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Abstract 

Assuming t hat the balloon materia l responds like a Maxwell model, it is 
demonstrated t hat there exists a critical time at which the balloon w ill rupture. 
The characteri sti c features of this phenomenon are demonstrated on a spherical 
balloon which i s s ubjected to a constant internal pressure, with n o restri ctions 
imposed upon t h e magnitude of the balloon displacements. P l a nne d investigations 
to correlate these phenomena of creep fa ilure with recent balloon failures are 
outlined. 

l. INTRODUCTIO A1 D STATEME1 T OF PROBL EM 

In recent years increasing demands on balloons, such as heavier payloads 

and higher alt itudes, have necessitated a r apid development of balloon technology. 

A significant step in this direction was t he introduction of newly developed thin 

plastic films (pol yethyl ene, myl ar, etc. ) as balloon mater ia l s . Because of their 

light weight and relative strength, a 10 , 000,000 cu ft balloon that can lift 150 lb to 

an altitude of 150, 000 ft is not unu s u a l. 
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T his development is accompanied, however, by an increasing number of 

balloon failures. Studying the available records of numerous balloon flights con 

ducted by AFCRL and NCAR, one finds that a large number of the balloons that 

faile d did so at altitudes between 40,000 and 60,000 ft. Possible causes of failure 

are the phenomena associated with the creep deformations of the balloon skin 

which occur during balloon launch and ascent, as well as changes in the material's 

prope rties caused by the temperature of the atmosph ere through which the balloon 

passe s. A typical temperature profile is shown in Figure 1. It should be noted 

that t h e temperature difference between l aunch and that at 45,000 ft can be as much 

as 120°F. 

Movie cameras mounted inside of balloons recorded some of the failures , 

revealing that they occurred in the upper part of the balloon where the skin was 

taut. This finding, and the fact that the upper part of an inflated balloon, in a ddi

tion to being stressed biaxially, is often subjected to intense solar heating, sug

gest as a first step studying the possibility of failure caused by creep deformations. 

Kac (1957), Kachanov (1958, 1960), Finnie (1959), Rimrott (1959), Rimrott 

et al (1 960), and Odquist and Hult (1962) considered the problem of rupture of 

metallic pressure vessels at high temperatures caused by large creep deforma

tions. Because of the mechanical properties of metals it seemed justified to neglect 

the relatively small elastic deformations. Problems involving tension instability 

of e lastic materials subjected to large deformations are treated by Rzhanitzyn 

(1955), Panovko and Gubanova (1964) and Levinson (1965). 

The following presentation, a generalization of the analyses in Rzhanitzyn 

(1965) and Panovko and Gubanova (1964), assumes that the balloon material 

responds like a viscoelastic body. Since for a number of balloon materials the 

e lastic deformations may be very large, they are retained in the analysis. In 

view of the present lack of experimental data for the balloon materials in question , 

it is assumed that the material is incompressible and that it responds to deviatoric 

deformations like a Maxwell body when formulation is in terms of true stresse s 

and lo garithmic strains. 

The creep failure phenomenon preceded by large elastic deformations is 

studied first on a thin strip subjected to tension and then on a spherical balloon 

subjected to a uniform internal pressure. 

2. THE THI STRIP SUBJECTED TO U !AXIAL TENSION 

We consider a thin homogeneous and isotropic strip subjected uniaxially to a 

force P as shown in Figure 2. The area of the initial cross section is A
0 

= b
0

h
0

• 

It is assumed that the area of the deformed cross section after the load P is 

applied is A = bh. L
0 

is the initial length of strip under consideration and L the 

length after deformation. The rate of application of P and the expected rates of 

deformation of the strip are assumed to be very small, so that inertia terms are 

negligibl e. 
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The equilibrium equation of the s trip at a certain instant after the load is 

applied is 

aA = P. 

The kinematic relations are 

L 
E 1l ln( r:;- ) 

0 

€22 l n (-J:-) 
0 

h 
E 33 ln(°"fl) 

0 
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(1) 

(2) 

(3) 

(4) 

Since the strip material is assumed incompressible, the geometrical quantities 

are interrelated by the equation 

A L =AL. 
0 0 

With Eq. (5), E 
11 

may be expressed as 

b h 
Ell ln( ~ho) 

(5) 

(6) 
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It can be easily verified that because of Eq. (5) 

E 11 + E 22 + E 33 = O ' (7) 

We treat first the elastic case, which occurs at the instant of loading (t = 0). 

We assume as constitutive equations Hooke's law for true stresses and logarithmic 

strains 

(8) 

The effect of deformational anisotropy (Berg, 1958) is not taken into consideration 

in the present analysis. Since the material i s incompressible, v = 1 / 2. Noting 

that 

and 

Eq. (8) reduce to 

a 
E (9) 

a nd 

a 
2E 

(10) 

Because of Eq. (7), only one of the three equations given in Eqs. (9) and (10) is 

independent. Elimination of E 11 from Eqs. (2) a nd (9) results in 

(11) 



Substitution of Eq. (11) into the equilibrium Eq. (1), noting Eq. (5), y i e l ds 

E 
0 

l 1 L ~' 
~ n el 

e l 

where 

L
* _ Lel 
el - ---i:::

o 

(J 

0 

E 

35 

(12) 

(13) 

The graphical representation of Eq. (1 2) i s shown in F i gure 3. 

value of E 
O 

is obtained from th e condition d E 
0

/ dL:1 = 0. It is 

The maximum 

1 
E 

0
, max= e (14) 

and takes place at 

( 15) 
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Thus , e lastic tensile instability takes p l ace at 

(1 6 ) 

In a r eal s itua tion the str ip may con ta in mater ia l imperfections that can 

weake n t he strip l ocally . Ano the r poss ibility i s t hat at some place a l ong the strip 

the a rea of the initia l cross section, A , may be smaller than those a l ong th e 
0 

r e m a ining p arts of the strip . In such ins ta nces t h e weaker or smaller cross 

section w ill deter mine the poss ibl e maximum value of E 
O 

and the corresponding 

l a r ge defor mation s w ill be restr icted to this region . This argument was presented 

by N .. J. Hoff (19 53 ) to expl a in th e in i tiat ion of necking in a tensile specimen. 

For th e analys i s of t h e v iscoel ast i c response , it i s often conveni ent to split 

th e s t ress and stain tensor into a deviator i c a n d volumetri c par t and then prescribe 

separate constitutive equa tion s for the deviator i c and volumetric response (Lee, 

1958 ). For exampl e , an equival e nt form of Hooke ' s l aw presented by Kachanov 

(1 96 0) i s 

where a . . are t h e components of t h e str ess te nsor 
lJ 

s .. a r e the components of the str ess devia tor 
lJ 

E .. are the components of the str a in tensor 
lJ 

e . . are t he compone nts of t he strain de via tor 
lJ 

and s .. a nd e . . a r e defin ed as fo llows : 
lJ lJ 

wh e r e 

(1 7) 

(1 8) 

(1 9) 

(20 ) 

( 2 1) 

(22 ) 



The new elastic constants µ and K are rel ated to E and v as follows: 

E µ 2 (1+v) 
K 

E 
3(1-2v) 

For an incompressible material 

E 
K = oo and µ = 3 

Because of the assumed incompressibility of the material, the constitutive 

equations are 

S . . = 2µ E .. 
lJ lJ 
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(23) 

(24 ) 

(2 5) 

The strip problem treated above may be solved by using th e n ew form for the 

constitutive e quations, as follows: 

We decompose the stress tensor in accordance with Eq. (19) 

0 0 
a 0 0 

2 
0 0 a 3 3a 

0 0 0 0 a 0 + 0 
1 0 3 -? (2 6 ) 

0 0 0 0 0 
a 

0 0 1 
3 - 3 a 

and thus obtain 

l (27) 

sij = 0 for i f 

With Eq. (27), the constitutive equations , Eq. (2 5 ), assum e the form 

2 L 1 
3 a= 2µ ln( i 

0 

b 
1 a = 2µ ln(~ - 3 b

0 

(28) 

1 h 1 - ? = 2µ ln(-;- ) 
0 
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Noting Eq. (5), it can be easily shown 

that onl y one constitutive equation is 

independent. Substitution of the first 

equation into the equilibrium Eq. (1) 

yields , considering Eqs. (5) and (24), 

Eq. (1 2). 

We proceed now to solve the vis

coelastic case , that is, behavior of the 

strip for t > O. We retain the assump

tion that the material is incompressi

ble, and assume that it responds to 

Figure 4. Maxwell Body 

deviatoric deformations like a Maxwell body (see Figure 4). The corresponding 

constitutive equations are (see Hilton, 1962), noting that eij = eij' 

d µ de. 
( -:rt-+ -)s =2µ-21 

u rJ ij dt (2 9) 

With the s .. values given in Eq. (27 ) and the E .. in Eqs. (2), (3 ), and (4 ), the 
~ ~ 

constitutive equations become 

2 d µ d L 
""3" ( cIT + D ) a = 2µ dt ( 1 n Lo ) ( 3 0) 

1 d µ d b ) (3 1) - 3 (.at + - )a = 2µ dt (1 n b 
rJ 0 

where a, L, b, and hare functions of time and P = a(t)A(t) = const. Because of 

Eq. (5), only one of Eqs . (30), (31), and (32) is independent. 

Combining the equilibrium Eq. ( 1), valid at a time ins tant t, with the incom

pressibility condition, Eq. (5 ), we obta in 

a(t ) = PL(t) 
AL 

0 0 

Substituting Eq. (33) into Eq. (30) we obtain, setting 

i:-- = L* (t) 
0 

(33) 

(34) 



the equation 

Noting that 

1 dL':' 
r;-,:, or-- ' 

the equation describing the problem assumes the form 

dL* 
~ 

This is a first-order, nonlinear, ordinary differential equation with separable 

variables. Integrating it directly 

L ,:~ 

J 3 µ a 
- -~ )dL':' 

µ 
( L ,:' e = a u 0 T) 

L ,:' =L* 
el 

we obtain the solution 

where 

E 
0 

a 
0 - --

3µ 
t ,:, = !!.. t 

T) 

t 

J dt 

t=O 

In order to study how the deformations vary with time, L * - t * graphs for 

various values of E are constructed. 
0 

39 

(35) 

(3 6) 

(37) 

(38) 

(39 ) 

(40) 

For this purpose we assume values of E 
0 

< E and obtain from Figure 3 o,max 
the corresponding L * 1 values. Each pair (E , L *

1
), which constitutes an initial e o e 

condition for a given load P, is then substituted into Eq. (39), which is then 

numerically evaluated. The results are shown in Figure 5. 

It can be seen that for each E < E there is a critical time at which the o o , max 
strip will fail, and that these time intervals increase with decreasing values of 
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E < E For E = E the crit ical time is zero. Analytically the values 
o o , max o o, max a ,., 

for the cr itical t ime may be determined u sing the condition ~ .. = O. They are 
aL··· 

- rJ [ 1 ( ,:, ) ] tcrit - µ E L'·· + ln E oL el - 1 
o el 

(41) 

Where the strip contains locally a material imperfection or a smaller cross 

section , as discussed before , the creep deformations will a l so be l arger and the 

strip will finally fail. The critical time will be governed by the properties of 

thi s l ocal region (Hoff, 1953 ). 

3. TH E SPH ERI CAL BALLOON SU BJ ECTE D TO A CONSTANT INTER AL PR ESSU RE 

We consider a thin spherical balloon 

subj ected to a uniform internal pressure 

p
0

• It is assumed that p
0 

is mainta ined 

constant during the creep deformation 

process . In the present case the true 

stresses increase more rap i dl y than in 

the case of the s t rip di scussed before, 

s ince in addition to the decrease of the 

skin thickness the total force acting on 

UNDEFORMED 

Figure 6 . Thin Spherical Balloon 
Subject ed to Pressur e p

0 
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the sphere increases with time because of the increase of the balloon diameter . The 

situation to be analyzed is shown in Figure 6. R
0 

is the radius of the middle surface 

of the undeformed balloon, and h
0 

is t h e skin thickness . R and h are the respective 

dimensions of the deformed balloon at the instant of consideration. 

It is assumed that: (1) the material i s homogeneous and isotropic and retains 

its spherical shape during deformation; (2 ) h << R and h << R; (3) the balloon 
0 0 

skin behaves like a membrane, that is, a </>cf> and a 
88 

are uniforml y distributed 

across the skin and arr is negligibly small compared to ac/>c/> and a 88 ; and (4) the 

rate of application of p
0 

and the expected rates of deformation of the spherical 

membrane are small, so that inertia terms are negligible. 

The equilibrium condit ion on a part of the cleformed balloon yie lds 

p R 
a =_o_ 

2h (42) 

where a is the true membrane stress. 

The kinematic relations are* 

R 
= l n (R ) = E 

0 

(43) 

(44) 

The incompressibility condition 

4 [ h 3 h 3] 4 [ ho 3 ho 3] 3 11 (R + 2" ) - (R - 2") = 3 11 (R o + 2) - (Ro - 2 ) (45) 

reduces , after expansion, to 

(46) 

Neglecting the first terms on both sides of Eq. (46) as being small (of higher order) 

compared to the remaining ones , we obtain the equation 

* In deriving Eq. (44) it is assumed, because of the thinness of the membrane, 
that Err is constant throughout the balloon skin. 

(47) 
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which will be used as the incompressibility condition in the following analysis. 

Because of Eq. (47), we may rewrite Eq. (44) as 

R 
E = - 2 ln(R- ) . rr 

0 

(48) 

We consider first the elastic case which takes pl ace at the instant of loading (t = 0) 

and assume as constitutive equations 

( i, j = r, 0, <P) • 

We decompose the stress tensor in accordance with Eq. (19) 

and thus obtain 

s . . = 0 for i f j • 
lJ 

The only independent constitutive equation which remains after substituting 

Eqs. (50 ), (43) and (48) into Eq. (25) is 

Rel 
a- = 6µ ln( ~ ) . 

0 

Substituting Eq. (51) into Eq. (42) and noting Eq. (47), we obtain 

1 
EO --

R* 3 
el 

where 

(2 5) 

(49 ) 

(50) 

(51) 

(52) 

a-
0 --

6µ 
R* = 

el 
(53) 
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The graphical representation of Eq. ( 52 ) is shown in F i gure 7 . The maxim um 

value of E i s obtained from the condit ion dE / dR ,., l = O. It i s o o e 

1 
Eo, max 3e 

and takes pl ace at 

R * _ 1/3 
el - e • 

Thus the el astic tensile ins t ability takes pl ace at 

(54 ) 

(55 ) 

(56 ) 

In a real s ituation the balloon skin m ay contain a l ong a line o r curve , or inside 

of a small r egion , imperfections of a phys ical or geometr ical na ture which w ill 



44 

weaken locally the balloon skin. Such regions will significantly affect the value of 

p
0

• Large deformations as well as rupture are expected to take place in such 

regions. 

For the v iscoelastic analysis we retain, as before, the assumption that the 

material is incompressible and that it responds to deviatoric deformations like a 

Maxwell body. Thus the general form of the constitutive equations are given in 

Eq. (29). Substituting into Eq. (2 9) the a .. ' s given in Eq. (50 ) and the e: . . 's given 
~ ~ 

in Eqs. (4 3) and (4 8) , we obtain for the problem under consideration the consti-

tutive equation 

d µ d R (at+ -)o-=6µ at ln(F°") 
r) 0 

where a = a (t) and R = R(t). 

The equilibrium equation at a time t is given in E q. (4 2). Noting the in

compressibility condition, Eq. (47), Eq. (42) assum es the form 

a = 

wh ere 

'-' 3 p R 
0 

~ 
0 

h 
0 

¾ 

(57 ) 

(58 ) 

(59) 

In the following analysis it is assumed that for t 2: 0 the pressure p is maintained 
0 

constant. Substitution of Eq. (58) into E q. (57 ) yi e lds 

[ 

3 Po ,:, 3 _ ] dR"' µpo '-' 4 _ 
2 h ''' R 6µ dt + 2 h '" R - 0 • 

0 T] 0 

This is a f i rst-order, nonlinear , ordinary differential equation with separable 

variables that can be integrated directly as follows: 

R '-' t 

J [ 3p /2h,:, 
~ J dR * 

µPo J 0 0 - dt R,:, R '-' 4 2 h '-' 
R ':' =R '-' 

T] 0 

e l t=0 

(60) 

(61) 
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Performing the integrations we obtain the solution 

1 [ 1 ~ R*3 - (62) 
0 el 

where 

t'~ =!:!:.t 
I') • (63 ) 

The R ;,, - t ;,' graphs are constructed in a similar manner as the L ~' - t * graphs for 

the strip, and they are shown in F i gure 8 . The corresponding values for the 

critical time are 

t = _.!l [ 1 
crit µ (3E Rd) 

o el 

(64 ) 

Hence for a balloon skin material obeying the constitutive e quations given in 

Eq. (57 ) for a given value of the internal pressure p , the instantaneous elastic 
0 

deformations may be determined from Eq. (52) or Figure 7. The critical time 

can then be determined directly from Eq. (64 ). 

From Figure 8 it can be seen that the balloon deformations due to creep in

crease slowly at the beginning but increase very rapidly as the time approaches 

I 
I 
I 
I 

I 
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/ 1. 8 
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Figure 8. Graph of R* Versus t* 
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tcrit" Sinc e the skin thickness dim inishes and the radius increases for t > 0 and 

p
0 

maintained constant , it is expected that in the later phase of the deformations 

the true stresses will reach a level where brittle fracture or plastic deformations 

will tak e place and thus the real rupture time will be smaller that t ·t (Carlson, cr1 
1964). 

At this stage it should be recalled that the above derivations are based on the 

assumptions that the balloon material i'S incompressibl e and that it responds to 

deviatoric deformations like a linear Maxwell body when formulation is in terms 

of true stresses and logarithmic strains . Al so the effect of deformational aniso 

tropy was not taken into cons i deration, which for pol ymers may be very pronounced 

for certain types of deformations . For these reasons the above derivations and 

presented results shoul d be cons idered, a t the present, more of an expository 

nature. Tests are presently being conducted on a number of balloon material s 

c ur rently in use (rubbers and polymers) which s hould clarify these issues and 

yield constitutive equations for each of the materials in question. The constitutive 

equations for each material will then be used to determ ine deformations and rupture 

time for balloons of various shapes . These data will then be compared with cor

responding measu rements of controlled balloon experim ents in an attempt to 

establish whether creep rupture is the major cause of the described balloon ascent

fa ilures . If confirmed, the devel oped a nalyt ical results and the accumul ated data 

and experience from the experimental program should be very helpful in finding 

ways to prevent creep failures of balloons. 
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