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ABSTRACT

This report presents .a theory for nonlinear collapse analysis
of shells with general shape. The theory combines energy principals
and finite difference methods to obtain a system of nonlinear equations;
these are solved by a modified Newton-Raphson technique. For greater
economy and flexibility in the analysis a capability is provided for use
of variable spacing finite difference grids. Inelastic material behavior,
as predicted by the White-Besseling Theory, is incorporated into the
analysis. A computer code, STAGS, based on the theory has been writ-
ten and used to solve a number of sample problems. Results for these

problems are presented.
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Section 1.0

INTRODUCTION

Recent improvements in computer technology and numerical
analysis methods have led to significant advances in structural analysis
capability., Computer programs are now available for analysis of the
static behavior (linear or nonlinear) of almost any shell of revelution sub-’
jected to axisymmetric loading. For nonsymmetrical loading or for shells
of general shape, a static analysis is readily performed provided that the
response is linear. This capability is substantiated in Reference l. How-
ever, nonlinear effects are frequently important in shells. Because these
structures are thin, collapse or loss of stability is generally the critical
mode of failure. Thicker shells are often subjected to loads of such mag-
nitude that material nonlinearities become important. Reliable and depend-
able computational systems for this important class of problerms have not
been developed, although there are computer codes available for some

special.cases.

Several years ago, a research program was initiated at Lockheed
with the goal of developing a computational system for such nonlinear
problems. This program has resulted in the STAGS (STructural Analysis
of General Shells) computer code for analysis of the static nonlinear re-
sponse of general shells. STAGS is based on a theory in which the shell
surface is subdivided, by means of a finite difference grid work, into a
set of subareas. The strain energy density for each subarea is then ex-
pressed in terms of displacement components and their derivatives. After
the derivatives have been replaced by their finite difference equivalents,
the energy can be calculated and, together with the potential energy due
to applied loads, summed over the shell surface. The total potential
energy expression of the shell so obtained is then minimized according to

familiar energy principles and a system of nonlinear algebraic egquations



in the unknown displacements results. These equations are solved by a

Newton-Raphson technique. -

STAGS is an outgrowth of work on the buckling of cylindrical
panels with nonuniform membrane stresses that was initiated at IL.MSC
in 1963 under the sponsorship of NASA Marshall Space Flight Center
(Ref. 2}. The basic nonlinear computer program for cylindrical shells
with cutouts (Ref. 3) and a linear version including analysis of free vibra-
tions (Ref. 4) were developed under the LMSC Independent Research Pro-
gram. Under contract with the Naval Ship Research and Development
Center (NSRDC), the linear version of the code was developed to include

shells of revolution with smooth but otherwise arbitrary cutouts {Ref. 5).

The work reported here extends the nonlinear version to shells of
more general shapes with cutouts of arbitrary contour. In addition, inelas-
tic deformations and a capability to handle a finite difference grid with
variable nodal point spacing have been added. In a parallel effort funded
by Lockheed's Independent Research Program, the equations were further
generalized to include nonorthogonal coordinates (Ref. 6). As this work
was completed before the end of the contract period, it was possible to

include the more general equations in this report.

Further expansion of the STAGS program has been accomplished
under parallel research studies funded by the Air Force Space and Missile
Systema Organization (SAMSOQ) and by the NASA Langley Research Center,
During the now completed SAMSO study, provisions were made in the
STAGS code to allow both the temperature and material properties to vary
over the surface and through the thickness of the shell. In addition, a
bifurcation buckling branch was added. Parameter studies were made to
evaluate the applicability of the bifurcation buckling approach to reentry
vehicle analysis (Ref. 7}. Although most of these extensions were made
primarily to render STAGS suitable for reentry vehicle analysis, they have

considerably enhanced the overall capability of the code.

The NASA study is currently in progress. Under this study, STAGS

is being developed to handle segmented and branched shells, and to treat



realistic types of shell wall constructions including those which involve
anisotropic materials. Finite difference expressions based on non-
rectangular grids and an automatic grid generator are also being added.
A time integration scheme will be developed and included in STAGS.
This will permit the solution of dynamic response and dynamic buckling

problems. The NASA work is scheduled for completion by the summer of

1972,

A STAGS user's manual that documents all of the modifications

completed to date has been prepared (Ref. 8).



Section 2.0
STAGS THEORY

In the application of finite difference techniques to shell analysis,
it has been customary to assume that lines of curvature constitute the
surface coordinate lines which form the finite difference mesh. This
assumption results ir. orthogonal coordinate lines and leads to simple
shell equations; however, there is a serious disadvantage to this approach
in that in many instances shell boundaries do not lie along lines of curva-
ture. When this occurs, boundary conditions can be approximated at hest,
and then only with the introduction of extreme mathematical complexities.
For this reason, it is advantageous to formulate the shell theory in terms
of generalized coordinates so that boundaries coincide with particular

coordinate lines.

This section presents the generalized theory upon which the STAGS
computer code is based. Although no attempt is made to be exhaustive
in the coverage of the basic shell theory, a brief description of the funda-
mental aspects is given., For additional material, the reader is referred
to Reference 9. In addition, methods for computing the shell middle sur-

face input parameters are presented.

2.1 Metric of the Shell Middle Surface

Consider a surface in space, described by coordinates cpl and sz .
which is embedded in a three dimensional Euclidean space defined by the
Cartesian coordinates, xl ' xz , and x3 , as shown in Figure l. The

vector r to any point on the surface can be written as

T o= o x ko +x"k, +x &
(1)
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where the Ei are unit vectors in the x' directions, respectively. Now

consider the differential

— 1—
dr =
T dx k1+dx k2+dx k3

{2)

1

dxi k.
i

and define this expression for dr in terms of the shell coordinates cpl

and cpz by

= 1 — 2
dr = aldcp +a2dtp
{3)

= d o
a, de
The guantities El , 32 are called the covariant base vectors and can be

written as

- _— Bxl — sz — ax3
a = k1 —_ kz —_ + 53 =
_ (4)
i
- &
i Br.pa

It should be noted that, in general, the base vectors Ea are not unit

vectors but have magnitudes given by

(5)

The expression for incremental arc length on the shell middle surface is

ds® = dr . dr

or



ds

1,1 1,2 1, 2
an dp do + 2 i, dy dg + 252 dg do

- (6)
B

t

aLQ’B dcpa deg

The quantities aaB are called the components of the covariant metric

tensor, and are defined by

a = a - a {7

b o B

Two alternate forms of Eq. {6) are

2 Az dr.pl dcp1 + 2C dcp1 dc.p2 + BZ dcpz dcp2

ja ¥
m
1

2

.
/1]
1}

Al dtpl dcpl + 2ZA Bcos © dtpl dtp2 + B2 dcp2 de

Both of these formulations have been used in the STAGS User!s Manuals;
the quantities A, B, C, and 8 are related to the components of the metric

tensor by

A = a;
B = aZZ
(8)
C = ABcos 8 = al,
a
cos B8 = 12

Vi 222

It can be seen from Eqs. (3, 5, 7, 8) that A and B are measures of the
length along the coordinate lines ;pl and cpz , and that 8 is the angle between

these lines.



Since the covariant base vectors El ’ EZ are not necessarily

normal to one another, it is sometimes convenient to consider 2 set of
vectors defined by

T = L 3 x3
- /a 22 3
(9)
a2 = 1 3, x 3
- Va 3 1
where a_ is the unit normal vector as shown in Figure 1 and a is the
determinant of the metric tensor
i, = — 3, x3
3 /a 1 2
(10)
a = |a [ = a;,a,, - a'2
oB 11 722 12
The vectors defined by Eqs. (9) are called contravariant base vectors
and have the properties
T.E =1
2.3, = 1
(11)
Pl a, = 0
-2 -
a +a = 0
or
7 3P = P (12)
a o
65 is the Kronecker delta and has the properties



OlQ#B

The contravariant metric tensor components are defined by

of

a = 3@ .30 (14)

which can be written in terms of aa as

1 %22
a_ _
a
22 _ a1
- T3 (15)
12 _ %12
a =
a

With the aid of Eqgs. (10 through 15), Eqs. {9) can be written in the form

= a%P 3 (16)

2.2 Curvature Tensor of the Shell Middle Surface

The curvature and twist of a surface are defined by the curvature
and torsion of lines embedded in the surface relative to the unit normal vec-
tor. For instance, the normal curvatures of a surface with respect to the

coordinate lines cpl and r,pz are defined by

by = Pproag

B, 3

an 2

3

where El and 52 are the curvature vectors of the coordinate lines ¢

-9-



and cpz , respectively. These vectors can be written as

d !
1 HEI JEH

ol
U

( )
2 5
22

o
il

where d:a1 and dsz are given by

_ 1
d:s1 = \/a11 de

2
dsz— ‘*/322 deo

Hence, the normal curvatures of the shell middle surface are

b Ta 1 Ja] 0 %3
an dg an
(17)

i}

1 d a2 -
b2 — p) — !

The twist of a surface with respect to a coordinate line is the tor-
sion of the coordinate line with the sign chosen such that a positive twist
occurs when the normal vector 5.'3 rotates about one coordinate line towards

the other coordinate line. This leads to the definitions for twist of a surface

b _ ) 1 das . 5‘-2
t1 7 T o
vay de 422
_ (18)
b - 1 da3 Zl
tz2 -~ T /= 2 ' 7
azz do a



The curvature tensor of a surface is defined by

b o = = —= .12 (19)

This is a symmetric tensor whose indices are raised and lowered accord-

ing to
bB = b apB = bea
o op Pa
b . = bP a (20)
oP a pB
baB = bg a["JB

The components of bOtB are related to the changes in normal curvature

and twist by

(o not summed)

no P —
a
%63 (21)

b T — (¢ # 8; o, B not summed)
ber EE

0 {0

It can be seen with the aid of Eqs. (10, 15, 20) that, for orthogonal coordi-

nates (alz = 0), btl = th .

Two invariants associated with the curvature are the mean curva-

ture H and the Gaussian curvature K

= 1 e
H = 5 by
(22)
= 1 v B _ Lo B
K = > (ba bB bB ba)

-11-



2.3 Displacements and Derivatives

The displacement vector of a point on the shell middle surface is
defined by

T = w3 + w3 (23a)

The quantities u? are called the contravariant components of in-plane

displacement. An alternate forrm of (23a) is

w o= u 2%+ wi, , (23D)

where the u are the covariant components of in-plane displacement.
o

Since ay is a unit vector and normal to aa and 3% , there is no dis-

tinction between covariance and contravariance for w. From Eq. (16)

it can be seen that u® and u, are related by

(24)

The covariant and contravariant displacement components can be
related to physical quantities. Consider the displacement vector written

in terms of unit covariant vectors

a. a.

T —— o+ v —E 4w T (25)
! 222

The quantities u and v represent the physical components of in~-plane
displacement in the directions defined by the covariant base vectors ay
and a, . respectively. Equating Eqs. (22, 23} to Eq. (25) with help from
Eqs. (7, 14, 16) yields

-12-



0, = .féﬂ u + 12 v
Vo422
(26)
a
u, = 12 u "JaZZ v
Ja
11
and
1 u
1n =
/2
(27)
2 v
u =
Vaz2
The partial derivative of the covariant base vectors are defined
by
2 . _
= = Tg, a, t bg 33 (28)
@
The b%|B 53 term can be deduced from E«. (19). It follows from Eq. (16)
that T can be written as
af
Y p BEQ P
r = = . 3
af FBa Bth a (29)

The partial derivatives of the contravariant hase vectors can be deduced

from Eq. {28, 29) as

oz ¢ o —p @ -
= - T a + by, a (30)
o o B ®3

The quantities l"cf are Christoffel symbols of the second kind. Symbols

8

-13-



of the first kind are defined by lowering the upper index

2 Baa _
r = T = .
8o «B 2hp _Taq; a (31}

These quantities expressed in terms of the partial derivatives of a

P

da da Ja
I"a=lz(“§+ e . of : (32)

are

With the aid of Eqs. (28, 30), the partial derivative of the displace-

ment vector u [Eq. (22,23)] can be written as

L TP S T S A L
¢ o o o Bcpa
(33)
- B B, v . wb % dw  —~
usld a + bauaa3 ba' WaB + ——a 5 23
¢
The quantities uB|a and uBIQ are called the covariant derivatives of
ug and u"~ with respect to cpa and are given by’
du
uﬂlaf i OiB ) Tgw %o
°¢
(34)
ou
uala & —-—5 + I’pﬂa u®
3

The concept of covariant differentiation can be extended to second order

tensors such as b

o

=14 -



- af A oA
basly = 3P fap "8r " Teo o
{35)
b P
bél = —2 &+ 1P opf .t ol
P af@p £ po X

The quantities appearing in Eqs. (33) can be regrouped to define the dis-

placement gradients Yy and BQ

Yop = Yo IB ) bozB v
(36)
B = dw + 'bB u
o acpa a B
Hence, the derivatives of u take the form
g - -
—_— = . 3
acpa Yﬁot a + Bcr ag (37)
2,4 Deformation
The deformation of the shell middle surface can be specified in
terms of the changes in the metric and curvature tensors, With the de-
formed state of the shell characterized by a tilda ( EQ,B : g&B ) » the
strain and curvature-change tensors can be defined by
2 = g -
aB Yab “ap
(38)
w P = 5P . P
@ o o

-15-



It can be seen with the aid of Eqs. (6, 13, 22) that these definitions lead

directly to the changes in incremental arc length and mean curvature

~2 2 @
ds“ -ds” = 2 leB dep dch
) (39)
~— ) B 1 . B o
H-3 = > V.a 6B

Although EJB and V.('yﬁ are independent of any particular metric tensor,
it is convenient to refer these quantities to the metric of the undeformed
middle surface; i. e., in operations expressing, for instance, covariant

strain or curvature-change tensors in terms of contravariant tensors (or

vice versa) aaB and aLwB are used rather than gaB and a B For
o

example,

eB = € dpﬁ

o ap

3 (40)
- P
iz = K a
ofB a ek

In addition to strain and curvature-change, portions of the shell middle
surface may undergo finite rotations. If such is the case, the expressions
for 60’5 and %Q/B » when written in terms of the displacement gradients,
must reflect this. Since the general expressions for ech and V.Q’B are

extremely complicated, it is desirable to use simpler, approximate expres-

sions whenever possible.

The rotation of any part of the shell middle surface can be split

% B is not generally symmetric; therefore, its indices must be moved straight
7

up and down only. The dot appearing over the o assures this. Note that a

dot in the terms e R . sB is not required since e = e

P Bay

symmetric tensors, no distinction in the ordering of indices is required.

; hence, for

-16-



into two parts, an out-of-plane rotation or "tilt' and an in-plane rotaticon
commonly called the '""rotation about the normal.” When the angle of tilt

{Q?) is moderate, the tilt and in-plane rotation {w} can be approximated by

. 1
2 /o ( 21 12)
(41)
. o
sin O ~ B ch
The expressions for e and n used in STAGS are
B o P
1 1 o 1
= — + + — —_—
eafB 2 (YozB YBQ’) 2 chv Y-B * 2 Boa BB
{42}
= bp - P
"B BBIOJ * x o bch Yop

These approximations are based upon the assumptions that the tilt can be
moderately large (Q <. 3) and that the in-plane rotation is of the same
order of magnitude as the square root of a typical middle surface strain
(w=0 {/e} ). A complete derivation of the above is given in Reference 9.
Physical components of strain and curvature-change for lines of curvature

coordinates are given in Section 2. 9.

2.5 Strain Energy

The strain energy density for thin elastic shells is

. 3
21 E _ ap _Bh P _ph t
U = -2~ I_—:‘? [(l \)) a a + v a a ] |:t GQ'B Gp}\ + —I-Z- HQ‘B Kph]

{43)

For shell coordinates E and T and with the use of Egs. (8, 15), Eq. (43)

-17-



can be cast in the form

_ D \ -4 2 4A cos 8 , -4
u = 3~ (A sin 8) Ggg - —'—'-'-B—-*-- (A sin e) Ggg €§,ﬂ

+2 [1-(1-v) sinZG] {AB sinze)_ 2 (AB sin® ) [(l v) + (1+v) cos 8] e

“gg Wk EM
4B cos @ . ~4 . -4 2 ’
- — {B sin @) e:g‘ﬂ em] + (B =sin &) e,rm I
(44)
+ =) (Asing uég -8 Asing™? “eg men

+ 2 [1-{1-v) sinze)]-z (AB sinze)'2 Heg M.m.l+ 2 (AB s*inze)_2 T{1-v) cosziﬂ Hzé’ﬂ

- 4B—C§5—-9—- (B sin 6)h4 K’HT} ngn + (B sin G)-4 n%m

where D and K are the membrane and bending stiffnesses, respectively.

It

D = —
1-w
(45)
3
Tt
K = ——
12{1-v7)

The covariant components of strain and curvature-change expressed

in terms of the displacement gradients are

-18-
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un
(T4

L

1 g 1
Yeg ¥ 27 (Ygg‘f-g Tovng Yot Pe BE)

i

1 g I
z (Yrsn Fo¥ng T oYgg Yoq f o YqgYoq foBg Bn) (46)

_ L g 1
T Yo 2 (Ygﬂ“f-n oyg Yon By Bn)

_ & . rn m
Be g~ Teg Pg - Tgg By + Peq g

i
bee Yoy

21 _ B _rh 3 Il
ey T z[%.n* Br,e ~Ten Pg ~TenPq ¥ Peg ¥ q ¥ PopYoe

(47)
g 1
“Pen Yoy T Pen Y. n]

NI g 3
m - Pan T T B T Tan Byt Peq Yo v Popvie

where the commas denote partial differentiation. The displacement gradients
written as functions of the physical components of displacement u and v are

(see Eqs. (8, 26, 27, 34, 36))

Pe = W ¥
(48)

5 - L
m l A 87 B nm

-19-



= Au,

Vee g-FA/B(A,g—B,gcose)v+Acosev,g—b§§w
Yey = Au,,q + [ {A cos e),n~B,§] v+ A cos Bv,,n—bg,nw
VYpg = L[(Bcos @), -A ] u+Bcos8u, (TBV, g-beyw
Yo = B/A (Biq - A, gcos Blut B cos 8u, BV, - bW
Y'gg = /A4, + [(cos o/ (AB sin9)] [A, - (Beos 8, ] u
+ /B sinze}] [A,.q- cos eB,gl v - b% w {(49)
""-g"ﬂ = Vau, [1/(A% sin®6) JUA cos 0, g ~Bigl v

+ [cos 9/(A2 sinze):i LA, ncos 8 - B, §] w -b% w

=
B

Y. g /B v, e T [l}’(B2 sin2 8)] (B cos e),g - A, n] u

+ [cos 8/(B% sin®8)] (B, gcos 8- A, 11 v -bg w

——
|

= l/BV’T

+ [cos 8/(AB sinze)] (B, £ - (A cos 8), .1 v

) M

Ti

. 2
+ [L/(AB sin"6)] [B,g—cos eA,n] u -b,ﬂ

W

-20~



and the Christoffel symbols are {(Egs. (8, 32})

rég = [BA, e * (AA, g~ Crg) cos e]/(AB si.nze)

rgng = [C.g-BA, gcos 6-AA, 1/(B° sin9)

Fg = [A,,-B, _cos gl/(A sinze) ' (50)
g1 " ' g

Tgn = [B, £ A, ,plcos 91/(B sinze)

rngn = [c, 0" BB, - AB, n cos 9] /(AZ sinze)

FT] = [AB,. + (BB, .- C,.)cos 6]/(AB sinze)
Lkl ! ' € gl

Substitution of Eqs. (48-50) into Egs. (46, 47) yields the covariant
strain and curvature-change tensors as functions of the physical displace-
ment components u, v, and w. These equations are then substituted

into Eq. (44) to obtain the strain energy as a function of the displacements,

The effects of geometric imperfections have been accounted for
by modifying Eqs. (46) to include small values of an initial normal dis-

placement W . The terms w, , W, and W, + W, were

gPe

, and ¢

gPg WPy nPe
added to the three middle surface strain egg AT £n respectively.

Geometric imperfections are important because the critical loads

€

of many shells are sensitive to such imperfections. In addition, there are
many cases where there exist planes of symmetry with respect to loading
and geometry. In such cases, antimetric deformations will only be found
if they are '"triggered’ by the inclusion of antimetric geometric imper-

fections.

-21-



2.6 Solution Procedure

The solution procedure used in STAGS is based on the principal of
stationary potential energy. After the expression for strain energy den-
sity is formed, as explained in the previous section, the displacements
and their derivatives are replaced by appropriate finite difference
expressions. (A set of finite difference expressions for grids with
variable spacing is described in Section 3.0.} The strain energy density

at mesh station i 1is then written in the form

z'"" D'z (51)

where D is a 6 x 6 matrix of constants and Zi is the vector of strains and
curvature changes at station i . ({In this report all vectors are understood
to be column vectors and % designates the adjoint operator. Thus, Zi*
is a row vector,) The matrix D‘L is obtained by integration through the
shell wall and is a function of the geometric parameters of the shell and

of the material properties. The strain vector Zi is a nonlinear {quadratic)
function of the displacement unknowns and the geometric parameters. The

vector of stress resultants at station i is given by
st = ptz! (52)
The total strain energy of the shell is then

U = Z AUt at (53)
i

where a' is the area of the ith mesh subregion. The potential energy of

the work done by external forces, W , may be expressed in discrete form

by

W = X* F (54)

-22-



where F is the vector of external forces. As the strain expressions
are of second order in the displacement components, the total potential
energy, V , of the shell is a polynomial of 4th degree in the discrete

displacement unknowns. It is given by
V=U-W {55}

A necessary condition for static equilibrium is that the potential energy be
stationary. For a polynomial, this requires that the gradient of V vanishes

and leads to the equation

LX = F (56)
Here L is defined as the nonlinear operator such that

LX = Grad U {57)

The derivation of the complete nonlinear solution of Eq. (56) as well as of
bifurcation buckling is facilitated by introduction of the concept of the
derivative L' of L (Ref. 10}. In particular, for the operator L , the deri-
vative L' (sometimes called the Frechet derivative of L} is an n-by-n
matrix whose elements are

L! = .__._af'..lj__._.
B )

(58)

Because L' is a function of a particular displacement vector X (unless
the nonlinear terms are dropped), the Frechet derivative will usually be

denoted L,k to indicate this dependence. With the use of the derivative

L' of the operator L , Newton's method may be readily generalized to

obtain the solution of Eq. (56). The iteration is defined by

Lf o x

e X

= F - LX, (59)

k+l K
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If XO is an estimate sufficiently close to the solution X and if Lk is
not a singular matrix, the iteration converges to X . Under these assump-

tions, it also can be shown that the converged scolution is unique (Ref. 10).

2.7 Bifurcation Buckling

The application of Newton's method and the modified Newton method
in STAGS to obtain a nonlinear collapse analysis is discussed in the pre-
vious section, It is interesting to note that the mathematical characteriza-
tion of hifurcation buckling also is provided by the generalized Newton
method. Let X, be a solution of Eq. (56} under a given vector F of

Q

external forces. If every neighborhood of X . contains another vector Y

G
which satisfies the equation

LY = F (60)

then bifurcation is said to occur for the shell under the load F . From the
previous remarks on the conditions for convergence of Newton's method to
a unique solution, it follows that a necessary condition for bifurcation is

that L'X be a singular matrix, or
O

det (L) = O (61)

Classical bifurcation buckling theory (with linear prebuckling analysis) may

be easily obtained from Eq. (61). It is assumed that Xo may be written

X~ = X (62)

where X; is the linear solution for a load vector F Thus, Eq. (61)

L -
becomes

det I.J‘ = 0 (63)
(13, )
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Equation (63) is an algebraic eigenvalue problem of the form
2
det (A-2B -2 C) = 0 (64)

In classical bifurcation theory, the C matrix, which arises from the pre-

buckling rotations, is often omitted and the eigenvalue problem
AX = ABX (65)

is obtained.

When bifurcation is considered but the prebuckling displacements
are not linear, the solution of Eq. (61} generally requires a stepwise pro-

cedure. One such method is given by the recurrence equations

det [L! = 0
( Mt Xk)

Xier1 7 Mer1 %

(66)

in which the starting vector X_ may be represented by the linear solution.

O
A sequence of eigenvalue problems is solved and, if the method is
successful, }“k approaches unity. A nonlinear bifurcation treatment [equiva-
lent to Eq. (66)] was presented in Reference 1l and has been used successfully
to study a large variety of problems. For the two-dimensional problems
under consideration here, it appears that such methods may be as costly as
the complete nonlinear analysis available in STAGS., Consequently, only a
élassical bifurcation buckling analysis is implemented in the STAGS pro-

gram,

The formation of the A and B matrices of Eq. (65) will be con-
sidered briefly. The elements of the Frechet derivative matrix L'IJ\X
(which define the matrices A and B) are determined according to Eq. {58}).

The rules for computing derivatives of polynomials are easily programmed,
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and the formation of the A and B matrices, therefore, is well suited to

automatic treatment on the computer. Thus, for example, if X(i) and
h and jth displacement components, we have, using Eqs.

(52}, (53), and (54):

X.. are the it
(1)

m 2k
3% U ) k3% AU
WL X z : a =z o %05 (67)

Examining the kth term of this sum,

% U Rl N azk* ok az ™
XS T XX X X
(i) (i) VI §) {j)

(68)

In the first term on the right-hand side of Eq. (68), note that Sk is the
linear stress resultant vector at station k and that only the quadratic
terms (rotations) need be considered in forming the partial derivatives
2 ko
37T @K, 3K, -
(i) )

Assuming the prebuckling rotations may be neglected for the classical

Contributions from this term go into the B matrix.

theory, the last term of Bgq. {68) generates additions only to the A matrix.
The A matrix is then identical to the linear stiffness matrix, If the pre-
buckling rotations are included (nonlinear bifurcation), the last term of
Eq. {68) generates a C matrix and provides additional contributions to the
B matrix., In this case, the prebuckling stress resultant vector S would

alsoc include nonlinear terms.

In conclusion, it should be noted that bifurcation buckling theory is
often based on the concept of adjacent equilibrium states. Of course, the
same algebraic eigenvalue problem is ultimately obtained by both methods.
However, the (approach presented here seems to provide a more simple
recipe for definition of the basic matrices of Eq. {65). The recipe is out-
lined in Eqgs. (67) and (68) and leads to straightforward algebraic procedures.
In addition, the relations between linear and nonlinear bifurcation theory

and Newton's method are clarified.
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2.8 Cornputation of the Components of the Metric and Curvature Tensors

The components of the metric tensor A, B, C and of the curvature

tensor wa can be computed according to the following sequence of opera-

tions:

1) Denote the cartesian coordinates xl , :»«:2 . x3 by x, v, z,

.respectively, and the surface coordinates cpl , cpz by €, 1. Thex, v,

z are then determined as functions of € and T.

x = x(§, M
y = y (5. M (69)
z = z(§, M)
2) The metric tensor components are computed with the aid of Eqs. (4, 7)
2 2 2
Z2 _ _ ox ?X A
AT =g = () ¢ (3 ¢ (R)
2 2 2
2 Ox dz
= = 0
% - ap - (F) ¢ (3R ¢ () (79)
.. - X ¥ Yy, wom
(_,-ABcose—ag.ﬂ— SE BT{+ SE an+ ST
3} The components of the curvature tensor are
2 2 2
_ 9"x oy 2
b = = k + k + —% k
£¢ el 23 el 3l el 12
2 2 2
' x 3y a z
Pen T 3Tem N23 towgen a1 To3EET M2 (71)
2 2 2
_ 9ox 3y ¢z
b = k + k,;, + —~—5 k
nm ﬁ! 23 SF 31 anz 12
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where

W
Pile
ET
e
Ay
e

12
- 1 foy o0z _ 3y oz
K23 7 (ag 3 ?E) (72)
R S - St ax)
31 Ja \3E 3T 3T 3E

_ 2
L (L 41

Since the sign of the curvature tensor was chosen so that positive
curvature results from an inward point unit normal [see Eq. (19)], care

must be taken to preserve the sense of bry by remembering that it is

P
defined by the cross product a.g X a,ﬂ .

As an example, consider the case of an elliptic cone as shown in
Figure 2. The parameters o and B are the tangents of the cone half apex
angles in the x~z and y-z planes, respectively, § is the elliptic coordinate,
and T is the axial coordinate. The relationships hetween x, v, =z and

€, M are

% = T cos §
y = BT sk {73)
z = T

Note that this choice of & and T results in an outward pointing normal as

shown in Figure 2.

The a and bw are computed from Egs. {70, 71)

af B

agg = T]2 (az sinZ'E + BZ coszg) + 1
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Figure 2 An Elliptic Cone
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il (BZ - 012) sin € cos §

“en T
a..rm = ggz cos2 E 4 Bz sin2 g
bgg = - f_; aBﬂz (74)
bg,n =0
bT]T| = 0
a = T]2 (az sinze + BZ cosze + Q/z BZ)
2.9 Physical Components of Strain and Curvature-Change

For lines of curvature coordinates, the physical components of

strain and curvature-change are given by

i
e = —2F (no sum)
(QB) BB
‘Za a
oo
(75)
"B
M C— 1 (no sum)
(of) z =
oo BB
With the components of the metric and curvature tensors written as
0 B VA 11
¥2 T V%22
(76)
L. m
) a5
LY
2 %22
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The physical components of the displacement gradients {Eq. (36)) take the

form

= __].'..... u + _.__...a.l’z u
) o ()1 0, (2)
= _]l_ u - Q'Z’l u
Y2y T oo, Yz T me, (2)
Sy el Y
Y(21) @ (2),1 ao, (1)
= L u + 2,1 u - X
22) T o, Y22 T owe, )T
L 1
= _ + —
B(l) 0."1 W:]- rl u(l)
! 1
o T Mt T e

where a comma denotes partial differentiation and the quantities u

the physical components of displacement in the tpa directions,

Bk

(77)

are

The physical compeonents of strain and curvature-change are deter-

mined from Eqgs. (42) and are found to be

1 2 1 2

1.2
vtz Yey Tz P

Sy T Yab

—

1

_ 1
fnzy T Z (“f(lz) * '\’(21)) Tz oYy Yoyt T Yoy Yeyt

) 1 2 12 12
€22y T Yoz Y7 Yoy t 7 Yy T 7 fo

-3]-

L
2

Py B(2)
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= ..!'._. -_-_l....._ - ._}.'_.
“w T P T aE 2P T

H = n = 1— B L
(12) (21) o {2),1 v,

(79)

22) © &y P@ne t 3e %20 P T T Y
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Section 3.0
FINITE DIFFERENCE GRID WITH VARIABLE SPACING

For better economy in the analysis a capability has been provided
for the use of variable spacing finite difference grids. The shell surface
is covered with a system of mesh lines {see Fig. 3) whose coordinates

are given by

and
y. » J=L

where x and y are the curvilinear surface coordinates. Corresponding

to each pair of values (i,j)i =1, m; j =1, n, a rectangular region R.1 j
is defined with sides of length

[}

a.

i,] 172 lx*H-l

x|

b, .
i,

f

1/2 le_H_ = Yj-ll

Note that Ri j is rectangular on the map of the shell provided by the surface

coordinates but not generally on the shell itself,

The regions R, j {and lengths a, i bi j) are modified at bounda-
ries of a shell by including only those portions which are inside the panel,
A double integral of a function f over the region R of the panel may then

be approximated by
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Figure 3 Shell Surface Covered With A System of Mesh Lines
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m n
_/f f dxdy = E P L (80)
o

R i j=1

The discretization is completed when the integrand functions fi,
are evaluated at the centroids of the regions Ri,j in terms of the neighbor-
ing displacement components., It should first be noted that the tangential
displacements u and v have been located at corners of the regions Ri,j .
Furthermore, the energy expressions for a shell include derivatives of u
and v only up to the first order. Hence, even with arbitrary spacing, only
central difference formulas for the u and v displacements are required.
In contrast, the normal displacement w has been located at the mesh node

points (Xi . yj} and more general finite difference formulas must be developed.

The coordinates of the centroid of a region Ri ; are given by
?

Il

~
X,

i 1/4 (xi

a ot X))

(81)

n

Y.

/4 {y. + 2Zy. + v.

Variable spacing is first considered with respect to a single coordinate x
only. With the help of a Taylor's expansion {or equivalently by the use of
interpolation formulas), the difference formulas for w, Wi o and Wy

at ’;:.1 may be established as

(w);, = w|;;i = wi_lllé + [(h-k) . (3k+h)/(h2+ hk} ]
+ w;/16 - [(ht3k) + (3htk}/ (htk) ] (82)
+ wi_i_l/lé - [(k-h} - (3h+k)/(hk+k2)]
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(W, ), = w, i = -w,_,/(2h)

+ w, [1/(2n) - 1/{2K)] (83)

+ Wi+1/ (2k)

+ 2/[h « (htk)]

F
i
z
w
»
0
4

where

(85)

i+1 i

The corresponding formulas for the y coordinate are obtained by

appropriate substitutions and are denoted with superscripts

= wlo
Y]
b
(w, ) = w,le (86)
7
j“‘ 7
oyl = Wyl
73

The required two-dimensional difference formulas are now ohtained
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by combining the formulas for both coordinate directions

g;i,J '&1’?_1) ((W)i)J - ((w)J)1
VT g g T (o)
Y (87)
‘;’Wiu ) ’YYl&_,;_) i ((W YY)J)l
i
Q,NX?I,J = w, YI(;( 5 = ((W’x)i,y)J

In general, these equations involve the 9 point "star" of neighboring values.
However, it is easily seen that all of the formulas reduce to the standard
central difference formulas when uniform rectangular spacing is used. All

of the difference formulas are exact when the displacernent function w

behaves quadratically

The inclusion of nonorthogonal coordinates and of variable grid
spacing extends considerably the class of cases that can be solved by
use of STAGS. The grid lines can be made to follow boundary lines and
.cutout edges rather than lines of curvature on the shell surface. As an
example, for a cylinder with a circular cutout, one can use a grid as
shown in Figure 4. This grid system is described by the mapping

function

o
[a¥]
—
1
¥

|
3

X 1-x

-
F = [f sin @] + [gcos @]
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T B x = Constant
b “— @ = Constant

Figure 4 Grid for Cylinder With Circular Cutout
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X = R sin [F cos §/R]

(88)
Y = R cos [F cos #/R]
Z = Fsinp

However, it was found that use of this grid leads to inaccurate results
unless the spacing between the straight gridlines are very close together
in the neighborhood of the corner. The reason for this is that the equations
for the strains are inaccurate if the angle between the coordinates changes
significantly between two adjacent gridpoints. It appears to be more
practical, until other finite difference expressions have been developed,

to use a different approach. For shells with cutouts that cannot easily be
made to follow a regular net, it is suggested that the user written subrou-
tine for a variable thickness shell be used. The shell thickness is set
equal to zero if a gridpoint falls inside the cutout. The computer program
then eliminates as unknowns the displacement components at points with
zero thickness. This method is demonstrated in the example given in

Section 5, 3.
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Section 4, 0
INELASTIC BEHAVIOR

4.1 Introduction

Due to the extreme complexity of the problem, it has been necessary
to formulate theories of plasticity which greatly simplify material behavior.
While in many cases these theories give satisfactory results, there are
other cases in which they fail. It is shown, for instance, in Reference 12
that for loading histories with sharp turns in the stress space the classi-
cal theory with isotropic strain hardening may give very poor results,
Typically at collapse there is a very sharp change in deformation pattern
and, consequently, a sharp turn in the stress path. Other theories have
been proposed which more adequately describe the material behavior in
such cases than does the classical theory, The Batdorf-Budiansky slip
theory (Ref.13) is probably too cumbersome for practical application, but
the type of theory proposed by White (i{ef, 14) and Besseling {Ref. 15)
appears very promising because it is rather simple in its application, yet
it retains such features as strain hardening and the Bauschinger effect.

For these reasons, it was selected for use in the STAGS code.

Introduction of inelastic behavior has been done within the frame-
work of the energy principle upon which the elastic analysis was based.
Essentially, the plastic deformations are considered as load terms; they
are completely analogous to thermal expansions except that they are not
known in advance. A series of elastic problems are solved by the use of
energy principles in which the ''load terms' are gradually modified until
they correspond to the computed state of stress and to specified nonlinear
stress strain relations at all points over the shell surface and through the

shell thickness.
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4.2 The White-Besseling Theory

The White-Besseling Theory, as applied here, assumes that the
material consists of several components which have identical elastic pro-
perties and exhibit ideal plasticity {no strain hardening} but have different
yield strength. As the strain is the same in all components, the stress-
strain caurve will experience a decrease in slope as the stress reaches
the yield limit for any one of the components; the respective components
then cease to take additional load. The composite thus exhibits strain
hardening with a piecewise linear stress-strain relation. Use of only one
component will, of course, result in application of ideal plasticity theory.
If the stress is reversed after loading beyond the yield limit for one or more
components, yvield will occur in the reversed direction at an average stress
in the composite which is lower than the stress for original yield. This
is demonstrated in the uniaxial stress-strain curve shown in Figure 5.
Tension is first applied, CAB, beyond the yield limit and followed by
strain reversal, BCD, into the zone of yield in compression. The yield
ellipse for the weakest component and the loading history in this component
are also shown in this figure. Clearly, vield in compression will occur
when the total strain is (el - Ze:y)J i. e., the yield in compression occurs
at a much lower stress if the material previously has been subjected to
tension stresses above the yield point. To introduce the Bauschinger
effect this way is appealing because it reflects the microstress theory

which now generally is accepted as the explanation of the Bauschinger effect,

4.3 Implementation of the White-Besseling Theory in STAGS

The White-Besseling plasticity theory is implemented in the com-

puter program in the following manner:

1}  The inelastic behavior of the material is defined through
specification of the uniaxial stress-strain curve., This curve is piecewise
linear and the input consists of stress and strain at each of its corners. The
relative volume and the yield strength for each of the components is then

comptted internally, The transverse strain is determined such that the
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total stress in the transverse direction is zero. It seems possible to
reflect more accurately the actual stress-strain relations, including

anisotropy, if self-equilibrating initial stresses are included.

(2) The strains are estimated for all points in the shell over the
shell coordinates and through the thickness. This generally is done through

extrapolation from previous solutions.

{3) A subroutine is called within which, for each of the material
components, the stress corresponding to the assumed strains is determined.

The total stress for the composite is then found.

J
“total Z Vi 9
i=1
where J is the number of components, vy is the relative volume occupied
by component number i ,(Z v, = 1. 0) » and g, is the yield stress for

component number 1. 1=t

(4) Once total strains and stresses are known, the plastic part
of the strain increment can be determined and added as a pseudo-load

in an elastic analysis.

{5) New strains are computed and used as estimates. The pro-
cedure is continued until the comiputer strains agree to within a given margin

with the estimated strains.
The following operations are performed in the above referenced subroutine:

(L) Information about material properties is transferred into
the subroutine together with the estimated strain increments (Ael y ey, and

Av) and stresses at the end of the previous load step (’51 ) ,-&,2 y Y1

(2) New stresses are computed under the assumption that the

load step is elastic.

~ E
9 = o t——s (b5 + viey)
1-wv
_ o~ E
o, = gy *F l—:'—\:z (&€2+ \)Ael) (89)

T+ Eay/[2 1+ v]

3
i
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{3) Set ¢ =G'+O“2'UG +k21‘2 {90)

where k is the ellipse ratio for the assumed yield surface (usually, k2 = 3).

(4) If O is less than o.i » the load step is elastic in this com-

ponent (loading or unloading). If this is the case for all components, there

are no psuedo loads caused by plastic strain increments and the calculations
for the load step are concluded.

{5) If O is larger than G.i; for some component, the step is

at least partly inelastic {or this component. As we have assumed ideal

plasticity the stresses can be computed from the conditions that

2 2 2 2
o t o, - g0, + k71T = Oy (91)
where

-~ E I < A

o = 9 + X > [Ael ael + v (Ae2 AEZ)]
-y

o, = 5, + —2=—  [ae, - 2L + v (ne - 4 (92)
2 2 2 2 2 1 1

.o _ B . p
ST T Y [M M]

and that the plastic flow is perpendicular to the yield surface

pey L T bey ) (9%)
P ~_~ Z~
by 2o, = 9 aP 2k” 7

After the stresses have been determined in the components, the average
stress in the composite is found readily. As the elastic constants are
the same for all components, the plastic part of the strain increment

(i. e., the pseudo loads), can easily be obtained.
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The acquired ability to handle cases with inelastic behavior

is demonstrated in one of the examples discussed in the following section.
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Section 5h. 0
RESULTS OF SAMPLE CASES

In the following section are presented some numerical results
obtained through exercise of the program. The examples were chosen

such that the recent additions to the program could be verified.

5.1 Cylinder With Rectangular Cutout

Analytical and experimental results for cylindrical shells with
rectangular cutouts were reported earlier in Reference 3. The benefit
derived from the use of a variable mesh spacing has been evaluated by re-
examining this cylinder problem. The cylinder has fwo diametrically oppo-
site cutouts and a radius-to-thickness ratio of 400. It was reported in
Reference 3 that-a reasonably accurate analysis for such cylinders would
require excessive computer time. Numerical results for a uniform finite
difference net with 9 points in the axial and 20 points (92 ¥ 20) in the circum-
ferential direction {(also presented in Ref. 3) are shown here in Figure 6.
Due to improvements in the efficiency of the computer program, it is now
possible to obtain much better results even with constant grid spacing.
Curve B is obtained with a finer net (16 x20), A finite difference mesh
was designed also in which the minimum grid spacing is identical to -
that used for Curve B, but which gradually increases away from the cut-
out until it is approximately doubled. The displacements corresponding
to this analysis are practically identical fo those obtained by use of grid

with constant spacing, but the computer time is reduced by about 40%,.

Curve C was determined by use of a minimum grid spacing of 0.2
inch at the edge of the cutout. Moving away from the cutout the spacing
increases by a factor of 1. 2 from one mesh to the next until the maximum

grid size of 0,6 inch is obtained. For Curve D the minimum size is 0.12
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inch, the factor is 1. & and the maximum size is again 0.6 inch. The
results obtained by use of the latter mesh appear to be in very good
agreement with the experimental results. The computer time correspond-
ing to the determination of one of these curves is approximately 0. 5 hours
(UNIVAC 1108). For analyses with even finer mesh sizes, therefore, the
analysis was restricted to loads below 845 pounds. The results in Table I
show that additional refinement of the mesh would not substantially change

the results shown in Curve D.

Table I
Displacement w, at P = 845 Ibs
Net Min. Spacing Factor Max., Spacing Wy
D (13 x 21) .12 1.5 .60 . 00877
E (18 x25) 12 1.2 .60 . 00850
F (21 x35) .12 1.2 . 30 . 00858
G {21 x28) .08 1.2 . 60 . 00873

5.2 The Pinched Cylinder

The case of a pinched cylinder, Figure 7, was also analyzed to
further demonstrate the advantages of the variable grid capability. Lateral
displacements computed from a linear analysis are shown versus the cir-
cumferential coordinate in Figure 8 and versus the axial coordinate in
Figure 9. The curves are for a converged solution, corresponding to a
variable spacing grid with 17 points in the axial and 26 points in the circum-
ferential directions (17 x 26). These results are in good agreement with
results for the same case shown in Reference 16. Discrete values of the
solution are given for the two coarser nets (A and B} which are shown in
Figure 10, It can be seen that the use of the net with variable spacing,

Grid A, leads to results which are at least of the same quality as those
obtained with the uniform net, Grid B. The computer time corresponding
to the analysis with Grid B is approximately five times the time for

analysis with Grid A,
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Figure 7 Pinched Cylinder

o Grid A Resulis

i (Nonuniform)
o Grid B Results
{Uniform)
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Figure 8 Lateral Displace- Figure 9 Lateral Displacements
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Figure 10 Finite Difference Grids
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5.3 Cylinders With a Circular Cutout

A circular cylinder was analyzed for collapse under uniform end
shortening. Its geometrical properties were: length 9 inches,
radius 6 inches, thickness 0,06 inch. At its midlength, it had two dia-
metrically opposite circular cutouts, each of radius 2. 35 inches. Young's
modulus was set to 107 psi and Poisson's ratio to 0.3. Due to symmetry,
only half the length and one quarter of the circumference of the shell was
considered. A finite difference net was chosen with 15 axial and 19 circum-
ferential stations {15 X 19). The net is shown in Figure 1. The analysis in-
dicates collapse (a maximum load) for an end shortening of . 0209 inch. The

load maximum is 16, 740 lbs or 66, 960 lbs for the complete cylinder.

The difference between the displacements for two adjacent solutions
close to the point of collapse represents the collapse mode for the case.
In Figure 1l2c is shown how these incremental displacements vary with the
angular coordinate (see Fig. 11). Figure 12b shows the lateral displace-
ment increments at the meridian 8 = 57°. The displacements at the edge
of the cutout {6 = 22. 5°) and at 6 = 57° are shown as functions of the axial
load in Figure 13. While the largest displacement occurs at the cutout edge,
the displacement at 8 = 579 is growing faster indicating that ""buckling"

occurs away from the cutout where the axial stresses are higher.

5.4 Shells with Elliptic Cross-Section

For an elliptic cone the geometric constants occurring in the kine-~
matic relations are given as an example in Section 2.8. These expressions
were used here in an analysis of an elliptic cone with the dimensions shown

in Figure 14,

Numerical results were first obtained for the special case of an
elliptic cylinder with a length of 1.0 in., a thickness of 0. 0144 in., and
semi-axes of 1. 75 in. and 1.0 in. {see Fig. 14). Young's modulus was l[)7
psi and Poisson's ratio was 0, 3. The cylinder was subjected to a uniform
end shortening with the edges free to rotate but restrained from moving in

the radial and circumferential directions.
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L-— 2.35 —‘l

X

Figure 1l Finite Difference Grid For Cylinder With Circular Cutout
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Figure 12 Collapse Modes for Cylinder With Circular Cutout
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Since the "buckling pattern' was expected to be confined to the
areas of least curvature, it appeared that antisymmetric behavior with
respect to the normal plane through ¢ = 0 (Fig. 14) could be zxcluded.
Hence, the analysis was restricted to a 180° panel with symmetry condi-
tions enforced at ¢ =0, m. A uniform finite difference grid was chosen
with 1l points in the axial and 29 points in the circumferential directions.
Results obtained with finer grids indicated that use of the chosen grid led

to accurate computations of the collapse load.

Due to the symmetry of the prebuckling deformation about the plane
at midlength and about the normal plane through ¢= n/2, it was necessary
to excite nonsymmetric deformations by the use of small antisymmetric
imperfections. Despite the presence of these imperfections, a deformation
pattern developed at collapse which was symmetric about both of these
planes. Therefore, the continued analysis was restricted to panels cover-

ing half the cylinder length and one quarter of the circumference.

For the particular cylinder considered {aspect ratio of 1. 75), it is
possible to determine the critical load without the use of symmetric (with
respect to the geometric symmetry planes) imperfections. As the load
is increased, a very sharp maximum is found in the load displacement
curve (Figure 14}, Beyond this maximum convergence cannot be obtained,

hence the post-buckling curve cannot be directly determined.

For an imperfect shell, the displacement mode which developed
at collapse for a perfect shell was used as a guide in the choice of a suitable

initial imperfection mode

W= - W sin (—TE{-) cos (6 g)

Load displacement curves were computed for several different values of
the imperfection amplitude w_ . The results are shown in Figure 14.
The normal displacement at ¢= 7/2, x = L./2 is shown as a function of
the axial load in Figure 15. From Figure 14 it can be seen that for a

sufficiently large imperfection amplitude, the first sharp maximum does
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not exist--the curve is smooth and it is possible to find equilibrium con-
figurations in the post-buckling range., After such configurations have

been found, they can be used as starting values for an analysis in which

the imperfection amplitude is gradually changed until a point is found on

the post-buckling curve for perfect shells. After such a point is found, it is
easy to establish post-buckling load displacement curves for perfect shells
(Figure 14).

After the first sharp maximum the postbuckling curve exhihits two
additional limit points which correspond to secondary buckling. The curve
was not pursued beyond the third maximum because the deformations are
then so large that the applicability of the basic equations is guestionable.
Also the buckle pattern is close to the point of maximum curvature and
bifurcation into an antisymmetric mode is likely., The normal displace-
ment as a function of the circumferential arclength at x = L/2 is shown
in Figure 16. Curves are given for each of the three limit points (A, B,

C on Fig. 14).

In the neighborhood of a limit point the developing collapse or
buckle mode can be obtained as the difference between displacements for
two neighboring solutions. Such collapse modes corresponding to each of
the three points of maximum are shown in Figure 17. It can be seen that
the point of maximum deflection in these patterns moves towards the
point of maximum curvature as the end shortening increases. While the
primary buckling load is rather sensitive to imperfections, it appears that
the second maximum is not imperfection sensitive; hence, it may be suit-
able as a design limit. Results similar to these have been presented by
Kempner, et al., for oval shells (Refs. 17, 18). However, Kempner's

shells are not elliptic and a direct comparison is not possible.

A series of elliptic cones was also analyzed. Like the cylinders,
the cones were loaded through uniform axial shortening. At the two ends
rotation was unrestrained but the cross section was not allowed to deform.
Four different cases (including a circular cone) were analyzed. The aspect
ratio of the elliptic cross section was varied but the semi-axes of the

ellipse were chosen such that the circumference was the same in all cases.
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Young's modulus was chosen to be 107 psi and Poisson's ratio was 0. 3,
All the cones had the dimensions (see Fig. 18) t = 0.16 in., ¢ = 16 in.,

and d = 16 in, The dimensions of the ellipse are shown in Table II.

Table II
a b
Case {in.) {in. )
i 10.65 10, 65
2 1. 9 9.5
3 12,2 8.7
4 13,0 7.4

The results for the elliptic cylinders indicate that an imperfection
with an amplitude of about one percent of the shell thickness will not signi-
ficantly change the critical load. However, if this imperfection is included,
a less severe convergence criterion may be used. Consequently, for

- economy in the analysis such an imperfection was included here. Figure 19
shows how the critical load varies with the ellipse ratio for elliptic cones
of equal weight. The decrease in buckling load with increasing aspect
ratio is less drastic than is indicated by the bifurcation buckling analysis
for oval cylinders (Ref. 16). For the circular cone the bifurcation point
and the maximum coincide but for higher values of the aspect ratio the
critical load is above the bifurcation point. The buckling mode for Case 3
(a/b = 1,4) is shown in Figure 20. Similar results were obtained in a bifur-

cation buckling analysis for oval cylinders by Kempner, et al (Ref. 16},

It must be emphasized that for all the cases investigated here a
uniform end shortening was applied to the shell., Had a uniformly distri-
buted axial load been applied at both edges, the possibilities for redistri-
bution of stresses would have been limited and the performance of the elliptic
shells would have compared less favorably to shells with circular cross-.

section,
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5.5 A Pear-Shaped Cylinder

In Figure 21 is shown a cylinder whose cross section consists of
circular arcs joined by straight lines. The behavior of this shell subjected

to uniform end shortening was investigated with use of the STAGS code.

As this type of shell is not included among the standard geometries,
a subroutine must first be written for computation of the geometrical con-
stants. The general procedure recommended in Reference 8 for computation
of the geometrical coefficients can be greatly simplified in a case like this.
If the arclength and the axial distance are chosen as surface coordinates,
clearly the Lame coefficients are A =1, B=1and C = 0. Also the local radii

of curvature are directly given.

As seen from Figure 22 the linear range in this case represents
less than 1/30 of the total load history of the shell., The rapid change in
slope of the load-deflection curves at about P = 100 ibs reflects the growth
in normal deflection (buckling) of the flat portions of the shell. Associated
with this growth in w 1is a redistribution of the axial stress so that the
curved segments begin to take up a larger portion of the total axial load P .
As more and more of the axial load is borne by the curved segments, the slope
of the load-end-shortening curve increases until just before collapse, at which
load the entire structure fails. Figures 23 and 24 show the circumferential
distributions of normal outward displacement w and axial compression/length
Nx at the shell midlength for P = 2328 lbs, At this load, both w and N_
are growing very rapidly with P in the curved portions 45 <8 < 90° and
-67.5°% < 6 < 0°,

The rather complex behavior in this case indicates the need for a
flexible strategy for calculation of collapse loads of shells, Small load
steps and frequent refactoring of the equation system matrix are required
in the load region between 100 and 200 lbs even though the displacements
are relatively small in this range. Farther out on the load-end-shortening
curve, where the displacements are larger, rather large load steps can be
used and few refactorings are necessary. Efficient use of the STAGS code,
or any code for predicting nonlinear behavior of shells, requires a sophisti-

cated iteration strategy built into it and a well-trained user to take advantage
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of this strategy.

A finite difference grid was used with 45 circumferential nodes and
9 axial nodes covering 1/2 of the circumference and 1/2 of the length, A
variable spacing was used such that the gridlines would follow the inter-

sections between flat and curved shell segments.

5.6 Bending of Cylindrical Fanels Under Point Loading

The STAGS code was applied in an analysis of the behavior of
shallow cylindrical panels as shown in Figure2Z5. The panels were subjected
to bending through application of a point load at the midpoint of a panel sup-
ported at the curved edges and with the straight edges free. The behavior
of such shells is expected to be highly nonlinear. If the load is applied
towards the center of the circular arc, the cross-section will be more
and more shallow with application of load and the result is similar to the
well known Brazier effect., If the load is directed away from the center,
the free edges will be under axial compression and the shell will collapse

under a moderate load.

Three cases were considered: one with clamped edges loaded to-
wards the center and two with simply supported edges; one loaded towards
and one loaded away from the center. Ten axial and nine circumferential
stations were used. The results, in terms of load displacement curves,
are shown in Figure 26 for the shells with load toward the center, and in
Figure 27 for the shell loaded away from the center. In the case with
clamped edges, collapse is prevented by the development of axial mem-
brane tension. Collapse in the case of simple support is indicated by
a maxirmum in the load deflection curve. In a case like this, i.e., when
the load is stepwise increased rather than a displacement, points on the
curve cannot be computed through the maximum. At the point of maximum
the equilibrium configuration is unstable and hence the coefficient matrix
has a zero determinant. This determinant, as obtained when refactoring
was required, is plotted versus the load in Figure 28. In this case, it

is much easier to read the critical load from the determinant plot.
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Figure 25 Cylindrical Panel With Point Load
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5.7 Inelastic Buckling of Plate

A flat plate was considered which was simply supported on two
opposite edges and, on the other two edges, in-plane displacements were
allowed but lateral displacements and rotation were suppressed. Axial
compression was introduced in the plate at the simply supported edges.

Plate dimensions and boundary conditions are shown in Figure 29,

In the elastic case the bifurcation buckling theory would be appli-
cable and the value of the critical load can be obtained by use of simpler
means than a nonlinear analysis. However, application of STAGS also
gives information about the plate behavior in the post-buckling range.

The critical load for the plate can be established by use of the nonlinear
analysis if lateral displacements are triggered by small initial imperfec-
tions. As the lateral displacements grow very rapidly and if the imperfec-
tion amplitude is sufficiently small, the load-displacement curve has a
sharp knee at the buckling load as it is traditionally defined. However, the
smaller the imperfection is, the sharper must the convergence criterion be,
and the more expensive is the analysis. For very small imperfections, it
would be necessary to use double precision arithmetic. Therefore, advan-
tage was taken of the fact that buckling is followed by redistribution of
stresses. The curve corresponding to the difference between axial stress
at the edge and axial stress at the center of the plate has a much sharper
knee than the load displacement curve has and it is possible to determine

the buckling load with larger values of the imperfections.

The method was demonstrated first for a plate which was assumed
to remain elastic for any stress. A grid was used with 8 nodes along
simply supported sides and 6 nodes along the clamped sides. The ini-
tial imperfection was given by

-5 nx Ty
v B

w_ = gin —=— cos
To] L

The results for the elastic plate are shown in Figure 30. The plot
of u versus o indicates a value of a critical load of 2800 kg/crn'2 which
is in close agreement with the result from the classical buckling analysis

for plates.
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The same analysis was also carried out for a 10 percent thicker
plate, both elastic and inelastic with the stress-strain curve for uniaxial
compression represented by the polygon shown in Figure 31, The results
are shown in Figure 32 in the form of a load-displacement curve. A plot
of the square of the displacement gives a clearer indication of the critical
load. The critical stress is found to be 2270 kg/cm2 corresponding te an
axial load of 1100 kg, The kink in the curve for lateral displacement is
presumably due to the fact that as the corner on the load displacement curve
is reached by the average stress, the bending stiffness drops with the reduc-

tion in tangent modulus.

As the form of the load displacement curve above the second corner
is in this case irrelevant, more accurate results would have been obtained
if corner points had been concentrated in the neighborhood of the critical

stress.
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Section 6.0
CONCLUSIONS AND RECOMMENDATIONS

Certain improvements or extensions of the STAGS computer pro-
gram are reported here. It appears from solutions of several sample
problems that with these extensions the STAGS computer program has
become a powerful tool for the analysis of the nonlinear behavior of shells
of general shape. The use of the energy method with finite differences
appears to be attractive. For most shells, one of the standard geometry
routines can be used, in which case determination of the input data general-
ly is a matter of only a few minutes. Through comparison with other pro-
grams (Ref. 19}, it has been found that the program is efficient with re-
spect to computer time and fo numerical stability. Likewise, the modi-
fied Newton-Raphson method appears to be the best choice for the solu-
tion of the nonlinear equation system. It has been favorably compared
to other numerical methods in Reference 20. Finally, through application
to a large number of practical cases, some with previously known solu-
tions, the validity of the program has been reasonably well established in
all its aspects. Under sponsorship of the NASA Manned Spacecraft Center
in Houston, a series of tests of cylinders with cutouts has been carried out
and results have been compared to analytical results from STAGS. The
agreement between test results and analytical predictions is very good

(Ref, 21).

In view of the successful application of the program, it appears
desirable that further extensions be made. For instance, it would enhance

the value of the program if the following items were included.
Improved input and output, particularly expanded

plot capability including graphical display of the

mesh generated by the program,
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Further improvement in program efficier.cy.

Input diagnostic.

Pre- and post-processors of data files.

Inclusion of some finite elements in the program
such as bars and beams, which cannot be properly
represented in the present program. Sucah a hybrid
program would combine the efficiency of the finite
difference analysis with the versatility of the finite

elermnent analysis.
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