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SECTION I
INTRODUCTION

The work reported in this study concerns indicial unsteady aerodynamic
theory and its role in conventional aircraft dynamics. The basic objective
of this effort was to investigate the extent to which improved knowledge of
the unsteady derivatives CL. s Cm., etc. would allow for extension of the
boundaries which constrain %he fu?] potential operation of existing high
performance aircraft. To accomplish that task, it was found necessary to
develop a simplified but accurate theory for the indicial unsteady aerodynamics.
The simplified concepts developed in this report have been extended to a wider
range of wing geometries and considered for application to the parameter
estimation problem as reported in references [1] - [2]. The results of the
analysis are presented following a brief overview of classical and contemporary
unsteady aerodynamic theory.

SECTION II

REVIEW OF UNSTEADY WING THEORY
1. Classical Research
A systematic study of unsteady aerodynamics began shortly after Prandtl's
theory of bound vortices was published in 1918. This was followed by an analy-
sis of Birnbaum [3] in which he calculated the aerodynamic force on a harmon-

jcally oscillating two dimensional flat plate. One of the more referenced and
fundamental studies was made by Wagner [4] in which he calculated the unsteady
1ift on an airfoil impulsively started from rest or equivalently an abrupt
change in angle of attack of a plate in a uniform stream. Glauert [5] extended
Wagner's method to the problem of computing the forces and moments on an oscil-
lating airfoil. 1In 1935, Theodorsen [6] published his exact solution for the
1ift on a harmonically oscillating airfoil with a flap. This work introduced
the Theodorsen F and G functions to unsteady aerodynamics theory. Kissner [7],
more or less closed this creative era with his solution for the 1ift on an air-
foil as it penetrates a sharp edged gust. The mathematical functions associated
with the works of Wagner, Theodorsen, and Kiissner were shown to be fundamentally
related by Garrick [8].



During the next two decades these fundamental solutions were extended
and sharpened by another generation of researchers [9-16]. Von Kdrmdn and
Sears [9] developed a uniform circulation theory which treats the previous
studies as special cases. The Kdrm&n-Sears theory is outlined in more detail
in the Appendix. Jones [10] used the basic results of Wagner to solve for the
unsteady 1ift on a wing of finite aspect ratio. Another significant contribu-
tion in Jones' work was the development of an expression for the start-up 1ift
on the wing. Further work was performed on the finite wing by Reissner [12]
in which he formuiated, in terms of an integral equation, and solved for the
1ift distribution on oscillating wings. Extension of these results to include
compressibility effects were performed by Lomax, et al. [15] for two and three
dimensional wings at high speeds.

2. Contemporary Research

The direction of unsteady 1ifting surface theory during the past decade
has been toward digital computer application to the classical formulations
[17-25]. Ashley, et al. [17] started this movement in a research article in
which he proposed the use of modern digital computers to obtain an exact solution
to the oscillating wing problem. In particular, he outlined the method now
referred to as the '"doublet Tattice method" for numerically solving the singu-
lar integral equation for the normal velocity at the surface. Albano and
Rodden [19] developed the method to an operational form adaptable to complex
wing geometries. The method is outlined in detail in Reference 14. The basic
idea is to divide the wing surface into trapezoidal panels. The 1/4 chord line
of each trapezoid contains a distribution of acceleration potential doublets of
uniform but unknown strength. The strength of the doublets is then determined
by use of the flow tangency condition at the control points of each trapezoid
of the wing.

A vortex-lattice method of determining the transient 1ift buildup on a
finite wing has been presented by Belotserkovskii [21]. This method has been
further developed by Atta [22] to account for the wake geometry as well as the
wing-tip vortex system. Due to the 1ikely importance of this particular numer-
ical method in computing indicial aerodynamic effects, a brief description of
the method will be given using Figure 1 which indicates the manner in which the
lattice is formed in the wake and on the wing surface. At time t=1, the initial



free vortex with strength § is shed in the wake and is placed at an appro-

(1)
i
priate location forcing satisfaction of the Kutta condition at the trailing
edge. At this time, the strengths of the wing bound vortex T$1) are solved
for while satisfying the flow tangency co??gtions at the control points. At
time t = 2, the free vortex of strength & ; is carried downstream while its
strength remains constant. Another free vortex with strength 6(§) forms where

6(1) was. Again, the strengths of the entire vortex field F(z) and 6(2)

e ./ are
1 1] 1

solved for from the flow tangency conditions. This process is repeated until

no further change occurs in ng) at which time steady state conditions are

reached.

Morino [23] has developed a numerical procedure to solve for the unsteady
1ift on a wing based on a Green's function formulation. The method is appli-
cable to either oscillatory or transient flow phenomena and applies to both
subsonic and supersonic flow. Basically, Morino develops an integral equation
for the unsteady velocity potential which involves values of the potential and
its normal derivative on the surface of the body and wake. He then applies a
finite element method for solving for the potential function.

The most recent contribution to the field of unsteady aerodynamics is due
to Edwards [25]. He addresses the problem of active control of supercritical
flutter modes. His approach is to solve the basic linear governing equation
for the velocity potential by use of Laplace transform techniques.

SECTION III
APPROXIMATE AERODYNAMICS ANALYSES

For use in preliminary design and stability and control analyses, simpli-
fied analytical solutions are preferred to more exact numerical ones. Accord-
ingly, an approximate solution to the basic Wagner problem was sought which
preserves much of the accuracy of the exact solution and physical principles
involved. The simplified aerodynamic model obtained is based on the physical
principle of Prandt1's 1ifting 1ine theory and trailing vortex concept. The
wake is assumed to be compressed to a singie shed vortex element of appropriate
strength moving downstream at a speed sufficient to approximate the Wagner func-
tion.



1. Two-Dimensional Wings
In the simplified analysis, the wing is represented by a bound vortex
located at the wing quarter-chord line {Figure 2). The boundary condition

of no flow through the wing is satisfied at the 3/4 chord 1ine. A step
change in wing angle of attack increases the strength of the bound vortex
by an amount I'. An equal amount of vorticity of opposite sign is shed
behind the wing to form a continuous vortex sheet which increases in Tength
with time. For the approximation, the shed vortex sheet was replaced by a
single shed vortex having the same strength as the bound cne and moving with
a velocity KU as shown in Figure 2. The distance from the 3/4 chord point
at which the vortex is shed, Xo» is determined by forcing the start-up 1ift
to match the results of Jones [10]. For two dimensional wings, Xy = c/2.

The downwash at the 3/4 chord point is

I 1 1
weor et grvw ] (1)

For a unit step change in angle of attack, w = U resulting in

Use of this value of T in the Kutta-Joukowski equation results in the 1ift
coefficient

1
Ac, = 21 |1 = —pe (3)
4 [- 2,2§Ut]

It was found by comparison with exact results that a value of K = 1/2 resulted
in excellent agreement. It is interesting to note that this value for Ac2 agrees
with an empirical value obtained by a curve fit to Wagner's solution by Garrick
[8l.

To get the change in Tift coeffecient for an arbitrary change in angle of
attack a(t), Duhamel's integral formula is used; that is,

t
c (t) = 2m 2 [1 " _]U_ t_T)] &(t}dr (4)
[od



To illustrate the use of equation (4} to compute Cq. consider the case where
o = k't. From equation (4), we get o

¢ (t) = 2rk't-E08C gn (1 + 55 (5)
To get C. differentiate with respect to %UE
a
_a ut
CR& = mt-4mwaen {1 + P (6}

The hysteresis effect due to the unsteadiness as computed from equation (5)

is shown in Figure 3 for U = 100 fps and ¢ = 5 ft. The curve labeled o > 0
corresponds to o increasing linearly up to 10° (k' = ©/180). The angle of
attack is then held constant until steady state is reached. The curve labeled
a < 0 corresponds to o decreasing linearly from 10° to 0° (k' = - w/180). The
curve Tabeled "quasi-steady" corresponds to the instantaneous 19ft buildup due
to a finite change in angle-of-attack.

2. Three-Dimensional Untapered Wings

The Wagner function for 3-dimensional wings can be approximated utilizing
the same concepts as for 2-dimensional wings as shown in Figure 4 for a straight
wing., At the control point P, a unit change in o results in a downwash of
value

Aw = %5 [ A+ 14 ({%)2] (7)

where b is the wing span, A the aspect ratio and

Z=x0+%£ (8)

The corresponding values of circulation and 1ift coefficient are computed as

AT = mhl (9)
"’Az-ﬂ + ‘/1+(b/22)2

aC, = AL (10)
Va4t + 1+(b/22)°




For an arbitrary change in angle of attack, the unsteady Tift coefficient
is computed by Duhamel's integral formula as

: .
C o= 2mA 6(r) dt (11)

L
o V2 % 5 2
ASHT + H(——T_HXO"*U t_T)

To find the location of the starting point X,s We use the initial value due

to Jones [10] for an elliptical planform wing, i.e.,
AC (o) = m/E (12)

where E = Semi-perimeter = A+]
span A

This results in

- A/2
¢ Tty - aTZ

A plot of xo/c versus aspect ratio is shown in Figure 5.

The 1ift as computed from equation (11) is well suited for computation of

the unsteady stability derivatives CL and Cm . For instance, CL
& & &
linear change in o is computed from equation (11) as {letting Xy c/2 which is

due to a

the 1imiting value for large aspect ratio wings)

V2
¢, =AU AL £ [@2+2(1+%§J- "ﬁ2+1]
@ UAZ +1
_%Kn[(1+g—3( ¢ A+ ) (14)
YA +‘”A2+2[1+@

The Wagner function for the three-dimensional swept wing can be calculated
by consideration of the geometry shown in Figure . The calculation is carried
out for a swept wing with zero taper undergoing a unit step change in angle of
attack.



The change in downwash at point P is computed as

IS~ - ay I v
W= ["A®sec™ A =-2A tan A +1 + 575 b*+4z (15)

A €y 4 b tan A

‘b2+422

The corresponding change in 1ift is

ACL = 27A [“hzsec2 A -2A tan A+1 + ?%E' 'b2+4zz (16)
A C b tan A q1/2
+ 5 tan A(1-55) + ———]
p 2z 5%
b™+42

3. Horizontal Tail Lift

In order to calculate the unsteady tail T1ift load, an expression must
first be obtained for the unsteady downwash at the tail surface to the wing.
For this calculation, the shed vortex is allowed to move downstream at the
free stream velocity. This assumption causes the initial disturbance to reach
the tail surface at the proper time. Numerical tests indicate that the time
variation in downwash at this station is not substantially different for either
assumption of shed vortex velocity equal to U or U/2. The geometry for the
calculation of downwash at the quarter chord point of the horizontal tail sur-
face {point P) is presented in Figure 7. The downwash angle at point P due to
the effect of the wing wake is (for unit step in wing angle of attack)

A2 2
de = [—}7 hlrar? w0 S B R HUY) ] (17)
t c/2+xo-£t+Ut
where
r-= mUb {(18)
"

¥ b 4
+AS + 1+ [é(i;iﬁf)]



The effective angle of attack at the tail surface {for small rotation) is
equal to the wing angle of attack less the downwash angle a-c. This provides
an estimate of the tail 1ift for a unit step change in effective angle of
attack as

( ZﬂAt
AC, (t) = (19)
AT 1 et

t 2xO t+Ut

where the subscript "t" refers to quantities based on horizontal tail surface
geometry. For arbitrary changes in angle attack, the unsteady tail surface
1ift coefficient is

¢, (t) = b 86, (t-1)[&(7)-¢(1)] do (20)
t o t
where
t
e{t) = ¢ Ae(t-t) &{t) dT
a

SECTION IV
AIRCRAFT DYNAMICS: LONGITUDINAL MODES

1. Equations of Motion
For a dynamic model of the longitudinal motion, we assume the following
perturbation equations of motion

2
U= go+ 9%55 C, (21)
5=q+ R%% c, (22)
otsc
g = B Cm (23)
y
8=q (24)

The axial force coefficient for the airplane is assumed to be a function of
angle of attack only according to



C.=C. o (25)

The normal force coefficient for the airplane is taken as the sum of the
unsteady wing 1ift, the unsteady tail 1ift and elevator contribution according
to

t

S, t
¢, = -5 &0 (t-0)alr)dr - -gl p ACLt(t—T)[d(T)-é(T)]dT + CZG 5, (26)

0 0
W e

The moment coefficient for the airplane is taken as the sum of the effects of
the tail 1ift, the contribution due to pitch, and that due to elevator accord-
ing to

43¢ b .
C = - - 1 ACLt(t-T)[d(T) - &(t)]dr (27)

Reference to equations {21)-(24) indicates that u and 9 can be computed once
q and o are determined. Integro-differential equations for o and q are
obtajned upon substitution from equations (26) and (27} into equations (22)
and (23} resulting in

gUsS } t

&7 q - gy 80 (tr)idn)ds
(28)
St t
vty ae (0la(x) - e(n)lde - ¢, e
o -t 5
e
2 2.5 t
= _ ol sc tot CPafr
§ ZIy s 1o ACLt(t T)[a(t) - ¢(7)]dt
(29)
-c 43¢ _
Cm 2u Cm 6e
q 6e

Fquations (28) and (29) can be solved for « and q numerically or by Laplace
transform techniques provided certain approximations for ACL and Ac are used
as shown in the following section.



2. Approximate Solution in Frequency Domain
The time domain equations for a and q as given from equations (26) and

(27} are difficult to solve even with modern high-speed digital computers due
to the presence of the convolution integrals. However, they are considerably
more tractable if they are transformed to the frequency domain after making
the following approximations:

( [ ) (
aAC, = (€, ) 1 -ajexp (; ———-) 30}
LW L0¢ 1 Cw/?
w [=o]
A = (CL y [ - a,exp EE__J] (31)
t oy t/?
f h,U
Je 1 1
I @
do/ 'D"_t 1 ut 1 c/2
c c
where Ei ) ,(FL -] and éﬁa are final steady state values of ACL , ACL and
o, Oy o W t

Ac respectively. The constants ays b], 255 b2’ f1, 9> and h] are determined by
curve fits to the results represented by Equations (16)-(19). These approxi-
mations result in the following expressions for CZ, Em, and e:

S
T, (5) = - s3(s) o (s) - s (Gls) - E(s)) B (5 + € Bels) (33)
e
= I - e s Sz .
Cp (s) = -5 s (afs) - e(s) ) & Lt(5) m, ag 9(s) + g 8 o(s) (34)
e
£ {s) = sa(s)Ae(s) (35)
where
5 (s) = (6 ) s - —toe (36)
L I B U
] )

10



and

2
Sroy = (25} J1. %1 c sc [t
Be(s) = (Ba)m s s-h,Ut/c/2 tgfy e ﬂ] [p B {H (38)
')
sC t
X Ei [U_E ~E——]]}
Ei is the error integral whose series form is
oo sn

Ei(s)=vians+ I —— (39)

n=1

v 1§ the Euler constant with numerical value 0.5772156.
We note that Cz(s) and Em(s) can be rewritten in the convenient form

Cz(s) = f(s) a(s) + Cz6 Se(s) (40)
e
c
C,(s) = g(s) a(s) + n, 5 als) + Cn 5o(s) (41)
e

Upon taking the Laplace transforms of equations (21)-(22} and substitution from
equations (40)-(41), the following matrix equation for a(a) and g{s) evolves

pUS ~ [oUS
W } afs) W
s - =5 fls) 1 o Cz (42)
e
_ 84(s)
2 2 2
oUSS, ¢ oUS, ¢ ) oU%s, ¢
- 9ls) s - —rt Crnq Q)] —or— Gy
L y y y 6o

a(s) and q{s) can be found.
3 (s) 8(s)

1



SECTION ¥
APPLICATIONS

In order to assess the effect of the unsteady terms on the ajrcraft's
response to control inputs, calculations have been made using the Navion
(Figure 8) aircraft as subject. This aircraft was chosen since its
characteristics have been studied extensively from flight research data and
well documented by recent NASA technical reports [26]. The geometric and mass
characteristics of the Navion aircraft are 1isted in Table 1 and the quasi-
steady stability and control derivatives are listed in Table I1. For the
simulation, a trimmed flight condition at 5,000 feet altitude and speed of
240 ft/sec was used. At this time a step input of -30° elevator deflection
was applied and held for 4 seconds. The subsequent responses of the aircraft
using both quasi-steady and unsteady theory is shown in Figures 9-10. In
Figure 9, the aircraft's angle of attack and pitch rate exhibit a more sTuggish

response to the elevator input when unsteady aerodynamics are included. This is
to be expected due to the hysteresis previously noted in Figure 5. The reduction

in oscillatory behavior in pitch rate is particulariy noticeable. From Figure

10, it can be seen that the unsteady aerodynamics has considerably less effect on
the aircraft's forward speed and attitude response. These effects are summarized

in Table III.

Frequency response curves for the two transfer functions defined by Equation

(42) are shown in Figure 11 for the Navion aircraft. For comparison purposes
the quasi-steady form of the transfer function is also presented. The unsteadi-
ness is seen to have a pronounced effect on the pitch rate response of the air-
craft.

12



SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

A simplified aerodynamic model based on the principle of Prandtl's 1ifting
line theory and trailing vortex concept has been developed for use in prelimi-
nary design and stability and control analyses. The model proved to be apolicable
to both two and three dimensional wing theory in calculating unsteady 1ift load
for arbitrary angle of attack variation. Sample numerical solutions to the
longitudinal equations incorporating the unsteady model are presented for the
Navion aircraft. From these calculations, an apparent increase in damping ef-
fects in the aircraft response is noted.

For future analyses, it is recommended that the control input rates be in-
cluded in the aircraft equations of motion to more realistically simulate and
assess the role of the unsteadiness in the indicial response. Further, a study
of the aircraft response should be performed with aerocelastic effects and un-
steady aerodynamics included.

13



TABLE 1
GEOMETRIC AND MASS CHARACTERISTICS OF NAVION

Aircraft Mass, slugs 92.17
Aircraft Moment of Inertia (Iy), sTug-ft2 ------ 2772.86
Wing:
Area, ft2 -------------------- 184.0
Aspect Ratio -~ = = = = = = = = 2w = = = = o - - - 6.04
Span, ft = = = = = = = = = = = ¢ - - - - -0 .- - 33.38
Mean chord, ft - = = = = = = = = - = = = = - - - - 5.70
Horizontal Tail:
Area, ft2 -------------------- 43.0
Aspect ratio - = = = = = = = = = = - - 4o - - - - 4.0
Span, ft - - - = = = = = = = = = - - -« - - - - 12.70
Mean chord, ft = = = =« = = = = = = =« = o = = w - - 3.30

Tail length (center of gravity to tail
aerodynamic center), ft - - - - - - - 15.12

14




TABLE 2

STABILITY AND CONTROL DERIVATIVES OF NAVION

S 0.262
o
C, mme-e--- -4.33
o
C.  mmmmmm - o -15.90
%q
C. mmmmmm e -0.511
Z
66
.o e -0.63
e A
L mmmmeee o -18.10
M
I -1.42
SE
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TABL

E 3

STABILITY CHARACTERISTICS

o q

Specification

Quasi-steady |Unsteady Quasi-steady |Unsteady B
Percent overshoot 4.5% 1% 85% 50%
Time to peak 0.6 sec 0.9 sec 0.3 sec 0.2 sec
Rise time 0.35 sec 0.45 sec 0.1 sec 0.1 sec
(90% of steady
state value)
Settling time 1.6 sec 1.3 secl _1-3sec  |0.8 sec
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APPENDIX
VON KARMAN - SEARS SOLUTION TO THE WAGNER PROBLEM

The problem Wagner [4] solved was the transient 1ift generated on a flat
plate airfoil inclined to the freestream at an angle of attack o started
impulsely from rest as shown in Figure Al. The circulation around the air-
foil changes for unsteadiness in either the velocity or the angle of attack
of the airfoil. Consequently, an equal amount of vorticity of opposite sign
forms in the wake and remains fixed relative to the airfoil. First we con-
sider the effect of an isolated free vortex of strength v(Z}df Tocated at a
distance £ from the origin. The total circulation T about the airfoil is
made up of two parts: that due to motion with no wake (quasi-steady motion)
with circulation FO and the motion induced by the wake which creates a cir-
culation P1 around the airfoil.

Then
+]

T=T,+ Iy =1 y{x)dx (AT)
(R B

The value of FO (guasi-steady theory) is given as

FO = plc (A2)

To obtain T1 we must first determine y(x), the vorticity distribution
along the plate. This is obtained easiest from methods of conformal mapping
according to Figure A2. In the z'- plane, the vortex pair I'" and -T'' located
at n and 1/n respectively will create a stream function given by
(A3)

_ T T
¥(r, B) = ﬁ}'fﬂ ry = 5 2 r
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= Iv? + (1/m)? -2r(1/n)coss]"/?

-
—_—
|

[r2 + n? - 2rn (:058]“2

1

This results in a velocity field on the surface of the cylinder given by

u, = 0

r N 2-1 (A5)
U = ‘JEL____

B 2m E£-COSR

At the trailing edge of the plate (R = 0) we have

- I1 e
Ug = 77 JE-T (A)
Since we seek a physically realistic flow satisfying Kutta's condition
at the trailing edge (R = 0) we must distribute along the plate a vorticity

of strength y(x) which will create, on the cylinder, a tangential velocity

- %ﬁrJéé%-and radial velocity zero so that the sum of this value and that

from equation {A5) results in a surface tangential flow field satisfying the
Kutta condition at the trailing edge. Then the resultant tangential velocity
at the surface is given as

2
=£'_[J§_:J____ £+
UB 2m - £-cosp E-l] (A7)

The corresponding point on the surface of the flat plate has the velocity.

I S SN S I (58 (A8)
g sing  2using - £-cosf £-1
Note that on the surface of the plate, x = cosp. Also note that on the upper
surface sing>o and on the Tower surface sinp<o. This results in

= LD I=x fed]
9 T T Ex T VET (A9)
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1 = _J_I" ‘]-X £+.I
9% = 77 T=x V1+x d&-? (A10)
Since y(x) equals the jump in tangentfal velocity across the plate we have

00 -4, = 125 (B VR s

Then the circulation around the plate due to the free vortex I'' located
at ¢ is

L
-
—
>
™
ja
>
"

T J]-x dx (A12)

-1 m £-1 f1 T+x  E-X
ST (.
=T [ g_] ]]
For a continuous distribution I'' = y(&)d&, the total circulation about the

plate due to the wake is obtained by integrating over the length of the wake
£, 1.e.,

W
Ly E+1
ry = :] v(&) (/E:T - 1) d& (A13)

Then the total circulation about the plate is

£
Peate s e (R - 1) (A14)

The remaining unknown is the strength of the vorticity in the wake v(&).
We find this by use of the fact that the total circulation of the whole
system (plate and wake) is zero, i.e.,

L
T+ 5 "y(g)de =0 (A15)
1
or
W
et Ty B =0 (A16)
1

For the impulsively started pTate,ew,= 1+Ut and v(£) is determined from the
integral equation
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1+

1+t y(g) [E+] =
I] e UE=T dg = o (A17)

Wagner solved this numerically for y(&)/nUc.

The forces on the plate can be found from the unsteady form of
Bernoulli's equation
p=-1/209%-2 (A18)
where
- . I's
¢ = ~Uxcosa - Uysina + 5 (A19)
The forces in the x and y directions are then
X =<1 plds
C
(A20)
Y = - 1 pmds
c

where £ and m are direction cosines of the normal to the surface and the
integration is taken from the trailing edge over the plate and back to the

trailing

edge. Glauert [5] has shown that the integration reduces to the

following form:

X =

VYon
momen tum

where

—
n

-pUrsino
dr 2 1
pUTcosa + it e 0 9 xdx (A21)
c

Kdrmdn and Sears [9] compute the 1ift directly by relating it to the
of the fluid expressed as
dl
- 5t (A22)
o 1t y(x)xdx + o ; y(E)EdE (A23}

=1 1
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This results in a sectional 1ift coefficient given by (o = 1)

1+Ut
c, = 2r [1+ ; %ﬁ%l- i, (A24)
1 Vel

The quantity

1+Ut
q(8) =1+ g y(£) _dE (A25)

mlc
| 25

is called the Wagner function.
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