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ABSTRACT

Methods are presented for calculating the laminar boundary-
layer flow through separation to reattachment under the influence
of a prescribed pressure gradient or, in the case of a supersonic
main stream, under the influence of "free interaction" between the
boundary layer and the main flow. In contrast to the earlier work
of the authors using the Tani method and quartic profiles, the
present method is based on the Dorodnitsyn method of integral
relations and uses a rational velocity profile which accounts
properly for the separation singularity. As a result, the possi-
bility of higher approximations is inherent in the method. The
calculated solution for free interaction goes smoothly through
the separation point and is in good agreement with certain fea-
tures of the Navier-Stckes solution in the neighborhood of separa-
tion. Good agreement is exhibited between experimental and cal-
culated pressure distributicns up to reattachment for the several
cases for which the comparisons were made. A computer program
based on the work has been prepared for two-dimensional flow. It
is planned to continue the work to cover nonadiabatic boundary

layers and axisymmetric bodies.
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CALCULATION OF LAMINAR SEPARATION WITH
FREE INTERACTION BY THE METHOD OF
INTEGRAL RELATIONS

PART I - TWO-DIMENSIONAL SUPERSONIC ADIABATIC FLOW

1. INTRODUCTION

This report deals with automatic computation studies which
have been directed toward the calculation of laminar separated
boundary-layer flows at subsonic and supersonic speeds. The
objective of the present study is the development of a computer
program for determining the viscous field including the separa-
tion and reattachment zones over flat plates with compression
surfaces. In Reference 1, Abbott, Holt, and Nielsen developed a
method for calculating such a flow field using the method of Tani
and utilizing guartic velocity profiles. While the method pre-
dicted the experimental pressure distribution accurately up to
separation and slightly beyond, it had definite limitations with
regard to the region downstream of separation and with regard to
cooled boundary layers. In Reference 2, Lees and Reeves used the
method of Tani, together with similarity velocity profiles. In
this report the authors abandon entirely the method of Tani and
adopt the Dorodnitsyn method of integral relations of Reference 4.

The general approach of the foregoing methods is to make some
plausible assumption regarding velocity profiles which is sufficient
to reduce the integro-differential equations of the boundary layer
to ordinary differential equations which can be readily solved
numerically. For instance, in Reference 1, a one-parameter family
of quartic profiles was used while in Reference 2, a one-parameter
family of Stewartson reverse flow profiles was used. It seems
that the critical factor determining the degree of success enjoyed
by any one-parameter method for any particular case is the degree
to which the assumed velocity profiles will fit the nonsimilar
family of profiles which actually occurs.

However, a shortcoming of a one-parameter family of profiles
in the existing methods is that they do not permit higher
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approximations to the solution and thus do not permit assessment

of how closely the assumed velocity profiles approximate the actual
nonsimilar family of profiles. Another shortcoming is that one
cannot expect a one-parameter family of velocity profiles to repre-
sent accurately all possible velocity profiles that can be developed
in separated and attached flows.

In accordance with these critical remarks concerning one-
parameter families of profiles, the method of the previous investi-
gation (Ref. 1) has been completely abandoned and the Dorodnitsyn
method of integral relations (Ref. 4) has been adopted. This
method containsg within its mathematical framework the possibility
of carrying out higher approximations, and with the proper treat-
ment of the singularities appears to contain the possibility of
approximating exact solutions as closely as possible. In the
present work a fourth approximation is used so that the velocity
profile used in a four-parameter profile.

Among the questions to be discussed is the interesting one
of whether the boundary-layer equations give an adeguate represen-
tation of the flow in the neighborhood of the separation point,
or whether the Navier-Stokes equations are required. Also, some
light is shed on the question whether the concept of free inter-
action can be expected to apply with any degree of precision in
the neighborhood of the separation and reattachment points. "“Free
interaction" implies that the body contour is increased by the
boundary-layer displacement thickness when using inviscid super-
sonic flow theory to calculate the pressure distribution acting

on the boundary layer.
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2. GENERAL CONSIDERATIOQONS
2.1 Description of Problem

The problem under consideration is that of calculating
accurately by automatic means laminar separated flows under the
action of prescribed pressure gradients or under the influence of
free interaction between the boundary layer and the supersonic
cuter flow. By "free interaction" we consider that the pressure
distribution of the outer flow is the result of a mutual inter-
action between the boundary layer and the outer flow. The bound-
ary layer, on the one hand, through its displacement thickness
turns the outer flow; and the outer flow, on the other hand,
through its pressure rise tends to thicken and separate the
boundary layer.

Usually the boundary-layer equations are solved in a step-
by-step integration as a straightforward parabolic boundary-~value
problem, despite the fact that pressure waves in the subsonic part
of the boundary layer always make the boundary-value problem ellip-
tic. In a sense it is a corollary of the free-interaction concept
that the geparated flow is independent of the direct influence of
the downstream configuration. By this we mean that the downstream
configuration cannot influence steady separated flow by means of
upstream pressure waves, although it is thought that the downstream
configuration actually fixes the position of separation in accord-
ance with some reattachment criterion. The correct position of
the separation point must be found by iteration in accordance
with a reattachment criterion, and in this sense the boundary-
value problem is elliptic. However, once the separation point
has been specified, then solution of the boundary-layer equations
including free~interaction is independent of the direct influence
of the downstream configuration until the calculational marching
procedure reaches the configuration.

The particular configuration which we will consider is shown
in Figure 1. Herein a ramp induces separation on a flat plate
and reattachment occurs on the ramp. This paper will present

results for the pre-separation, post-separation, and reattachment
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regions. The flow beneath the u = 0 1line will be called the
inner flow, and that above the u =0 1line, the outer flow.

With regard to the slopes of the compression surface, the
assumption has been made that these are small so that the boundary-
layer equations in a coordinate system parallel and perpendicular
to the flat plate can be retained all the way to reattachment (see
Fig. 1). The additional terms introduced into the boundary-layer
equations in the reattachment region by not taking the vertical
axis normal to the ramp are proportional to the slope of the ramp

and are therefore negligible for small enough slopes.

2.2 Assumptions

A number of assumptions are made for the purpose of this
paper.

(1) The governing equations are those for a compressible
laminar boundary layer.

{2) The Prandtl number is unity.

(3) The air behaves as an ideal gas.

(4) The wall is adiabatic and at stagnation temperature.

(5) Within the range of interest the viscosity varies
linearly with temperature.

(6) The pressure at the outer edge of the boundary layer
is governed by the Prandtl-Meyer relationship.

(7) There is no upstream influence due to pressure waves

in the boundary layer.

(8) A compression ramp with small slopes but otherwise of

arbitrary shape induces separation of the boundary layer.

2.3 Partial Differential Equations and Boundary Conditions
2.3.1 Physical plane

The laminar boundary-layer equations being used are the

) 0

usual ones.

gu Su_ _9p o 9
PU 3% F PV 5y = “ox T dy \ M

Q/
2
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The domain within which a solution to the boundary-layer

equations is being sought is shown in Figure 2.

Boundary A: w(x) = 0; X < x £ X, (3)
w({x) = given function; X £z < %

Boundary B:  x = x_ 0 Lygs=

Boundary C: y = ® Xq < x £ X,

The velocity boundary conditions are:

Boundary A: u=0 v =0 (4)
Boundary B: u = ui(y)
u=u_  at ys=w (5)
u _ =
Sy 0 at vy o0
Boundary C: (a) Prescribed pressure distribution:
u = u (x) (6)
u, = u at x = x
o} o

(b) Free interaction:

= = 7
u uO at x xo (7)

The pressure boundary conditions include the usual boundary-

layer assumption that p depends only on X,

For prescribed pressure distribution:

p = p, (x), a given function (8)
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For free interaction:

P=P at x = x (9)

The total temperature ‘Tt is constant throughout the flow

_ Yy -1 2>=
Tt = T11 + > M Tto (10)

2.3.2 Stewartson plane

In introducing the Stewartson transformation, Reference 3,
we first make a nonlinear stretching in x and y to X and Y
as follows:

Y
p,a p.a
X=jplaldx Y=[ B-l—-a—l-pp—dy (11)
o °° wix) °° '

Under this transformation, it can be shown that Equations (1)
and (2) transform to

QU 2
U QU _ 1 o u
U X v oY Uy 3x  ° vo 3¢ (12)
where

a
U=ua—° (14a)

1

By (%N o [ P oo Polo o

vV = Eﬁ- EQ- u 3z jﬁ ' Pa—— dy + an v (14b)

It is noted that the U profile is simply a uniform stretch-
ing or shortening of the u profile for a fixed value of x. The
V profile is a nonlinear stretching or shortening of the v pro-
file for fixed x.



AFFDL~TR-65-107

Notice that the entire Boundary A goes into Y = 0 and
Boundary C goes into Y = ». Boundary B goes into X = Xo. We

thus have the velocity boundary conditions:

Boundary A: Y =20 U=20 vV =0 (15)

Boundary B: X =X U = Ui(Y) (16)
%o gu

Boundary C: Y = o U=10 =u 3 Y - 0 (17)

2.3.3 Dorodnitsyn plane

Following Dorocdnitsyn the physical coordinates £ and 7

are introduced as follows:

X
U 0] U £
ax 1
ful AR el e AV Avahd (18)
5 o o}

New velocity variables are introduced as follows:

- _ U —__\1_,/
u = ﬁ: VT (19)

The partial differential equations then become

_ " N
du . D (=, — U1>
= + == + — =0
3¢ T A G N,
Y (20)

ot (-, - % \m U —, . 2%m
SR (R N I S T - =
4 ot (: i U1j> on Y, an® /

Introducing the new variable

w=v +un — (21)
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we have
%%+§-‘%=o (22a)
— - U 2=
— Jdu =3 1 = o7u
gu ou _ =~ ¢ - (22b)
u SE + W on Ul { u<} + -

The dot denotes differentiation with respect to £.
Under the Dorodnitsyn transformation, the velocity boundary

conditions are transformed as follows:

Boundary A: n = 0; u=v=w=0

Boundary B: £ = eo; u = ul(n) (23)
: e w. T = du _

Boundary C: 7 = ooy u=1; e 0

AL
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3. REDUCTION OF INTEGRO-DIFFERENTIAL EQUATIONS TO ORDINARY
DIFFERENTIAL EQUATIONS

3.1 Derivation of Integro-Differential Equations

The scheme used to obtain solutions to the foregoing boundary-
value problem is to derive from the system of partial differential
equations given by Equation (22) a set of ordinary differential
equations, the solution of which will be a close approximation to
the exact solution. The possibility of increasing the accuracy
of the approximation is also a feature specially being sought.

The method of integral relations of Dorodnitsyn, Reference 4,
seems to be one containing these features. For this purpose we
derive the integro-differential equations for the inner and outer
layer from which the ordinary differential equations are derived.

Let us first introduce a boundary s(x) in the physical
plane, Figure 1, which connects the separation point and reattach-
ment point. Let wu be zero along this line so that the direct
flow and the reverse flow are separated into two regions called
the outer and inner regions, respectively. Consider first the
outer region in the Dorodnitsyn plane in which the boundary s(x)
transforms into ns(i). Introduce a family of smoothing functions

fn(a) given as follows:
£ (u) = (1 -wW" (24)
Multiply the continuity equation (Eg. (22a}) by £(u) and the

momentum equation (Eg. (22b)) by f'(a), add and integrate between

Mg and o« to obtain

o _ 4] a _ %] | I-Jl _ o | o
‘[ g%'(fu)dn + Jr gﬁ'(fw)dn = JF £ E: (1 - uz)dn +.]’ £ : z an
T]s rls nS T]S TI

(25)

Let us now consider the velocity boundary conditions on the line
s(x) as it transforms into YS(X) in the Stewartson plane and

ns(i) in the Dorodnitsyn plane
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s{x): u=0
g
.1 apu) (26)
Vs T T p Ox Y
w(x)
Y (X): U=0 \
p.a
y = -90 P{x,s) v
S Po S (27)
s (x) g
vy = P, 3 -&dy
S PoPo P
w(x) )
ng (€): u=20 N
% v/
v, =2 [0
s Y o (28)
U U £
= —* o
s T u_2 v, Ys )
We can now show easily that
@ 5 4 o ‘j
f S¢ (fu)dn = @f fu dn
s Mg
f aﬁn— (fw)dn = -£,v_ since f(=) =0 > (29)
T]S
es] - - o —.=2
, 9°u _ , Qu _ " \J>
[f 2 4= s On jf(M an
3 o7 g
s s

Equation (25) thus becomes

10
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; T
Y =2y _ e Ra| ' éy.)
£ g - W - g S f £ (aq an

m'j%s

Ao

oo
J’ fu dn - fsvS =
T

This is the integro-differential equation of the outer flow
let us integrate between 1 = 0

With regard to inner flow,

and 71 = 71, to obtain

nS a - T]s a —
Jﬁ SE (fu)dn + jf ETY (fw)dn = )
o o
s 2T
+f N = dn (31)
3 M
It is then easy to see that
_g. . v = ! —l — 2 + fl _u - f' _u
dag Jﬂ fu dn + £.vg j- £ Uy (1 - w5idn s 9n (g woon|,
o o] s
2
(32)

This is the integro-differential equation of the inner flow
du/dn be a function only of u, Equations (30)

If we let
and (32) become

1 1 O _ _
a_ fu du J[ 1 (1 - w®%) g - £! du
dé ou J u, Q_ bn

T on u o7 Us

s

l ———
- “ ﬂ —
J( f aﬂ du {(33)
u

11
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Uy i g -
LS. T - [T 2 ugind, )]
o o7 ) I s
u_ =
- f& - J( £ 31 du (34)
o}

Note that U is zero but is retained in its notational form to
indicate the integration of Eguation (33} is from the u=0 line
in the flow to u = 1, while the integration of Eguation (34) is

between two lines on which o = 0.

3.2 Velocity Profiles

The choice of velocity profiles is a critical item in the
success of the present method. In Reference 4, Dorodnitsyn uses
a representation for the velocity gradient 0du/31n in terms of
u in such a fashion that if g is zero, the integrals in Equa-~
tion (30) are all converted to integrals of u with limits of

0 and 1. Consider only the outer flow and note the following:

At 1 = o u=1 du/dn = 0

(35)
At separation, n = 0O: u=0 du/on = 0
If we assume that the zero at u = 1 is a simple zero, neither

integral with aﬁyan in the denominator will be divergent because
the particular choice of smoothing function has a compensating
zero in the numerator. However, if the zero at separation is a
simple zero, then the integrals will be divergent. If we choose
the zero in aayan at separation as a sgquare root, the integrals
will be convergent. Also, this form is compatible with the fact
that daydn is a double-valued function of u just downstream
of separation. Accordingly, we choose the following form for the

velocity profile for the outer flow:

(1 - a)+y/u + ¢
3

= = — (36)
cO + clu + c,u -

S

a/

12
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In this formulation Cys © ¢,y © --+ are taken as functions

1% »
of £ only. Equation (36) is intioduced in Equation (33) and as
many of the fn(a) smoothing functions are used as there are «c¢'s.
Since the known singularities are explicitly exhibited and the
"smooth part" is represented by a Taylor series, the accuracy of
the approximation should increase as the number of terms in the
series is increased.

With regard to the inner flow, there is a zero of aﬁyaq at
the point of maximum velocity in the reverse flow. This zero
causes divergent integrals in Equation (34). Accordingly, Egua-
tion (32) will be used for the inner flow since it will not be
divergent if u is expanded in a power series in 1 1in the usual
way. Let us consider the following boundary conditions for the

inner flow:

_ 5 - du _
T]—'O u—O an—aw
(37)
- g du _
1= Mg u=20 3n s
The velocity can then be written as a cubic equation
_ (20 + a ) (o, + a.)
u=0q7n - 7 + T}S (38)
W 7 2
s Ng

3.3 Integral Relations for Outer Flow

In the following work we will use a fourth approximation for
the outer flow so that four ordinary differential eguations for

C C

c and Cg will be required. Through the use of Equa-

o? 1? o0
tions (24), (33), and (36), we cbtain

13
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4a_ a-w"ty ( - *2) - =
at \[:T:“—“ Cq + cou + cuu du v
u Cy
0
. 1
U —y n-1 - - _ - nhjc
_ L n{l - uaj (1 + uL,(é b e U + o uz) an - 3
u - o 1 =] c
1 u + Cq o
o
1 - p—
nin - 1)(1 - D" . U+ oo, _
- — — du (39)
c0 + clu + c,u

o)

It is to be noted that all the integrals are tractable. 1If a
fifth approximation were used, the last integral would contain a
cubic in the denominator, and the definite integrals would involve
elliptic integrals. If higher approximations than the fourth are
desired, it is probably a practical necessity to evaluate the
integral by numerical means rathexr than analytical means.

To obtain v, we make use of the inner flow velocity pro-

file. From continuity we can write

As

—_— — d J—

Vg T Wg T T & jﬁ u dn (40)
o

s s d

Substituting u from Equation (38) yields for Gg

;g - %5 é% [ﬁsz(as - aw{] (41)

wherein from Equations (36) and (37)

a_ = (42)

since aﬁyaq is to be continuous across the u = 0 line.
Let us define two families of definite integrals encountered
in Equation (39) by the following notation:

14
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ﬁn _
g, (cy) = — du (43}
u + ¢
3
O
1
—_—]1 [ _—
b ( - uafu o+ c, du (48)
n'Co2C12Cs<, ) T — —=z
C + ¢cu + Cc.u

o) 1 2
o
Formulas for evaluating gn(cs) are derived in Appendix I. The
Pn integrals are evaluated numerically because of the numerous
subcases in the analytical integration. A set of four equations

c and c¢_, 1is obtained from Equation (39) for the

for ¢, c., s

[v] 1 2
four smoothing functions with n = 1, 2, 3, and 4. This set can
be somewhat simplified by addition or subtraction of the four

egquations to yield the following set:

9,8, + 9,0, * 9,6 * (e 9, tcg, +cg dc, + [cogo t (e, + )9,

+ (Cl + cz)gz + czgs] U - Vs = C
1 o}
(45)
gzco + gacl + g4c2 + (cog2 + ClgB + C294)C3 - I:Cogo
ﬁl
+ (e, - co)gl + (c, - ¢ - 200)92 - (2c1 teylg, - 20,9, ﬁ:

9,0, t 9,8 * 9gC, * (e gy * 9, t 9 ), [f2cogl

- (2¢, - co)92 + (3cO + c

1
LT 2c2)g3 + (3c, + colg, + 302g5] 5:

15
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9,S, +g_C, +9g.c, + (cog4 + e g  + cgge)c3 - [+3cog2

U
1
+(—cO + 3cl)gB + (3c2 -c, - 4c0)94 - (o, + 4cl)g5 - 4c296] ﬁ:

= 6P, + 18P, - 12P_
(48)

In Equation (45) the value of ;; evaluated using Equation
(41) is

v
S

2, 2 [ 2
=<Vc3 qw) S Ns ©s - s s & s .

a (49)
6c 6 2 o 12 W
o 24c01/c3 12cO

It is noted that Equations (45) to (49) are a simultaneous set of

15 €55 €5 and

U . For a prescribed pressure distribution U, is known, and

Equations (45) to (48B) are adequate for evaluating the boundary-

linear ordinary differential equations for c¢ c o

o)

layer flow up to separation. When free interaction is assumed,

an additional egquation is required.

3.4 1Integral Relation for the Inner Flow

Equation (32) for the inner layer involves a finite range of
integration and contains no singularities. No particular advantage
occurs, therefore, in transforming to u  from 1n. In fact
divergent integrals are so introduced. Furthermore, there is no
necessity to use the same smoothing functions used for the outer
flow. However, it is convenient to use 1 - u as the smoothing

function in Equation (32), which now becomes
a s — = = fs O =2
at j’ (1 = u)u dy + vg = - J( g (1L -u yan - (as - aw) (50)
b o

Through Equation {(40) we further simplify to

16
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s

S

ns - 71S —
- a% f us dn = - f (1 - ua)dn - (a_ = Cl-w) (51)
O o

Carrying out the integrations yields the inner flow equation

3 3
Vcsns (: 2 VEs _ CLw & - T]s (: 3 dw &
2 105 I 70 o 105¢_ 140 3
Co @] co‘\f c3 0

C

2
o A/
o - 3aw c. c, . s 2aw s \.
g ~ Mg Q

Mg\ 35 T T70¢ 105 ~ 70c W
Q o]

=
Q a ‘\/ C
w W c3 + 3

+ 1 1-n°%2 -
s ] 105 7Oco 105c02 N o

3.5 Free-Interaction Equation

The free-interaction equation is one relating the axial pres-—
sure gradient to the rate of increase of the boundary-layer dis-
placement thickness. The increase in db*/dx turns the external
flow causing a pressure rise. The pressure rise tends to cause
further increases in ©O%*. We will assume that the pressure dis-
tribution is related to the turning angle ¢ of the external
flow by the Prandtl-Meyer relationship for inviscid compressible

two—-dimensional flow.
2
dpl d¢

= =
. cos ¢'\/M12 - cose¢

The turning angle ¢ is determined by the slope dw/dx of the
boundary and the slopes dﬁo*/dx and dﬁi*/dx due to the dis-

placement thickness of the outer and inner flows. The relation-

{53)

ship is

17
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dﬁo* d6i* dw
e + ax T ax - tan ¢ {54)

It is Equations (53) and (54) together which govern free interaction

between the outer flow and the boundary layer. The values of the

boundary-layer terms in Equation (54) are derived in Appendix II

for the assumed profiles.

18
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4. PRE-SEPARATION ANALYSIS, PRESCRIBED PRESSURE DISTRIBUTION

In order to see how accurately the present method will predict
nonsimilar velocity profiles in the face of an adverse pressure
gradient, it would be desirable to compare it with some solution
of known accuracy. A suiltable example for comparative purposes
is given in the work of Hartree and of Leigh, References 5 and 6.
These particular numerical solutions apply to an incompressible
laminar boundary layer in which the main stream produces a pressure

gradient with a free-stream velocity given by

U, (X)
UO(X)

=1 - X

We will now apply Equations (45) to (48) to the solution of this
problem, and then make a comparison with the previous numerical
solutions. The proper initial conditions for this sgolution are

C

the values of ¢ €,, and ¢, which best represent the

o? 1

Blasius profile.

4.1 Initial Conditions for Velocity Profile

It is necessary to specify an initial velocity profile in the
E,n plane. The initial conditions are specified at some point
Eo in front of the separation point, and for ¢ < go, it is
assumed that the static pressure is constant. 1In a real flow,
interaction starts at the leading edge. However, we will not
start the solution at £ = 0 in order to avoid the leading-edge
problem associated with infinite shear. The initial velocity
profile in the £,n plane under the assumed condition will be
the Blasius profile. In cases where induced pressure gradients
do occur at the leading edge of a plate, the effects of the pres-
sure gradients on the velocity profile will diminish as the down-
stream distance increases, and the profile will approach the
Blasius profile.

Let us consider the analoy of the Blasius solution in the

Dorodnitsyn plane. The equations in the X,Y plane are those
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for incompressible laminar flow. For such flow with no pressure

gradient, we have

U = U = constant
o 1
po =p, = constant
X
x = X, u, = U, £ =9 (56)
Y
Y o= Jr £ dy
P1
o
_1 J%t
n=r1 Y Y
o

With these relationships the Blasius profile can now be developed
using Egquations (45) to (48) provided a suitable set of initial
conditions are found for these equations. However, the suitable
initial profile is the Blasius profile itself. We overcome this
dilemma by noting that a laminar boundary layer on a flat plate
with no pressure gradient will develop the Blasius profile asymp-
totically even if the initial conditions vary substantially from
the Blasius profile. Accordingly, a rough approximation to the
values of Cor €15 Co» and c, for the Blasius profile was used
for the initial conditions, and the true Blasius profile was
sought asymptotically.

The question arises how the asymptotic profile will be
recognized in the computed results, We note that the similarity
of the Blasius profile states that, for constant Reynolds number

in the free stream, the value of Y for a given value of u

increases as X 2. For the slope 0Ju/d7n, we can thus write
asymptotically
u_ 4 du, 1
a1 v_i ¥ T %
v
o
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The only way that the desired result can be approached is if

=, x " 2 o x c —k (57)

as £ — =,
In Table I the initial values of ¢, ¢,, ¢,, and <c are
o 1 2 3
shown and the above ratios are tabulated as a function of £ to
see if a similar solution is developing. It is seen that a simi-

lar solution does develop with the following approximate values

k, = 3.157, k, = -1.923, kp = -0.3133, ¢, = 1.1000

It now remains to compare the profile cobtained this way with

the Blasius profile. For this purpose we solve Eguation (36),

n + k u o+ k us )
_ (58
Ve V cl - uh/

In this way the value of 1 for a given u can be readily cal-

61/2

culated. The velocity gradients vary as so that we have

3 ( .> - (1 - E)W/E-+ c,

- —
kO + klu + kzu
vX

The values of the velocity profile and its derivative as cal-

(59)

culated by the preceding equations are tabulated together with
those of Blasius in Table II. The Blasius values are from Refer-
ence 7, page 107. From the table it can be seen that for a given
value of Y, the values of u do not differ by more than 0.002.
This accuracy is considered adequate for specifying the initial

velocity profile.
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The skin friction calculated from the present results is a
clogse approximation to that obtained by the Blasius formula. We

thus have

a14]

_ aul U Yy du
T = Hy v w = oY vOX 0
3 <} -/ i%—j)
o

1 V Ca

(60)

it
Q
W
Lt
83
T
o
=
o}
n

4.2 Calculative Example

Utilizing the initial values shown in Table III, a numerical

calculation has been made for a pressure gradient prescribed by

U
-1 _ _1 X
o)
Under this pressure gradient, we find
X 1 /X%
t=(3)-% (3) (62)
The initial conditions are
£ = 0.010000
o}
X
7$-= 0.010006
c, = 3.157 1/50 = 0.3157
e, = -1.923 y/¢_ = -0.1923
c, = -0.3133 /£ _ = -0.3133
c = 1,1000
3
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Starting the solution at € = 0.01 rather than £ = 0 could

influence slightly the value of £ for separation, but its effect

on the actual velocity profile near separation will be unimportant.
The values of ¢

e C,» and C, for this case are tabu-

O’ 17?
lated in Table III and plotted in Figure 3 versus axial distance.
The separation point occurs where c, goes to zero. This value
of Xs/ﬂ obtained by running the solution on a fine interval

near separation is found to be

XS
7 = 0.9627

This compares very well with the value given by Leigh of

X
75 = 0.958542 + 0.000002

4.3 Comparison with Results of Leigh

Leigh has presented tabulated velocity profiles for small
distances upstream of separation but not at separation itself
since his numerical methods did not go through to separation.

His positions are as follows:

- - %= 0.000142, 0.000542, 0.001542, 0.002542

O, cl’ c2,

versus X/f in Table III, and velocity profiles for comparison

The calculated values of ¢ and ¢, are tabulated

with those of Leigh are presented in Table IV. It is geen that
the results for u agree with those of Leigh to about 0,002,
We can therefore conclude that the method of integral relation-
ships is yielding excellent approximations to the true velocity
profiles for this test case. We can also approach other cases
of separation with some degree of assurance that our four-
parameter family of velocity profiles will yield a close fit.
We can, of course, increase the accuracy by going to a fifth-

order approximation.
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In comparing our results with those of Leigh we note that the
coordinate YL of Leigh normal to the wall is related to our
mordinates as follows:

*Y(l—lx—'?') (63)
n= 1L 8 £

4.4 Velocity Profiles at Separation

The point was made in the Introduction that a one-parameter
family of profiles cannot be expected to represent accurately all
possible profiles occurring in separated and attached flows. For
instance, one cannot éxpect all profiles with zero wall shear to
reduce to a universal function when considered in the nondimensional
form of U/U, versus Y/0%. Yet, quartic profiles and similarity
profiles each yield such universal functions for zero shear, and
such universal profiles would be expected to be an accurate repre-
sentation of the separation profile in all cases including the
present calculative example. Since we have shown that the present
calculated profile at separation is very accurate, we can use it
as a standard of comparison in this particular case. Accordingly,
a comparison has been made between the Dorodnitsyn separation pro-
file and the corresponding gquartic and gimilarity profiles in
Table V. The Dorodnitsyn profile is accurate to 0.002 in U/U1
for a given value of Y/6%*. The quartic profile differs from the
accurate result by as much as 0.030. The corresponding figure
for the similarity profile is 0.016. These errors apply, of
course, only to the Hartree-Leigh case.

The slopes of the velocity profiles are compared for the
present calculative case and the guartic case in Table V(b).
Substantial errors in slope occur within the boundary layer for

the quartic case.
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5., CALCULATIVE EXAMPLE FOR FREE INTERACTION

It is now of interest to investigate separated flows under
the assumption of free interaction. This will be done first for
the pre-separation region, then the post-separation region, and
finally the reattachment region. Some particularly interesting
results around the separation point will be examined. For the
purposes of illustration we have selected a case for which data
are available. The configuration for the calculative example is

shown in Figure 4.

5.1 Initial Conditions

In addition to the initially prescribed velocity profile, it
is necessary to prescribe some initial condition on pressure for
the free-interaction equation. The initial condition should be
such that a small disturbance will initiate the free interaction
which results in the development of a separated flow. Attempts
were made to initiate such an interaction by perturbing the veloc-
ity profile, by specifying a value of ﬁl, and by perturbing p,.
It was found that a small perturbation in the value of p, was
a satisfactory way to induce separation, and that, as the per-
turbation became small, the pressure distribution tended to
approach a limit.

To determine the change in U, accompanying a prescribed
increment in p, let us first write for the main stream in the

compressible plane

dp, = -p U, dul
or
dp du .
== M —+ (64)
=N 1ou

We now utilize the constancy of the stagnation temperature together

with the relationship

y = —2 (65)
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to establish the equation

du du
> - (1 + “’—;—-1- Ml2> —r (66)

U, v,

Accordingly we obtain the desired relationship

au, 1+ L2 w2 ap,
= - . (67)

U, YMIE p,

giving the change in the initial value of U, to induce a pre-
scribed change dp,/p,.

In addition we must specify a value of ¢o for the free-
interaction equation. The free-interaction equation can be written

db*

tan ¢ = o (68)

X
)

It is convenient to determine this guantity in the Stewartson
plane where the displacement thickness 68* and the momentum

thickness BS** are given for no pressure gradient by

VOX
68* = A T s A = 1.73
(69)
VOX
B ** = A, E;_ s A, = 0.664

where hl and A, are taken from Reference 7. From Appendix II,

we can show that, in general,

@ (2]
p.a
6*=—M(l—m)j(——u—>dY+me(l—y—>dY
- 1 2 u, 1 2 U, U,

(70)

and in this case
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v X v X
* = -0 o
B {1 + mo)7\l Uo + moha Uo (71)

We thus have for the initial value of ¢o

and x = X.

A N+ A
£ 1 1 1 =
tan ¢ ='\/—_‘——[:—+m<‘-——>} (72)
o) xo ﬁi;[ 2 o] 2
¥
Q

A series of runs were made to see how the interaction pres-
sure distribution behaved as the magnitude of 4p, applied to
the boundary layer at xo/ﬂ was reduced. The following set of

initial values was used:

P /P, 1.001039 1.01 1.02012 1.039251
. 48000 48000 48000 48000
M 2.7 2.7 2.7 2.7
v 1.4 1.4 1.4 1.4
x /4 1 1 1 1
£ 1 1 1 1
c, 3.157 3.157 3.157 3.157
c, -1.923 -1.923 -1.923 -1.923
c, ~0.3133 -0.3133 -0.3133 -0,3133
c, 1.1000 1.1000 1.1000 1.1000
U, /U, 0.9997500 0.9976041 0.9952046 0.9907388
o 0.011872 0.011872 0.011872 0.011872
M 2.69932 2.69353 2.68705 2.67499

The free-interaction pressure distributions accompanying the
various pressure impulses are shown in Figure 5. The results

are readily plotted against (x - xo)/xO where X, is the point
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of the beginning of interaction. The separation pressure ratio

is indicated by the points. It is clear that the pressure distri-
butions are approximately parallel to each other by the amount of
the initial impulse with little change in the position of separa-
tion. Also, the distributions appear to tend toward a limit as
the impulse approaches zero. Apart from the guestion of the
existence of a limit, a pressure impulse of one-tenth of a per-
cent is considered small for the present purposes and is used

henceforth to initiate interaction.

5.2 Other Parameters of Calculative Example

A calculative example has been made for the €s.25%-1 model
of Reference 8 for which laminar data are available in Figure 17
of that report. The following initial conditions were used in

the calculation:

X
R, = 39000, M_ = 2.70, —+ = 1.000, £, = 1.000,

e

—= = 1.001
Po

The value of £ 1is taken as the distance from the start of the
boundary layer to the onset of free~interaction in the calculative

example. For this case we have taken the reference length to be

f%’= 0.238

where Lc is given in Figure 4, The free-interaction was started
at the known experimental location since the objective in this
case is not to predict the separation point from some reattachment
criterion but to test the adequacy of the free-interaction theory
to explain the observed pressure distribution.

The initial conditions are

X
o
-7 = 1.000, &O = 1.000

c, = 3.157, ¢ = -1.923, c -0.3133, ¢, = 1.1000

2
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U
= - =
Uo 0.99975, ¢O 0.01317

The calculation proceeded without any difficulty and gener-

12 Cz» @and c, with x shown in

Figure 6. The variations downstream of separation will subse-

ated the variation of Cys C c
guently be discussed. The comparison of the calculated pressures
with the experimental ones up to the separation point shown in

Figure 10 is considered good. It appears that the assumption of

free interaction is a valid one up to separation.

5.3 Behavior of the Solution in the Neighborhood of Separation

One point of particular interest is the nature of the singu-
larity at the separation point, and the manner in which the free-
interaction theory copes with this singularity. The solution
which goes smoothly through the separation point is one based on
Equations (45) to (48) and the free-interaction relationship.
Egquations (45) to (48) have no discontinuities at separation but
the free-interaction equation does.

Consider the free-interaction egquation

R 172 ds *  dp.* R /2 tan ¢
Q o] + 1 = O (73)
1 + mO dx dx 1 + mO

where the two terms on the left-hand side are given by Equations
(II-10) and (II-15) of Appendix II. In crossing the separation
point the right-hand term in continuous. Equation (II-15) con-
tributes a discontinuous term ﬁs on the left-hand side. How-
ever, an equal and opposite discontinuity is contributed in the
c_c éo term of Equation (II-10) so that equality is maintained.

a o
The singularity in the Cacoéo term arises from éo since

5o -2 (VT + e, - Ve, ) (74)

and, therefore,
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1 + 1

é = -
© Ve, 1 +c,

Since ¢, 1is zero at separationm, éo is infinite. If in the

neighborhood of the separation point, we write

ng = k (& - &)
. (75)
ey = k, (8 - E))
we readily obtain across the separation point
A= k= dim (é c g ) - (ésc 3 (76)
S 5 €0 3 00 £ -c 0”0 E +c
s S
ﬁs = k5 = 4co-\/k4 (77)

We have thus determined the slope of the u = 0 line at separation.
Another relationship is needed in addition to those utilized
upstream to carry out the integrations downstream of the separation
point. It will now be shown that this relationship, compatible
with Equation (77), is the continuity of the second derivatives of
the velocity profiles at the u=0 1line. If we use a guadratic
for the inner velocity profile we can expand the velocity profile

about the u = 0 line as follows:

= _ du _ 1 9% _ 2
U=y (n ns) + 3 - n - ong) (78)
Mg n 1
5
where the derivatives evaluated from the outer profile are
du| _ VSs 3%y s 1 S
T = = , - Lt - (79}
Mg o an c 3 o

Since u = 0 when n = 0, we write
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, 28
n = —91
S 3%y
a 2
i N
{80)
_ 2
Mg = \[__
c c
e (}l + 21 - —&->
o €y o
The dominant term as £ — ﬁs in this expresgion is
Ng = 4c e, as £ — Es
(81)

The inner velocity profile is thus a quadratic just downstream

of separation, and the proper condition required to continue the
pre-separation solution smoothly through separation is thus the
continuity of the second derivatives of the inner and outer veloc-
ity profiles at the u =0 line. Only by taking the inner
velocity profile as a quadratic immediately downstream of separa-
tion has it been possible to make the numerical integration
proceed.

It is of interest to note that the conditions of a guadratic
inner velocity profile just downstream of separation can be
inferred from an analytical continuation argument. Consider
several profiles as shown in Figure 7. Downstream of separation
the inner profile corresponds to a guadratic which will have two
points for a given u and the values of Baybn at these two
points will be equal and opposite. Thus, that part of the post-
separation profile marked "inner profile" will have the u-axis
as an axis of symmetry. What this, in effect, means is that the

inner profile could be represented as follows:

%ﬁ . (1 - G)\fa + c,
.

2

- = (82)
c_+cu+cu
o 1 2

31



AFFDL-TR-65-107

where the plus sign refers to the first and second guadrant and
the negative sign to the third guadrant. The observed behavior
of the inner profile can thus be explained by an analytical con-
tinuation of the outer profile into the inner region.

In Figure 8 a plot is shown of the computed values of Cqs Cis

-, and ¢, in the neighborhood of the separation point for the

case where the solution is continued on the basis of a quadratic

c

profile and a second derivative match. It is noted that c,

is linear in x so that ¢_ 1is quadratic as previously assumed.

5.4 Adequacy of Boundary-Layer Theory in Neighborhood of
Separation Point

While it has been shown that the present boundary~layer cal-
culative method goes smoothly through the separation singularity,
it has not heen established that boundary-layer theory is a
satisfactory representation of the viscous flow in such a neigh-
borhood., In this connection we will show that the glope of the
u =0 1line at separation calculated on the basis of the Navier-
Stokes equations is in good agreement with the present calculative
results. We will also show that the use of free interaction
together with the boundary-layer equations yields reasonable
rhysical behavior at the separation point, whereas the imposition
of a prescribed pressure distribution as in the case of Leigh and
Hartree can lead to physically implausible behavior there.

With regard to the slope of the dividing streamline and the
u =0 line at separation, Oswatitsch gives the following results

based on the Navier-Stokes equations:

_3 91/9x
dp/ Ox

- o QT/Qx
tan Bu = =2 0D/ %

tan SD
(83)

The angles BD and Bu are shown in Figure 9. Based on the

present analysis it can be shown that
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n

o
U 1/2 &
_p Qu/ox _ (? + =1y 2) 2 (L —i (85)
op/dox 2 o /g R TJE_C
1 3 o]

The following values at the first calculated point beyond separa-

tion were found from the calculations:

M, = 2.58, M_=2.70, ¢ 5.567x10 °, e, = 3.43x10°°

1 3
Ul I-Il .
R, = 39000, 5= = 0.95675, == -0.09277, c_ = 2.190, f_ = 6.39
O 0

The calculated values from Egquations (84) and (85) are

- 9s _
tan Bu = ax 0.07%5

5 9r/ox _
2 dp/ Ox 0.0854

It thus appears that the precise result of Equation (83) based on
the Navier-Stokes equations are duplicated within 10 percent by
the boundary-layer equations at the separation point.

The second point has to do with the rate of change of shear

with axial distance at the separation point.

ou
T ~ ==
Bﬂ is,ﬂ=0

T ~ (86)
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In the present free-interaction solution where

c, = k(6 - ¢)®

we find a finite limit as £ — Es’ as follows:

. ST
£im SE ~ 1!k4 (87)

E—E

The wall skin friction is thus a linear function of £ passing
through the separation point as shown in Figure 9. In the case
treated by Leigh, és has a value of about 0.2 at separation so
that 07/3f 1is infinite. The difficulties encountered by
Goldstein, Reference 9, in finding a physically satisfactory
mathematical description of the flow in the neighborhced of the
separation point for Leigh's case thus appears to be associated
with the inadequacy of the boundary-layer equations in that case
to yield a physically realistic flow. The introduction cf free
interaction into the problem, however, does cause the boundary-

layer equation solution to be physically realistic.

5.5 Continuation of Solution Downstream of Separation

We now consider continuing the solution downstream to the
roint where the ramp starts the recompression. There is some
gquestion regarding the best method for accomplishing this.
Various cases have been investigated based on different egquations
and boundary conditions.

In the first place, several different momentum relationships
can be applied to the inner layer. We can try the inner momentum
relationship represented by Equation (52). However, a simpler
wall relationship can be used instead based on applying Equation
(1) to the wall.

y=o

34



AFFDL-TR-65-107

With regard to the pressure at the outer edge of the boundary layer,
two possibilities exist. Firstly, we can continue to use the free-
interaction concept in an attempt to produce a unified theory for
the entire separation region. Secondly, it is possible to invoke
the boundary condition of constant pressure as exemplified by the
concept of a plateau pressure region. Another boundary condition
which can be invoked is continuity of the velocity derivatives at
the u = 0 line.

In order to investigate the consequences of various combina-
tions of the foregoing conditions, five different cases were

studied as follows:
Cage A;

(1) Quadratic inner profile.
(2} Wall relationship, Eguation (88).

Case B:

(1) Cubic inner profile,
(2) Wwall relationship.

(3) Inner momentum equation, Equation (52).
Case C:

(1) Cubic inner profile.

(2) Wall relationship.

(3) Continuity of 3°u/dn° on u = 0 line.
Case D:
(1) Quadratic inner profile.
(2) Continuity of d%u/dn® on u =0 line.
Cage E:
(1) Quadratic inner profile.
(2) Continuity of aaﬁyanz on u=20 line.
{3) Constancy of static pressure from point where U =0

; 1
in Case D.

Some calculated results for these cases are shown in Figures 10

and 11. In Figure 10, the calculated pressure distributions are
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shown and, in Figure 11, the calculated velocity profiles and veloc-
ity gradient profiles. On the basis of these calculated results,
certain conclusions are drawn,

Cases A and B, while demcnstrating reasonable pressure dis-
tribution, show a singularity in 3%u/dn® in Figure 11(b) at the
u=20 line. Furthermore, this singularity tended to cause dis-
turbances in the velocity profiles which emanate from the u=20
line and propagate both upward and downward as the downstream
distance increases. Such disturbances are a result of either
flow instabilities or calculative instabilities; it is not known
which. As a result, these cases were discarded and it was con-
cluded that continuity of Bzayang on the u=0 line is a
required boundary condition.

It was decided to adopt Case C as the one for the automatic
computation program rather than Case D or Case E because it uses
a cubic rather than a quadratic inner profile and because it per-
mits a unified free-interaction theory for the entire separated
region. Also, Cases D and E do not satisfy a momentum relation-
ghip for the inner flow.

It is noted that Cases A, B, and C involve a momentum rela-
tionship for the inner layer and that Cases D and E do not. It
is also noted that the inner profiles for A, B, and C are much
flatter than those of D and E. An explanation of this behavior
is to be socught in the momentum equation which states that for
constant pressure

c

do** £
Tax T2 (89)

If the wall shear is forward; that is, if Cs 1s negative, B*¥
should decrease as x increases. Therefore, if the part of the
boundary-layer profile above the u =0 line tends to fill out,

that below it must flatten.
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5.6 Asymptotic Behavior of Case C

No downstream boundary conditions or reattachment criterion
hags yet been used in the analyszsis. The point of view is taken
that a starting point of interaction is assumed, and the downstream
conditions are calculated by the computer program. If the calcu-
lated downstream conditions are not in accordance with some
reattachment criterion (to be specified), the starting point of
interaction is changed and a new set of downstream conditions
calculated. If a suitable set of downstream conditions is found,
then the solution is a possible one. However, a question of flow
stability can be raised at this point. No stability analyses are
included in the present work.

It is interesting to see what type of downstream boundary
conditions are developed by Case C. To investigate this point,
the solution was continued far downstream on the computing machine.
The resulting pressure distribution is shown in Figure 12, together
with calculated positions of dividing streamlines and u =0 lines.
It is noted that as the pressure falls the reverse flow behind
separation point 8§ is flowing against an adverse pressure gra-
dient which reverses the inner flow. As a result, a second divid-
ing streamline and second u=0 line develop. It is clear that
the solutiong can be asgociated with two bluff downstream bodies,
one corresponding to the inner u =0 line with a prescribed
normal velocity distribution and the other corresponding to the
inner dividing streamline with a prescribed slip condition. In
the concept of free interaction, the pressure distribution up to
the plateau region is independent of the downstream means of
causing separation. (The pressure distribution starting at the
compression surface, of course, does depend on the shape of the
compression surface.) Because separation usually occurs close
to the compression surface, no appreciable falling pressure occurs
in the plateau region. It thus appears unnecessary to invoke a
constant plateau pressure as a boundary condition.

The foregoing flow field actually corresponds to two stand-

ing vortices in the separated region with reversed signs. To
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obtain this pattern requires going to a cubic inner profile. It
is not clear if going to a quartic profile will produce three
standing vortices. We have certainly not developed a convergent
solution for the inner flow, although the outer flow should be
quite accurate for the solid boundary condition previously men-
tioned. Higher approximations can be made by the present method.
However, if a second separation point developes, we can argue
logically that the inner profile should be represented by a veloc-
ity profile with a square root singularity comparable to that for
the outer flow based on the same arguments advanced for the square
root singularity in Equation (36).

Let us examine the velocity profile of the outer flow to see
if an asymptotic outer profile is developed. It turns out that
the profile outside the outer u=0 1line approaches that given
by Chapman in Reference 10. Also, the velocity profile can be
non-dimensgionalized with respect to x in the same manner as the
Chapman solution. In this form the velocity profile U/Ul is a
function only of the parameter (¢ defined by Chapman as follows:

Y
El;f pu dy
- (90)

y* _ '
V x* \/umvm(x - xS)C

C:

The correspondence between the foregoing notation of Chapman and

the notation of the present report is

u = u v,.oo= vy T =T (91)

In the present analysis a parameter ¢ 1is evaluated as follows:

Yy
f pu dy
=2 (92)
UOE
Ha v
O
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It is then easy to show that

V x* U1 Py X - X
£

so that a direct comparison with the results of Chapman can now
be made.

A comparison is made between the velocity profiles of Case C
and that of Chapman (Ref. 10) in Figure 13. The two points where
¥ = 0 and the two points where u = 0 are seen in the velocity
profile for Case C. The velocity profile above the u =0 line
originating at S' shows a close approximation to that of Chapman

in an asymptotic sense.

5.7 Continuation of Spolution to Reattachment Point

The present analysis allows for introduction of a compression
ramp of fairly arbitrary shape at some point downstream of separa-
tion. Case C has been made to go through te the reattachment
point by cobserving that the velocity profile approaching the
reattachment point is guadratic just as is the profile coming out
of the separation point. As the solution for Case C proceeds
downstream of the beginning of the ramp, the cubic velocity pro-
file becomes quadratic. At that point, a quadratic profile is
assumed and continued up to reattachment. In this way the solu-
tion was made to go smoothly into the reattachment point.

In Figure 14, the calculated flow characteristics are shown.
The value of ¢, and és are both zero at the reattachment point
just as at the separation point. At a point about half way up
the compression surface toward the reattachment point, the cubic
profile turns into a quadratic profile. At this point the pro-
file is taken as quadratic and is go continued into the reattach-
ment point. The dividing streamline is shown together with the
u =0 1line which 1s about two-thirds of the distance between
the wall and the dividing streamline.
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Comparison of the calculated and experimental pressure dis-
tributions shows a long delay downstream of the beginning of the
ramp before the pressure starts its rise. The significance of
this fact can be seen by comparison with the inviscid pressure
distribution. The calculative and experimental pressure distribu-
tions are in fair agreement. The reversal in curvature of the
calculated pressure distribution approaching reattachment is
exaggerated by the large scale and is not nearly so pronounced in
subsegquent calculations to be shown for wedges. It thus appears
to be due to the increasing slope of the ramp. As a matter of
interest, the calculated total pressure on the dividing streamline
is also shown.

In Figure 12 it was seen that without a compression ramp,
the reversed flow separated at a point 8' located at x/£ of
3.9. 8Since the compression ramp is introduced at x/#4 of about
2.1, we will still have separation at S' with the ramp. The
calculated separation region and velocity profiles for Case C
with the ramp are illustrated in Figure 15, It is seen that the
ramp causes the inner separated flow to reattach very rapidly.

In fact, the small amount of inner separated flow and its very
low velocity makes it of no physical importance insofar as the

overall flow is concerned.
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6. CALCULATIVE PROGRAM
6.1 General Aspects of Calculative Program

It has been the primary objective of this study to develop
an automatic computational program for calculating laminar sepa-
rated flows. The program which has been developed is described
completely in an operating manual. While it is not intended to
describe in any detail the calculative program herein, neverthe-
less, certain general features of the program are of interest
and should aid in utilizing the program to maximum advantage.

The calculative technique is basically an iterative one. The
beginning of interaction between the boundary layer and the outer
flow is assumed to start at a certain position, and the resulting
separated flow is calculated up to the reattachment point. If
the calculated reattachment point does not fulfill the particular
reattachment criterion which may be invoked, one then changes the
beginning of interaction and computes a new reattachment point.

In this sense the method is an iterative one. No particular
reattachment criterion has been built into the method. No¢ guaran-
tee of the existence of a solution is given. Even if a scolution
is found by calculation, no guarantee of its stability is made.

A discussion of the reattachment criterion will subsequently be
made.

The method can be applied to a compression or expansion ramp
of fairly general shape, but the particular program here is written
for a flat plate with a flat wedge faired together by a circular
arc. The radius of this arc can be varied. Within reasonable
limits, the radius size does not influence the calculated results.

The velocity profile external to the u = 0 line has been
taken as a four-parameter profile, and the inner profile has been
taken as a cubic except near separation and reattachment. ©On the
basis of comparison of calculated results by the present method
with "exact solutions" from other methods and on the basis of com-
parison between calculated results and experimental results, it
is believed that the above profiles will give sufficiently accurate

approximations to the flow field for most purposes. Possibilities
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for higher approximations are inherent in the method, but none has
been carried out. This should be done.

The program is based on the concept of free interaction between
the boundary layer and the external flow in that the pressure dis-
tribution acting on the body in viscous flow is assumed to be the
same as the inviscid pressure distribution for the body thickened
locally by the amount of the boundary-layer displacement thickness.
The Prandtl-Meyer relationship is used to calculate the pressure.
The calculative method will be accurate to the extent that "free
interaction" accurately describes the fluid mechanics of the separa-
tion and reattachment processes. The calculation is started by
assuming that the flow up to some point termed the beginning of
interaction is of the Blasius type, and that free interaction
starts discontinuously at that point. The precise formulation of
the initial conditions will be subsequently discussed. The intro-
duction of free interaction together with a small pressure impulse
applied to the boundary layer is sufficient to cause the computing
scheme to generate the separated flow solution.

From the mathematical point of view the computational program
is simply one that solves a simultaneous set of ordinary differen-
tial equations step by step starting at the beginning of interac-
tion and continuing downstream to the reattachment point. The
set of equations is obtained from the method of integral rela-
tions applied to the laminar-boundary-layer equations and from
the free-interaction relationship. The unknowns in the eguations
are the parameters which specify the velocity profiles and the
pressure distribution. For the region in front of the separation
point there are four velocity profile parameters which, taken
together with the pressure, require five simultaneous differential
equations for their determination. Downstream of the separation
point a cubic profile is utilized for the inner flow with three
parameters determining the inner velocity profile, Equation (38).
However, the use of the boundary condition of the continuity of
two velocity derivatives at the boundary between the inner and
the outer flows results in the addition of only one more differ-

ential equation downstream of the separation point.
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The program can be utilized for arbitrary values at the
beginning of interaction of the Reynolds number, Mach number, and
ratio of specific heats. By eliminating the eguation of free
interaction and specifying an external pressure distribution, the
method can be used to calculate with excellent accuracy the change
in shape of the laminar velocity profile in the face of an arbi-
trary pressure gradient. It is possible to increase the accuracy
of the program by increasing the order of approximation used to
represent the velocity profiles. (Until the stability of the
calculative process has been demonstrated, no positive claims can
be made.) It is also capable of extension to much broader appli-

cation as discussed in "Recommendations for Future Work."

6.2 Assumptions of Calculative Program

A number of assumptions have been made in the analysis as
listed in Section 2.2. 1In addition, several additional assump-
tions or conditions have been specified for the calculative pro-
gram.,

(1) A four~parameter velocity profile has been used for the
outer flow.

(2} A cubic profile has been used for the inner flow.

(3) The configuration is a flat plate with a wedge com-
pression surface joined by an arc of constant radius.

{4) The initial conditions of the boundary layer correspond

to those for the Blasius case.

6.3 Initial Conditions

Some discussion of initial conditions is regquired for cases
of very low Reynolds numbers or very large Mach numbers. For
these cases it is found that the streamwise slope of the displace-
ment thickness at the beginning of interaction is not small, being
of the order of 10° in some cases. In the work contained through
the first five sections, the assumption was made in calculating
the initial conditions that the velocity u, at the edge of the
boundary layer ig parallel to the plate. However, it was found
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necessary to take account of the difference in direction between
the velocity at the edge of the boundary layer and the direction
parallel to the plate for the above cases if the calculative
solution is to start smoothly.

Consider the following sketch which illustrates the initial

condition problem:

P, 5*4

At some point X, We assume that the static pressure jumps dis-
continuously from Py to p,. This increment is small, being
only one-tenth of 1 percent of Py- Up to X, one assumes the
pressure wag constant and that the boundary-layer profile just
before X, corresponds to that for uniform pressure. In some
cases, interaction between the boundary layver and the outer flow
will produce large induced pressure gradients before X,- We
have neglected such pressure gradients or alternately consider
that the plate was cambered to counteract them and to produce a
uniform pressure. At X the slope cof the ©* curve changes
by a very small amount from @0 to ¢, in accordance with the
Prandtl-Meyer relationship. The Mach numbers Mo and M are
defined on the basis of the velocity parallel to the wall.
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Applying the Prandtl-Meyer relationship to the slope of the
streamline at ©%* with the outer flow Mach number defined parallel

=
1 Mo
cos ¢O

to the plate, we find

TN
= |
S~ A
I
£
3
1
-
+
=<
NRY

2
1+ Y -1 Ml
2 cos @
1
B Ni/2
M 2
1 +_<T - 1.) o
M 1/2 2 cos ¢ U
-+ = cos ol —1 = -1 = =
M il Y 5 Ly2 (p v -1/ U,
e} i
L Pg _
(94)
We wish to determine the values of M and ¢l ag initial
conditions for the calculation program. In the preceding
equation we have used the following initial values to calcu-
late M_:
1

Py

— = 1.001 (95)

Po
¢ = ¢ = tan~? L 0.860823 + 1.193715(75—1)3402} (96)

1 o R 1/2
o

The second relationship is based on Equation (72} and neglects the
small difference between ¢o and ¢, in the calculation of M, .
However, in determining the initial value of ¢  itself, we

utilize the relationship between Mach number and turning angle.

I L TN L | MY -\/<M o
¢ = v - 1 tan Y + 1 [(ﬁcos ¢> i} + tan * cos ¢> t+c

(97)
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The constant C 1is evaluated from the conditions

M= M ¢ = e,
so that
M S M z
C=29¢,t \/ % tan * H (‘;fg;) - 1| - tan-l\/<EOTo&);> -1

(98)

We then compute @l from Equation (97) using C evaluated from
Equation (98) with M/cos ¢ equal to M, /cos ¢O. Iteration of
Equations (94) to (97) to establish more precise values of M
and ¢, is usually not required because of the small difference
between ¢O and ¢l.

In the calculations discussed through Section 5, the <cos ¢
term was included in the pressure distribution calculations but
was not included in the initial condition calculations. It has,

however, been included in both calculations henceforth.

6.4 Calculative Accuracy

In order to assess to what extent any differences between
experiment and theory can be ascribed to theory rather than inac-
curacies in numerical methods, it is important to investigate
the calculative accuracy of the method. In this connection, we
will consider the guestion of interval size, corner radius, and
order of approximation of the velocity profiles.

First, a point concerning stability of the calculative method
should be mentioned. If a laminar boundary layer on a flat plate
is given a distorted profile as an initial condition and is per-
mitted to proceed along the plate at uniform pressure, it will
develop a Blasiug profile asymptotically to any desired numerical
accuracy. If we were to assume a Blasius profile at some point
and were to integrate upstream to find the initial conditions, we
would have a numerically intractable problem since any number of

initial conditions could result in a final Blasius profile within
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prescribed numerical accuracy. Integrating the boundary-layer
equations downstream of separaticon into the reversed inner flow
has some of the aspects of the foregoing problem. In this case,
however, it is complicated by the existence of inner and outer
flows. It was found that if the inner profile was represented as
a cubic, the integration immediately downstream of separation
became unstakle. In the program, the inner profile is started as
a guadratic and changed to cubic when numerical differences of
the order 10 * between the magnitude of the slopes at the wall
and the u = 0 1line is found in a side calculation. This pro-
cedure eliminates the instability completely. It is not known
what caused the instability for the cubic case. The other insta-
bility encountered in the calculations occurred as a result of a
singularity in the second derivative of the inner and outer veloc-
ity profiles at their juncture.

The interval size is not constant in the integration scheme
but is variable to maintain certain prescribed accuracies. At
the start of the numerical scolution a Runge-Kutta integration
scheme is used for the first four steps. Thereafter a fourth-
order Adams predictor-corrector method is used. With the value
of the variables known for steps j - 3, jJ -2, 3 - 1, and 3,
the value for step 3 + 1 1is predicted by the following formula:

(p) h . . . .
B = . + == [55B. - 59B. + 37B. - 9B. 99
j41 T By T 24 (5 § 7 2754 7By-2 :l‘s) (99)
Using the predicted value of ﬁ;ﬁi, a corrected value of Béil
is calculated as follows:
(c) _ b ( s(P) L 193 - s :

Bj+l = Bj t 24 9Bj+l l9Bj 5Bj_l + Bj-2 (100)

The truncation error Ax 1is estimated by the formula
_ _ 1% /(e _ L(p)
BX = = 570 (Bj+l Bl (101)

The absolute error estimate is
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(c) (p)
B. - B!
J+1 J+1i |
13 = |ax] (102)
and the relative error estimate is
Ax
Bis1

For the calculations of this report, the relative error has
been taken as 10 ° and the absolute error as 10 7, If the rela-
tive error exceeds 10 ° but the absolute error is less than 10 7,
the integration proceeds. If both tests fail, the increment is
halved, and the calculation started again using the Runge-Kutta.
If the relative error is less than 1/200 of the relative error
bound, the interval is doubled. Also, if the absolute error is
less than 1/200 of the absolute error bound, the increment is
doubled even though the relative error test fails. These criteria
are established to avoid oscillating between two interval sizes.
These tests are built into the IBM Fortran II subroutine used to
solve the system of differential eguations. A discussion of the
method and the Runge-Kutta starting technique is presented in
F. D. Hildebrand's "Introduction to Numerical Analysis," McGraw-Hill
New York, 1956, Chapter 6.

During the calculations run for comparison with the results

3

of Hartree and Leigh, the allowable relative error was decreased
from 10°° to 10°*., The calculated values of x for a given value
of ¢, did not change by more than one in 107*. This was also

the accuracy of prediction of the position of the separation point.
Accordingly, a value of relative error of 10 ° was considered
sufficiently accurate for the calculations.

In order not to introduce any discontinuities which might
generate calculative instabilities, it was decided to fair the
plate into the ramp with a circular arc. For this reason, calcu-
lations were made for the configuration of Figure 16 with fairings
of several radii, The calculated results for the pressure distri-

bution are shown in Figure 17. It is seen that fairing the corner
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causes modification of the pressure distribution only over its
length and that the final pressure distribution on the ramp does
not depend on the size of the radius. Also, as the size of the
radius tends to zero, the calculated pressure distributions tend
to a limit. It thus appears that fairing the corner causes no
inaccuracies in the calculated pressure distributions. Some
local modifications of the velocity profiles may be anticipated
in the region of the fairing. In the program, the actual radius
of the fairing is left arbitrary.

It has been mentioned that the present method contains within
its framework the possibility of cbtaining higher-order approxima-
tions to the calculated flow. Such approximations are obtained by
increasing the number of parameters in the velocity profiles. With
regard to the outer profile, a four-parameter formulation has been
used throughout the paper and a higher-order approximation has not
been investigated. Based on the excellent agreement of the four-
parameter approximation with the results of Leigh, it was felt
that a fourth approximation for the outer flow is enough for most
purposes. Furthermore, we must consider the question of increas-
ing the degree of approximation of the outer profile simultanecusly
with that for the inner profile.

It is felt, insofar as the pressure distribution is concerned,
the number of arbitrary parameters in the inner profile can be
less than that for the outer profile. In the case of the cubic
profile, we have matched the velocity and its first two derivatives
at the boundary between the inner and outer flow, leaving only
one free parameter to satisfy an inner momentum relationship
(Case C). For Case D with a gquadratic inner profile, continuity
of the velocity and its first two derivatives fully determines
the profile, and momentum is not satisfied for the inner layer
{although continuity is).

A comparison between Cases C and D and the data for the par-
ticular case is shown in Figure 18. It is clear from a comparison

of the calculated results for Cases C and D that for accurate
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results we must use a cubic inner profile. For the cubic profile,
the agreement between experiment and theory is considered fairly
good. How much. it would be further improved by going to a guartic

inner profile is a question recommended for future study.
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7. SOME CALCULATIVE EXAMPLIES
7.1 Systematic Calculations

In order to check out the calculative program over a wide
range of Reynolds numbers, Mach numbers, and ratios of specific
heat, a systematic series of computation runs were made by the
IBM 7094 Computer at RTD, W-PAFB, under the supervision of
Mr. Eugene Fleeman, Project Monitor. The following tabulated sets
are presented to show theé influence on the above parameters for a

flat plate with a 25° compression wedge:

xo Ro Mo ¥ xS XR
1 10° 4 1.4 2.073 @ .
1 10* 4 1.4 1.827 6.830
1 10° 4 1.4 1.559 6.018
1 10* 2 1.4 1.956 6.082
1 10 6 1.4 1.779 7.779
1 10 8 1.4 1.743 9.768
1 10* 10 1.4 1.719 %

1 10* 4 1.2 1.461 6.903
1 10* 4 1.67 2.283 6.573
1

A value of =« for Xp indicates that reattachment did not take
place.

The systematic effect of Reynolds number, Mach number, and
ratio of specific heats is shown in Figure 19. 1In this and sub-
sequent figures, the reference length £ is taken equal to X5
In fact, this equality is built into the program so that inter-
action begins when x/£ 1is unity.

The results for the effect of Reynolds number show a decrease
in the distance from the onset of interaction to separation as the
Reynolds number increases, as well as a decrease in the value of
the plateau pressure. The results cannot be compared directly

with the earlier results of this study in Figure 2(a) of
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Reference 1 because the beginning of interaction has been defined
differently in each case. However, the plateau pressure levels
should be comparable and do show good agreement.

With regard to Mach number, there is an increase in plateau
pressure and a decrease in the distance between the beginning of
interaction and the location of separation as the Mach number
increases. The plateau pressures for Mach numbers of 2, 4, and
6 are in good accord with the earlier calculated values in Fig-
ure 2({b) of Reference 1. As the ratio of specific heats increases,
Figure 19(c) shows an increase in the distance to the separation

point but no significant change in the plateau pressure.

7.2 Comparison Between Theory and Experiment

The calculative method has been applied to several cases
for which data on laminar separation and reattachment are avail-
able in order to assess its accuracy. The Ames Research Center
of NASA has furnished several sets of guch data for a flat plate
with a 10° wedge placed at various angles in the wind tunnel.
These data and the calculated pressure distributions are compared
in Figures 20 and 21.

In obtaining the calculated pressure distributions, the
beginning of interaction was varied until the position of the
calculated separation point coincided as closely as could be
estimated with the experimental position of the separation point.
There was relatively little change in separation point as a
result of changes in plate angle of attack. Comparison ig shown
for the upper surface for anglesg of attack of 60, 150, and 16.7°.
It is felt that the agreement between the experimental and cal-
culated results is good. It is of interest to speculate whether
the agreement would be further improved by going to a higher
approximation in the calculative method. Also, it is of interest
to inquire what part of the difference between experiment and
theory can be ascribed to the assumption of free interaction,

These questions are a fitting subject for future investigation.
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8. FLOW IN NEIGHBORHOOD OF REATTACHMENT POINT

Let us now use the calculative program to study the nature
of the flow in the neighborhood of the reattachment point and to
study relationships between the locations of separation and
reattachment. First, a series of computations were made for the
flat plate with a 10° wedge systematically varying the position
of the beginning of interaction. The calculated pressure distri-
butions, separation points, and reattachment points are shown in
Figure 21 where they are compared with the measured pressure dis-
tribution. Two points of interest are immediately evident. For
all the cases calculated, there are no substantial variations
among the calculated wedge pressure distributions; that is, the
position of reattachment does not seem to influence the wedge
pressure distribution substantially. Secondly, small changes in
the position of the beginning of interaction are sufficient to
cause large movements in the reattachment point and, for the most
upstream position, reattachment did not occur at all.

It is of interest to examine the slope of the dividing stream-
line approaching reattachment and to see how this is related to
the calculated Oswatitsch reattachment angle, Egquation (83). For
this purpose, the calculated solution from the previocus figure
corresponding to £ = 0.0550 was used with the results shown in
Figure 22. It is noted that ﬁD of the dividing streamline
decreases approaching the reattachment point. The Oswatitsch
reattachment angle calculated from Equation (83) using the numeri-
cal values for the present case increases and then decreases
approaching reattachment. The values at the reattachment posi-
tion are considered to be in good accord considering one theory
is based on the boundary-layer equations and the other on the
Navier-Stokes equations. For position of reattachment lowexr on
the wedge, the agreement is not as good.

Examination of the calculated Oswatitsch reattachment angle
as it varies with the position of the beginning of interaction £
shows that the reattachment point has an upper limiting position

on the wedge. To show this result, Figure 23 has been constructed.
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The variation of Oswatitsch reattachment angle for the previous
figure is shown together with those for the other positions of
the beginning of interaction. It is seen that if the beginning
of interaction starts at £ = 0.0525, reattachment cannot occur
for a greater value of x from 0.325 feet. At this point the
dividing streamline is tangent to the wedge.

On the basis of the present calculations, it is seen that
the reattachment angle decreases as the reattachment point moves
up the wedge. &An extrapolation of the calculated results to BD
of zero yields a value of x = 0.34. The present calculation
thus yields the same result as the Oswatitsch theory in that the
flow cannot reattach to the wedge above a certain point. This
condition corresponds to the most upstream allowable position
of the beginning of interaction and to a dividing gtreamline
tangent to the wedge at reattachment.

It has been stated that the present calculative scheme is an
iterative one in that the separation point can be moved until
some reattachment criterion can be fulfilled. Insofar as the
present calculative method is concerned, reattached flows are
possible for a certain range of reattachment on the wedge. Which
one of these flows will occur in practice depends on downstream
boundary conditions, and in this sense the present calculative
scheme is an elliptical one. One speculates that if the length
of the wedge is less than the length over which reattachment will
occur that reattachment might occur at the end of the wedge.
This speculation is based on the physical argument that the end
of the wedge is the only distinguished point. If the wedge is
longer than the critical value, one speculates that reattachment
might occur at the critical length from the corner of the wedge
since this position is a distinguished one. These speculations
require a stability analysis of the fiow to establish their
validity. In addition to a stability analysis, careful experi-
mental measurements are required.

As a point of interest, the variations in stagnation pres-

sure and Mach number along the dividing streamline for the several
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cases are shown in Figure 24. At reattachment, the stagnation
pressure on the dividing streamline is equal to the static pres-
sure at this point and these points are shown as solid points in
Figure 24(a)}. It is noted that for the case that did not reattach,
the stagnation pressure continues to rise. The Mach number shows
an almost linear decrease with distance as it approaches reattach-

ment,
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9. CONCLUSIONS

The present paper presents a method for calculating the
laminar compressible separated flow past a flat plate with a
ramp of arbitrary shape and small slopes from an assumed position
for the beginning of interaction to the reattachment point. The
method is based on the agsumption of free interaction throughout
the separated flow region.

(1) The method has been successfully programed for a flat
plate with a flat ramp connected by means of a circular arc.

(2) For the several cases investigated, reasonably good
agreement was obtained between the experimental and theoretical
pressure distributions up to the reattachment point.

(3) In the neighborhood of the separation point induced by
a linear decreasing velocity, the present method yielded numeri-
cal results in close agreement with the precise results of Hartree
and Leigh based on finite difference equations.

(4) For an arbitrarily imposed pressure distribution, there
appears to be a singularity in the rate of change of wall skin
friction with distance along the wall. The assumption of free
interaction between the outer flow and the boundary layer removes
this singularity. On this basis the present solution was made to
go smoothly through the separation point.

(5) The calculated slope of the dividing streamline at
separation is in good accord with the value due to QOswatitsch as
calculated from the Navier-Stokes eguations.

(6) The analysis indicates that the velocity profile just
downstream of separation and just upstream of reattachment is
basically guadratic.

{(7) The calculative method yielded reversal of the inner
flow in certain cases.

(8) It was found for a specific case that reattached flow
was possible only over a region of the wedge within a critical
distance from the lower corner. At this critical distance, the
dividing streamline comes in tangent to the wedge and the separa-

tion point is at its most forward position.
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(9) The method contains the possibility of high orders of
approximation and of extension to other flow problems as described
in the next section.

(10} The calculative program has been applied to a wide range
of initial Mach numbers, Reynolds numbers, and ratio of specific
heats to show the systematic effects of these parameters on the
separated flow.

(11) The present method can be applied to the calculation
of the laminar-boundary-layer characteristics in the face of a
prescribed pressure distribution for any Mach number.

{12) It is believed that the concept of free interaction will
yield results in sufficiently good agreement with experiment up
to the reattachment point to warrant its continued development.

In any event, it can serve as the zero-order approximation for a
more precise theory which takes fuller account of upstream influ-
ence and the basic elliptic nature of the problem.

(13) It was found necessary to match the second derivatives
of the inner and outer velocity profiles at their point of junc-

ture to obtain stable calculated sclutions.

57



AFFDL-TR~65-107

10, RECOMMENDATICONS FOR FUTURE WORK

It is believed that the present work is capable of broad
extension and exploitation. A number of specific suggestions for
future work follows:

(1) The calculative program should be extended to axially
symmetric flow under the assumption that the boundary layer is
thin compared to the radius. This the authors intend to do.

(2) The analysis is capable of extension to nonadiabatic
surfaces. Such an extension is contemplated as continuing work
under the present program.

{(3) Higher approximations within the framework of the present
theory should be attempted. Thesge approximations should consider
additional moments of the momentum relationship for the inner flow
as well as continuity of velocity derivatives higher than the sec-
ond at the boundary between the inner and outer flows.

(4) Extension of the calculative method downstream of the
reattachment point is desirable. For this purpose it appears
desirable to rotate the coordinate system perpendicular to the
ramp.

(5) BAn investigation should be made to extend the analysis
to higher ramp angles.

{6} The computational program should be used as an analog
device to study separated flows systematically. Effects of Mach
number and Reynolds number should be studied as well as reattach-
ment flow and incipient separation.

(7) A systematic comparison between the results of the
present calculative method should be made with all available
experimental data to assess its limitations and the necessity of
higher-order approximations.

(8) The present method should be capable of simple exten-
sion to blowing or suction in laminar boundary layers including
the separated region.

(9) It would be of interest to apply the method to turbulent
boundary layers through the use of the eddy viscosity approach.
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(10) The present results for a Prandtl number of unity should
be generalized to other Prandtl numbers and to real gases.

(11) Since the Blasius profiles used as initial conditions
may be unrealistic at high Mach numbers or low Reynolds nunbers
because of induced pressure effects, an attempt should be made to
start the calculative program at the leading edge.

(12} Well-designed careful experiments are badly needed to
obtain detailed flow information in the separated region at both
separation and reattachment for evaluating theory.

(13) As a result of the numerical calculations of flow in
the neighborhood of the reattachment point, certain speculations
concerning a reattachment criterion have been made. Further work
is required to develop a sound reattachment criterion both from
the theoretical and experimental points of view. Theoretical
work 1s needed for wedges of finite length and infinite length.
Experimental studies of the flow in the region of reattachment
are definitely needed to guide the theory. Accurate velocity
profiles are needed, as well as measurement of reattachment-point

locations.
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TABLE II

COMPARISON OF BLASIUS PROFILE WITH
DORODNITSYN APPROXIMATION

n Blasius Dorodnitsyn

2 oo VEden | W (Ve s
0.0 0.00600 0.3321 0.0000 0.3322

.2 0664 .3320 .0665 .3330

.4 .1328 .3315 .1331 .3325

) .1989 .3301 .1994 . 3305

.8 2647 L3274 .2652 .3271
1.0 .3298 .3230 .3302 .3220
1.2 .3938 .3166 .3939 .3151
1.4 .45613 .3079 .4561 .3064
l.6 .5168 L2967 .5163 .2956
1.8 .5748 .2829 .5742 .2826
2.0 .6298 L2668 .6292 .2675
2.2 .6813 .2484 .6810 .2501
2.4 .7290 .2281 .7291 .2307
2.6 L7725 .2065 L7731 2094
2.8 .8115 .1840 .8128 .1867
3.0 .8461 .1614 .8478 L1632
3.2 .8761 .1391 .8781 .1398
3.4 .9018 L1179 .9037 L1172
3.6 L9233 .0981 .9250 .0961
3.8 .9411 .0B01 .9423 L0773
4,0 .9555 0642 L9561 .0610
4.2 .9670 .0505 .9669 .0474
4.4 .92759 .0390 .9752 .0363
4.6 .9827 .0295 .9816 .0275
4.8 .9878 .0219 L9863 .02086
5.0 .9916 .0159 .9899 .0154
5.2 .9943 L0113 .9926 .0114
5.4 L9962 0079 .9946 .0084
5.6 L9975 .0054 .9960 L0062
5.8 .9984 .0037 L9971 .0046
6.0 .9990 .0024 .9979 .0033
6.2 .9994 .0016 .9984 .0024
6.4 .9996 .0010 .9289 0018
6.6 .9998 .0006 .9992 .0013
6.8 .9999 .0004 .9994 .0010
7.0 .9999 .0002 . 9996 .0007
7.2 1.0000 .0001 .9997 .0005
7.4 1.0000 .0001 .9998 .0004
7.6 1.0000 .0000 .9998 .0003
7.8 1.0000 .0000 .9999 L0002
B.0 1.0000 .0000 . 9999 .0001
8.2 1.0000 .0000 .9999 L0001
8.4 1.0000 .0000 1.0000 .0001
8.6 1.0000 .0000 1.0000 .0001
8.8 1.0000 .0000 1.0000 . 0000
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TABLE III

VALUES OF cq, ©,, Cz, AND c_  FOR CALCULATIVE
EXAMPLE CORRESPONDING TO LEIGH CASE

£ X/1 Cq c, c, C,
0.0100 0.0100 0.3157 -0.1923 -0.0313 1.1000
.0403 .0404 6174 - .3806 - ,0565 . 9991
. 1005 .1011 .9350 - .5829 - .0775 .8550
.1485 .1499 1.0980 - .6881 - .0854 . 7495
.2022 .2049 1.2325 - .7744 - .0906 .6425
.2509 .2549 1.3255 - .8328 - .0939 .5559
.2969 .3027 1.3959 - .B753 - .0967 .4821
. 3507 .3589 1.4616 - .9125 - .0998 .4055
.4019 .4125 1.5117 - .9381 - .1035 .3409
.4480 .4613 1.5488 - .9543 - .1073 . 2890
.5094 .5268 1.5889 - .9677 - .1136 .2281
.5555 .5763 1.6134 - .9723 - .1193 .1878
.6016 .6261 1.6341 - .9729 - .1261 L1517
.6528 .6818 1.6535 - .9693 - .1351 .1159
.7040 .7380 1.6699 - ,9618 - .1l4586 .0845
. 7501 . 7890 1.6828 - .9520 - .1567 .0596
.8013 .8460 1.6960 - .9386 - .1708 .0356
.8525 .9035 1.7095 - .9242 - .1863 .0155
.B986 .9556 1,7265 - .9182 - .1978 .0014
.9011 .9585 1.7279 - .9189 - .1978 .0008
.9024 .9600 1.7288 - .9194 - ,1977 . 0005
.9037 .9614 1,.7297 - .9202 - .19786 .0002
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TABLE IV

COMPARISON OF LEIGH PROFILE
WITH PRESENT SOLUTION

(a) Xa/ﬂ - X/£ = 0,000142

v U/U0
L Leigh Dorodnitsyn
0.0 ©.0000 0.0000
.2 .0026 .0027
.4 .0096 .0099
.6 .0210 .021e
.8 .0366 .0376
1.0 .0564 .0578
1.2 .0802 .0819
1.4 .1078 .1098
1.6 .1390 .1412
1.8 .1735 .1757
2.0 .2110 .2130
2.2 .2510 .2527
2.4 .2931 .2944
2.6 .3368 .3376
2.8 .3815 .3819
3.0 .4266 .4267
3.2 .4716 .4714
3.4 .5158 .5156
3.6 .5586 .5586
3.8 .5995 .5999
4.0 .6381 .6389
4.4 . 7065 .7082
4.8 .7619 . 7640
5.2 .8039 . 8054
5.6 .B8338 .8340
6.0 .8536 .B525
6.4 .8658 .B8638
6.8 .8729 ..8706
7.2 . 8767 . 8745
7.6 .8787 .8767
8.0 .8802 .8780

Borodnitsyn

X /4 = 0.962814
X/% = 0.962672
c, = 1.730535
c, = -0.92109
c, = -0.197233
c, = 2.32x107s
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TAELE IV.- CONCLUDED

(b) xs/ﬂ - X/f = 0,002542

U/Uo
Y, , .
Leigh Dorcdnitsyn
0.0 0.0000 0,0G600
.2 .0041 .0042
.4 .0126 .0129
.6 .0255 .0260
.8 .0426 .0435
1.0 .0638 .0650
1.2 .0890 .0905
1.4 .1180 .1197
1.6 .1504 .1522
1.8 -1861 .1877
2.0 .2246 L2260
2.2 .2655 .2665
2.4 .3083 .3089
2.6 .3524 .3526
2.8 .3974 .3972
3.0 L4427 .4421
3.2 .4875 .4868
3.4 .5314 .5307
3.6 .5737 .5732
3.8 .6138 .6138
4.0 .6515 .6520
4.4 .7178 .7193
4.8 .7708 7726
5.2 .B8106 .8116
5.6 .8384 .8382
6.0 .8566 .8552
6.4 .8678 .8656
6.8 .8741 L8717
7.2 .B775 .8753
7.6 .8792 .B773
8.0 . 8805 .8785

Dorodnitsvyn

X, /4 = 0.962814

X/£ = 0.960272
c, = 1.728%45
c, = -0.919618
c, = -0.197710
c_ = 4.588x10 *
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TABLE V (a)

COMPARISON OF DORODNITSYN, QUARTIC, AND
SIMILARITY VELOCITY PROFILES
AT SEPARATION

Dorodnitsyn Quartic Similarity
*

Y/® u/u, u/u, u/u,
0 0 0 0
0.0848 0.0046 0.0066 0.,0040
.1696 .0183 0252 .0158
.3391 .0719 0914 .0636
.5935 .2098 .2406 L1927
.8478 .3961 L4177 .3802
1.0174 .5315 .5368 .5230
1.2717 7226 .7004 .7278
1.4413 .8252 L7927 .8364
1.7804 .9470 L9252 .9598
1.9500 .9736 .9644 .9839%
2.6282 .9987 1.0000 .9999




COMPARISON OF DORODNITSYN AND QUARTIC VELOCITY

TABLE V(b)

AFFDL-TR~65-107

PROFILE DERIVATIVES THROUGH THE
BOUNDARY LAYER AT SEPARATION

Dorodnitsyn Quartic

Y/B6* a{u/u,) d(u/u,)
o{Y/6*) o(Y/6*)

0 0 0

0.0848 0.1081 0.1519
. 1696 .2144 .2829
.3391 .4141 . 4865
.5935 .6554 .6627
.8478 .7882 .7110
1.0174 .7977 .6870
1.2717 .6786 .5894
1.4413 .5256 .4962
1.7804 .2095 .2832
1.9500 .1116 .1812
2.6282 . 0059 .0132
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FIGURE 2. - DOMAIN OF BOUNDARY-VALUE PROBLEM.
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FIGURE 5. PRE—SEPARATION PRESSURE DISTRIBUTIONS FOR INITIAL
PRESSURE DISTURBANCES OF VARIOUS MAGNITUDES.



AFFDL-TR-65-107

" JONVLSIO VIXV HiM €3 anv ‘%9 ‘19 *Og 40 NOILVINVA— 9 3NSId

A8 4

/%
8'e v'e

‘IONVLSIQ TVIXY TYNOISNIWIAGNON

o€

92

2e

8l

¥l ol

-

0l

2l

73



AFFDL-TR-65-107

4
I
| BLASIUS
N@oru.s
0.3 \\
/—\‘\
SEPARATION
PROFILE
0.2 /
=] &
i1 ]
0. ' [
INNER /(POST-SEPARATION
WILE] / PROFILE
/
/
o—i -
\
\
~
\ .
02 0 0.2 0.4 0.6 0.8 1.0

FIGURE 7 - EXAMPLE VELOCITY PROFILES GIVEN BY EQUATION (36).

74



AFFDL-TR-65~-107

"LNIOd NOILVHYIS HONOHHL ONIOD ‘€9 €3 ‘15 ‘0D 40 MOIAVHIE - '8 3uN9I4

/% ‘31v1d ONOTV 3ONVISIA

99| 2091 8c9’l HE0'| 0£9'l 9291
9I'- rO'l- 10
25~
NN =TT
AN \\LR 02- 80'- {¥
| goixEgp e : 22- Hori- s
\ ]
. - qen- 4s
. ﬁ\\ /1 9z- vit- ol
2%
: \m\ | 8z~ Hor- Hai
_@\ HOLYW 3AILVAINIA ONOJ3S
F11408d HINNI JIVHAWNO oe- Jsri- Jvi
¢ b

—1sie

1912

4412

1

18i°¢

161°¢

10272

Jrzz

mo__.nlo\( 05

75



AFFDL-TR-65-107

DIVIDING STREAMLINE
u=0 LINE

» ¥

SEPARATION POINT

FREE INTERACTION

PRESCRIBED PRESSURE
DISTRIBUTION

FIGURE 9. - SKETCHES.
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FIGURE 22.- VARIATION WITH DOWNSTREAM DISTANCE OF OSWATITSCH
REATTACHMENT ANGLE AND DIVIDING STREAMLINE SLOPE (RELA-

TIVE TO WEDGE).
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APPENDIX I

CALCULATION OF 9n FUNCTIONS

The family of functions of a single variable occurring in

the analysis are given by Egquation (43) as follows:

gn(cs) = c, >0 (1-1)

: n
-[' u- du
>
3 u o+ c,
Simple integration yields,

g,(c,) = 2({/T ¥ ¢, - /<) (1-2)

The other 95 functions can then be simply generated by the

following recursion relationship

= —2 (] - -
9n T 2n + 1 1+ ¢, ncsgn_l> (1-3)

For large values of c, the recursion formula requires many
more decimals of calculation than significant figures in the cal-
culated result so that a series solution rapidly convergent for
large ¢, 1is desirable.

The following results are used for large c¢

3
1 1
g (c ) = u” gu 7z = L jr u” :{: ]k
n 3 1/2
5 '\/c:3 l+£;) Vcao
(1-4)
1 1
g,le,) = i 2{: - k % T T (}——) (I-5)
ng- n n
s k=1
k '
jk - (2i11{2k 1) (1-6)

2 kt(k - 1)!
98
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APPENDIX I1

DERIVATION OF FREE-INTERACTION RELATIONSHIP

The basic assumption for calculating the pressure gradients
of the external flow field is that such gradients are the same as
those for an inviscid flow with the solid boundaries augmented by
an amount ©* due to the boundary layer. The particular invisid
flow relationship used for the calculation is not germane to the
basic assumption, and in this case was taken to be the Prandtl-

Meyer shock-expansion relationship

dpl 2

M,
D =
* cos ¢‘\/ﬁ12 - c052¢

It is noted that in free interaction the pressure distribution is

do (I1-1)

thus dependent on the variation of ©* along the body, and the
variation of 6% in turn depends on the pressure distribution.
This interrelationship will be termed the free-interaction equa-
tion. Specifically, it will consist of two equations, Equation
(II-1) and the following eguation relating ¢ to the boundary-

layer quantities.

dg _* dg . *
o

i dw _ -
dx + dx + dx tan ¢ (I1-2)
where
o _* displacement thickness of outer flow

G.* displacement thickness of inner flow

slope of streamwise boundary

Pre-Separation Region

The calculation of 60* and its derivative is a fairly
laborious algebraic operation which will now be carried out. The

definition of 50* is
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(1——'0——— dy {11-3)
We will transform the integral to 7
poao U ﬂv u
o * = -a_"" dT] (II_4)
© P8y
Now since
2 u 2
pf{1+X =2 B\ (1 +¥=L1 2
2 2 1 2 2
a al
u 2
_ o2 (v ~ 1)
m, 2 2
a
1
a
a=1U —
a
o
we have
pl T U2 -
?_ -If—: = (l + m ) - m,]_ U = (l + ml) - mlu (11_5)
1
so that
P W/U ﬂv
b * = po 2 [(l +m }(1 - u) + m, u(l - D)J dn (II-6)
171

In the outer flow the velocity profile is given by
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with the result that

« = Fo% o ‘o ,
%, a U [FL+“H)(Cog o9, teg) + ml(cogl*'clga'*czgsﬂ

{11-7)

We now form the quantity

/ _ ‘ y+/2(y-1)
R ? b * v (1 L 337 ¥2(v-1) g ax 4 {(1 +m Y
O

l+mO dx +m dx dx dag U,

[(l + ml)(cogO +c, g + nga) + ml(cogl + c9, + ngsii}

(I11-8)
Carrying out a tedious differentiation and noting that
dm U
1 . 1
yields
R 1/2 dg _* m m m
F . " + - o, + + - c. + + . c
l+mO dx o9 l+—ml o 917 9% l-i-m:L 1 92 T 93 1+ m 2

m
. - - 1 - - - -
+ [eogo-bclgl-+c2g2) + l+—ml (cogl-+clgz-+c293{‘ Cy

m 1l +m
- 3V -1 1
T Tr m, [}Cogo Te 9t czge) ( Yy - 1 m, >

Y o+ 1 My by
* (cogl * €9 * czga) (} + vy -1 1 + ml:ﬂ 4]

1

e

aw
- R 1/z2 (tan ¢ dx
o 1 + mO

(II-10)

Eguation (II-10) taken together with Equation (II-1} constitutes

the free-interaction relationship.
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Post-Separation Region

After the separation point the inner flow causes the turning

of the inviscid flow by an amount depending on ﬁi*. By analyzing

Equation (II-6) we can write an equation for Bi* as follows:

a aVAS VAT _ _ -
§.% = Poa? U? o jps [(l + ml)(l - u) + mlu(l - u)] dn (II-11)
o)

1 pl

In this case the velocity profile is given by

_ as + 2qw - as + qw 5
S T]S

The resulting equation for Ei* is

Q= 3=

oy
s Of

Carrying out a differentiation as before yields

102

R ST G2 Ly
i ﬁ: R 1/ 2 1+ m (1 +m) g =~ 12 (qw
o

(1I-12)

]

(I1-13)

(ITI-14)
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1/ 2 * 2 2 3 3
Rs dai g VECa + ™ Ns VCs _ Ns %wVECs + 2Ng Sy .
l+m, dx 12¢ ® L+m, l2c02 70002 105c03 °

_ﬁ_l_n_s "CS mJ_ T] ns Vca

+
1
+

3 2 3 3
gy . IRV Ns°Cy
104 70(:0 105c02

2 2 '
3y =1 1+ o + g V S _ Ns % E&.
Y -1 m, Is T 120 o 12 U

(II-15)

+

Introduction of dBi*/dx in Equation (II-2) along with dﬁo*/dx
yields the free-interaction equation when taken together with Egua-
tion (II-1). Note that the wall may have any arbitrary shape given
by w(x). It case a guadratic rather than a cubic is used for the

inner velocity profile, we set

(II-16)
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