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ABSTRACT

In this paper, the results of experimental investigations conducted
on glass/epoxy and graphite/epoxy . composite laminated beams with
constrained layer surface damping treatments, are reported. The ' Fast
Fourier Transform based impulse technique is wused for identifying an
optimal length of damping tape to be applied for maximizing the structural
loss factor. This requirement stems from a need (as in helicopter rotor
blade applications) for a trade-off between the added weight of the
viscoelastic layer and the resultant changes in the dynamic characteristics
of the structure. .

The experimental data is compared with analytical results obtained by
a modal strain energy/three dimensional finite element method. This study
has shown that, for a given composite structure and boundary conditions
there exists an optimum length of the constraining layer which produces
maximum shear deformation of the intermediate viscoelastic damping layer,
thus providing effective vibration control in severe dynamic environments.
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INTRODUCTION

Surface damping treatments have been in vogue for quite some time for
solving a variety of resonant noise and vibration problems - especially
those associated with sheet metal structure vibration. Such treatments,
which capitalize on the inherent damping of a highly dissipative material,
can easily be applied as a single layer (as with auto undercoatings) to one
or both sides of existing structures and provide high damping capability
over a wide temperature and frequency range. In case of the free-layer
(also referred to as extensional or unconstrained) damping treatment, when
the base plate bends the amount of energy absorbed per oscillation depends
on the mean longitudinal strain induced in the coating. Degree of damping
is therefore limited by thickness and weight restrictions.

On the other hand, for a given weight, the shear type of damping
treatment, which can be obtained by the application of commercially
available damping tapes to the base structure, is found to be more
efficient than the unconstrained-layer damping treatment. This efficiency
is balanced, however, by greater complications in analysis and application.
The treatment is similar to the unconstrained-layer type except that the
viscoelastic material is constrained by a metal layer. Therefore, whenever
the structure is subjected to cyclic bending, the thin and extensionally
stiff metal foil placed on top of a thin layer of dissipative material (an
adhesive, for example), constrains the viscoelastic layer, thus forcing it
to deform in shear. Since shear deformation is considered to be one of the
major mechanisms by which energy is dissipated in polymeric adhesives, the
large shear strains so produced provide considerable damping. This is the
basic principle that is exploited in constrained layer damping treatments.

For facilitating the desired performance, parameters other than
temperature and frequency, namely geometry, stiffness, mass and resonance
mode shape of the structure to which the control system is applied will
also equally effect the performance. The methods of analysis for such free-
layer and constrained layer damping systems were develfped by Ross-Kerwin-
Ungar (referred to as the RKU analysis) in the sixties® and have been most
widely used for predicting the structural response under both extensional
and shear deformations. Application of this RKU method with improvements
and/or modifications thereof for noise reduction in helicopter cabins, in
diesel engines, for vibration control in a jet engine inlei suide-vanes and
in aircraft weapons dispensers_ are reported by Jones“’”, Rogers and
Nashif ', Nashif, Jones and Pariys8 and Nashif and Nicholass, respectively.
Ely reports of advanced designs’'® for an A-7 center section and the F-111
outboard spoiler using constrained layer damping treatment which extended
their service life by a factor of at least fifty. About one-half of that
improvement was attributed to constrained layers of AF-32 adhesive, the
remainder of the improvement was due to changes in materials, shapes,
forming and fastening.

Almost all the reported applications were designed, however, to
improve the dynamic response of metallic  structural elements. To the
authors’' knowledge, there have been a very limited number of previous
applicatioﬁs9 of constrained layer damping treatments for vibration control
of composite structural elements. In the recent past, an exhaustive study
of the optimization of the internal material damping of various types of
advanced composites has been undertaken, both at the University of Ildaho
and at other research institutions. These analyticib ]3pd experimental
investigations included aligned short fiber composites™ *""; aligned short
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fiber off-axis compositeslz'u"; randomly oriented short fiber compositfgsls;
and two and three dimensional modeling of laminated composites =20
Parameters such as loading angle, fiber aspect ratio, fiber tip spacing,
ply thickness, and damping ratio between the fiber and matrix materials

were adjusted to improve the performance of composite materials in a
dynamic environment.

OBJECTIVE AND SCOPE OF RESEARCH

Designs generated by parametric studies of the type described above
are, however, at best locally optimal with improvements of internal
material damping being restricted by the properties of the fiber and matrix
materials, along with an inherent trade-off between damping and stiffness.
Many of the composite structures used in military and space applications,
however, are subjected to severe dynamic loading environments where such
a trade-off may not be desirable. With enhancement of internal material
damping having already been exploited to its peak level by the methods
described above, further vibration control by the use of surface damping
treatments to reduce resonant displacements and noise level provides the
scope for exploratory studies of the type reported in this paper.

As such, the objective of this research was to demonstrate the
potential for improvement and optimization of damping in laminated
anisotropic composite structures with constrained viscoelastic layer
damping tapes. The influence of damping tape distribution and boundary
conditions on damping of different modes, in unidirectional and off axis
glass/epoxy and graphite/epoxy composite beams were investigated.
Experimental data generated by a Fast Fourier Transform based impulse
technique was compared with analytical predictions obtained by a modal
strain energy / three dimensional finite element method.

EXPERTMENTAL PROCEDURES

A 12 inches (304.8 mm) x 12 inches (304.8 mm), 16 ply unidirectional
aligned continuous E-glass/epoxy (3M Scotchply 1003) composite plate with a
thickness of 0.13 inches (3.3 mm) was fabricated ii per manufacturer’s
specifications, wusing an autoclave-style process“™, Cantilever beam
specimens 5 inches long (127 mm) x 1 inch wide (25.4 mm) were machined
from this plate. Similarly, unidirectional and 200 off-axis graphite/epoxy
specimens having dimensions of 8 inches (203.2 mm) long x 0.75 inches
(19.05 mm) wide x 0.057 inches (1.45 mm) thick were machined from a
laminated plate fabricated with 12 plies of Fiberite Hy-E1034C (T300
graphite fibers / 934 epoxy resin) prepreg tape. Base line loss factor data
was obtained for these bare specimens (comprising the base structure, i.e
without damping tape) by testing them as cantilever beams for different
span lengths (to get the frequency dependency) using the impulse-frequency
response vibration technique.

In the impulse-frequency response technique, the specimen is excited
by using an impulse hammer with a piezo-electric force transducer in its
tip. The specimen response 1is measured by a non-contacting eddy current
proximity transducer, located away from the nodal points. By curve fitting
the resonant peak of the Fourier Transformed frequency response function
displayed on the screen of the spectrum analyzer, the loss factor (a
measure of damping) of the composite specimens is obtained with the half-
power bandwidth relationship :
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Af
n = (1)
fn
where Af = half-power bandwidth of resonant peak

frequency response curve at resonant
frequency f .

For further details of the impulse-frequency response technique the reader
is referred to Reference 22.

Damping tape (3M type SJ-2052X) having a 0.005 inches (0.127 mm)
thick ISD 112 acrylic polymer viscoelastic adhesive and a 0.01 inches
(0.254 mm) thick dead soft aluminum backing as the constraining layer was
then applied on one side of the glass/epoxy and graphite/epoxy specimens
comprising the base structure for different ratios of tape length to
cantilever beam length. Loss factor data was again obtained for different
boundary conditions such as tape fixed at root (i.e at clamped end), tape
free at root and for tape applied about 0.5 inches (12.7 mm) from the
clamped end, as shown in Figure 1. Both first and second mode loss factor
data was obtained, with three specimens tested in each category.

MODAL STRAIN ENERGY / FINITE ELEMENT METHOD

The resulting experimental data was compared with the analytical
predictions obtained by a modal strain energy / three dimensional finite
element method. The strain energy method has been proven to be an accurate
and flexible technique for determining damping of structures. The concept
of damping in terms of strain 2fnergy quantities was apparently first
introduced by Qﬁ§§fh agd Kerwin and was later implemented in finite
element analysis' '“*'“?, In the current research, this method was used in
a three-dimensional finite element formulation for determining the loss
factor of the composite beam specimens with variations of cross-section
(due to application of damping tape for different ratios of tape to beam
length) and boundary conditions. The finigg element code used in this work
is the SAP IV finite element program which was moqﬁfﬁﬁf for the
calculation of the loss factor by the strain energy method™”'““. For more
details of this three dimensional modal strain energy / finite element
technique, the reader is referred to References 19,20,

By this approach, an eigenvalue/eigenvector problem for free undamped
vibration is performed with the finite element method. The structural loss
factor for each mode of vibration is calculated by using the mode shape and
the material loss factor for each material. That is, strain energies are
calculated based on the resulting eigenvector (mode shape) without
concerning the real amplitude of the mode shape. The loss factor of the
overall structure (with the applied damping treatment) may therefore be
formulated as the weighted average of the loss factors of the constituents
(i.e. base structure, damping layer and constraining layer) along with
their respective strain energies as weighting constants. Thus the
structural loss factor at a macro-mechanical level may be expressed as :

g ™ (2)
8
a b Ic
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where n is the loss factor, W is the strain energy and subscripts s,a,b,
and ¢ refer to the total structure, adhesive layer, base (composite)
structure and constraining layers, respectively. Due to the anisotropic
nature of the composite base structure, further decomposition of the strain
energy tismiointo terms associated with different stress components is also
required™" Y,

Based on some initial strain energy convergence studies, optimum
aspect ratios (length/thickness) of the three-dimensional eight-node thick
shell elements used for modeling the different layers that constitute the
composite structure were selected. Figure 2 shows a typical gridwork for a
composite specimen with a damping tape-to-beam length ratio of 0.6 and with
a free boundary condition at the clamped end. Solution times for such a
configuration and related models ranged from 250 to 500 seconds (CPU) on an
IBM 4341 main frame system. Constituent material properties used in the
analytical models are shown in Table 1. Because of the frequency and
temperature sensitivity of both the shear modulus and loss factor of the
ISD 112 viscoelastic adhesive in the damp%p; tape, appropriate data based
on nomographs supplied by the manufacturer®’ and Reference 28 was used to
account for the differences in mode 1 and mode 2 frequencies. Also the
Poisson’s ratio for the nearly incompressible viscoelastic %g?esive was
taken as 0.49 (instead of 0.5), to avoid numerical difficulties

N SC

As can be observed in Figure 3, for the first mode of vibration, an
optimized length of the viscoelastic material at which the system damping
(glass/epoxy base structure with tape) is maximum is clearly evident for-
both the boundary conditions of tape fixed and tape free at root (i.e at
the clamped end with N/L = 0). Of particular interest is that for an
optimum tape-to-beam length ratio of 0.5, the system damping 1is
significantly higher for the case where the tape is fixed at the root (by
about 15 times) than for the case where the tape is free at root. The
existence of an optimized length of viscoelastic material for which §Be
structural damping is maximum was also observed by Plunkett and Lee”".
Their investigations were limited, however, to applications for metallic
materials and the effects of tape boundary conditions were not taken into
account.

For the condition where the tape was applied at a distance of 0.5
inches (12.7 mm) from the clamped end (N/L/ = 0.1), Figure 5 shows that the
damping effectiveness, although improved, is not as significant as for the
above two cases. This 1is not surprising since, in the first mode of
vibration, the most highly stressed region is at the clamped end. With no
tape in this region to provide the additional damping mechanism (by shear
deformation of the viscoelastic adhesive) the overall improvement is
minimal. The experimental results (with scatter) obtained with the impulse
hammer technique show fair agreement with finite element analytical
predictions. Better agreement 1is expected if the data on complex shear
modulus of the damping layer 1is available in the form of accurate
regression equations. The results shown here are based on estimates from
Nomographs.

Loss factor data for the second mode (Figures 4 and 6) beyond T/L =
0.6 for all the three boundary conditions could not be experimentally
obtained with the impulse hammer technique because the peaks were almost
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flat (damped out) in this region. The high damping ratios predicted by the
analytical model for these conditions (beyond T/L = 0.6) also confirm this
effect. As such, specimens with a longer cantilever span (instead of the
five inches used here) were expected to give more distinguishable resonant
peaks for the second mode of vibration. Accordingly, the unidirectional and
off-axis graphite/epoxy specimens were tested with an eight inch
cantilever span to facilitate complete frequency dependence of the
experimental validation of the analytical predictions.

Figures 7 and 8 once again show a comparable improvement in damping
for both fixed and free boundary conditions of the damping tape as applied
to the unidirectional graphite/epoxy base structure. The damping ratio is
not so significant, however, for the off-axis &raphite/epoxy specimens
(Figures 9 and 10). This is because, with the 20" off-axis case the base
structure itself exhibited a high intrinsic loss factor (about 0.0134 for
mode 1 and 0,0252 for mode 2).

The critical observation that by fixing the constrained layer tape at
the clamped end, significantly higher overall damping could be obtained,
was further investigated. This has important ramifications by way of added
weight trade-offs when such surface damping treatments are planned, for
example, in helicopter rotor blade applications. To simulate better the
finite element model of the tape being fixed at root, some experiments were
repeated by fixing the tape at the root with a clamp along the face of the
vise instead of having the tape inside the vise (Figure 1l). As shown in
Table 2 the damping effectiveness is once again comparably higher than for
the free at root boundary condition. (The marginal variations in the loss
factor data presented here with the data in Figure 3 is attributed to a
different batch of damping tape that was used for these tests). The
increased through-the-thickness shear strain in the adhesive as a result of
fixing the tape at the root is responsible for the increase in the system
damping. This is easily verified by observing the shear strain energy ratio
obtained by the 3-D finite element method for the fixed vs free boundary
conditions at root, as shown in Figures 1l and 12 for both the first and
second modes of vibration.

Similar conclusions on, the effects of boundary conditions were
reported by Mead and Markus 1, who developed a closed form analytical
solution for sandwich beams with fixed, free and simply supported boundary
conditions. Their results suggest that the effect of boundary conditions
depends on the frequency range, however, and that the maximum system loss
factor is not very sensitive to boundary conditions. A direct comparison of
the present results with those of Mead and Markus is not possible because
the present work is concerned with discontinuous damping layers whose
complex shear modulus varies with frequency, whereas Mead and Markus
analyzed continuous damping layers whose complex shear modulus is assumed
to be constant.

Finally, Figure 13 shows polaroid pictures of the first mode peaks in
the frequency response spectrum taken from the screen of the HP3582A
spectrum analyzer, for the case where the tape was fixed at the root in
conjunction with different lengths of the tape applied to the base
structure. The shortening and widening of the peak indicates how the tape
is effective in damping resonant vibrations.
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CONCLUSIONS

Measurement and predictions show that, for a given composite
cantilever beam vibrating in a given mode, there is an optimum damping tape
distribution for maximum damping. Significant improvements in damping were
predicted and measured when the constraining layer was clamped at the fixed
end of the beam. The amount of damping tape (and its added weight) required
to produce a given improvement in damping can be significantly reduced by
clamping the tape at the fixed end of the beam. The three- dimensional
finite element implementation of the modal strain energy method proved to
be a powerful analytical tool for predicting damping of such complex
systems. Finally, the impulse-frequency response technique is a fast and
accurate method for measuring damping in such structures.
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TABLE 1. Composite structure constituent material properties.
Density Longitudinal - Transverse Shear Poisson's Fiber Volume Loss Factor
Modulus Modulus Modulus Ratio Fraction @ 70%)
o} E, £, 6s5 vy, ve MODE 1 MODE 2
BASE STRUCTURE
E-Glass Epoxy 1.90 g/cmd 366Pa 116Pa 36Ps 0.28 0.50 0.0040 0.0035
16 plYIO°/0.13" thick} €0.07 lb/ins) (5.25MPsi) (1.580P8i) (0.44MPsi ) (3 140Hz) (@ 880M2)
Graphite Epoxy 1.58 glc-3 127.9GPa 10.276Pa 7.31GPa 0.22 0.67 0.0029 0.0037
12 plyIO°/0.06" thickl (0.06 lblins) €18.55MPsi) €1.49%Psi) €1.06MPsi) (@ 55H2) (@ 330H2)
CONSTRAINING LAYER
Dead Soft Aluminum Foil 2.76 g/cm’ 696Pa 696Pa 266Pa 0.32 .- 0.033 .
{Type 1100/0.01* thick) (0.1 lb/ins) C10MPsi) C10MPsS i) (3.79%Psi)
DAMPING LAYER
3us SJ-2052% 0.98 g/ 3 1.76MPa 1.76MPa 0.59Pa 0.49 -- 0.87 .-
[1SD-112/0.005" thick) €0.04 lb/ins) (255Psi) (255Psi) (85Psi) (@ 55Hz)
" 3.72MPa 3.72MPa 1.24MPa " .- -- 0.90
(540pPsi) (540Psi) (180Psi) (@ 330Kz)
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TABLE 2. Typical experimental data on the influence of tape boundary

conditions (at the clamped end of the beam) on system damping for the first
and second modes of vibration.

DAMPING WITH DIFFERENT TAPE BOUNDARY CONDITIONS
Loss Factor FREE AT ROOT

FIXED (along face of vise) FIXED (inside vise)
(Untaped)
Glass Epoxy Loss Factor Loss Factor Loss Factor Loss Factor Loss Factor Loss Factor
Specimens®* (Taped) Ratio (Taped) Ratio (Taped) Ratio
MODE 1 0.0040 0.049 12.2 0.070 17.5 0.080 20.3
MODE 2 0.0035 0.029 8.3 0.047 13.3 0.043 12.3

*NOTE: Average of three specimens with N/L = 0.0, T/L = 0.5
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DAMPING TAPE - DISTRIBUTION AND BOUNDARY CONDITIONS

FIXED AT ROOT ( TAPE INSIDE VISE )

FIXED AT ROOT

T - TAPE LENGTH g N i
L = BEAM LENGTH /__me_l
N = NO TAPE LENGTH ( AT ROOT ) /] !
7 .
et
CONSTRAINING
—— DAMPING

H
g 7

T
7

bd

(TAPE CLAMPED ALONG FACE OF VISE)

FREE AT ROOT

Figure 1. Distribution and boundary conditions of the damping tape applied
on one side of the composite base structure.
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1.D. Element Aspect Ratio
(length/thickness)
A Adhesive Layer 7.144:1
B Base Structure 0.275:1
c Constraining Layer 3.572:1

Digitized 02/03/2015

N/L =0 T/L = 0.6

Number of Elements = 308

Number of Nodes = 904

Number of Degrees of Freedom = 2700

Total Solution Time = 334.79 sec.

(IBM 4341 Main Frame System 0S/VS1)

/’x A — NOT TO SCALE
A c =
A \/p A \/\_

B B B

Figure 2. Typical 3-D finite element model of constrained layer damping
treatment on a composite base structure (with tape free at clamped end).
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Figure 3. Variation of loss factor with tape length in mode 1 vibration for

fixed and free boundary conditions at root, with a wunidirectional
glass/epoxy composite base structure.
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Figure 4. Variation of loss factor with tape length in mode 2 vibration for
fixed and free boundary conditions at root, with a unidirectional
glass/epoxy composite base structure.
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Figure 5. Variation of loss factor with tape length in mode 1 vibration for
no tape at root boundary condition, with a wunidirectional -glass/epoxy
composite base structure.
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Figure 6. Variation of loss factor with tape length in mode 2 vibration for
no tape at root boundary condition, with a unidirectional glass/epoxy

composite base structure.
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Figure 7. Variation of loss factof with tape length in mode 1 vibration for
fixed and free boundary conditions at root, with a unidirectional
graphite/epoxy composite base structure.

48 ¢ — 7 4
C | BASE STRUCTURE: Grophite Epoxy [12 ply—0°] :
35 [-| DAMPING TAPE : 3M's SJ-2052X - 35
o = 30 ;g—v—i——'——l 4 30
w L
s o F 7 3
< 25 F 4 L-g - 25
% E - TAPL FIXED AT ROOT (N/L = 0) .
= D 2p k- { 4 20
- ')
9N TE f
“ 815 F § -3 15
n W C } ]
n - 3
o < 190 -1 10
-~ ’\_/ N — FEM PKLDICTIONS .
o 1 EXPERINENTAL SCATTER
5 E e
- TAPE FREE AT ROOT (N/L = 0) -
p ¥ . . | | | ! | | | 10

——

g .1 .2 .3 .4 .5 .6 .? .B .9
TAPE LENGTH / BEAM LENGTH (T/L)

Figure 8. Variation of loss factor with tape length in mode 2 vibration for
fixed and free boundary conditions at root, with a wunidirectional
graphite/epoxy composite base structure.
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Figure 9. Variation of loss factor with tape length in mode 1 vibration for

fixed and free boundary conditions at root, with a 20
graphite/epoxy composite base structure.
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Figure 10. Variation of loss factor with tape length in mode %)vibration
off-axis

for fixed. and free boundary conditions at root, with a 20
graphite/epoxy composite base structure.
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Figure 11. Analytical predictions of through-the-thickness shear strain in
adhesive for fixed vs free boundary conditions at root, in mode 1

vibration.
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Figure 12. Analytical predictions of through-the-thickness shear strain in
adhesive for fixed vs free boundary conditions at root, in mode 2
vibration.
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(a) Tape/Beam Length = 0.0
1st Mode Frequency = 135 Hz
Loss factor = 0,004

(b) Tape/Beanm Length = 0.2
1st Mode Frequency = 137 Hz
Loss Factor = 0.027

(¢) Tape/Beam Length = 1.0
lst Mode Frequency = 147 Hz
Loss Factor = 0.083

Figure!3 (a,b,and c). Shortening and widening of the lst mode peak (as
observed on the screen of the spectrum analyzer) for different tape/beam
length ratios indicating how the tape is effective in damping resonant
vibrations of the glass/epoxy composite specimens.
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