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THE EQUIVALENCE OF FORCE AND DISPLACEMENT METHODS
IN THE MATRIX ANALYSIS OF ELASTIC STRUCTURES

Eryk Kosko *

National Aeronautical Establishment
Ottawa. Canada

The four sets of variables occurring inthe linear theory of structures,
and the basic relations between them are defined in terms of the
theory of finite~dimensional vector spaces. The two types of method in
practical use, mentioned in the title, are derived in a uniform manner,
and the equivalence of these two methods is established by comparing
the resultant matrices with those obtained by inverting the so-called
structural matrix, suitably partitioned in each case, Discussion is
limited to problems where loads are applied at joints only, but should
be applicable to wider class. Conclusion: the two methods are not dual
to each other, as sometimes stated, but variables are. Vector space
approach is found more general and betier suited to structure analysis
than systems or network theory.

1.0 INTRODUCTION

The analysis of complex structures by means of matrix methods has reached a stage of
development where it is appropriate to stop and re-examine the premises on which the theory
is founded. As a small contribution toward this goal we shall try to compare the two methods
of solution currently in use, and see how they cah he derived from first principles in a uniform
way.

Our concern will be with the linear theory of structures, in which proportionality between
loads and deflections Is assumed. The deflections must then be sufficiently small so as not to
affect the equilibrium of the forces. Under these conditions, the principle of superposition is
applicable, and this in a natural way leads to the use of the concepts of linear algebra, in
particular of the more elementary parts, using matrices to represent relations between the
variables: this in turn leads to a direct application of digital computer techniques,

In order to concentrate on essentials, we discuss mainly the relatively simple problem in
which loads are applied directly to the joints, and no initial stresses, thermal effects, etc.,
are present, This is called the restricted structural problem. We first give the necessary
definitions and explain our notations, and then give the problem a fairly general formulation.
Thid is done in terms of quantities familiar to every structural engineer, namely forces,
stresses, displacements and strains, and the derivations are based solely on gtatic and
kinematic relations, without recourse to energy considerations. In fact, the various theorems
and so-called principles which involve work or strainenergy appear as corollaries tolbur basic
relations. In order to present a coherent picture of the two methods now in general use it has
been necessary to repeat much that is not new. In this we have been following the classical
presentations of Argyris (Reference 1)andof Hall and Woodward (Reference 2), although using
our own notations, The algebraic topological aspects of the theory have been put forward by
Langefors (Reference 3), although not in the language of vector spaces adopted in this paper.
The unified approach hag enabled us to identify the various matrices involved in the solution of
the problem, and also to derive some identities and properties believed to be hew. In this
form the equivalence of the two methods is an obvious resujt,
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It will not be possible in this paperto discuss a number of topics important in setting up and
in solving structural problems. One of these is the question of idealizing an elastic body, that
ig, of representing it adequately by a mathematical model; this may not be too difficult for
relatively simple frameworks, but it becomes a much disputed question when the structure is
more complex, as shown by Gallagher et al (Reference 4) on the example of multi-web wings.
The difficulties are still greater if it is desired to represent in some detail continuous elastic
bodies such as plates, shells, etc., as structures composed of discrete eloments, Closely
associated with idealization is the question of proper interpretation of the results of the
analysis of the ideal model in terms of behaviour of the original body. The choice of idealized
structure will largely depend on the type of result desired (stress analysis or calculation of
deflections to be used in dynamic or aercelastic work), on facilities available for computing,
and even on the method of analysis tobe adopted. For our part we shall consider the idealized
structure as given, A further point, recently much debated, is that of assigning adequate and
consistent elastic properties to the members, as represented by the member stiffness or
flexibility matrices. As pointed out by Melosh (Reference 5), the stiffness matrix, especially
in the discrete representation of a continuous body, must satisfy a criterion of monotonic
convergence as the size of representative element is decreased.

Among the other items that will have tobe left out of this discussion are comparisons of the
methods as to their speed, accuracy, and overall efficiency. These things depend too much on
the type and size of computer, on the accuracy desired, and on the type and size of structure,
to be evaluated in a general way. In some cases it would be possible to obtain an estimate of
the volume of work to be performed by counting operations, in particular multiplications.

2.0 MATRIX FORMULATION OF THE STRUCTURAL PROBLEM

2.1. Some Definitions

We define an elastic structure as an assemblage of finite number of interconnected elastic
members. Each member is an idealization of an elastic body, usually of simple shape such as
a rod, a beam, a plane panel, a portion of plate or shell; in a more general way, a statically
indeterminate ring or frame, an entire component or substructure could be regarded as a
member of the structure. The latter approach has been taken by Przemieniecki (Reference 6)
and by other authors, “

Definition and Behaviour of a Member

An elastic member is characterized by a number of terminals through which the member
may be connected to adjoining members and through which forces may be applied to the
member. In this paper no other forces witlbe taken into congideration, since we deal here with
a restricted class of structural problems. A terminal need not be a single point, but may in-
clude two or more points or, in the case of a continuous attachment, a line segment or a
portion of areas.

In contrast to the theory of elastic continua, out of the infinity of ways in which loads can be
applied to body, we choose to consider only a finite number, the number of degrees of static
freedom assigned to the member. Similarly, we consideronly the displacements of the member
terminals, while the motion of other points of the body is of no interest from the point of view
of the structure as a whole; thus kinematic freedom is also limited to a finite number of
degrees.

When removed from the structure and from possible supports, that is, as a free body, a
member is in equilibrium under the forces applied to it through the terminals. We use the
term “force” in its generalized sense, including any convenient stress resultants such as
couples, bimoments, shear flows, and the like; or even coefficients of a polynomial or of a
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Fourler expansion of a distributed loading. After deducting from the number of degrees of
static freedom the pumber of conditions necessary for the equilibrium of forces (three in the
Mane case, 3ix in the three-dimensional case) we are left with the number of independent
parameters that will be called the mumber of degreps of elastic freedom of the member; for
member !'i*’ let that number be denoted by m, .. These parameters will in general be of the
nature of siress resultants acting on some chosen cross sections, and will be denoted by

LR [$;180+ 'S}, dolumn vector.

If a system of coordinate axes be attached to a material pariicle beionging to the member,
the absolute displacements of the terminais car be described by the components of displace-
ment of the coordinate system (three in the plane cese, gix in the th;ee—dimensional case),
plus s mumber of paremeters related to the =lastic distortion or deformation of the member,
defined as displacements of the terminals with respect w the coordinate system. It is always
possipble io make thore defurmation components correspond with our generalized force
components in the Lagrangian sense; these deformations are the ones on which the force
components do positive woik, 'Ihe number of independent parameters necessary to completely
describe the member deformation in our limited way is thus equal to the number m; of elastic
degrees of freedom; again this is the total number of kinematic freedoms considered minus
the three or six necessary to describe a rigid-tody motion. ¥or a rod having ball joints at
both ends we have m, = 1; fov a beam forming part of a plane framework it is 2 when axial
loads and elongations are not considered, or 3 when they must he taken into account; for a
beam in the general three-diroensional case the number is 8, and so on,

wSumming up, the ststic condition of a member is deacribed by an m; ~dimensional vector
g = { Sy, sz....,sm;\; with reference to a particular mode of support: the stress at any cross
section and in any direction can in theory be cbtained as a linear combination of these stress
defining components. Sirilariy. the condition of doformetion of the member is described by the
corresponding vector of deformation comporents Helw, 89,...,2mi}; . Boththese vectors
are to some extent arbitrary. In particular, their semponents depend on the cholee of the
coordinate system, i.e. of the mode of support, on the choice of the stress resultants and
distortions uged “or descriplion, snd also on the sequence in which they are written down, as
well as on the sign conventicn and on the units of rneasurement. Altogether these factors con-
stitute a system of reference more complete than the coordivate system alone; in the language
of vertor spaces sucn 1 system of reference 1s called a basis,

For instance, 4 bearn segrent AR may be regarded either ae & cantilever with end A fixed,
or with end B fixed, or 28 a besia simply supported &t A and B. In the firet and seoond cases
the couple and shear forr. acting at the free end may he chosen as the components of the
atregs-resultant vector, with slope and transverse deflection at the free end as oorresponding
components of the deforrnation vector. In the case of the simply-supported beam, the strens
resultants would normrally be the end couples, with corresponding rotations or slopes as
deformation comporeats,

In linear alpebra (Reference 7) a set of quantilics that desend linearly on 8 finite number of
parameters and sstisfy oertain axivms is said to form a finlte-dimensional veotor SPACE, Thus,
ail the possible stress conditions of amember ferm an m;--dimensional vector epace, dented
by s, over the field ¢f reai numbers {since the vecior components are real pumbers); this
space is said t0 be generated or spanned by the set of unit vectors %, ={ I.O,...,O}.s,sgo,l,....o},

510,014 mm‘laﬂy. the capdition of elastic deformation of the member is repre-
sented hy a wector olof an my -dimengional vector space denoted by g that s spanned by
the vectors #, ={1,0...,0}, 8, {0,040, O) s, O F (0,0, . ok |, In both cases the spanning
veotors form a bagie for their respective space, 1.0,, any vector of the space can be expressed
ae a linear comblination of the basis veotors. It i5 easy to verify that the axioma of vector
addition and of multiplication by a soalar are satisfied by these tpaces. .
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An important operation In & veclor apioe b v oliiegs 07 She' L ulus ey vecoor of 8 new
basis () i8 & linear combibetion of tha wistoxe of hasls (w. a1a vice-yerss. the stresdes rela-
tive to basis (b) can pe obtalned from thow: relutive to basly @) by mesos of u veversible, lL.e.,
nonaingular linear transformation, Specilically, H o wireah resuilons of so5es rnRs sedtion Q
is represented in reference {0 basis {8} 45 4 sinesr COMBIRATION & 8,0 vl iy, kid 0 refor-
ence to basis (b) As a linear combiastivn ;8% ... Fdy By, Di8a the Lisa. oeter Wy . 0m}
of the g ~coefficients is obtained from e cofumn vectorof e & - coatfloiests by premuitiply~
ing the latter by the transfoxmation mairix . Tae k-ihcolum of th o e da Zuanoed oy the
componanta of the k~th vector of ine basis {0} wina rederende B0 0a818 ¥ WUourrall ukimples of
these transformations canbw fowad in kil and Wo ralwad{iaiarence 23, wldiGugs waihont mention of
vector spaces.A change of tooriing e syaiem is soen o bw 2 wfe w’ Dot OF 8 Slangs of baails.

So far nothing was said about reiutlons DOTWesa BUIYE TEALLLTE Ru Jal iy Rtlels, axcepl
that the work done by a set of loads idenittied reiative 1o baals iw) oy B v o mor ¥ 5 {8,. %}
on & set of deformations idawufied relative to the woupe oREing . o s @ by e vector
ez{e,.. ., 0 is given by the sum Wegius ¥ v ommnlv g &5 ovore of i %ws row vector
transpose of @ . This queantity W ie & sculer, indepsndent of e sysleds o gaee in which
the components are expresssd, provided hat lu eimer syaters he sugpc. e e Hied; this 18
a corollary to Betti’e theoram of recupreeity . fi now we prass the wade wiidive 50 basis (b)
using the transformstion just meutioned, ¥ ¥4’ vk with e givea by W e 4 @ (WY) and
this 18 seentobesqualio W= £ ¢ ii'a =Ly’ & waere ¢oa’ U are e nefornation components
relative to basis (b}, i.e., covresponding to W6 1ofd Cotaiiie Lo &, W g wiv', .6 transfore
mation of the deformasion compenauls & given by the taveris ralopas of (e aairix that
transforms the load componsuis, Such fwo sets of vartsiues are st L Be gomsysgredient,
and their vector spaces are zaldiobe sl or coiEme be each sl Lag sy u (leference 3)
calls this the principle of co-~trapslarense

The Asaembied sSiructure

In the assembled siructuie the mamwbecs are AUTuled oo Lonir ooy goquence,
1 =1, 23, ...M, whereMis the swnos? oF Bunioers, Toe tote! cumedr of viasiic degrees of
freedom for the structure is fhus egual 1> the mume ™l oo o W 16 convenient
to re-pumber the stress repuliant mmpqngmﬁ.s from :i i ar and skt sawe-demensional
vector .z{s‘," ,....sw‘ ' w‘f‘, Ceig wﬂfi PPN 3;“*‘ ce s “?&gi"‘&“w“"’“m;} 33 suine W Gone with the
deformation components, writing @ = {ag oo B j. The space ol (e vactury ¥ e the direot
sum of the member subspaces, meaniay that evely vaator & has o a8 vely oo aipression
as a sum of subvectors ¢ =% Woap oo 9 (e wadon of asy waeos for sis o s (et a DaBis é r
the space S. The same willholdforihenpace &, the divect sure of the emLeD ULBPACER ",

Nothing prevents us, howover, from taking linesy comblantions ¢f givess veguiiant vactors
pertaining to various members aud thue forming nnew, perhaps movs seevenient basis for the
vector space S. This 18 dowe, for insteaes, In the snee of & BoX DEw.w, Wata tnatead of the
axial loads and axial deformations of the lour corper anges o0 18 wilen @0 o oile 1o (ake such
combinations as: total wxial loadand avarige anial deforweiion, Foniy coadns nd rotations
in two planes, and a warping grogp 38 foar equivalent seis of veriabley. MorC noOMplex groups
have been used by Argyris in aaslysis of fuselages. Such group siress resuitants and group
deformations may again be taken as new puses obtalued by Hnear Ciapsfvimation from the
member bagses. Under these transformations the dimension remeains iivariant, aud agais the
deformations transform in a contragredion: way (o the 4iress ro@lLaxe .

To assemble the members ato a complete iructure § may Le BECEE82NT 10 UBE BOME COn=
straints in order to maks them fi together; or ansven thermul mipaanuiss ~orld produce indtial

stresses in the structures, even in the sbsence of wterual Lo, i Wl Lwseussica we shall
assume that no such Initlal stresoes ave presont,
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Joint Loads and Deformations , ' TR

&

ain, the load condition of the structure may be described by a set of ad componesnts,
witﬁ;&m term “load” taken in the sense of generalised force. As stated before, we assmne the
loads to be appliad only to joints. Thpwbkmofdowmm-uummhm and-
displacements of the jointe under such a restricted type of loading and with no initial or
thermal stresses will be called the structural problem. ¥or the description of these
loads a coordinate system is int d, called the giohal sygipm. A nnit set of these load
components form a besis for a vector spac: P of n dimmnsions, whare » is the number of
independent load paramsters or degrees of freedom {this excludss the 3§ or 6 conditions
necessary to establish equilibrium). It is natarally possivlie to sdopt & different basis for this
space, by changing the asystem of ooordinates, by taking the loeds in & modiiled sequence, by
combining them linearly to form more convenient unit vectors. Such a change of basis will
always be expressed by a linear transformation or numerically by a iransformation matrix,
This transformation must naturally be reversible, Le., o metrix must be non-singular, and
the dimensior n will remain invarisnt under such a transformation, in accordanoce with a
known theorem of linear algebra.

The kinematic condition of the complete structure will be degoribed by & set of displace-
ments in the generalized sense, corresponding to the externn} Iosds, There will thus be n in-
dependent dispiacement parameters. In & way entirely analogous ic mamber distortions the
joint displacements u form ann dimensional vector space U dusl to the vactor space of the
loads.

Altogether, the external behaviour of the structure is characksrized by an » dimensional
load vector denoted by P={p,,..., P, | and the corresponding cdual displacement vecior dencted
by u ={uy,...,un }. We may not be interested in the displacements of some of the joints at
which no Joads are to be applied; the degrees of freedom pertaining fo that joint may then be
jgnored and wili not contribute to the total n. We iay assign o degrees of freedom to a joint
i, where the index | covers the whole range of joints, except that are fixed relative to
the supporting medium or to the global system of coordibates. The effective total mumber of
degrees of elastic freedom of the complete atructure 1s thus obtained by adding the degrees
of freedom of all the joints and subtracting the 3 or 6 degrees necoBEAXY for aquilibrium of
the loads,

2.2 The Stress-to-Load Relations of Equilibrium

Having described the four sets of variables we turn our atiention o the relations that exist
between these sets. Since we are considering the linear problem, these relations will naturally
take the form of matrix equations.

At each joint, considered as a material point or line, there are two or more members
meeting and several components of applied joint loads. The conditions of ecuilibrium for
each joint can be written down without much difficulty in & way aimilar to that used in the
anelysis of pin-jointed trusses, except that the contribution of each incident member extends
in general to all the defining stress resuliants of that member. The numnber of equations of
joint equilibriumn is equal to the total mumber of joint degroes of freedom. ¥ the structure is
a free body, an additional 3 or 6 equations will expreses the fact that the external joint loads
are dependunt; In order not to have a singular gystem of equations, these additional equations
may he used to eliminate a corresponding number of Joadys, leaving & number of equations
equal to the number of elastic degrees of freedom of the structure. If the structure is gupported
on the ground, the same may be done by regarding the ground as a rigid member and applying
to the support joints a system of reacting foroes.
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The matrix A expresses ihe soiabiuso s¥ecis of guutse
respect to the global coordinate st am of ths anideacs of
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2.3 The Diaplacement-to-Digtoriion Canditiows of wompaaiut.lg

In view of the coatragredient charscter «f the transformations of e Ao Wit d.splwoement
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¢ i given by the equation

s .
g on Al oy {2)

T . G
where A is the transpose of ths matebc £, Mo eors meadi 08 BAIL AL b aripoyiant
relation, dual to Equation 1.
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2.4 Member Flexibility and Member Stiffness Matrices

The assumption of linearly elastic members means that for each small element a generalized
Hooke's law holds, establishing proportionality between stresses and strains, As a result, the
distortions of each member are linear functions of the force system that defines the stress
conditicn in the member. This will be true whether the material is isolropic or anisotropic,
and whether the stress or strain is diastributed unifornﬂy, linearly, or in some other way. The
mathematical expression of this linear relatic.iship is the equation

Jlit, glidgtid (3)

valid for sach member ‘1, where sm is the column vector of the stress resultants defining the
stress condition in the member, ol 18 the column wector of the corresponding distortions
defining the kinematic condition of the member, and Fil) is called the member flexibility
matrix. F! is a square matrix of order m;, its elements are symmetrical with respect to
the principal diagonal, in accordance with Maxwell’s reciprocity relation. Moreover we know
the matrix F{i)to be positive definite and hence nonsingular.

We shall not go into the details of how the entries of the member flexibility matrix can be
calculated; usually some approximate stress distribution is assumed under each unit loading
condition, and the corresponding row of the flexibility matrix is found as the set of influence
coefficients. Fer members of simple shape, such as rods, beams, etc., standard expressions
for these coefficients are available. For our purposes we consider the member flexibilities
as well as geometric assembly matrix as basic data of the structural problem.

"The rule of transformation of the member flexibility matrix under change of basis is as
follows. If the ‘old’ components of the stress resultant vector are expressed in texrms of the
‘new' ones by means of the transformation 8=MHNs$' where B is a nonsingular transformation
matrix, and hence the corresponding distortions transform as €'=H'e , we may express the
strain energy either In terms of the ‘old’ Qr of the ‘new’ components, and we s%;ould in both
cases find the same invariantquantity V= 48 = 19" Fe=1e'N'FHs, and v=1e'e'=LeTFY.
Since thig relation must hold for any vector 8, we mus: have F'= H'F K. The flexibility matrix
for components referred to the new basis is obtained by a congruence transformation from the

old one and is symmetric,

The converse deformation-to-stress resultant relation for a member is simply given by the
matrix equatior

where Km ia the member stiffness matrix. Each column of this matrix represents the reactions
in direction of the basis components when a unit displacernent is applicd in the direction of &4
particular component, all other deformations being zero. We have K =(Fiy' | alsoa square
positive definlte matrix. In a variantof the displacement method, the so-called direct stiffness
method, the kincmatic condition of the member is left Indeterminate at the outset, admitting the
total number of degrees of freedom (elastic plus rigid body). The stiffness matrix is then
singular, since by virtue of the equilibrium conditions some of the reactions are linear com-
binations of the remaining onea, The rank of the expanded siiffness matrix ig thus still equal
t¢ the number of elastic degrees of freedom m; of the member. The superfluous rows and
celumns are deleted according to the actual conditions of support of the member,

3
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Since the stiffness mairix is the mverge of e flexsbillty metrix, the rale of transformation
under a change of basisis K's W' (WY, susily veritiedwien expressiug the strain ensrgy
in terms of the deformation componenie, 1

2.5 Structure Flexibility and Structure Siiflosss Metrines
In the assembled styucture where the space of the strees reeultus veotnrs 1o the direct sum

of the subapaces of the singie membara, the same goes for the ssformeations, wid e relation
between the complete vectors is given s mairiy form lay

& = F 3"
where F is a supermatrix having in e disgounl the tlovis 'Fw and weTos sisswhere, thus
. AR Y {0ah § ,
P s GM :{—F‘ v F A * “‘E (4}

This diagonal supermairix is essfy tovasied wy nreroion of Ge damgound Liowks,
-f S ; 7
K= Fle dreg | ', kB K{mj A"
But if the basis for the vecior space 3 wvolws veciors commmosad of giress regsdtants be-
longing to more than one member, theve wili be coupling Tlesibility anv stiflness taving at the
intersections of rows and columns pertaining %o different wembers, and some of the ofi-
diagonal blocks will be nonzero. The inversion then becomes more complicated,

3.0 SOLUTION OF THE REBTRICT LD STRUCIURAL PROBLEM

Having thus defined and rewlewed the four basic seis of variabies intarvening in the re-
stricted structurel probiem, and havinyg diccussed the {hres types of veiations that are the
consequences of the basic assumptions, we now srocwsd (o desoribe the methods used to
solve the probiem, -

3.1 The Displacement Method

The situation may be visualized by the schematic diagram of Figure 1, The full-jine arrows
indicate the Relations 1, 2 and %, we now regerd as given; the fourth, symbolized by the Jotted
arrow, may he obtained either direcily or by inverting the reember fiexibility matrix FF.
Our goal is to obtain a load~to-stress anda load-io-dispiacement relation. This cannot be done
directly, so first an inverse to the latter is found by calculating the triple matrix product

E' = ﬁKﬁT {5)

This represents a gtiffness miirix for the assembled structure, a symmetric matrix of order
n, positive definite since congruent to the pogitive definite K rnatvix. This matrix may be in-
verted tu obtain the flexibility matrix @ for the complets structure,

@ T (8)

Tbé entrica of @ are known under the naxe of deflection influence coefficients; in dynamic
and}f’ asroslastic work the determination of @ is cne of the first steps. These and the following
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operations are schematically represented by the lower diagram of Figure 2. By means of
the matrix @ we now are in a position to calculate the joint displacements in terms of the

given loads,
u = Py ()

as a first part of our solution, From previous . elations we had ex;iressed the stress resultants
in terms of displacements,

s = K AT u
or, in terms of applied loads,

] = GCp (8)
where

cC : KA &

is the desired second part of the solution. It is useful to check these calculations by verifying
that the conditions of equilibrium at the joints "Equation 1) are satisfied. For a given load
system premultiplying the calculated stress resuliants by the geometric matrix A should re-
produce the given loads, When operating withunitloads to cover a large number of load cases,
the product AC should be equal to the unit matrix of order n,

AC = I n (9)

Any departure from equality will be a measure of the inaccuracy of our results. If desired
the calculated basic stress resultants may now serve as a point of departure for a more de-
tailed stress analysis.

3.2 The Force Method

This method derives its validity from the theorem which states that, for m>n, every solution
of the system of unhomogeneous linear Equations 1 can be written as the sum of a particular
solution and of a solution of the homogeneous system. The latter solution, called the redundant
streas system, forms a self-equilibrating set of stresses depending linearly on r=m-n
arbitrary constants. In the structural problem these constants are determined from supple-
mentary conditions of compatibility between the member deformations and the joint displace~
ment {or, equivalently, from a variational principle). Cuts or releases are often introduced
into the structure to make the reasoning physically plausible.

The particular solution 1s any stress vector that satisfies the Equilibrium. Conditions 1;
it may be either a statically determinate or indeterminate stresa gystem, or even the actual
final stress vector. Holding to the first of these possibilities we shall assume that the
numbering of the stress resultants has been re-shuffled in such a way that the first n columns
of matrix A correspond to the components of the statically determinate sfiress vector s,.
These first columns then form a square submatrix denoted by Ag, which is by definition non-
singular. The matrix A isthus partitionedas A =[A : A.] , where the complementary submatrix
A, has n rows and r columns, The submatrix A is o?rank r, since its columns are independent.

Equation 1 is now partitioned correspondingly,
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H

]
Al A ] s, = p
[201 2, [-—f— | (10)
The statically determinate stress resultants, numbered 1, 2, .. ... .. ,, are obtained in
terms of the applied joint loads as
=1
$, = A, P (11

Owing to the special character of the geometric matrix A the inversion of Agis in most
cases a very simple task that can be performed directly without computer help.

The complete stress vector constituting the particular solution may be written

%0 = CO P with Cgyg = A_ol
& 5
while the remaining stress resultants, numbered n+l, . . . ,m, are all zero.

Regarding the subspace Q of the redundant stress vectors, it is natural to take the columns
of submatrix A, as a basis. Then the components numbered n+l, . . . ,m are simply equal to
these columns, multiplied by constant scalars q, . .. ,q, , respectively, while the stress re-
sultants 1 to n are found from the conditions of zere equilibrium at the joints,

A [sq] = 0, or Aysq+ Aa= 0

q

the solution is
. -1
8q = - Boa  with B, = A A, (12)

The complete stress vector that represents the self-equilibrating systems bas the form

8q| = Bg with B = -8By
q I

the r arbitrary constants 9, forming a column vector and I being a unit matrix of order r,

The final or resultant stress vector may now be written in the form

s = coP + Bg = [COEB] ..?] (13}
q

The statically indeterminate vecior q will now be obtained from the condition that the
member deformations e derived from the Stress Resultants 13forma compatible system. The
deformation vector is, by Equation 3',e= Fs, We now require that the displacements that
correspond to the complementary solution form a zero vector; in the interpretation of cuts or
releases this condition means that continuity at the cuts must be restored by the redundant
systems, This condition may be written
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w :Ble =0 (14)

Or substituting for e, then for s,
T
ug = BTFCop + BFBgq =0

or with the notations BTF B=D. B'F C, = G, ior the triple product matrices,

Gp + Dg = O (14

D is & square matrix of order r; moreover, D is symmetricand positive definite, since it is
obtained by a congruent matrix transformation from the positive definite matrix F. The matrix
G has r rows and n columns,

Equation (14) may be solved for the redundant systems

= -07'6
q P (15)
Substituting in Equation 13 for the vector g we obtain the final stresses

s - C,p-BD Gp = Cp (18)

in terms of the applied loads; spelling out the 6 matrix, write the load-to-stress matrix C.
-l ml
cC = C,-8D BFCO=(I—A)C°

we may obtain the final stresses in terms of the initially assumed particular solution

$o = Cop

8 s, Asoz (I-A)so

il

The second term in this expression represents a correction, symbolized by the matrix

A - BD'BF.

This is a squarematrixoforder m thathas some interesting properties hitherto not mentioned
in the literature. & is singular, for its rank cannot exceed the lowest among the ranks of its
factor matrices, which is r. Moreover, the square is equal to the matrix A itseif, for

AZ- (8D 'B'F)(BD'BTF) = gD (B'FB)D'B'F

BD'8'F : A

Thus the matrix A is as mentioned and so is its complement to the unit matrix of order m
namely (1-8)%= 1-24+ A%: 1-A.Although actual computation of & is not necessary, these
properties are important in that they explain why, when applying the procedure of correcting
the stress system 8 taken as the initial system one arrives at an identical resuit,
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We are now in a posgition to evaluate the displacements at the joints or, more generally,
the flexibility matrix W for the complete structure. Regarding the load-to-stress relation
8=Cp as a linear transformation, we may expect the deformation-to-displacement relation
to be given by the contragredient transformation, u= CT, Substituting for e and then for
s we find

U = ¢p, (17)

where °=CTFC, This matrix product may be modified ir two ways, First, express C
as (I-A)Cy, then

® - ¢ -4 F(r-a)c,
C(F-FA - ATF + a'FA)C,

1

and the products

AFA = (FBD'8")F (BD" B'F) - FBO™BTF - ATF. FA

all reduce to the same matrix FA. We thus may write

T _ T .o T
P = c, (F-FAIG = cF(I-A)C, - G, FC. (18)

This proves the known theorem that to calculate deflections as linear functions of stress
resultants it is sufficient to take either the stress resultants or the deformations correspond-
ing to a stress system statically equivalent to the appliedioads, while the other vector is that
of the actual system,

The alternative expression for the flexibility matrix is obtained by observing that the term
cI F Co= Py represents the flexibility of the structure without consideration of its statically
indeterminate character, i{,e. with _.q =0 . The second term, -CEFA Co representsa correction
to that initial flexibility equal to-G' D™ G, go that

®: & - 6'o'e (18"

The correction is of rank at most equal to r, since this is the rank of its factors; the matrix
GT0'6 is positive definite, since it is congruent with the positive definite matrix D™'. Thus
the work of the external loads on the joint displacements, W= 3 uTp = 1 p"®p, will be less in
the statically indeterminate structures than in the statically determinate one. The effect of the
redundant stress systems is to reduceits flexibility on the whole, i.e. to increase its stiffness,

Having presented an outline of the two methods we shall now try to establish a common basis
for them with a view to demonstrating the necessity for the results to be identical,

3.3 The Structural Matrix and Its Inversion
We combine the three matrices A, ATand Fso that the firat two, which are rectangular

matrices, border the square matrix F , and fill the vacant nx n square by zeros, This super-
matrix, denoted by M , will be given the name structural matrix,
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T
= F n
M A O {1

We propose to show that, by partitioning M in different ways and inverting the partitioned
matrix we repeat the steps described above for solving the restricted structural problem by
the displacement and force methods. Since thz inverse of a nonsingular matrix over the field
of real numbers exists and is unique, the result of inversion will not be affected by the way
in which the matrix has been partitioned, and the equivalence of the two methods will thus be
established.

According to Kosko (Reference 8) a very useful device for inverting a partitioned matrix is
to reduce it to super-diagonal form. A diagonal supermatrix is inverted simply by inverting
the diagonal blocks, and the inverse of the original matrix is found from this diagonal inverse
by reversing the operation of reduction, For a symmetric matrix the reduction to diagonal
form is obtained by a congruence transformation, using as postmultiplier the transpose of the
premultiplying nonsingular matrix transformation, We shall proceed accordingto this program
using two different reduction-to-diagonal schemes; the first will correspond to the displace-
ment method, and the second to the force method,

“Natural” Diagonalization of the Structural Matrix

To obtain a diagonal form of the bordered matrix M it is necessary to premultiply it by the

transformation matrix
X = I 0 = I 0
-afF 1 ~AK I

that is lower-triangular, and postmultiply by the transpose KT. The reduced matrix is

“o[s ] [0

recalling earlier notations, This diagonal supermatrix is readily inverted, with the diagonal
blocks known from previous work,

“[r2] 3]

Now the operations of_reduction to diagonal are performed in reverse-order,i.e. X is used as
postmultiplier and XTas premultiplier, The resulting inverse of the structural matrix is

M - X M X - [ K-kKADAK KA D (20
Pax -
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We note that )lze two submatrices appearingin the last column are precisely the load~to-stress
atrix C:=KA'® (see Equation 8), and the negative flexibility (load-to-displacement) matrix
which constitute the solution of the structural problem by the displacement method.

Reduction Along The Secondary Diagonal

‘The structural matrix M is now partitioned in s way that corresponds to the partition of the
geometric matrix A in the force method. The member flexibilities are then separated into
those of the statically determinate stress components B and those of the redundants F;. In
general, there may be some cross~coupling between these two groups, represented by the
rectangular submatrix F, and its transpose F, . The inversionofa triply partitioned matrix
has been described by Kosko {Reference 9). In our case we observe that the sub matrix Ag
and its transpose are easy to invert and for this reason we shall try to obtain a diagonal
supermatrix in which the nonzero blocks follow the secondary diagonal. In this case the pre-
multiplier happens tc be

Y = | I 0-343F,
-8l b -6
0O 0 I

where again previous notatlons are recalled, The reduced diagonal matrix and its inverse are

M = yMY =[o0o o a)]; w':[0o o a]
o b o o o' o
A, 0 O (a'i'o o

and the inverse of the structural matrix, partitioned 3x3, is

o T -ty ~l ¥ - -~ -1
M- Y MY = BODIBQr «son:on\»aou's
-p™'B] D -p'e
(21)
(ATy'+6'0'8, -6'D" - +6D'6

This may be written as the sum of a matrix involving only statically determinate elements
and of a singular matrix being a congruent transform of the redundant kernel matrix

m' :=[o o Ayl + [-B,] D [‘Bo I -—G]
O 0 0 I
' o -@, ~g"
L i (21"
=0 ¢ |+[8]D" BT-e]
¢l -@ -67 )
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We now see that in the position of the load~to-stress matrix C= KATQ we now have
¢=C.-BD'G as obtained by the force method, Also, inthe position of the structure fiexibility
matrix @ we now have @o- 6T 0'6 which checks with Equation 18, The other submatrices
occeurring in M~' are of interest in the wider structural problem where effect of loads applied
directly to members and of initial stresses are considered. The demonstration of the equiva=
lence of the two methods would then proceed in much the same way as was done here for the
restricted problem.

4,0 CONCLUDING REMARKS

On the margin of the foregoing discussion severai questions arise which are believed to be
of general interest. We turn our attention to them.

4,1 Duality of Variables, but Not of Methods

We have noted the complete duality that exists between the stress resultants and corresponds-
ing member deformations, and also between loads applied at the joints and corresponding
displacements of these joints, This duality, well known since Maxwell and Betti, has important
practical consequences, permitting to reduce the number of required data and facilitating
caleulations and checks in many ways, Some authors, like Argyris (Reference 1), have even
suggested a dictionary by means of which any statement concerning one type of variahle can
immediately be translated into a dual statement concerning the other type. It has also been
implied that this duality extends to methods of solution of structural problems, This may be
true if dual problems are considered, e.g. a problem in which joint displacements are the
given quantities may be solved by amethod which is dual to that used in a problem in which the
loads on the joints are given. But if it comes to solve one and the same problem, as was the
case in the present paper, the displacement method and the force method as usually defined are
not dual at all. A glance at the relevant equations should be enough to convince us of the
difference, the deeper reason for it being that each corresponds to a different type of
partitioning of the structural matrix.

4,2 Analogy with the Theory of Elasticity

The concept of a structure may be regarded as derived from that of a continuous elastic
body by a process of abstraction or simplification. The capacity of the continuum to he
subjected to an infinite variety of loads and to deform into an infinity of patterns is reduced
in the structure to a representation by a finite number of members, each of them capable of
sustaining only a finite number of load types and of deforming in only a finite number of ways.
The question arises: is it allowable to translate statements concerning the behaviour of the
continuous body into analogous statements concerning the discrete structure and, if so,
what are the quantities to be considered as analogous ? In a most interesting recent paper
{Reference 10), Besseling has tried to establish such an analogy. To this author, however, the
line of argument taken there is not entirely convincing. True, some of the analogies are self-
evident, like that of continuous stresses to our stress resultants and of strains to member
deformuations: the duality between these two sets of variables is also preserved. True also,
some cnergy theorems and derived variational methods may be directly translated but the
difficulty appears when considering the two configurations as a whole. In the continuous body,
a distinction is made between conditions existing within the boundary, having their expression
in the field equations, and conditions obtaining at the boundary. In the structure, on the other
hand, such a distinetion cannot be clearly drawn; the identification of a complete or partial
set of joints with the boundaries is quite arbitrary and rather artificial and does not find any
confirmation in the way the corresponding equations arewritten, Also, if one looks at the four
basic equatious of the theory of elasticity, namely the equations of equilibrium and of compati-
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bility, in terms of stresses and of straing, one immediately perceives a lack of symmetry be-
tween these two sets of variables, even though their tensor components vary in contragredient
fashion; we have here the Cauchy-Navier and Beltrami~Michell equations, For these reasons
the methods of solution using displacements or stresses as unknown functions are of a widely
different nature.

In some idealizations of elastic bodies, as encounteredin engineering beam theory, plate and
shell theory, it is found possible to achieve perfect symmetry between the two sets of vari~
ables and also in the governing equations, although these idealizations do not meet our
definition of structure, not being truly a discrete representation, but rather continuous
simplifications of the three dimensional elastic body.

It would be interesting to study the reasons for which a perfect duality exists between
variables in these simplified and also in the discrete representations, while it is lacking in
the full body, However, these differences are mentioned here in order to show that it is not
'safe to derive equations or prove theorems by direct analogy with the theory of elasticity.
Hypothetically one may have deduced the equivalence of the methods of structural analysis
from the unicity of solutions of the first boundary-value problem of the theory of elasticity,
We found it more prudent to prove this equivalence by purely algebraic means,

4.3 Linear Algebra vs Network, Systems, or Graph Theory

Some recent papers - too many to quote here - have attempted to reduce structural
analysis to a branch of one of the theories mentioned in the caption, It is true that certain
types of structures, especially those whose members are one dimensional, like pin- or
ball- jointed trusses, rigid-jointed frameworks, exhibit properties that make it possible to
establish some analogies hetween these skeletal structures and networks of other one~
dimensional elements. But even then, a graph or network does not permit to distinguish be-
tween a plane and a three-dimensional configuration, a distincticn that is essential in the
analysis of a siructure, but only incidental in network analysis, Moreover, unless all of the
joints are of the same kind (rigid or articulated), the graph in itself does not convey the
necessary information without an additional specification of releases, etc, Finally, those
structures that are the most difficult to treat, comprising two- and three-dimensional elements,
do not seem amenable to treatment by graph-theoretical means in a general way, In other
words, a one-to-one representation of a structure as a network is possible only for limited
classes of structures, Furthermore, even where this possibility exists, the usefulness of such
representation is questionable and of rather academic character, For instance, the classical
reduction of a network to a system of trees and of linking strings or meshes has its counter-
part in the reduction of a rigid-jointed framework to tree-like structures and rings; this
procedure is useful in establishing the degree of statical overdetermination of the structure.
But from the point of viewof analysis it is preferable to make each ring statically determinate
by inserting an appropriate number of pins rather than by making cuts; the first alternative,
however, does not seem to have an analogue in the network. On the other hand, for a pin- or
ball-jointed truss, reduction to a system of trees would transform the structure into a collaps-
ible mechanism, Another objection is the introduction of terminology foreign to the structural
field, entirely unnecessary.

In conclusion it appears that network theory, in spite of claims to the contrary, is not
general enough to permit an adequate representation or interpretation of the theory of
structures, On the other hand, linear algebra or theory of vector spaces provide the ideal
mathematical tool for structural analysis, in that every topological, geometrical and elastic
property and every relation in the structure find their true representation in the language of
matrices,
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