AFFDL-TR-66-80

A SURVEY OF ANALYSIS OF SHELLS BY
THE DISPLACEMENT METHOD

R.E. Jones*
D.R, Strome*

The Boeing Company, Washington’

This paper presents a study of the current state of the art in the
analysis of etnatic sheils by the direct stiffness method. The con-
siderations deal chiefly with linear, static problems, The capabilities
and weaknesses of the conical shell element and a newly developed
curved element are studied in depth, Criteria are given which predict
the necessary smallness of elements required to obtain shell siress
analyses with acceptable levels of accuracy. The applicability of the
currenl anaiysis methods to vibrations and to nonlinear problems is
discussed. The development of a polygonal curved shell element, which
is the major gap in the current setof analysis tools, is discussed briefly.

INTRODUC TION

This paper is concerned withthe analysis of shells and shell structures by the displacement,
or direct stiffness, method, The discussions are limitedto elastic shells and deal chiefly with
linear, static problems, Shell vibrations and geometrically nonlinear behavior are mentioned
briefly. The paper is inpartasurveyof existing analysis methods, and in part a study in depth
of two of these methods, the latter for the purpose of illustrating some of the important
features of finite element shell analysis. The weaknesses of current methods and the gaps in the
state of the art are discussed.

There are currently three major approaches to shell analysis by the displacement method.
in the order of their introduction, they make use of (a) triangular or quadrilateral flat plate
elements, (b) the conical shell element, and (c) the axisymmetric solid element, The first
approach was given by Greene, Strome, and Weikel, (Reference 1), With it, the shell is re-
placed by an assemblage of flat plates which are individually of triangular or quadrilateral
shape, Figure 1 shows such an idealization of a shell. Each plate element is connected to
those surrounding it and is permitted to deform both in bending and in a plane stress state.
Continuity of displacement and slope between neighboring elements is maintained along their
common boundaries, The element used by these authors is in reality a sandwich plate element
whose cover sheets are membranes and whose core resist only transverse shear.

The second approach is restricted to axisymmetric shells, and utilizes an element which
is a frustum of a cone, The shell is represented by a stacked assemblage of these conical
elements such as that shown in Figure 2, The conical element is permitted to deform in the
membrane and bending states, and continuity of displacement and slope is enforced on the
nodal circles along which neighboring elements are connected. The first use of the conical
clement was by Meyer and Harmon (Reference 2), These authors used for the deformation
state of the shell element the analytical solution of edge loaded conical shells, and they
restricted their considerations to edge loading problems, Their treatment made use of the
force rather than the displacement method of finite element analysis. Shortly thereafter,
Grafton and Strome, {Reference 3), presented the conical element within the framework of the
direct stiffness method. They used for the displacement state of the shell element simple
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polynomial forms, which, as will be discussed later, is in agreement with the basic philosophy
of the direct stiffness method. This formulation has found much use in practical shell analysis
problems. In their derivation, Grafton and Strome approximated the integral of the strain
energy of the sheli, and subsequent work has shown this approximation to reduce the accuracy
of the method. The next use of the conical elem:nt was by Popov, Penzien, and Lu, (Ref-
crence 4), These authors made use of the analytical solution of edge loaded conical shells, as
did Meyer and Harmon, bul presented a displacement rather than a force method formulation,
They applied the method to problems other than those of edge loaded shells. In these problems,
the use of the analytical solutions for the displacement state departs from the basic philosophy
of the direct stiffness method. and inferior results may be expected, All of the above mentioned
authors censidered the case ¢f axisymmetrical deformations. The extension to unsymmetrical
deformations, by means of Fourier expansion, was givenby Percy, Fian, Klein, and Navaratna,
(Reference 5), These authors used the polynomial displacement forms of Grafton and Strome
and removed the strain energy integral approximation of the latter, demonstrating improved
aceuracy as ¢ result, They also studied the effect of including higher order polynomials in the
displacement forms. The resuit of this is to causé a likenéss between the Grafton and Strome
type of conical element formulation and that of Harmon and Meyers, and Popov, et al, For
edge loading problems, Percy, et al, demonstrated anincreased accuracy for the case of higher
order polynomials, For other types of problems, however, as menticned above, delerioration
of the accuracy may be expected,

The third major method of shell analysis appliesto axisymmetric shells and is of use prin-
cipally for thick shells or in regions of thin shells where junctures between adjoiring shell
structures require a congiderable thickening of the shell wall. The method utilizes a ring
element of triangular cross section which herein will be ealled the ring-wedge element, Fig-
ure 3 shows the element form and the representation of an axisymrnetric solid, here a shell
juncture region, by an assembalge of elements, The sectioned view is customarily used for
this purpose. The method was first published by Clough and Rashio, (Reference 6), for axisym-
meatrical deformations, and was extended to the unsymmetrical case by Wilson, (Reference 7).
The ring~wedge element has found considerable use in practical applications,

A fourth method has been developed, (Reference 8), in order to remedy difficulties encounter-
ed with the conical element. This method ntilizes a double curved element in place of the
singly curved conical element, With it, a shell is represented by an agssemblage of curved
elements in which the slope as well as the coordinates of the actual shell surface are matched
by those of the assemblage at the nodal circles, The representation of an axisymmetrical
shell by an assemblage of such elements is as shown in {Figure 2) except that the shell
elements are curved in the meridional di rection, The results of caleulations made with the new
efement will be discussed in this paper. ‘ '

In order to set the stage forlater discussions, it is necessary at this time to consider some
conceptuul points relative to the analysis of shells by the direct stiffness method, The basis of
this discussion arises in part from the fact that the direct stiffness method is closely related
fo, and in most cases is. the meiliod of stationary potential energy, i.e., the Ritz method.
To illustrate this point, consider the plane stress problem, Customarily, the plane structure,
or plate. is represented by an asscmblage of triangular elements. Each element is permitted
to deform such that euch of the three strains in its plane is constant over the element. As a
result of this, its sides remainstraight lines, and continuity of deflection is exactly preserved,
Consequently, the total deformation of the assemblage is the sum of a sel of continous
locatized deformation states. cach of which is, within the triangular regions, described by
constant straing. This situation is completely within the scheme of the Ritz method, The
noclant conclusion which muay be drawn fron this is that there is actually no approximuation
ot the stracture itself “iooud there is only approximation of its displacements, In sabscquent
Gioctissions hevein we wild distinguish between approximation of the structure and of its
Guspheenient state, b Jre £ s of chells this has imporiant consequences,
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A second conceptual point of the direct stiffness method concerns the displacement ap-~
proximation itself, The basicidea of the method is that through the use of many smail elements
it will be possible to represent complicated total structure deformations with very simple
element deformations, e.g., the constant strains used inthe plane stress problem, Experience
has upheld this viewpoint, and, in fact, in some instances where complicated element dis-
placements have been used, numerical results of low accuracy have been obtained.

This condition has always occurred when the structure itself, in addition to its deformation
state, has been approximated. The approximation of the structure has the effect of dispropor-
tionately emphasizing the participation of the complicated deformation forms in the determi-
nation of problem solutions. In the direct stiffness method, approximation of the structure
should be avoided if at all possible. If this is not possible, care should be taken to choose
displacement states of the simplest obtainable forms,

Since the direct stiffness method is in reality an energy method, it is necessary to evaluate
the loadings to be used in calculations by means of the energy principle. That is, generalized
loads based on the approximate deformation shapes must be determined. The often used load-
ings based on the simple replacement of a distributed load over a small region by an
‘tequivalent’” concentrated force at the center of the.region are not satisfactory in many
problems, Reference 9 discusses the determination and use of generalized loads in the
direct stiffness method.

THE CONICAL ELEMENT

The discussion of the capabilities of the various shell elements begins most conveniently
with the conical elements, A consideration in some depth of this element sheds light on the
whole subject of stiffness method shell analysis, There are many numerical results available
from which to draw conclusions, and the element has been given much theoretical consideration,
References 2 through 5. Moreover, the simplicity of application of the Grafton and Strome,
and Percy, et al, type of conical element makes it important to deduce under what cir-
cumstances it can be used with satisfactory results,

The calculation of a doubly curved shell, such as a spherical or elliptical shell, by means
of the representation by an assemblage of chnical elements involves in general both of the
approximations discussed in the previous section. This is a clear case in which the structure
itself is approximated. In the conical element of References 3 and 5 the displacement state
is also approximated, In the element of References 2 and 4 the displacements are exact for
the case of edge loaded conical elements but approximale for other cases. Therefore, In the
application of the conical shell element to a general class of problems, what is actually being
computed is an approximate solution to the problem of an agsemblage of conical frustums.
The ability of this solution to yield an estimate of the stresses and deformations of the doubly
curved shell then depends on two factors: (1) the similarity of behavior of the conical as-
semblage to that of the doubly curved shell, and (2) the accuracy lost in the calculation of the
conicil assemblage due to the approximation of its dispiacement functions. These two items
prompt the question of under what conditions the approximate solution to the conical as-
semblage problem, using the polynomial displacement forms of References 3 and 5, might be
4 belter estimate of the behavior of a doubly curved shell than would be a solution of the
conical assemblage using the exact displacement functions of References 2 and 4, The total
answer o this question can only be obtained through the numerical solution of many problems
s+ which exact solutions are available. Some of these results will be given herein. Before
procecding to these results, however, it is first useful to examine briefly and in a qualitative
way the comparative behavior to be expected from a conical assembiage and a doubly curved
shell.

The similarity of behavior of a conical assemblage and a doubly curved shell is considered
in this paper for three types of problems: (1) the edge bending or influence coefficient problem,
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(2) the predominately membrane problem, and (3) problems in which the membrane and
bending behaviors are inter-related parls of a total solution, The following discussions will
consider the problems in this order, It is recalled that the local bending behavior of a doubly
curved shell of revolution is, in analytical solutions, often approximated by that of the tangent
conical shell. This result follows from the customary procedure of solving edge bending
plroblems by retaining only the highest derivatives in the pertinent differential equations,
For nonshallow sheils and shells with large radius to thickness ratios, results obtained in this
way have been shown to be accurate, (Reference 10). For shallow shelis and sheils with small
radius to thickness ratios, it appears that this would again be true. However, o the writers’
knowledge, this has not been demonstrated.* Based on these facts concerning analytical
solutions, it appears that for thin, nonshallow shells, a conical assemblage will behave like
the corresponding doubly curved shell, and the conical element ideualization should yield excel~
lent numerical resuits. For shailow shelis, or shells with small radius to thickness ratios
the accuracy of the conical element remains to be established, In both cases, the necessary
smalilness of conical elements required to achieve a stated accuracy requirement needs to be
determined. For icadings of the type which produce large membrane stresses, in particular
the meridional stress, we can reason that the behavior of a conical assemblage departs
significantiy from that of a doubly curved shell, The prominence of the meridional radius of
curvature in the analytical membrane solution of such problems motivates this view.

To iHustrate the behavior in question, consider the membrane solution of a preasure loaded
conical shell, Both the normal and the meridional displacements are found w depend on the
included angle of the cone and to vary as the square of the meridional length measured from
the apex. Consider a two element conical assemblage such as that shown in Figure 4. The ele-
ments have different distances from their respective apexes and different cone angles, and
hence in a membrane state ihey have different displacements and slopes at the common nodal
circle. The deflections are shown schematically by the solid curves in the figure. The
dominating influence in this problem is dué to the nearly membrane forces exerted by each
element on the other, These are indicated by the arrows shown superimposed on the elements
in the figure, it is seen that each force is directed more inward than an actual membrane
force on the element would be. Consequently, each element deflects inward relative to the
membrane displacement state near the nodal circle, This is indicated by the dotted curves
in the figure. As a result, there is a large incompatibility of slope between the elements, re-
sulting in bending moments as shown in the figure, We conclude that for pressure loaded
doubly curved shells of revolution, solutions obtained by means of the conical element will
yleld erroneous meridional moments, It is not expected that the deflections predicted by the
conical element will be as seriously in error as the moments, but it remains to be establish-
ed whether their accuracy will in fact be satisfactory. Numerical results given later will
show numerical values of these quantities and indicate the range of validity of solutions
obtained by the conical element idealization, We proceed now to detailed discussions of the two
conical element formulations, thoseof (1) Graftonand Strome, and Percy, et al, and (2) Meyer
and Harmon, and Popov, et al, beginning with the latter,

1. The Meyer and Harmon, and Popov et al, Conical Element,

In the {rrmulations of these authors the conical shell element is permitted to deform ac-
cording to the mathematical functions which are the analytical solutions of the differential
equations of conical shells, The particular solutions used were derived for the conical
frustum subjected to loads and moments applied to its edges, Consequently the stiffness
method solution based on these shape functions is exactly that of a conical assemblage loaded

*It has been shown in Reference 10, that the approximate edge bending solution for conical
shells, the Geckeler solution (Reference 11), is not a good approximation for shallow double
curved shells,
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at the nodal circles. This solution differs from that of a conical assemblage loaded by dis-
tributed loads such as pressurization, since the authors did not make use of the correct
generalized loads corresponding to their displacement functions. Therefore their solutions
yield a double approximation, in which the first is the approximation of a conical assemblage
to a doubly curved shell, and the second is the approximation that all loads are represented
by concentrated nodal circle loads,

For the edge bending problem, in which the Drading in question is attually applied on a nodal
circle, the second approximation becomes exact, and we have only to consider the ap-
proximation of the shell itself In the nonshallow region and when the radius fo thickness
ratio is large, earlier discussions suggest that this conical element should yield excellent
results provided only that small enough clements are used that the clements are close to
being tangent to the shell surface, Reference 2 presents numerical results in which relatively
iurge conical elements were used and excellent influence coefficient data obtained. In the shal-
tow region and for small radius to thickness ratios the suitability of 4 conical assemblage as
well as the necessary smallness of the elements is in question, The data shown in Reference 2
do not adequately cover this matter since, following Reference 10, the examples given are
not in the pertinent range of geometries,

We next consider the essentially membrane solution to a pressure load problem. In order
o discuss this problem we present results which are nearly equivalent to those which would
result from the conical element formulation of Popov, et al, but have been computed by a
different approach. What has been done here is illustrated in Figure 5, A doubly curved shell
is approximated by a coarse conical element representation, in which each large element is
further subdivided into six smaller conical elements. Each conical element is treated by the
formulation of References 3 and 5*. The freedom of deformation afforded the large conical
elements due to their further subdivision causes the solution obtained here to be a close
approximation the the correct solution of a conical assemblage problem, provided the correct
generalized loads are used. We present for comparison also the solutions resulting when the
foads are applied only at the nodal circles joining the large conical pieces. This solution should
be a close approximation to one resulting from the formulation of Popov, et al,

The comparison of these results is shown in Figures 6 and 7, The problem in question is a
hemisphere loaded by internal pressure, The boundary conditions at the base are as shown in
the diagram; note that the rotationis constrained to vanish. The dashed curve in Figure 6 shows
the exact deflection of the spherical shell which corresponds to this conical element as-
semblage. 1t is seen that the two deflection solutions oscillate about the spherical shell solution
and tend to be mirror images of each other, In the solution corresponding to static equivalent
loads an accumulating error in the meridional displacement distorts the mirror image
tendency and necessitates an early termination of the deflection plot. The four conical
elements in this example are so large that accurate results cannot be expected, even for the
deflections, The example was chosen to illustrate the nature of the solution rather than the
level of accuracy inherent in the deflection predictions of the Popov, et al, conical element.
With smaller elements, for these boundary conditions, the deflection solution should become
quite accurate. The more critical item in this example is illustrated in Figure 7. Here the
meridional moments are shown, and the edge bending behavior induced by the junctures
between the large conical elements is clearly seen. The mirror image tendency is pronounced
in this case, illustrating the differences in solutions to be expected from the use of generalized
and static equivalent loadings. It will be seen subsequently that these moments are unac-
ceptably large and do not reduce to acceptable values even for small element sizes. In this
example the bending fiber stress is about 21,000 psi, compared to a membrane stress of

*The corrected strain energy integration is used here and in all other applications of this
element in this paper,
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5000 psi. Comparisons of these resulis with those given in Reference 4 shows that here the
meridional moments are somewhat smaller than those whichwould be predicted by the method
of Reference 4, This is due to the representation here of the large conical elements by only
six subelements, In Reference 4, on the other hand, the behavior of the large conical elements
would be represented exactly,

For the case in which the slope is unconstrained at the base of the shell there occur two
changes ‘n the results discussed above. First, the moment at the base of the shell necessarily
vianishes. In the interior of the shell, however, the moments are unchanged from the values
shown in Figure 7. Second, the displacement at the base of the shell increages by more than
an order of magnitude,

It is found that only for very fine idealizations does the deflection error at the base of
such a shell, where the rotation is unconstrained, reduce to a tolerable level. This problem
is representative of the important practical one in which an engineering design has been per-
formed to obtain as nearly as possible a membrane state of stress, and the stress analysis
is being conducted to determine the fiber stresses and deflections of the structure, The failure
of this conical element to handle this problem adequately is a serious flaw in the method. It
will be seen that this failure occurs also in the conical element of References 3 and 5.

For problems in which the boundary constraints of a pressurized shell are such that sig-
nificant edge bendingoccurs, the conical element of these authors (and also that of References 3
and 5} is again found deficient. Evenfor fine idealizations, the error in the meridional moment
due to the edge bending induced by the element junctures causes appreciable error in the
predicted support moments. In cases in which the support bending stresses are very large,
the errors due to the idealization are not relatively so important, and the conical element
can be used, provided a very fine idealization is employed,

The ideal application of this element is for influence coefficient calculations in cases where
analytical solutions are cumbersome or unavailable. This is the application suggested by
Meyer and Harmon, Reference 2,

2. The Conical Element of Grafton, Strome, and Percy, et al,

In this case again we have an approximation of the shell by a conical assemblage. We have
here additionally an approximation of the displacements of the elements in which very simple
functions are used. All of these authors represent the meridional displacement by a linear
function and the normai displacement by a cubic function of meridional length. Hence here
again we have solutions in which a double approximation is involved, Whereas in the conical
element of the previous section we had solutions of a conical assemblage loaded approximately
but permitted to deform exactly corresponding to those loads, here we have solutions of a
conical assemblage permitted to deform only approximately butloaded in a manner consistent
with those deformations,

The philosophy involved in the use of this element is that many small elements, each de-
forming in a simple way, should provide a good approximation to the actual structure, In any
region of the structure inwhichthe characterof the deformation varies rapidly it is hecessary

to use u fairly large number of such elements, Clearly this is the case in edge bending
cialeulations,

Results presented by Grafton and Strome and later moditied by Percy, et al, demonstrate
the capability of this conical element formulation to give accurate edge effect calculations,
Using the corrected strain energy integration of the later work, it was found that excellent
influence coefficient results were obtained with elements whose meridional length was equal
to twenty times the thickness of the shell wall, Appreciable inaccuracy was obtained with
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elements as large as fifty times the thickness. The approximate strain energy infegration of
Grafton and Strome yields results of less accuracy, and, based on the conmurative data given
in Reference 5, the corrected integrationappears to be necessary. These resulig were obtained
for a cylindrical shell, but will be of fairly general applicability for infinence coefficients in
411 nonshallow shells. For shallow shells and shells with small radius to thivkness ratios,
the accuracy of the conical elemwent in influence coefficient caiculations wili be eslablished in
this paper. Inorder to do this we will determine the smallness of the conical clervents reqguired
in order to predict influence coefficicnts & a prescribed ievel uf aceuracy. The analyticul
edge bending solution for axisymmetric deformations of shells of revelufion, as given by
Novozhilov, (Reference 13), shows thal the rapidity of variation along the meridian of edge
bending behavior depends on the thickness and on ihe radiug o thickaess ratio of the shell,
More specifically, if we define a normalized meridional length variable to be ibe true
meridional length divided by the thickness, the rapidity of variation of the edge hending boe-
havior with respect to this normalized leugth depends on the square rvont of the ratio of the
hoop principle radius of curvature of the shell to the thickness, This suggests that the
necessary conical element size for influence coefficient culeulations takes the form

as "Rz

where AS is the required meridional length of an element, K is o constant, 1 18 the thickness
of the shell, and R, is the principle radius of curvature of the elerncut in the hoop direction,
To define the shallow and nonshallow regions we introduce a quantity ¥o which is similar to
one used in Reference 10,

5 R
XO:«‘/IZII-—V ) \/tt——“T sin g {2)

in which v is Poisson’s ratio and ¢ is the angle between the axis of symtnetry and the normal
to the shell surface at the boundary. We find tiwt for X,>5, which is the cuse of nonshallow
shells, the influence coefficients are predicted within 2 percent of the exacl® values with
K = 1. For X5, the cuse of shallow shells, the same accuracy is vblained with K = 1/2.
These results have been determined from the solulions of a vange »f exanple problems for
spherical shells, of which several are given in Tables 1 and 2. The criterion of Fquation 1 wus
found reliable for all cases and is expected to have general applicability for influence coef-
ficient probiems, The criterion refers to a group of, say, four or more equally small elements
near the boundary. The accuracy of the caleulations is significantly improved by the sub-
division of the single element adjacent to the boundary inte two smaller elements, This effect
iz clearly shown by the tabulated results, in which case a is derived fromw cass b oin this
nanner.

It is noted in passing that the conical element of References 2 and 4 will provide better
influence coefficient accuracy with fewer elements than thatof References 3 and 5. The reason
for this, of course, is the use in this element of the exact conical shell edge bending solution
in the displacement functions of the element.

To sum up the situation with regard to the uge of the conical elements for influence coet-
ficient problems, we can state that they provide excellent accuracy with relatively few
elements. There appears to be no reason to use the formulations of Meyer and Harmon, and
Popov, et al, since these are very complicated to program for digital computation and
excellent accuracy is practically obtainable with the formulations of References 3 and 5.
The corrected strain energy integration should be used. Asa side benefit of the use of the
conicil element for these problems it is noted that the distribution of stressges away from
the loaded edge of the shell is obtained along with the influence coelficients themselves,

*The exact vialues are taken as those predicted by Gellatly. Ginference 12,
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We proceed to discuss the solutions of predominanily membrune problems, taking as
examples the pressurization of a spherical shell. These problems have been seen to be the
weakness of the conical element, and we expecterrors in the subject element simiiar to those
oclurring in the element of References 2and 4. Figure 8 shows results computed for the same
spherical shell as was discussed in the previous section. The roiation ai the base of the shell
is constrained to vanish. The comparison between this Figure and Figures 6 and 7 illustrates
the effect on the solution of the use of the simple polynomial shape functions of the present
formulation, It is seen that the deflections have improved markedly over the results of the
previous section, The meridional moment remains unacceptably in error, however, and, in
fact, is found to have nearly the same numerical vaiue {but opposite sign) as that predicted by
the method of Reference 4, With the addition of only a4 few more clements, the deflection
results, for this boundary condition, converge rapidly to highiy accuraie values, This is
characteristic of the conical element of References 3 and 5, The moments also converge with
the addition of more elements, as shown in Figure 9, but in this case the covergence is
unsatisfactory. For example, taking the finest elementization indicated by the figure, the
erroneous bending stress is still nearly half as large as the membrane stress itself.

A more important practical problem is the one in which the rotation at the boundary is
unconstrained. This is the problem of an essentially membrane shell supported by membrane
boundary conditions, The results for this case differ from those of Figures & and 9 in two
ways. First, the moment necessarily vanishes at the boundary, and second, the displacement
near the boundary becomes unacceptably in error. In the interior of the shell, both the dis-
placement and the moment remain as shown in Figures 8 and 9, In Figure 10 the displacements
near the boundary are shown, It is seen that the removal of tte erroneous moment at the
boundary gives rise to a sort of ‘“tucking’” behavior on the part of the deflections, This
recalls the qualitative discussion relative to Figure 4, Even for a reascnabile fine idealization,
the deflection error at the boundary is seen to remain quite large,

The hehavior of the deflection near the boundary indicates that its accuracy in the case of
vanishing houndary rotation, Figure 8, is actually fortuitous. What actually happens is that
if either the rotation orthe normal deflection at the boundary is constrained o take its correct
value, the other also takes its correct value. Clearly, in the majority of practical problems,
such special boundary constraints would not be encountered. Hence, it should be expected in
general that the conical element will give inaccurate displacements near boundaries uniess
very fine idealizations are used, It has been found that large displacement errors can be
corrected only by carrying out the fine idealizationa considerable distance from the boundary,

The erroneous meridional moments predicted by the conical element can be expressed in
terms of the geometry of the shell and the meridional membrane stress, It is found that

[mg ]

where Ag is the change in slope angle along the meridian between elements, measured in
radians, R, is the meridional radius of curvature in inches, and N¢ is the meridional mem-
brane stress, pounds per inch. Agis equal to half the sum of the subtended angles of the
elements adjacent to the nodal ecircle in question, The sign of the moment is as shown in
Figure 4.

~ 0.09(A¢)* Ng R, (3)

error

The stress intensities due to this moment and due to the membrane stress have the ratio,
based on Equation 3
[o ]
error o ( R,

2 4+ (=4) (ag? (4)
[ a'¢] membrane

t
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where i is the thickness of the shell. It is seen that the stress error ratio, Lquation 4, 18
proportional to the radius to thickness ratio of the shell as well as to the (Ads)acorresponding
to the fineness of the idealization. If we arbitrarily take the permissible stress error to be
5 percent, the required fineness of the idealization is

T . L SO As o SR
Acﬁs\/ﬁ ~ o BSx L /S (5)

This is a surprising result, since it is seen from Eguation 1 that the required fineness of
idealization for edge bending calculations is a less severe requirement, The results given
by Equations 3, 4, and 5 are of general applicability for problems in which Ng and R, do not
vary extremely rapidly compared to the size ofthe conical elemonts used in an analysis. They
will be seen to apply to other problem types in the discussions which follow.

The errors predicted by the formuiae will carry into the edge zone in problems where the
boundary constraints induce severe edge bending pehavior. Results illustrating this are shown
in Figure 11. The figure illustrates the case of a pressure loaded spherical shell with its
houndary fixed against displacement and rotation, The correct edge moment for this problem
is 600 inch~pounds per inch. The conical element is seen to predict the basic behavior of the
shell, which is a combination of severe bending near the support and membrane behavior in
the interior, only for very small elements. The erroneous moments in the interior of the shell
are seen to carry into the edge zone and affect the value of the support moment. The moment
errors are consistent with Equation 3, The calculated numerical values of the support moment
exceed the correct value by almost exactly the plotted moment which occurs in the interior of
the shell,

In this type of structure, if the design is based entirely on the stresses occurring at the
boundary, then the conical element canbe utilizedin the analysis provided very small elements
are used. On the other hand, if the design attempts to achieve a constant margin of safety in
the stresses, for example by careful variation of the thickness or the geometry of the shell,
then the conical elemeni will probably be incapable of satisfactory analysis with feasible
element sizes,

THE DOUBLY CURVED SHELL ELEMENT

Recently there has been developed by the writers a shell element in which the meridian is
curved, (Reference 8). The purposeinderiving this element was to gain an improved capahility,
compared to that of the conical element, to solve stress analysis problems in which the shell
loading is distributed, such as dueto pressurization, Results of computations indicate that this
goal has been achieved.

The curved element is constructed so that, in an assemblage of elements, the tangent to
the meridian curve is continuous. The result of such a construction is an element assemblage
whose coordinates, slope, and hoop principal radius of curvature are everywhere continuous
functions and are identical to those of the actual shell at the nodal circles. The meridional
radius of curvature is a discontinuous function whose jumps occur at the nodal circles, but
which, even for coarse elementizations, is a close approximation to the meridional radius of
curvature of the shell itself.

If the curved element is applied to the analysis of the pressurized hemispherical shell, it is
found that the moments and deflections are predicted to a high order of accuracy. The errors
which occur decrease to negligible size for idealizationsin which as few as four elements are
used for the hemisphere. Moreover, the results are found to be unaffected by whether the slope
at the support is unconstrainedoris constrainedto vanish, Hence the curved element correctly
recognizes the membrane nature of this problem. For the pressurized spherical shell with
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rixed lower boundary, discussed in the previous section und shown in Figure 11, calculations
ware carrpedout with the same element sizes as were used for the conical element. The resuits
dare shown {n Figure 12, The moment correctly decreases to negligible values in the interior
o’ the shell, 'The support moment is predicted within 1 percent accuracy by the two finer
sdealizations. Tt is noted that with the curvedelement it is not necegsary to use the fine ideat-
ization except in the near vicinity of the boundary,

in ovder to demonstrate the applicability of the enrved element for nonspherical shells, we
consider w201 ellipsoidal shell, Figure 18 shows comparative results computed with the
curved elemoent and the conical olement for this shell, loaded by pressure, and constrained
tee Tve vanisbing rotation at the supports. In this problem the meridional moment should not
vanish in fhe bnterior of the shell, since the shell is not in o completely membrane st e,
Fhe curved clement results converge rapidly to the moments shown in the figure for the
25 etemeot wsemblage, vielding the correct moment® at the support, The exuet solution for
Ui problemn in the interor ol the shellis not known o the writers, but the rapid convergence
ol the aurved ejeoment results suggest that it is given by the lowest curve in the figure, The
moment errors shown for the conieul element are consistent with Equation 3, If the values
of Lh, Ry, and N‘f’ corvesponding Lo the nodal circles are'inserted in iquation 3 and the re-
sulting moment prudictions are measured upward from the lowest curve in the figures, the
conical element results are closely duplicated, The rise in the conical element moment at
the right gide ol the figure, for the 253-clement assemblage, corrdsponds to the change there
to a coarser idealization, This, also, is predicted well by Kguation 3,

The caleulation of influence coeflicients with the curved clement shows compurable accuracy
ts with the conicel element, sinee here the aceuracy depends primarily on the ability of the
clement deformation shupes to represent the rapidly varying cdge bending behavior, rather
than on the closencss with which the element assemblage reprosents the shape of the actual
shell, Tt is found that the elemont size vriterion, Equation 1, is valid for the curved clement,
with the influence coefficient predictions less accurute by uabout 1/2 percent than [or the
vonical element,

It has not been possible o determine an element size criterion for the curved element
amdlogous (o Fquations 3, 4, and 5. ‘the errors in such solutions with the curved element gre
governed not by the udequacy of the structural representation, as was the case for the conical
elemnent, but by the adequacy of the displacemont shapes used in the derivations of the curved
element,

THE FLAT PLATE ELEMENT

1n the use of an assemblage of quadrilateral or triangular flat elements to represent a shell,
we have a method which is not restricted to shells of revolution. Such a method wus given by
Greene, Strome, and Weikel, (Reference 1, Figure 1), which is taken from Reference i,
ilustrates the flut element idealization for a shell of revolution which was studied by these
authors, It is noted that a fine idealization by means of the flat elements implies the use of
many clements in two directions in the shell surface rather than only meridionally as in the
case ol the conical element. Consequently a very large number of elements may be required
for such analyses. ‘ '

A shell of arbitrary shape can he readily formed by an assemblage of triangular ¢lements,
while the quadrilateral elements are restricted to cases in which there can be conveniently
found groups of four points (nodes) which lie on a plane. Such a circumstance is only possible
when the nodes of a quadrilateral element are located on two lines of curvature in the shell
surface. This limits the use of flat quadrilateral elements to problems in which it is possible

*The correct support moment is computed from the results of Gellatly, (Reference 13).
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to determine a coordinate system on the shell surface which consists of the network of lines
of eurvature. Shells of revolution are obvious examples of such cases,

In the case of flat plate elements we have a situation similar to that encountered in the
conical element, in that both the shell structure and the deformation are approximated. The
conclusions reached inour earlier discussions of the conical element concerning the qualitative
effects of these types of approximations would appear to apply here also. It is expected that
with fine idealizations the flat elements should have the ability to yield accurate influence
coefficient data, It is expected that for problems where distributed loads induce large
membrane stresses, there will result erroneous moments and, in the case of membrane
support conditions, erroneous deflections near the boundary. In addition, since here we have
sharply changing slope in the hoop aswell as in the meridional direction, we expect erroneous
hoop moments to occur when the hoop membrane stress is large. These suspicions cannot be
examined with the data given in Reference 1, for reasons discussed below. However, the
authors do show the expected deflection error near the boundary where membrane boundary
conditions are prescribed. This is shownin Figure 14, which has been taken from Reference 1,
The dotted curves have been added by the writers in order to show a similarity between these
results and those of Figure 10.

The analogy between the conical elements discussed herein andthe flat element of
Reference 1 is incomplete, since in Reference 1 the authors made use of restricted types of
displacement forms which differ markedly from those of the conical element, The flat elements
used were restricted to remain flat in the deformed state, with gll deflection of the shell
occurring as a result of slope changes taking place at the interelement houndaries. These
slope changes were permitted by the transverse shear flexibility of the elements, This type
of displacement function departs sufficiently from actual shell bending behavior that a discus-
sion in depth of this flat element is not possible. It is clear that the full potential, as well as
a clear understanding of the weaknesses, of the flat element approach has not been reached
due to a lack of continued study of this type of element,

The real value of the flat plate element idealization is its applicability to cases other than
ghells of revolution. For example, it could be used to compute stresses near nozzle cutouts
in rocket motor case heads or to provide a complete shell analysis of the complicated mofor
cases of clustered boosters. Unfortunately, these problems generally involve large membrane
stresses, so that erroneous moments would be expected in solutions obtained by assemblages
of flat elements. The further development of this approach would be an instructive, and
possibly fruitful, subject for research.

THE RING-WEDGE ELEMENT

This element, shown in Figure 3, has been used little in shell problems. It was developed
for the stress analysis of solid propellant grains, primarily, and has been used for these
and other problems involving massive axisymmetrical bodies. It should be most useful in the
stress analysis of regions of shell structures where the approximations of thin-shell theory,
particularly the Kirchhoff hypothesis, are unsatisfactory. The figure shows such an example,
a thickened juncture between portions of a rocket motor case. The siress concentration re-
sulting from the juncture configuration is of concern in such designs. In fiberglass motor
cases, the interstage shell is often simply bonded to the pressurized portion of the case, and
failure of the bond is of concern in the design, For these and other such problems the ring-
wedge element is ideally suited. '

The writers have used the ring-wedge for a large number of stress analyses of solid pro-
pellant grains. The results in the prediction of stress concentrations in critical regions of
the solid grain have heen excellent. Accuracies have been checked by computing solutions
with varying fineness of the element mesh andthe results have been found to converge rapidly

-
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with decreasing element size, The nature of these problems is sufficiently similar to those
of shell stress concentrations and behavior of thickened junctures that the success of the ring-
wedge element in these cases can be forecast confidently.

The deformations to which the ring~-wedge is subjectedin its derivation involve strains in the
axial-radial plane which are constant over the element, Since the behavior of shells, in the
problems in question, involve stresses which vary roughly linearly over the wall thickness, it
is clear that a2 number of elements should be provided through the wall, Figure 3 illustrates
this point, Away from the regionof concernthe shell will behave in a manner properly covered
by the methods discussed in earlier sections, and it will not be necessary to carry the ring-
wedge idealization into these regions. At the location of tranefer from the ring-wedge to the
usual shell idealization, shown in the figure, it ls necessary to constrain the ring-wedge
elements to the conditions that the normals to the shell mid-surface remain straight and
unextended, i.e., the hypotheses of thin-shell behavior. The handling of such constraints
within the direct stiffness method is described in Reference 14.

It has been found that the accuracy of stress prediction with the ring-wedge element is
enhanced considerably by the proper arrangement of the idealization, The preferred arrange-
ment begins with the construction of an orthogonal network of curves which foilow approximate-
ly the trajectories of the principal stresses of the problem, On completion of the resuiting
network of quadrilateral elements, diagonal lines are inserted to arrive at the desired array
of elements, such as shown in Figure 3. The diagonals are seen to form a diamond paitern,
so that the network of diagonals also yields an array of quadrilaterals, though these are
not generally formed by smooth curves and are not orthogonal, In the figure, the stress
trajectory gridwork is constructed on the basis of a problem in which the motor case is in
tension due to pressurization while the interstage shell carries a compressive load. It is seen
that this gridwork provides an orderly array of small elements at the fillet where the stress
concentration 1s expected. By virtue of the stress trajectory pattern, it also accommodates a
kind of smooth flow of stress into and through the concentration region. These two features
appear to provide the advantages of this type of idealization, Due to the bunching of the mesh
in some regions and the widening of it elsewhere, it is necessary to add or remove mesh lines
in places, It has heenfound that the accuracy of the atress prediction 18 enhanced if these lines
are added or removed in pairs, one on either side of a mesh line which has been established
for some distance. This is 1llustrated in the figure,

ADDITIONAL TOPICS

The foregoing discussions have dealt with a limited view of the stress and deformation
analysis of shell structures. The problems and methods considered included only the lirear,
static behavior of elastic shells, and the major emphasis was on the symmetrical deformations
of shells of revolution. The principal aim has been to demonstrate some of the basic character-
istics of shell analysis by the direct stiffness method, using for illustration several of the
existing analysis methods, It is not possible in this section to extend the scope of the work
significantly. However, a few brief comments are in order on the problems of vibrations of
shells and nonlinear deformations of shells. This sectionwill conclude with & brief discussion
of future developments needed.

Dynamic Response

All of the methods of shell analysis discussedpreviously can be implemented in differential
equation integration programs to solve transient dynamic response problems, or in eigenvalue-
eigenvector programs to determine natural modes and frequencies of shell structures. It is
the applicability of the conical element for this purpose which is of concern here, The use of
this element for problems of a membrane type, i.e., those with a smooth loading function, has
been discussed in some detail, It has been seen that the combination of a polygonal meridian
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and a large meridional membrane stress produces a seéricus error in the meridional bending
moment in the shell. In the simple problems discussed, the errors due to the approximation
of the structure have tended to produce canceling effects in the determination of deflections.
Hence, in most cases, the deflection calculations have been quite accurate. However, if the
loading conditions are such that the meridional membrane stress varies fairly rapidly along
the meridian, it appears that the cancellation effect will not be reiiable, and erroneous de~
flections may be expected. The inertia forces of the shell vibration p:roblem constitute a load=-
ing of this type, particularly for the higher mode s of shell structures. Hence the ability of the
conical element to predict vibration modes and frequencies of curved shells of revolution is
questionable and remains to be established, For cylindrical and conical shells, on the other
hand, the conical element should provide adequate solutions, The same conclusion appears
to apply to the flat element idealizations. In any investigations of this matter, care should
he taken to use ‘‘congistent’ masses at the nodes or nodal cireles, The derivation of consistent
masses is discussed in Reference 15.

Nonlinear Problems

The extension of the direct stiffness method to geometrically nonlinear problems has been
discussed in Reference 16 and extended in Reference 17, for beam and plate elements. In
these cases the nonlinear behavior is associated with stresses of the membrane type, as
oppesed to bending type. The extension to the nonlinear case can be made in both the conical
and deubly curved shell elements with relative ease, This appears to be a fairly important
application for very thiu shells, and for shells of special shape, such as the toroid, since in
these cases the nonlinear effects of the membrane stress state have a significant or even
dominant effect on the edge bending boundary conditions, (Reference 18),

Future Work

Out of the many developments which could be made in digital computer shell analyses by the
direct stiffness method, the writers wish to mention only one. This is the development of a
doubly curved shell element of triangular or quadrilateral planform, The class of problems
solvable by this element includes all shells with cutouts, sections of shells, and complete
shells which are not surfaces of revolution,In addition, this appears to be the most satisfactory
approach to the solution of problems of stringer stiffened shelis, The lack of such an element
is the one really large gapinthe current set of analysis tools. The development of the element
will be a major accomplishment, however, and a satisfactory formulation and solution may not
be available for some time. This development will probably bave to wait for the implementation
of the concepts of the generalized direct stiffness method, (Reference 19), Some progress is
being made in this direction, (References 20 and 21},
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Figure 1, Flat Element Shell Idealization

Figure 2. Conical Element Shell Idealization
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Figure 3. Ring-Wedge Element Idealization of Thickened Shell
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Table 1: Per Cent Error*-Influence Coefficients

NON-SHALLOW REGION

I
H=1 ! M= 1
I
GECKELER |R/t = 250 0 0 +0.36
SOLUTION = 25 0 -0.35 0
~
CONICAL [g4 = 250 -1.23 -1.44 -1.02
ELE’\:ENT =25 | =0,30 -0.31 -0.22
CONICAL .
R/t = 250| -5.13 -3.76 -2.20
ELENLENT = 25 ~0.56 -0.67 ~0.48
Table 2:
SHALLOW REGION
|
H=1 1 M=1
M2 T %2 %22
GECKELER |R/ =250 -6.88 +7.85 +7 .4
SOLUTION -25 | -19.9 +38.8 +29.8
CONICAL Ip 4 - 250 -0.04 10,28 -1.77
ELEMENT =25 -0,40 +0.23 -0.73
a
CONICAL R/t = 250 +0,40 +1.72 ~6.65
ELEMENT =25 | -1.15 +1.75 -0.9)
b

*Nate - Error Based on Solutions Given by Galletly
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