0 COMPARISON WITH EXPERIMENTS

One of the most widely studied arnd easily understood mechanical systems
is the damped forced oscillator. This system, shown pictorially in
Figure 2, was chosen for a dquantitative evaluation of passive
electromagnetic damping. Aluminum plates up to 6 mm thick were placed as
shown at the end of a long string to form a pendulum. For the case
described here, this pendulum had a frequency of 1.06 Hz. The Al plate
could be driven by a linear motor shown pictorially as B, on the left hand
side in Figure 2. The horizontal velocity produced by this driving force
was measured using a calibrated electromagnetic wvelocity sensor shown
pictorially on the right hand side in Figure 2.

This geametry does not satisfy all of the constraints imposed on the FE
solution, namely the magnetic field in the z~direction (vertical direction
in Figure 2) is non-zero in some regions. We handled this by first
calculating the damping per unit volume assuming the plate to be infinite in
extent and the magnetic field to be constant within the rectangular region
defined by the dotted lines in Figure 2. The actual damping was calculated
by using the calculated damping per unit volume and the actual wvolume of
conductor over which there existed a magnetic field greater than 0.7 of the
maximum gap field. ,

5.0 A DRIVEN DAMPED HARMONIC SYSTEM

A driven, damped, harmonic system is described by the equation

Mx +2bx + wix = P sin(wt) (14)
where M is the mass of the moving system, P is the peak driving force, b is

the damping or drag coefficient, W, is the system resonant frequency. The
steady state solution is given by

P/ M
X, = 2 2 |V
The experimental setup shown in Figure 2 gives directly the peak velocity.

The damping coefficient, b, can be obtained directly from these
measurements. To do this, let us rewrite Equation (15) as

CEAL =<-"§ Wl -]+ (M)

. -2 292
Plotting (w X.) = against w? L1 = (Wo )]} one obtatns a straight
line with slope (M/I-")z and intercept of (2Mb/P)* from which one obtains b.
It is also customary to define a damping constant k = 2Mb,

(15)
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Figure 3 The velocity amplitude as a function of freguency obtained using
the experimental setup shown in Fiqure 2.
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Figure 4 This shows experimental data plotted as described in the text; from
the slope and vertical intercept, one obtains the experimental damping
constant. The central field, B,, for a 0.5 inch square pole is about 1.5 T.
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Figure 3 shows the velocity amplitude as a function of frequency,
f = W2 for a particular value of magnetic field. When plotted as Equation
(16), one obtains the graph shown in Figure 4. From this and many similar
plots, one finds that, as expected, the power dissipated by electramagnetic
damping is quadratic in both velocity and magnetic field. At the highest
field of 1.5 T where we have the greatest accuracy in our measurements, the
damping factors are

b(EXP) = (101 + 6) /sec; k(EXP) = (21 %+ 1) kg/sec
A FE calculation performed as described above for this same case yields
b(FE) = 72 /sec ; k(FE) = 15 kg/sec

We regard this as good quantitative agreement. Of course, better agreement
could be obtained using a 3D FE code but this would be a great deal more
time consuming to develop. A single point calibration that normalized the
calculated magnetic field to the measured value in the gap would also reduce
the difference between calculated and measured values for the damping.

6.0 POTENTIAL DAMPER CONFIGURATIONS

Although our example of a pendulun is an excellent case for
demonstrating that there is good quantitative agreement between FE
calculations and the measured behavior of a damped harmonic system, the
magnet and conductor configuration that was used is not very practical. For
many applications, we expect that it will be most practical to have magnets
near only one surface; that is, it will not generally be practical to place
the moving conductor within the gap of a permanent magnet. Figure 5 shows
one magnet configuration that provides good damping. An array of
rectangular permanent magnets is placed with alternating magnet poles
adjacent to each other as shown in Figure 5. This magnet stack is attached
rigidly to some portion of the structure that will move relative to the
conductor that is adjacent to the magnet assembly. Damping results when the
magnet assembly moves relative to the conductor. The dimension of the
magnet pole height shown in Figure 5 determines the magnetic field 1liftoff
coefficient or how rapidly the magnetic field decreases with distance form
the pole face. This, in turn, determines the thickness and closeness of
conducting material that should be used in the damper. In general, a
damping constant of about 20000 kg/sec/m? of pole area can be obtained for
each 1 mm in thickness of Al conducting material. Clearly, for the greatest
damping, such a damper should be placed between two points on a structure
having the largest relative velocity.

Figure 6 shows an inertial damper that is a modified version of the
damper in Figure 5. The non-magnetic springs keep the damper somewhat
centered. When the structure to which this damper is attached is
accelerated, the magnet assembly will move relative to the support Al tube.
Energy will be dissipated as long as this relative motion exists.
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Figure 5 An electromagnetic damper that is analogous to a viscoelastic
extensional shear damper. The magnet assembly is attached to one end of a
tubular support strut by a very light, thin walled tube (it need only support
the viscous drag or damping force between the magnets and the alumimm
strut). Relative motion between the magnet assembly and aluminum strut
results when the strut is lengthened or compressed due to an applied load.
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Figure 6 An inertial electromagnetic damper that operates by relative
motion between the magnet assembly and the aluminmum support tube. Spring
constants are chosen so that the magnet assembly-spring resonant frequency is
somewhat lower than the frequencies one wishes to damp. Under this
condition, any acceleration of the structure (which is connected directly to
the aluminum support tube) will produce relative motion between the magnet
and aluminum tube. This damper is best substituted for a load bearing member

although it can also be placed in parallel with structural members.
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A damper assembly capable of withstanding very large loads and
providing a large damping constant is shown in Figure 7.

7.0 ADDITIONAL CONSIDERATIONS

Like standard viscous damping, electromagnetic damping results from a
force that is velocity dependent. This raises questions about the
effectiveness of this damping at very low velocity. To evaluate the low
velocity behavior in a qualitative manner, we constructed a simple loaded
cantilever beam having an oscillation period of about 2 seconds. A stiff
plate attached to the free end of the beam formed the moving plate of an
electromagnetic damper assembly. This plate moved between the poles of an
electromagnet having a pole area of 0.5 square inches and a gap field that
could be as large as 1.8 T. A velocity sensor similar to the one shown in
Figure 2 was used to measure the velocity of the free end of the beanm.
Figure 8 shows a sequence of velocity-time waveforms immediately after the
beam was deflected 1 om from its equilibrium position. Figure (8a) shows
the behavior for zero applied field (about 0.05 T residual field). At a
field of 0.67 T, Figure (8d) shows that one gets the most rapid return to
equilibrium. Figure (8e) is very near the condition of critical damping
while Figures (8f) and (8g) show that damping beyond critical damping can be
achieved. Clearly, damping exists, as expected, down to the smallest
measurable velocities.

8.0 SUMMARY AND CONCLUSIONS

In this paper, we have shown that the damping that results from a
conducting, non-magnetic plate moving near the pole of a permanent magnet
can be understood in a very guantitative manner. In addition, the expected
quadratic dependence upon relative velocity (between the plate and magnet)
and magnetic field has been demonstrated. Several magnet geometries that
are adaptable to practical damper configurations have been suggested. To
date, no quantitative measurements on any of these assemblies have been
made.

Electromagnetic dampers have some advantages over other means that have
been used to achieve damping. Since the energy is dissipated within an
excellent thermal conductor, there is no problem in removing heat when large
average powers are involved. Nearly all the temperature dependence arises
from the electrical conductivity (see Equation (11)). This is a very mild
temperature dependence compared to that encountered in using viscoelastic
materials (VEMs). A single damper assembly could operate very well over a
temperature range of several hundred Kelvin. Behavior of electromagnetic
dampers (EDs) is extremely predictable under a wide variety of conditions.
EDs can tolerate operating at elevated temperatures (in some cases, up to
about 1000 K) and in very high radiation (neutron, gamma or X-ray) fluxes.

Although the detailed description of EDs given in this paper is only
applicable at relatively low frequencies (say below 100 Hz), the basic
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Figure 7 An electromagnetic damper that can produce large damping forces and
handle large transient or steady-state loads.

Figure 8 The output of a velocity sensor placed on the end of a vibrating,
cantilever beam: (a) the damper moving in the residual field of the magnet,
about 0.05 kG; (b) a damper magnetic field of 2.8 kG; (c) a damper field of
5.1 kG; (d) a damper field of 6.7 kG; (e) a damper field of 8.1 kG; (f) a
damper field of 9.6 kG and (g) a damper field of 11.5 kG.
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physics described by Equations (1) to (8) is valid up to several hundred
megahertz. The primary effect of higher frequencies is to reduce the
effective volume of conductor that is contributing to the damping. This can
be overcome to some extent by using different conductor configurations.
Basically, we see no problem in realizing damping up to many megahertz.

Another advantage of ED is that there is absolutely no hysteresis in
either the amplitude or time behavior.

Varying the thickness of the conductor gives some degree of external
control over the damper.

It should also be easy to couple the passive discussed in this paper
with active control. For example, it is possible to embed current loops in
(but insulated from) the conducting plate. Displacement or velocity sensors
can be used in the conventional manner to feed current through these control
loops to cancel umwanted motion. In fact, an inductive element attached
to either the magnet or plate assembly can be used as the velocity sensor in
this feedback loop because the time dependent fields that are produced
external (or internal) to the conductor depend quadratically upon the plate
velocity. These same current loops might also be used to extract small
amounts of standby electrical power from the ambient mechanical noise. This
standby power could be used to energize local field (velocity) sensors and
thereby produce signals that could be used by the control system.

At low velocity, there can be very poor impedance matching in the sense
that much more force is available for damping than is actually being used.

When this is the case, ED will be improved by using a mechanical means of
amplifying the displacement (velocity).
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