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STATIC AND DYNAMIC FINITE ELEMENT ANALYSIS OF SANDWICH STRUCTURES

by

J. F. Abel* and E, P, Popov**
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The finite element method is extended to the refined elastic analysis
of multilayer beams and shells with no restriction placed upon the
ratios of the layer thicknesses and properties. The method is appli-
cable to structures wherein shearing deformations are significant,
including sandwich-type structures. Element stiffnesses developed
are based on polynomial displacement models and are applicable to
the linear elastic analysis of beams and thin, axisymmetric shells
of arbitrary meridian. Although attention is restricted to three-
layered construction with similar facings, the theory may be gener-
alized for any type of flexural element and any arrangement of
laminations. Computer programs have been written for both static
analysis and free vibration analysis, Inclusion of rotary as well as
translational inertia allows determination of natural thickness-shear
frequencies and mode shapes in addition to flexural vibration charac-
teristics. Examples are presented to illustrate the effectiveness of
the method.
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SECTION 1
INTRODUCTION

Multilayer construction has become more and more important in structural engineering
as one means of achieving a beneficial combination of the properties of two or more materials,
The best known examples of this type are the widespread ‘‘sandwich’ structures used in the
aerospace industry. These combine thin, high-strength facing layers with a thicker, light-

weight core,

The theory of stress analysis of multilayer structures is well established. In general,
two classifications of such structures can he identified: (1) ‘‘laminates’’ in which layers
of materials with similar properties are bonded together and for which the Kirchhoff-Love
hypothesis is applied and (2) ‘“sandwiches’’ in which some layers may be significantly weaker
than others and for which transverse shear deformation is taken into account, Theory for the
laminates (Reference 1) has been successfully applied to analysis of general plates and shells
using, for example, the approximate methods of finite differences (Reference 2) and finite
elements (Reference 3). However, despite the availability of sandwich theories of various
degrees of refinement in the literature, there have been relatively few solutions published
that include the effects of transverse shear (Reference 23). Moreover, these solutions have
been restricted to the simpler geometries such as rectangular and circular plates and

cylindrical and spherical shells,

The purpose of this present paper is to exiend the finite element method to the analysis
of sandwich beams and shells, Although specific solutions are to be presented here only for
axisymmetric shells, the same general approach, using existing standard finite element

techniques, will permit the analysis of arbitrary configurations and boundary conditions,

Extensive reviews and bibliographies of the theory of sandwich structures are presented
in References 4 through 6, In the present work, a theory analagous to Yu’s sandwich theory
is adopted (Reference 7). This theory places no restriction on the ratios of layer thicknesses
and material properties, and it includes the bending and stretching effects and the transverse
shear flexibility of all layers. Yu has applied this formulation fo vibrational problems of

sandwich structures, including both shear and rotatory inertia (References 8 and 9).

The finite element method was developed concurrently with the increasing use of high-
speed electronic digital computation and its concommitant emphasison discretized techniques
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in structural analysis. In general, the method has proved to be a successful tool for the
systematic analysis of complex structures and the approximate solution of difficult problems
in continuum mechanics. Among the large number of publications on the finite element method
to appear in the last decade, References 10 and 11 include descriptions of the basic techniques
and comprehensive bibliographies.

Because of the importance of the problem, considerable attention has been devoted to the
finite element analysis of axisymmetric shells. This class of problems has the inherent
simplification of a one-dimensional mesh. For the analysis the conical frustra as elements
have been widely used (References 12 through 14). Recently, the more accurate axisymmetric
types of doubly curved elements have been introduced (References 15 through 17). In this
paper, the doubly curved element developed by Khojasieh-Bakht (Reference 17) is utilized.
This element duplicates the position, slope, and curvature of the original structure at each
nodal circle. In addition, this element appears to be satisfactory from the point of view of
the Irons~Draper conditions of completeness and compatibility (Reference 18), In this devel-

opment, polynomial displacements are assumed and the direct stiffness method is employed,

The following assumptions apply throughout this paper:

1, Displacements and strains are sufficiently small so that the linear theory of elasticity
applies.

2, Perfect bonding occurs between adjacent layers of the structure,

3. The transverse displacement of all layers is the same at a given location of the
middle surface of the structure. In other words, there is no pinching deformation,

4, Shells are thin in the sense that products of thickness with curvature are much
smaller than unity (§ /R <<1),

5. Material lines in each layer originally straight and normal to the neutral surface
remain straight after deformation, but no longer remain normal. The difference in shear

strain in the several layers manifests itself in warping of the cross section at the interfaces.
6. The materials of each layer are linearly elastic and the procedure can be applied to
orthotropic materials. However, for simplicity, the discussion in this paper is confined o an

isofropic case,
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7. The bending and stretching of all layers are taken into account, However, this
assumption can be relaxed for a particular layer by assigning a zero Young’s modulus,

8. All layers are flexible in shear (see item 5 above) but this assumption can be relaxed

for a particular layer by assigning an infinite shear modulus.

SECTION I
SANDWICH BEAM ELEMENT

A sandwich beam element of unit width which is symmetric about the middle surface of

the core is shown in Figure 1, A normalized coordinate is defined

£ - (x-xi)/(xi-xi) = (x-—xi)/£

where the subscripts identify the ith and jth nodes of the element of length £. The slope of
beam can be divided into contributions due to pure bending deformation and pure shearing

deformation as follows:

dw  _ .
ax 0 X T Xp X (n

Under the above assumptions the shear strain of each layer is independent of the thickness
coordinate z. The shear strains of the faces and core are indicated by s and Yo respectively,
Figure 2 shows a differential element deforming under pure shearing of the core and the
facings. With this type of deformation there is no net extension of the layers, so the axial
displacement of each middle surface is zero. The axial displacement of the interface must be
the same when computed with reference to the middle surface of either the face or core, For

the case of constant shear carried entirely by the core, this condition gives

u(z = hc/Z) : ()6 -xsc)hc/2= Xge he/2
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and for the case of face shearing it gives

ulz =-h/2}) = (Yf—xsf)hf/zzxsf hc/Z
Adding the two equations and using d = hc + hf, one obtains
Xs ° xsc+xsf : ychc/d-‘-yf hf /d @)

X st and Xgo 2Te defined in Figure 2,

As a result of the kinematic assumptions, the axial and transverse displacements of the

beam may be written

ug = =2 {x— %!
d _h - h¢
u;'b ==z (x—y; )t—z—x+—2—c—yc+-2—yf (3)
Nc = W; = Wfb = w

where the subscripte ¢ and f indicate core and facings and the superscripts t and b indicate
the top and bottom facings. z,, and z; are thickness coordinates with origins at the middle
surface of the respective layers. The strain-displacement equations for the beam are

. dUc _ o
€x¢ T Tgx  ° €xe¢ Yok,
d i,b ‘b
11b _ uf - o N ',b
xt T Tax o T &g trgky (4)
. dUC +ﬂ _
yzxc dz dx yc
t.b duf  gw
S —— - =
yzxf dz dx )\:

Substituting Equations 3 into Equations 4, the strain components that result are given by

[+]

€ = 0
xC
¢ h, 49y
e® tb =+ig..x..‘+"h_d_yc;_f;1
x § T 2 dx 2 X 2 dx (5)
dy  dy°
KXC-__d: dx
d
th X, 9%
xf dx dx
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Finally, the stress-strain equations in matrix form are

[ Tye ) Eo o} 0 0 0 O | ey
Ixc 0 MG 0 o} 0 0 Yoxc
t 1
o 0 o] E
o - A Xf ? - f O O 0 P, E‘f ? . ce (6)
t
ob o} 0 0 0 E 0||eb
x f f xf
b 0 0 | b
[ Txt ) L © O 0 MGt|x

Here )\C and A ¢ are shear-stress correction factors analagous to that used in the Timoshenko
beam theory. Yu (Reference 7) has suggested values very close to unity for sandwich con-
struction with thin, heavy facings and a light, weak core. Since these are the properties
characteristic of the vast majority of sandwich structures, these correction factors will
hereafter be taken as unity, However, it shouldbe noted that in a generalization of the present

approach, further investigations are necessary to evaluate these parameters.

The beam element stiffness matrix is derived usinga cubic transverse displacement field
and a linear variation of shear rotation, Moreover, interpolation functions are used in order

to express the displacement models directly in terms of the nodal displacements, Hence

wé) = PlE) 9, o0<f< (N
Here the vectors are chosen as

.
1] :<wx'>(cyf>
a" = <u(0) lull)>

and thus the matrix ¢ is given by

71-35%2{"’) LEI-284E%) 0O 0 : £2(3-26) LEAE-1Y o0 o0 |

6 (E~-1)/8  (1-4€43¢%) 0 O | 6L1-£)1/4 £36-2) o0 0O
0 0 (1-€) 0 E 0 0 £ 0

i 0 0 0 (i—{}: o} 0 0 E_J

By applying Equations 4 and 5 to Equation 7, the strains may be expressed in terms of the
nodal displacements

€ &) :=-B(£)q (8)
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where the strain-component vector is defined

T t+ ot P b b
€ =< Kye Yrze egf Kyt Yozt €xf Sxf Vxzf >

Then consistent with the definitions in Equation 6, it is possible to write

Z, 0 0 0 0 o 0
o | 0 o 0 0 0
e: Z € - 0 o ' Zf o 0 0 Ol e (9)
0 0 0 0 | ] ] 0
o 0 0 0 0 | zg O
e o 0 0 0 0 0 b
The strain energy of the element is now given by
W2
vy [ o cav-LaT[ [ B 2121 C2(2)B (&N az o€ q
o] _h/2

Therefore, the element stiffhess with reference to the displacements q is
, n4
kg = J 3(5)7{ Z(z) ¢z (z)dzB(E)dé (10)
8x8 o -ns

The inner integral is readily recognized as a diagonal matrix involving the material proper-
ties and the areas and moments of inertias of the layers. The 8 x 8 stiffness matrix thus has
five distinct components involving core bending and shear and facing bending, shear and
extension, These are identified by the EcIc’ Ach’ E fI P A fo and A fE £ terms, respectively,

In assembling finite elements into a representation of an overall structure, compatibility
usually must be maintained for all the displacement degrees of freedom occurring at the
interelement nodes, However, when the transverse shear behavioris included, some continuity
conditions must be removed in order to permit the ‘‘kinking’* associated with discontinuities
of the shear stress resultant. These discentinuities occur at transverse concentirated loads,
Thus, the necessary and gsufficient requirement for compatibility of the assemblage is
interelement continuity on only the following nodal displacements:

1. the transverse displacement, w

2, the rotations of the normals to the reference surface (i. e., the rotations associated

with pure bending), X
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3. the shear warping angles at the interfaces, ¥ = )’c - Yf.

Hence, the stiffness kq must be transformed so that it is expressed in terms of the following
nedal displacements

T

r =<wixbi yi wj xbj yj:yfi Yf, >. {n
: t

The transformation is quite simple and can be constructed from the definitions

YEYX TN

xb= X-hc}é /d-hf yf/d

The latter is obtained from Equation 2. A static condensation is performed on the resulting

stiffness to obtain the 6 x 6 portion that is employed in the direct stiffness method,

It should be added that the nodal displacement parameters given in Equation 11 are also
more advantageous than those of Equation 7 for expressing the boundary conditions necessary
at a fized support. At such a location, the transverse displacement w, the slope due to
bending Xb and the warping Y are all constrained to vanish, whereas the total slope X and
the shear strains }’C and Yf are non-zero.

An element stiffness has also been developed for a quadratic variation of shear strain by
adding two degrees of freedom in shear at an internal node given by & = 1/2. The resulting
10 x 10 matrix is derived and transformedin a fashion exactly analagous to that for the linear
shear element. In the quadratic case the static condensation is applied to the four ‘‘internal®’

degrees of freedom so the stiffness employed in the assembly process remains 6 x 6.

221



AFFDL~TR~68-150

SECTION III
AXISYMMETRIC SANDWICH SHELL ELEMENT

The doubly curved element developed by Khojasteh~Bakht (Reference 17) is shown in
Figure 3. Displacements in the local rectilinear coordinate system § -7 are designated by
Uy and Uy. By matching the position, slope and curvature at the nodes, the geometry shown
in the figure is substituted for that of a segment of an arbitrary rotational shell. Hence, the

meridian of the substitute element is defined by the curve

'q=E(I—E)(ul+02§'+03{‘2+u4§3) (12)

where £ is a normalized coordinate which takes the values 0 and 1 at nodes i and j, re-

spectively, The values of the constants are given by

a, = tan Bi

tonBi + -r)i" /2

az

a,* 3(tanBi +innBi)— (1;'; —17';)/2

-{5tan Bi + 41onBj) + (1;1,"/2-7]';)

3
n.,=dz'n - L
d €2 R, cos°f3
tan 8= 7' =:—2

The displacement transformation equations are also necessary:

u sy cos 3+ u, sin 3
(13)

w u, sinﬁ'—'u2 cosB

A sandwich element is depicted in Figure 4. Under axisymmetric loading, the rotation

of the tangent fo the meridian is given by
dw u
= e ——
X 5. R, (14)
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Figure 3. Doubly Curved Element after Khojasteh [17]
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Figure 4, Axisymmetric Sandwich Shell Geometry
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Where Rl is the radius of meridional curvature. As in the beam analysis, this rotation can be

considered to have two components, The pure shear contribution at any location along the
meridian is the same as that given in Equation 2 for the beam:

dwg
Xg ® T35~ X7 Xp =)Ehc/d+7fhf/d (15)

If u and w are the displacements of the reference surface and if Cc and § ¢ ere the
thickness coordinates with origins at the respective middle surfaces of the layers, the
kinematic assumptions result in the following expressions for the shell displacements due to
axisymmetric loading:

ug = u=Lelx-7)

t b .
f

wc=Wf = w w

The shell strains may be written in the following form

€ - €2 ¥ < {17)
Bk Bk L_’.k Bx

where S represents either s or § , and k either ¢ or f. Therefore, applying the strain-
displacement equations from the classic linear thin shell theory (Reference 19) to Equa-

tions 16, one obtains the strain-displacement equations for the sandwich shell

du w
o 9 __=
€sc ds R,
€® =Lr-{ucos¢-wsin¢>l
B¢
d
. G )
scC ds ds
cos
Kge® =T (x =7 )
eot‘b -ﬂ.-ﬁ_+ii&;h_cdyc hf dyf
sf ~ds R, T 2ds 2 ds 2 ds
o , cos¢>( d he hg
eosf =—r-(ucos¢—wsmq’>}+ - —z'x-—a—}::“-'é—)rf)
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t:b - i&.’. d.Yf
sf ds ds
tb . _ cos _
KB{ . (x yf)
%Xe %
t.b -
AT % (18)

However, in order to employ the substitute element, the strains must be expressed in terms
of uy and Ug s the displacements in local rectilinear coordinates, This can be accomplished by
substituting the transformations of Equation 13 into Equations 14 and 18, The lengthy equations
that result will not be given here (Reference 22),

In applying a stiffness analysis, the assumed displacement patterns are taken in the local
rectilinear coordinate system and are expressed in terms of generalized coordinates, For a
linear variation of shear strains and meridional displacement and a cubic variation of trans-
verse displacement, the displacement model is given by

u, *aq +—a2£

gz e ta f+ae, E¥+a 6
0< € <1 {19)
yc :a7+aaE
Y 7 9 ta,é
which may also be written
wi) - $iéa
5% | 5EX10 10X]
T
u = <u| uszyyf> {(20)

By applying the strain-displacement equations to Equations 19 and 20, a result analagous
to Equation 8 for the beam element is obtained

€ = B{(f) a (21)
-2 W IS5 x 10 10x1
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In addition, it is possible to construct the sparse matrices ¢ and Z § for the shell analagous
to the matrices in Equations 6 and 9, respectively.

o -Ce

Ztl)e

(22)

The constitutive matrix € follows from the assumption of a state of generalized plane
stress. The thickness-geometry matrix Z is derived directly from Equation 17. Therefore,
the element stiffness matrix in generalized coordinates may be obtained from the strain
energy expression and is as follows:

h/2
1 T f(e)
Ky =2mgf a(g)Tf zZ(L) ¢czZ(L)ag 8(6)——6058 o€ 23)
10X 10 0 ~hs

The inner integral is readily evaluated in closed form, However, the integral with respect to

£ is more practically calculated by numerical means such as Gauss’ integration formula,

The stiffness matrix must be transformed to a global coordinate system for the assembly
process. In addition, interelement compatibility needs to be preserved only on the displace-~
ment parameters u, w, xb and Y. Hence, the element displacements in global coordinates are
selected as follows:

T . :
s W Xer Y Y Y Xey Y E Y YT
The transformation is given by
T
k =T kaT
10 %10 (24)
T - a' T

Here A is the transformation relating the local rectilinear coordinates to the generalized

q:[tb(m}a - Aa

coordinates

@ (25)
and T is the simple point transformation connecting the local and global systems
q = Tr {26)
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Static condensation is employed to obtain the 8 x 8 stiffness used in the direct stiffness
method, It should be noted that if the shell has discontinuities in the meridional slope, the
curvilinear displacements u and w are not uniquely defined at these points, In this case, the
translations in global coordinates can be taken in the rectilinear directions, i.e., u, and u,
in Figure 4,

For rotational shells which are closed at the end, a special cap element is used to
represent the closure. The stiffness for this elementis obtained in basically the same manner
as for the frustum element. However, “internal boundary conditions’’ are applied at the apex
to reduce effectively the number of degrees of freedom (Reference 17). From the requirement
of axisymmetry it is apparent that these conditions at the apex node are:

u, X =yc=yf=0 at r =0

In addition to the linear shear model, element stiffnesses have also been derived for a
quadratic variation of shear. As for the beam, an internal node at §=1/2 is utilized and
static condensation enables reduction of the stiffness from 12 x 12 to 8 x 8.
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SECTION IV
LUMPED MASSES FOR DYNAMIC ANALYSIS

The mass of the structure is concentrated at the nodal points so that the inertial
properties can be represented by a diagonal mass matrix, Felippa (References 20 and 11)
has demonstrated that this lumped mass procedure provides satisfactory fundamental
frequencies and mode shapes with less computational effort than the consistent (or distributed)
mass approch, For the same number of nodal points, the former method results in fewer
equations for the eigenvalue problem, When meshes are arranged so there are the same
number of eigenproblem equations for both techniques, Felippa’s results indicate that the
lumped mass approach produces the more accurate frequencies.

Rotatory inertia has been shown tobe a more important factor in the vibration of sandwich
plates (Reference 8) than in the dynamics of homogeneous plates. For translational displace-
ments it igs sufficient to idealize the lumped mass as a point on the reference surface
(Figure 5a). However, for rotatory effects, the distribution of the mass through the depth of
the beam must be maintained. This is especially true for sandwich structures where the
outermost layers, the facings, may be much denser than the core, Hence, one can visualize
the mass as being lumped along the material line originally normal to the reference surface,
with no concentration of the mass across the depth (Figure 5b), In effect, this is the same as
multiplying the mass moment of inertia of the cross section by the tributary area, It should
be noted that the rotatory inertia is associated with the rotation of the normal to the reference
surface, i.e., Xb.
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Figure 5, Arrangement of Lumped Masses
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SECTION V
EXAMPLES

The above finite element formulation has been applied to various sandwich beam and
shell problems and the results compared to solutions from other methods and sandwich
theories.* A sampling of these problems is presented in this section to demonstrate the
efficacy of the method. In general, the displacements, stress resultants and natural fre-
quencies from the finite element method compare favorably to corresponding quantities
obtained by established theories,

END-LCADED CANTILEVER BEAM

A cantilever sandwich beam of unit width with a unit load at the free end illustrates the
effect of a constraint on the warping. The dimensions and properties are selected as follows:
he, = 0. 5", hy = 0.04" , h=0.58"

Ee =107 psi, 6, = 4 X 10° psi, A; =l

=2 % 10 psi, 6, = 107 psi, A .:=|

E [ c

[
span L = 10", load P = (.0 Ib.

Evenly spaced meshes of 5 and 10 elements as well as uneven meshes are used for both linear

shear strain (L elements) and quadratic shear strain (Q elements).

The displacement solution for 5-L1. elements is shown in Figure 6; the displacements
from a 5~@ analysis fall about midway between the 5-L result and the solution of Reference 7.
For all meshes and elements used, the overall stress resultants are correct to about five
significant figures, so these results are not shown graphically. Of interest, however, is the
distribution of shear force between the facings and core, The fraction of the shear assumed
by the core is shown in Figure 7. The theory from Section 1.2 of Reference 6 does not take
into account either the warping behavior or the bending stiffness of the facings; it assumes
that all shear is taken by the core. The refinement to take into account the restraint on
warping and the consequent flexure of the facings about their own middle surfaces is given

*For distributed loadings, consistent nodal loads are employed; e.g., for the beam,

Q:-J ' (e s} (f )T PLE) dE where Q are the nodal loads corresponding to displacements
[¢]

q and p are the specified loads.
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in Section 1.3 of Reference 6. This formulation is due to van der Neut. Finally, Yu’s theory
(Reference 7) considers both the warping and the shearing of the facings and thus gives the
distribution of shear among the various layers. Figure 7 demonstrates that with a proper mesh
refinement, the finite element method gives an adequate representation of this phenomenon,
Moreover, the quadratic shear-strain elements enable a satisfactory representation with
fewer elements, At the support, the constraint against warping causes most of the shear to be
carried by the facings.

Failureg have been found to occur in the facings near fixed supports of aerospace
sandwich structures. For this reason, the facing layers are usually doubled in thickness in
these regions. The above results give an insight into the shear redistribution which neces-
sitates the use of such doubler plates, In fact, the finite element method is suited for design
of doubler plates since the computer program is readily modified to account for elements with
differing face thicknesses. Hence it is possible to include these reinforcing layers in the

analysias,
HEMISPHERICAL SHELL UNDER MEMBRANE LOAD

To check the effectiveness of the basic element and of the computer program for shells,
the membrane states ofboth cylindrical and spherical shells have been investigated. Generally,
the results are satisfactory in that both deflections and stress resultants agree with theoret-
ical values, A typical example is presented here. The sandwich hemisphere has the following
properties:

he=0.5", hy = 0.04"

E¢ =10 psi, yp= 0.3, G¢ = 3.85 X 10° psi Ay = 1.0

m
n

2.6x10% psi, y =03, 6, = 10° psi, A, =10

radius a = 100", load p, = ~1.0 psi

Three- and nine-element representations are used withbothlinear shear and quadratic shear,
Results are essentially the same for the two shear-strain models, so only the solution using

the less refined model is presented here.

When roller supports that restrict only the meridional displacements at the free edges are
used, it is easily shown that the theoretical solution is

NS

Ne =50 Ib / in.

- 0.004305 in.

w
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The finite element solution for three elements is shown in Figure 8, It is seen that the results
agree very closely with the theoretical answers. The nine-element solution is even better,

and is not shown since it does not differ significantly from the exact solution.

SHALLOW SPHERICAL CAP WITH PARTIAL DISTRIBUTED LOADING

The last static shell problem presented here is a simply supported shallow spherical cap
subject to distributed loading over a portion of its surface. The closed-form solution for
this problem in terms of Thomson functions has been given by Rossettos (Reference 21), He
neglects the shearing of the faces and the bending and extension of the core, so the following

properties are selected:

he =0.95", hg = 0.025 , h =1

. 20 .
E, = 10" psi, v, =03, G, =10 psi, A =

5 H -
E. =0, 6, =107 psi, )\c-l

radius a = 20" , supported edge at ¢ =15°

A uniform load of 1 psi is applied in the axial direction over that portion of the surface given
by 0< $ <3 degrees.

The cap is analyzed using 5 and 10 linear-shear elements. Deflection results are presented
in Figures 9 and 10, and stress resultants are plotted in Figures 11 through 13, In general,
satisfactory results are obtained from the five-element representation, The small difference
between the five- and ten-element results indicates that the finite element solution has

effectively converged.

No examples are presented for shells which are not shallow because of the absence of
published solutions with which to compare them, although the computer program developed

is capable of solving such problems,

SIMPLY SUPPORTED CYLINDRICAL SHELL

One type of shell for which solutions for natural frequencies are readily available is the

cylinder. Yu (Reference 9) has derived a three-branch frequency equation for an infinite
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cylinder in an extension of his theory for sandwich plates (References 7 and 8). This equation
is also applicable to a simply supported shell of finite length, A cylinder with the following
properties is now analyzed.
h =0.5", h, = 0.025" ,h =0.55"

c f

E; = 107 psi, v, 20.3, 6, =3.85 X 0% psi, \ =

E, =2.6%10° psi, y, = 03,6

. = 10 psi, A, =t

c c

3 ) .3
Pf =04 b/ in" , ,% =0.005 b /in.
rodius, o= 20" , span, L= 10"

As in the preceding examples, these properties are typical of sandwich construction.

The natural frequencies computed by the finite element method are compared with
solutions by Yu in Table I. Rotatory inertia is included in all cases and quadratic-shear
elements are used. Many more frequencies than would be of practical interest are shown in
the table in order to evaluate better the overall effectiveness of the finite element approach.
It is noteworthy that the lowest frequencies of each of the three modes are approximated
regardless of the number of elements used, The number of frequencies given by the finite
element method for each mode depends on the number of degrees of freedom available of the
type that are necessary to characterize the particular mode.

For shell structures there is usually more than one branch of the frequency equation that
is of engineering importance, Careful study of the finite element mode shapes must be under-
taken in order to identify the frequencies with the appropriate branch, This is especially true
in preliminary analyses wherein the frequencies have not yet converged to a predictable
pattern.

In the present example, simple supports which preclude translation in any direction are
used, Hence the breathing mode or fundamental radial expansion mode is prevented., However,
the example has been recomputed with supports that restrain only longitudinal displacements
in order to obfain an estimate of the cut-off frequency of this radial mode, Yu’s solution
(Reference 9) for this frequency is 8520 radians/second. The finite element approximations
for five, ten, and twenty elements are 8360, 8500 and 8520 radians/second, respectively,
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TABLE 1 --NATURAL FREQUENCIES OF A SIMPLY SUPPORTED
SANDWICH CYLINDER (RAD./SEC.)
u [ 9] Finite Element Method
MODE TYPE
Eg., 29 5 elems. 10 elems. 20 elems.
1 Ll 8740 90L0 9080 9080
2 L2 11900 11900 12100 12200
3 L3 16300 15500 16700 16800
in Lk 21000 18000 21500 21900
5 L5 25900 26000 27000
6 L6 30800 30000 32300
7 LT 35700 33400 37500
8 L8 40700 35900 L2700
9 L9 L5700 37400 L7700
10 110 50700 52700
11 Rl 53600 52600 53300 53500
12 111 55700 57400
13 L12 60700 61900
1h 113 65800 66000
15 TSCO 69800 71500 72800 73100
16 L1k 70800 69800
17 115 75800 73100
18 L16 80800 75900
19 117 85900 78100
20 118 90900 79700
21 TS1 92500 91200 gLk100 94900
22 L19 35900 80700
23 L20 | 101000
24 L21 | 106000
25 R2 107000 99800 105000 107000
32 TS2 140000 128000 138000 141000
37 R3 161000 137000 155000 159000
L 783 195000 187000 154000
Rb4 214000 200000 211000
TSh 252000 235000 249000
RS 268000 241000 261000
TS5 311000 278000 303000
R6 321000 275000 309000
TST 370000 356000
RT 375000 356000

L = Longitudinal, R = Radial, T8 = Thickness Shear
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SECTION VI
CONCLUSIONS

The finite element method has been extended to the refined analysis of multilayer heams
and axisymmetric shells. In the theory employed no restriction is placed upon the ratios of
the layer thicknesses and properties, The methodis applicable to structures wherein shearing
deformations are significant, including sandwich construction,

One of the features of the formulation developed herein is the capability of approximating
the warping phenomenon. Hence, the distribution of the shearing force among the various
layers can be determined. Another feature istheuse of lumped rotatory inertia in the dynamic
analyses. This type of inertia is a prerequisite for the inclusion of the thickness-shear modes
of behavior, which are important for some soft-core sandwich structures. A third aspect of
the present work is the possibility of neglecting either the shearing, extension or bending
of any individual layer. By use of this capability, the effects of various approximations can be
evaluated for different geometrical or material properties,

Generally, other available analysis techniques can only be applied to sandwich structures
with the simplest configurations. Hence there is a great potential for the application of the
finite element method to the solution of sandwiches of arbitrary shape.
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